1
|
Šrámek J, Němcová V, Kovář J. Calcium channel blockers do not protect against saturated fatty acid-induced ER stress and apoptosis in human pancreatic β-cells. Nutr Metab (Lond) 2021; 18:74. [PMID: 34274001 PMCID: PMC8285784 DOI: 10.1186/s12986-021-00597-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
It was evidenced that saturated fatty acids (FAs) have a detrimental effect on pancreatic β-cells function and survival, leading to endoplasmic reticulum (ER) calcium release, ER stress, and apoptosis. In the present study, we have tested the effect of three calcium influx inhibitors, i.e., diazoxide, nifedipine, and verapamil, on the apoptosis-inducing effect of saturated stearic acid (SA) in the human pancreatic β-cell lines NES2Y and 1.1B4. We have demonstrated that the application of all three calcium influx inhibitors tested has no inhibitory effect on SA-induced ER stress and apoptosis in both tested cell lines. Moreover, these inhibitors have pro-apoptotic potential per se at higher concentrations. Interestingly, these findings are in contradiction with those obtained with rodent cell lines and islets. Thus our data obtained with human β-cell lines suggest that the prospective usage of calcium channel blockers for prevention and therapy of type 2 diabetes mellitus, developed with the contribution of the saturated FA-induced apoptosis of β-cells, seems rather unlikely.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology and Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Vlasta Němcová
- Department of Biochemistry, Cell and Molecular Biology and Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology and Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Hypoxia Modulates Effects of Fatty Acids on NES2Y Human Pancreatic β-cells. Int J Mol Sci 2019; 20:ijms20143441. [PMID: 31336948 PMCID: PMC6678120 DOI: 10.3390/ijms20143441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022] Open
Abstract
Saturated fatty acids (FAs) induce apoptosis in the human pancreatic NES2Y β-cell line while unsaturated FAs have nearly no detrimental effect. Moreover, unsaturated FAs are capable of inhibiting the pro-apoptotic effect of saturated FAs. Hypoxia is also known to have deleterious effects on β-cells function and viability. In the present study, we have tested the modulatory effect of hypoxia on the effect of FAs on the growth and viability of the human pancreatic NES2Y β-cells. This study represents the first study testing hypoxia effect on effects of FAs in pancreatic β-cells as well as in other cell types. We showed that hypoxia increased the pro-apoptotic effect of saturated stearic acid (SA). Endoplasmic reticulum stress signaling seemed to be involved while redistribution of FA transporters fatty acid translocase/cluster of differentiation 36 (FAT/CD36) and fatty acid-binding protein (FABP) do not seem to be involved in this effect. Hypoxia also strongly decreased the protective effect of unsaturated oleic acid (OA) against the pro-apoptotic effect of SA. Thus, in the presence of hypoxia, OA was unable to save SA-treated β-cells from apoptosis induction. Hypoxia itself had only a weak detrimental effect on NES2Y cells. Our data suggest that hypoxia could represent an important factor in pancreatic β-cell death induced and regulated by FAs and thus in the development of type 2 diabetes mellitus.
Collapse
|
3
|
Němcová-Fürstová V, Balušíková K, Halada P, Pavlíková N, Šrámek J, Kovář J. Stearate-Induced Apoptosis in Human Pancreatic β-Cells is Associated with Changes in Membrane Protein Expression and These Changes are Inhibited by Oleate. Proteomics Clin Appl 2019; 13:e1800104. [PMID: 30666801 DOI: 10.1002/prca.201800104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/12/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Lipotoxicity is implicated in type 2 diabetes pathogenesis. Its molecular mechanisms are not completely understood. The aim of this study is to identify new suspect proteins involved in pancreatic β-cell death induction by saturated fatty acids and its inhibition by unsaturated fatty acids. EXPERIMENTAL DESIGN Employing 2DE analysis and subsequent western blot confirmation, the differences in membrane/membrane-associated protein expression in human β-cell line NES2Y are assessed during cell death induction by stearate and its inhibition by oleate. RESULTS Induction of apoptosis by stearate is associated with significantly increased levels of Hsp90β, peroxiredoxin-1, and 14-3-3γ in the membrane fraction of NES2Y cells and significantly decreased levels of annexin A2, annexin A4, and reticulocalbin-2. All these changes are significantly inhibited by oleate co-application. No expression changes are detected after application of stearate together with oleate. Furthermore, the expression of reticulocalbin-2 is significantly decreased after stearate application also in the whole cell lysate. CONCLUSIONS AND CLINICAL RELEVANCE Several membrane-associated proteins that could be related to pro- and anti-apoptotic signaling initiated by fatty acids in human pancreatic β-cells are identified. As far as we know, annexin A4, reticulocalbin-2, and 14-3-3γ represent novel molecules related to the effect of fatty acids on β-cell viability.
Collapse
Affiliation(s)
- Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Nela Pavlíková
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Effect of Saturated Stearic Acid on MAP Kinase and ER Stress Signaling Pathways during Apoptosis Induction in Human Pancreatic β-Cells Is Inhibited by Unsaturated Oleic Acid. Int J Mol Sci 2017; 18:ijms18112313. [PMID: 29099080 PMCID: PMC5713282 DOI: 10.3390/ijms18112313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
It has been shown that saturated fatty acids (FAs) have a detrimental effect on pancreatic β-cells function and survival, leading to apoptosis, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction and regulation by FAs in β-cells remain unclear; however, mitogen-activated protein (MAP) kinase and endoplasmic reticulum (ER) stress signaling pathways may be involved. In this study, we tested how unsaturated oleic acid (OA) affects the effect of saturated stearic acid (SA) on the p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways as well as the ER stress signaling pathways during apoptosis induction in the human pancreatic β-cells NES2Y. We demonstrated that OA is able to inhibit all effects of SA. OA alone has only minimal or no effects on tested signaling in NES2Y cells. The point of OA inhibitory intervention in SA-induced apoptotic signaling thus seems to be located upstream of the discussed signaling pathways.
Collapse
|
5
|
Ou D, Wang X, Metzger DL, Ao Z, Pozzilli P, James RFL, Chen L, Warnock GL. Suppression of Human T-Cell Responses to β-Cells by Activation of B7-H4 Pathway. Cell Transplant 2017; 15:399-410. [DOI: 10.3727/000000006783981837] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
B7-H4, a recently described member of the B7 family of cosignal molecules, is thought to be involved in the regulation of cellular and humoral immune responses through receptors on activated T and B cells. Human islet cells express positive B7-H4 mRNA in RT-PCR assays, but not B7-H4 protein on cell surface in flow cytometric analyses. To investigate the regulatory effects of activation of the B7-H4 pathway on the function of activated T cells of patients with type 1 diabetes (T1D), we have used our in vitro human experimental system, including human β-cell antigen-specific T-cell clones and human β-cell lines CM and HP62, as well as primary islet cells. B7-H4.Ig protein was purified from the culture supernatant of 293T cells transfected by a B7-H4.Ig plasmid (pMIgV, containing a human B7-H4 cDNA and a mouse IgG2a Fc cDNA). Our preliminary studies showed that immobilized fusion protein human B7-H4.Ig (coated with 5 μg/ml for 2 h at 37°C), but not control Ig, clearly inhibited the proliferation of activated CD4+ and CD8+ T cells of patients induced by anti-CD3 antibody in CFSE assays. B7-H4.Ig also arrested cell cycle progression of T cells in G0/G1 phase and induced T-cell apoptosis as measured by BrdU-7-AAD flow cytometric analysis. To determine the cytoprotective effects of B7-H4, we developed transfectants of human β-cell lines CM and HP62 and islet cells transfected with the B7-H4.Ig plasmid, using empty vector transfectants as controls. The results demonstrate that cell-associated B7-H4.Ig expressed on human β-cells clearly inhibits the cytotoxicity of the T-cell clones to targeted human β-cells in 51Cr release cytotoxicity assays. Activation of the B7-H4 pathway may represent a novel immunotherapeutic approach to inhibit T-cell responses for the prevention of β-cell destruction in T1D.
Collapse
Affiliation(s)
- Dawei Ou
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1L8, Canada
| | - Xiaojie Wang
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniel L. Metzger
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Ziliang Ao
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1L8, Canada
| | - Paolo Pozzilli
- St. Bartholomew's Hospital, Royal London School of Medicine, London, C1A 7BE, UK
| | - Roger F. L. James
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE2 7LX, UK
| | - Lieping Chen
- Department of Dermatology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1L8, Canada
| |
Collapse
|
6
|
p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells. Int J Mol Sci 2016; 17:159. [PMID: 26861294 PMCID: PMC4783893 DOI: 10.3390/ijms17020159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis.
Collapse
|
7
|
Pavlikova N, Smetana P, Halada P, Kovar J. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. ENVIRONMENTAL RESEARCH 2015; 142:257-263. [PMID: 26186133 DOI: 10.1016/j.envres.2015.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE.
Collapse
Affiliation(s)
- Nela Pavlikova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Smetana
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovar
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Valtat B, Riveline JP, Zhang P, Singh-Estivalet A, Armanet M, Venteclef N, Besseiche A, Kelly DP, Tronche F, Ferré P, Gautier JF, Bréant B, Blondeau B. Fetal PGC-1α overexpression programs adult pancreatic β-cell dysfunction. Diabetes 2013; 62:1206-16. [PMID: 23274887 PMCID: PMC3609553 DOI: 10.2337/db12-0314] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult β-cell dysfunction, a hallmark of type 2 diabetes, can be programmed by adverse fetal environment. We have shown that fetal glucocorticoids (GCs) participate in this programming through inhibition of β-cell development. Here we have investigated the molecular mechanisms underlying this regulation. We showed that GCs stimulate the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a coregulator of the GCs receptor (GR), and that the overexpression of PGC-1α represses genes important for β-cell development and function. More precisely, PGC-1α inhibited the expression of the key β-cell transcription factor pancreatic duodenal homeobox 1 (Pdx1). This repression required the GR and was mediated through binding of a GR/PGC-1α complex to the Pdx1 promoter. To explore PGC-1α function, we generated mice with inducible β-cell PGC-1α overexpression. Mice overexpressing PGC-1α exhibited at adult age impaired glucose tolerance associated with reduced insulin secretion, decreased β-cell mass, and β-cell hypotrophy. Interestingly, PGC-1α expression in fetal life only was sufficient to impair adult β-cell function whereas β-cell PGC-1α overexpression from adult age had no consequence on β-cell function. Altogether, our results demonstrate that the GR and PGC-1α participate in the fetal programming of adult β-cell function through inhibition of Pdx1 expression.
Collapse
Affiliation(s)
- Bérengère Valtat
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Jean-Pierre Riveline
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Ping Zhang
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Amrit Singh-Estivalet
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Mathieu Armanet
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Cell Therapy Unit, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Venteclef
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Adrien Besseiche
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Daniel P. Kelly
- Sanford-Burnham Medical Research Institute, Orlando, Florida
| | - François Tronche
- Université Pierre et Marie Curie, Paris, France
- CNRS UMR INSERM 952-CNRS 7224, Paris, France
| | - Pascal Ferré
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Jean-François Gautier
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Department of Diabetes and Endocrinology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
- Université Paris Diderot, Paris, France
| | - Bernadette Bréant
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Bertrand Blondeau
- INSERM, UMRS 872, Cordeliers Research Center, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Corresponding author: Bertrand Blondeau,
| |
Collapse
|
9
|
Lightfoot YL, Chen J, Mathews CE. Immune-mediated β-cell death in type 1 diabetes: lessons from human β-cell lines. Eur J Clin Invest 2012; 42:1244-51. [PMID: 22924552 PMCID: PMC3703770 DOI: 10.1111/j.1365-2362.2012.02711.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, multifactorial disorder that results from a contretemps of genetic and environmental factors. Autoimmune attack and functional inhibition of the insulin-producing β cells in the pancreas lead to the inability of β cells to metabolize glucose, and thus results the hallmark clinical symptom of diabetes: abnormally high blood glucose levels. Treatment and protection from T1D require a detailed knowledge of the molecular effectors and the mechanism(s) of cell death leading to β-cell demise. Primary islets and surrogate β cells have been utilized in vitro to investigate in isolation-specific mechanisms associated with progression to T1D in vivo. This review focuses on the data obtained from these experiments. Studies using transformed β cells of human sources are described.
Collapse
Affiliation(s)
- Yaíma L Lightfoot
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
10
|
Lightfoot YL, Chen J, Mathews CE. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5. PLoS One 2011; 6:e20617. [PMID: 21738580 PMCID: PMC3124469 DOI: 10.1371/journal.pone.0020617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ0 cells. βLox5 ρ0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways.
Collapse
Affiliation(s)
- Yaíma L. Lightfoot
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Němcová-Fürstová V, James RFL, Kovář J. Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic β-cells: activation of caspases and ER stress induction. Cell Physiol Biochem 2011; 27:525-38. [PMID: 21691070 DOI: 10.1159/000329954] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 12/12/2022] Open
Abstract
AIMS In this study we have tested the effect of unsaturated fatty acids on the proapoptotic effects of saturated fatty acids in the human pancreatic β-cells NES2Y. RESULTS We found that unsaturated palmitoleic and oleic acid at a concentration of 0.2 mM and higher are able to completely inhibit the proapoptotic effect of their counterpart saturated palmitic and stearic acid at a concentration of 1 mM. Apoptosis induced by stearic acid was associated with significant activation of caspase-6, -7, -9, -2 and -8, but not with significant activation of caspase-3. The activation of caspases was blocked by coincubation with oleic acid. Stearic acid treatment was not associated with a significant change in mitochondrial membrane potential, reactive oxygen species level and with cytochrome c release from mitochondria. Furthermore, stearic acid treatment was not associated with changes in p21(WAF1/CIP1), PIDD, Fas receptor and Fas ligand expression. However, we detected endoplasmic reticulum (ER) stress markers, i. e. a significant upregulation of BiP and CHOP expression as well as XBP1 mRNA splicing. These changes were inhibited by coincubation with oleic acid. CONCLUSION Presented data indicate that oleic acid inhibits apoptosis induction by stearic acid in NES2Y cells upstream of caspase activation and ER stress induction. It does not involve an interference with the mitochondrial pathway of apoptosis induction, with p53 activation and PIDD expression as well as with Fas receptor and Fas ligand expression.
Collapse
Affiliation(s)
- Vlasta Němcová-Fürstová
- Department of Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, Prague, Czech Republic
| | | | | |
Collapse
|
12
|
Labriola L, Peters MG, Krogh K, Stigliano I, Terra LF, Buchanan C, Machado MCC, Bal de Kier Joffé E, Puricelli L, Sogayar MC. Generation and characterization of human insulin-releasing cell lines. BMC Cell Biol 2009; 10:49. [PMID: 19545371 PMCID: PMC2706802 DOI: 10.1186/1471-2121-10-49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/19/2009] [Indexed: 12/30/2022] Open
Abstract
Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction.
Collapse
Affiliation(s)
- Leticia Labriola
- Nucleo de Terapia Celular e Molecular, Universidade de São Paulo, São Paulo, SP, Brazil. .
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fürstova V, Kopska T, James RF, Kovar J. Comparison of the effect of individual saturated and unsaturated fatty acids on cell growth and death induction in the human pancreatic β-cell line NES2Y. Life Sci 2008; 82:684-91. [DOI: 10.1016/j.lfs.2007.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/06/2007] [Accepted: 12/29/2007] [Indexed: 01/09/2023]
|
14
|
Gartner W, Vila G, Daneva T, Nabokikh A, Koc-Saral F, Ilhan A, Majdic O, Luger A, Wagner L. New functional aspects of the neuroendocrine marker secretagogin based on the characterization of its rat homolog. Am J Physiol Endocrinol Metab 2007; 293:E347-54. [PMID: 17426113 DOI: 10.1152/ajpendo.00055.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secretagogin is a recently cloned human beta-cell-expressed EF-hand Ca(2+)-binding protein. Converging evidence indicates that it exerts Ca(2+) sensor activity and is involved in regulation of insulin synthesis and secretion. To obtain a potent tool for the extension of its functional analysis in rat in vitro systems, we cloned the rat homolog of human secretagogin. Using comparative sequence analysis, immunostaining, and immunoblotting, we demonstrated a high degree of sequence homology and similar tissue expression patterns of human and rat secretagogin. Highest rat secretagogin expression levels were found in pancreatic beta-cells. On the basis of newly generated anti-rat secretagogin antibodies, we established a rat secretagogin-specific sandwich capture ELISA and demonstrated release of secretagogin from viable Rin-5F cells. Dexamethasone treatment of Rin-5F cells resulted in an increased secretagogin release rate, which was inversely correlated with insulin secretion. In contrast, the secretagogin transcription rate was markedly reduced. This resulted in a decreased intracellular secretagogin content under the influence of dexamethasone. Sucrose gradient cell fractionation analysis of Rin-5F cells confirmed the predominant cytosolic localization of secretagogin, with only limited association of secretagogin with insulin granules. The loss of intracellular secretagogin after dexamethasone treatment affected predominantly the insulin granule-associated secretagogin fractions. The sequence homology and the comparable tissue expression patterns of human and rat secretagogin indicate conserved intracellular functions. The effects of dexamethasone on the total secretagogin content in Rin-5F cells and on its intracellular distribution might result in an impaired Ca(2+) sensitivity of dexamethasone-treated insulin-secreting cells.
Collapse
Affiliation(s)
- W Gartner
- Medical University Vienna, Department of Medicine III, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gartner W, Koc F, Nabokikh A, Daneva T, Niederle B, Luger A, Wagner L. Long-term in vitro growth of human insulin-secreting insulinoma cells. Neuroendocrinology 2006; 83:123-30. [PMID: 16888402 DOI: 10.1159/000094875] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/03/2006] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Long-term in vitro maintenance of human insulin-secreting insulinoma cells. METHODS (1) Cell culture of ex vivo-derived insulinoma cell suspensions from 8 individual human donors, using various cell culture medium supplementations; (2) determination of insulin synthesis and secretion using immunocytochemistry and insulin and pro-insulin radioimmunoassays; (3) nestin-immunostaining of long-term in vitro grown insulinoma cell suspensions, and (4) phase-contrast light microscopy for analyzing the in vitro growth characteristics of the insulinoma cells. RESULTS (1) Parallel persistence of in vitro insulinoma cell proliferation as well as insulin-synthesizing and -secreting capacity depended on both the co-culture of insulinoma cells with human fibroblasts and the supplementation of the cell culture medium with tissue culture supernatant derived from the rodent pituitary adenoma cell line GH-3; (2) immunostaining for insulin and secretagogin confirmed the neuroendocrine origin of the insulinoma cells grown in vitro; (3) insulin secretion capability persisted up to an observation period of 25 weeks; (4) insulin secretion rates after 6 weeks of in vitro growth ranged from 3.5 to 83.3 muU/ml/h/60,000 cells plated, and (5) after long-term in vitro growth of insulinoma-derived cell suspensions with persistent insulin-secreting capacity, nestin staining was observed predominantly in co-cultured fibroblasts. CONCLUSION Our data describe for the first time the long-term in vitro culture of insulin-secreting human insulinomas and highlight the importance of beta-cell trophic factors for insulinoma cell growth.
Collapse
Affiliation(s)
- Wolfgang Gartner
- Department of Medicine III, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Ou D, Wang X, Metzger DL, Robbins M, Huang J, Jobin C, Chantler JK, James RFL, Pozzilli P, Tingle AJ. Regulation of TNF-Related Apoptosis-Inducing Ligand-Mediated Death-Signal Pathway in Human β Cells by Fas-Associated Death Domain and Nuclear Factor κB. Hum Immunol 2005; 66:799-809. [PMID: 16112027 DOI: 10.1016/j.humimm.2005.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 03/21/2005] [Accepted: 03/25/2005] [Indexed: 01/30/2023]
Abstract
Transfectants of human CM and NES2Y beta cell lines and primary islets transfected by FADD-DN (dominant-negative form of Fas-associated death domain), a mutant of FADD and/or a superrepressor of nuclear factor kappaB (NF-kappaB) (AdIkappaB(SA)2), were examined for their susceptibility to the TRAIL (TNF-related apoptosis-inducing ligand)-induced death signal pathway, compared with controls, wild-type cells, and vector transfectants in caspase fluorescence, Western blot, electrophoretic mobility shift, apoptosis, and cytotoxicity assays. FADD-DN inhibited caspase-8 activation induced by TRAIL in the transfectants of CM and NES2Y cells. TRAIL-induced apoptosis and cytotoxicity to the FADD-DN transfectants were decreased in comparison to those responses in controls (CM, p < 0.01 and p < 0.01; NES2Y, p < 0.05, and p < 0.02, respectively). When CM, NES2Y, and primary islet cells were transfected by AdIkappaB(SA)2, TRAIL-induced IkappaB degradation and nuclear translocation of NF-kappaB p50/p65 were blocked. TRAIL-induced apoptosis and cytotoxicity to AdIkappaB(SA)2 transfectants of these cells were also reduced (CM, p < 0.02 and p < 0.02; NES2Y, p < 0.01 and p < 0.01, respectively, and islet p < 0.01 for cytotoxicity). Finally, cytotoxicity induced by TRAIL in CM and NES2Y cells transfected with both FADD-DN and AdIkappaB(SA)2 was reduced, compared with that observed in these cells transfected with either FADD-DN alone or AdIkappaB(SA)2 alone, suggesting that FADD and NF-kappaB have synergistic proapoptotic regulatory effects on the susceptibility of beta cell lines and islet cells to TRAIL-induced destruction.
Collapse
Affiliation(s)
- D Ou
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, BC, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ou D, Wang X, Metzger DL, James RFL, Pozzilli P, Plesner A, Korneluk RG, Verchere CB, Tingle AJ. Synergistic inhibition of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human pancreatic β cells by Bcl-2 and X-linked inhibitor of apoptosis. Hum Immunol 2005; 66:274-84. [PMID: 15784465 DOI: 10.1016/j.humimm.2004.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/29/2004] [Accepted: 12/01/2004] [Indexed: 11/24/2022]
Abstract
To better understand the cytokine death-signal transduction pathways in human beta cells, we investigated the inhibitory effects of Bcl-2 (protooncogene bcl-2) and X-linked inhibitor of apoptosis (XIAP) on TRAIL (TNF-related apoptosis-inducing ligand)-induced human beta-cell destruction. A panel of Bcl-2-overexpressing transfectants of the human beta-cell lines NES2Y and CM was developed by transfection with a pEFpGKpuro vector containing Bcl-2 or an empty vector as a control. TRAIL-induced cytotoxicity and apoptosis of Bcl-2-overexpressing beta cells were clearly decreased, in comparison with wild-type cells and the empty vector transfectants. XIAP-overexpressing CM, NES2Y, and primary islet cells were generated by exposing cells to recombinant adenovirus-expressing XIAP (AdXIAP) or AdLacz as a control. TRAIL-induced cytotoxicity and apoptosis of CM, NES2Y, and primary islet cells infected with AdXIAP were clearly reduced compared with controls. Interestingly, cytotoxicity induced by TRAIL in human beta cells transfected with both Bcl-2 and AdXIAP was much less than that observed in human beta cells transfected with either Bcl-2 or XIAP alone (p < 0.005 in CM and p < 0.03 in NES2Y). Overexpression of both Bcl-2 and XIAP inhibited TRAIL-induced activation of caspases as well as TRAIL-mediated damage of mitochondrial function in cells, suggesting possible regulatory mechanisms. These results indicate that Bcl-2 and XIAP synergistically inhibit TRAIL-mediated death pathways in human beta cells.
Collapse
Affiliation(s)
- Dawei Ou
- Department of Pediatrics, University of British Columbia, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hohmeier HE, Newgard CB. Cell lines derived from pancreatic islets. Mol Cell Endocrinol 2004; 228:121-8. [PMID: 15541576 DOI: 10.1016/j.mce.2004.04.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 04/01/2004] [Indexed: 12/18/2022]
Abstract
The islets of Langerhans play a major role in control of metabolic fuel homeostasis. The rapid increase in incidence of diabetes worldwide has spurred renewed interest in islet cell biology. However, gaining a detailed understanding of islet function at a molecular and biochemical level has been complicated by the difficulty and high cost associated with isolation of pancreatic islets. Until recently, islet-derived cell lines have represented sub-optimal surrogates for primary cells for functional studies due to their undifferentiated or unstable phenotypic features. New approaches have resulted in isolation and characterization of rodent insulinoma cell lines that retain many key functional attributes of normal islets and have become useful tools in the study of islet cell biology.
Collapse
Affiliation(s)
- Hans E Hohmeier
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center Durham 3813, Durham, NC 27710, USA.
| | | |
Collapse
|
19
|
da Silva Xavier G, Rutter J, Rutter GA. Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci U S A 2004; 101:8319-24. [PMID: 15148392 PMCID: PMC420392 DOI: 10.1073/pnas.0307737101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 04/15/2004] [Indexed: 01/12/2023] Open
Abstract
Per-Arnt-Sim (PAS) domain-containing kinases are common in prokaryotes, but a mammalian counterpart has only recently been described. Although the PAS domain of the mammalian PAS kinase (PASK) is closely related to the bacterial oxygen sensor FixL, it is unclear whether PASK activity is changed in mammalian cells in response to nutrients and might therefore contribute to signal transduction by these or other stimuli. Here, we show that elevated glucose concentrations rapidly increase PASK activity in pancreatic islet beta cells, an event followed by the accumulation of both PASK mRNA and protein. Demonstrating a physiological role for PASK activation, comicroinjection into clonal beta cells of cDNA encoding wild-type PASK, or PASK protein itself, mimics the induction of preproinsulin promoter activity by high glucose concentrations. Conversely, anti-PASK antibodies block promoter activation by the sugar, and the silencing of PASK expression by RNA interference suppresses the up-regulation by glucose of preproinsulin and pancreatic duodenum homeobox 1 gene expression, without affecting glucose-induced changes in the levels of mRNAs encoding glucokinase or uncoupling protein 2. We conclude that PASK is an important metabolic sensor in nutrient-sensitive mammalian cells and plays an unexpected role in the regulation of key genes involved in maintaining the differentiated phenotype of pancreatic beta cells.
Collapse
Affiliation(s)
- Gabriela da Silva Xavier
- Henry Wellcome Signalling Laboratories and Department of Biochemistry, University of Bristol, Bristol BS8 ITD, United Kingdom
| | | | | |
Collapse
|
20
|
Cosgrove KE, Shepherd RM, Fernandez EM, Natarajan A, Lindley KJ, Aynsley-Green A, Dunne MJ. Genetics and pathophysiology of hyperinsulinism in infancy. HORMONE RESEARCH 2004; 61:270-88. [PMID: 14981344 DOI: 10.1159/000076933] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 01/15/2003] [Indexed: 11/19/2022]
Abstract
Hyperinsulinism in infancy (HI) is a condition of neonates and early childhood. For many years the pathophysiology of this potentially lethal disorder was unknown. Advances in the genetics, histopathology and molecular physiology of this disease have now provided insights into the causes of beta-cell dysfunction and revealed levels of diversity far in excess of our previous knowledge. These include defects in ion channel subunit genes and mutations in several enzymes associated with beta-cell metabolism and anaplerosis. In most cases, beta-cell pathophysiology leads to an alteration in the function of ATP-sensitive K(+) channels. This can manifest as 'channelopathies' of K(ATP) channels through gene defects in ABCC8 and KCNJ11 (Ch.11p15); or as a result of 'metabolopathies' through defects in the genes encoding glucokinase (GCK, Ch.7p15-p13), glutamate dehydrogenase (GLUD1, Ch.10q23.3) and short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADHSC, Ch.4q22-q26). This review focuses upon the relationship between the causes of HI and therapeutic options.
Collapse
Affiliation(s)
- Karen E Cosgrove
- School of Biological Sciences, Stopford Building, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiol Rev 2004; 84:239-75. [PMID: 14715916 DOI: 10.1152/physrev.00022.2003] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dunne, Mark J., Karen E. Cosgrove, Ruth M. Shepherd, Albert Aynsley-Green, and Keith J. Lindley. Hyperinsulinism in Infancy: From Basic Science to Clinical Disease. Physiol Rev 84: 239–275, 2004; 10.1152/physrev.00022.2003.—Ion channelopathies have now been described in many well-characterized cell types including neurons, myocytes, epithelial cells, and endocrine cells. However, in only a few cases has the relationship between altered ion channel function, cell biology, and clinical disease been defined. Hyperinsulinism in infancy (HI) is a rare, potentially lethal condition of the newborn and early childhood. The causes of HI are varied and numerous, but in almost all cases they share a common target protein, the ATP-sensitive K+channel. From gene defects in ion channel subunits to defects in β-cell metabolism and anaplerosis, this review describes the relationship between pathogenesis and clinical medicine. Until recently, HI was generally considered an orphan disease, but as parallel defects in ion channels, enzymes, and metabolic pathways also give rise to diabetes and impaired insulin release, the HI paradigm has wider implications for more common disorders of the endocrine pancreas and the molecular physiology of ion transport.
Collapse
Affiliation(s)
- Mark J Dunne
- Research Division of Physiology and Pharmacology, The School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Vives-Pi M, Somoza N, Fernández-Alvarez J, Vargas F, Caro P, Alba A, Gomis R, Labeta MO, Pujol-Borrell R. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol 2003; 133:208-18. [PMID: 12869026 PMCID: PMC1808777 DOI: 10.1046/j.1365-2249.2003.02211.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CD14, a GPI-linked membrane protein, is a component of the lipopolysaccharide (LPS) receptor complex, one of the pattern-recognizing receptors (PRR) expressed by myeloid lineage cells. Here we report that CD14, the functionally linked toll-like receptor molecules, TLR2 and TLR4, and the associated molecule MD-2 are expressed in endocrine cells of the human pancreatic islets. CD14 expression in human pancreatic islets was determined by immunofluorescence staining of tissue sections and primary cultures, and confirmed by flow cytometry of dispersed normal islets and SV40-transformed islet cells (HP62). The latter cells synthesized and secreted CD14 in response to lipopolysaccharide (LPS) in a time- and dose-dependent manner. Reverse transcription polymerase chain reaction (RT-PCR)-Southern was positive for CD14, TLR2, TLR4 and MD-2 in human pancreas, purified islets and HP62 cells. In vitro experiments using rat islets (also positive for CD14 by RT-PCR) and HP62 cells showed that LPS regulates glucose-dependent insulin secretion and induces inflammatory cytokines [interleukin (IL)-1alpha, IL-6 and tumour necrosis factor (TNF)-alpha]. The functional expression of CD14 and associated molecules in islet beta cells adds a new pathway that islet cells may follow to adjust their function to endotoxaemia situations and become vulnerable to the inflammatory events that occur during diabetogenic insulitis.
Collapse
Affiliation(s)
- M Vives-Pi
- Laboratory of Immunobiology for Research and Diagnostic Applications, Transfusion Center and Tissue Bank Germans Trias i Pujol University Hospital, Badalona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Campbell SC, Macfarlane WM. Regulation of the pdx1 gene promoter in pancreatic beta-cells. Biochem Biophys Res Commun 2002; 299:277-84. [PMID: 12437983 DOI: 10.1016/s0006-291x(02)02633-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the adult pancreas the expression of the transcription factor PDX1 is mainly restricted to the beta-cells of the islets of Langerhans. In this study we have identified a region of the pdx1 promoter between -2715 and -1960 which was essential to direct pancreatic islet-cell-specific expression of PDX1. We have also begun for the first time to understand the complex nutritional and hormonal regulation controlling PDX1 expression. The current study has established the fact that glucose, GLP-1, insulin, T(3), HB-EGF, and TNF-alpha all positively regulate the PDX1 gene promoter in pancreatic beta-cells. This study represents the first detailed exploration of the nutritional and hormonal regulation of this vital beta-cell gene.
Collapse
Affiliation(s)
- Susan C Campbell
- School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, NE2 4HH, Newcastle upon Tyne, UK
| | | |
Collapse
|
24
|
Oberholzer J, Toso C, Ris F, Bucher P, Triponez F, Demirag A, Lou J, Morel P. Beta cell replacement for the treatment of diabetes. Ann N Y Acad Sci 2001; 944:373-87. [PMID: 11797687 DOI: 10.1111/j.1749-6632.2001.tb03849.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The replacement of insulin-producing beta cells by islet transplantation can efficiently reverse diabetes. The recent improvements in clinical results were made possible by transplanting higher islet masses and through the introduction of new immunosuppressive protocols that avoid diabetogenicity. The need for alternatives to continuous immunosuppression, and an unlimited source of glucose-sensitive, insulin-secreting tissue, is emerging. In this review we discuss the various key steps in islet transplantation and offer perspectives for future developments in the replacement of insulin-producing beta cells for the treatment of type I diabetes.
Collapse
Affiliation(s)
- J Oberholzer
- Department of Surgery, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Pancreatic duodenal homeobox-1 (PDX-1) is a homeodomain protein that plays an important role in the development of the pancreas and in maintaining the identity and function of the islets of Langerhans. It also regulates the expression of the insulin gene in response to changes in glucose and insulin concentrations. Glucose and insulin regulate PDX-1 by way of a signaling pathway involving phosphatidylinositol 3-kinase (PI 3-kinase) and SAPK2/p38. Activation of this pathway leads to phosphorylation of PDX-1 and its movement into the nucleus. To investigate the intracellular trafficking of PDX-1, immunocytochemistry was used to localize PDX-1 in the human beta-cell line NesPDX-1, in which PDX-1 is overexpressed, and in MIN6 beta-cells. In low-glucose conditions, PDX-1 localized predominantly to the nuclear periphery, with some staining in the cytoplasm. After stimulation with glucose, PDX-1 was present in the nucleoplasm. The translocation of PDX-1 to the nucleoplasm was complete within 15 min and occurred in 5-10 mmol/l glucose. Insulin and sodium arsenite, an activator of the stress-activated pathway, also stimulated PDX-1 movement from the nuclear periphery to the nucleoplasm. When cells were transferred between high glucose- and low glucose-containing medium, PDX-1 rapidly shuttled between the nuclear periphery and the nucleoplasm. Glucose- and insulin-stimulated translocation of PDX-1 to the nucleoplasm was inhibited by wortmannin and SB 203580, indicating that a pathway involving PI 3-kinase and SAPK2/p38 was involved; translocation was unaffected by PD 098959 and rapamycin, suggesting that neither mitogen-activated protein kinase nor p70(s6k) were involved. Arsenite-stimulated import of PDX-1 into the nucleus was inhibited by SB 203580 but not by wortmannin. Export from the nucleoplasm to the nuclear periphery was inhibited by calyculin A and okadaic acid, suggesting that dephosphorylation of PDX-1 was involved. These results demonstrated that PDX-1 shuttles between the nuclear periphery and nucleoplasm in response to changes in glucose and insulin concentrations and that these events are dependent on PI 3-kinase, SAPK2/p38, and a nuclear phosphatase(s).
Collapse
Affiliation(s)
- L J Elrick
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | | |
Collapse
|
26
|
Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R, Arcangeli A, Olivotto M, Wanke E. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J 2000; 14:2601-10. [PMID: 11099479 DOI: 10.1096/fj.00-0077com] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human ether-a-go-go-related genes (herg) are expressed in tissues other than heart and brain where the HERG K(+) channels are known to regulate the repolarization of the heart action potential and the neuronal spike-frequency accommodation. We provide evidence that herg1 transcripts are present in human pancreatic islets that were used to study both insulin secretion and electrical activity with radioimmunoassay and single cell perforated patch-clamp techniques, respectively. Glucose- and arginine-induced islets insulin secretion data suggested a net increase of release under perfusion with antiarrhythmic drugs known to selectively block HERG channels. Indeed we could routinely isolate a K(+) current that was recognized as biophysically and pharmacologically similar to the HERG current. An analysis of the glucose- and arginine-induced electrical activity (several applications during 30 min) in terms of firing frequency and putative insulin release was done in control and in the presence of selective blockers of HERG channels: the firing frequency and the release increased by 32% and 77%, respectively. It is concluded that HERG channels have a crucial role in regulating insulin secretion and firing of human beta-cells. This raises the possibility that some genetically characterized hyperinsulinemic diseases of unknown origin might involve mutations in the HERG channels.
Collapse
Affiliation(s)
- B Rosati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, I-20126 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Macfarlane WM, Campbell SC, Elrick LJ, Oates V, Bermano G, Lindley KJ, Aynsley-Green A, Dunne MJ, James RF, Docherty K. Glucose regulates islet amyloid polypeptide gene transcription in a PDX1- and calcium-dependent manner. J Biol Chem 2000; 275:15330-5. [PMID: 10748090 DOI: 10.1074/jbc.m908045199] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) and insulin are expressed in the beta-cells of the islets of Langerhans. They are co-secreted in response to changes in glucose concentration, and their mRNA levels are also regulated by glucose. The promoters of both genes share similar cis-acting sequence elements, and both bind the homeodomain transcription factor PDX1, which plays an important role in the regulation of the insulin promoter and insulin mRNA levels by glucose. Here we examine the role of PDX1 in the regulation of the human IAPP promoter by glucose. The experiments were facilitated by the availability of a human beta-cell line (NES2Y) that lacks PDX1. NES2Y cells also lack operational K(ATP) channels, resulting in a loss of control of calcium signaling. We have previously used these cells to show that glucose regulation of the insulin gene is dependent on PDX1, but not calcium. In the mouse beta-cell line Min6, glucose (16 mm) stimulated a 3.5-4-fold increase in the activity of a -222 to +450 IAPP promoter construct compared with values observed in 0.5 mm glucose. In NES2Y cells, glucose failed to stimulate transcriptional activation of the IAPP promoter. Overexpression of PDX1 in NES2Y cells failed to reinstate glucose-responsive control of the IAPP promoter. Glucose effects on the IAPP promoter were observed only in the presence of PDX1 when normal calcium signaling was restored by overexpression of the two K(ATP) channel subunits SUR1 and Kir6.2. The importance of calcium was further emphasized by an experiment in which glucose-stimulated IAPP promoter activity was inhibited by the calcium channel blocker verapamil (50 microm). Verapamil was further shown to inhibit the stimulatory effect of glucose on IAPP mRNA levels. These results demonstrate that like the insulin promoter, glucose regulation of the IAPP promoter is dependent on the activity of PDX1, but unlike the insulin promoter, it additionally requires the activity of another, as yet uncharacterized factor(s), the activity of which is calcium-dependent.
Collapse
Affiliation(s)
- W M Macfarlane
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shepherd RM, Cosgrove KE, O'Brien RE, Barnes PD, Ammälä C, Dunne MJ. Hyperinsulinism of infancy: towards an understanding of unregulated insulin release. European Network for Research into Hyperinsulinism in Infancy. Arch Dis Child Fetal Neonatal Ed 2000; 82:F87-97. [PMID: 10685980 PMCID: PMC1721057 DOI: 10.1136/fn.82.2.f87] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Insulin is synthesised, stored, and secreted from pancreatic beta cells. These are located within the islets of Langerhans, which are distributed throughout the pancreas. Less than 2% of the total pancreas is devoted to an endocrine function. When the mechanisms that control insulin release are compromised, potentially lethal diseases such as diabetes and neonatal hypoglycaemia are manifest. This article reviews the physiology of insulin release and illustrates how defects in these processes will result in the pathophysiology of hyperinsulinism of infancy.
Collapse
Affiliation(s)
- R M Shepherd
- Institute of Molecular Physiology and Department of Biomedical Science, Sheffield University, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
29
|
Dunne MJ. Ions, genes and insulin release: from basic science to clinical disease. Based on the 1998 R. D. Lawrence Lecture. Diabet Med 2000; 17:91-104. [PMID: 10746478 DOI: 10.1046/j.1464-5491.2000.00247.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In 1968, reports of the first microelectrode recordings of insulin-secreting cells were published. Thirty years later it is now established that electrical responses of beta-cells play a critical role in stimulus-secretion coupling. It is now also clear that defects in ion channel genes compromise the mechanisms which govern secretion and lead to the onset of disease. Here, the physiology of insulin release is reviewed in the context of ion channels, the ionic control of insulin release and the pathophysiology of hyperinsulinism of infancy.
Collapse
Affiliation(s)
- M J Dunne
- Institute of Molecular Physiology and Department of Biomedical Science, Sheffield University, Western Bank, Sheffield, UK.
| |
Collapse
|
30
|
MacFarlane WM, Chapman JC, Shepherd RM, Hashmi MN, Kamimura N, Cosgrove KE, O'Brien RE, Barnes PD, Hart AW, Docherty HM, Lindley KJ, Aynsley-Green A, James RF, Docherty K, Dunne MJ. Engineering a glucose-responsive human insulin-secreting cell line from islets of Langerhans isolated from a patient with persistent hyperinsulinemic hypoglycemia of infancy. J Biol Chem 1999; 274:34059-66. [PMID: 10567373 DOI: 10.1074/jbc.274.48.34059] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a neonatal disease characterized by dysregulation of insulin secretion accompanied by profound hypoglycemia. We have discovered that islet cells, isolated from the pancreas of a PHHI patient, proliferate in culture while maintaining a beta cell-like phenotype. The PHHI-derived cell line (NES2Y) exhibits insulin secretory characteristics typical of islet cells derived from these patients, i.e. they have no K(ATP) channel activity and as a consequence secrete insulin at constitutively high levels in the absence of glucose. In addition, they exhibit impaired expression of the homeodomain transcription factor PDX1, which is a key component of the signaling pathway linking nutrient metabolism to the regulation of insulin gene expression. To repair these defects NES2Y cells were triple-transfected with cDNAs encoding the two components of the K(ATP) channel (SUR1 and Kir6.2) and PDX1. One selected clonal cell line (NISK9) had normal K(ATP) channel activity, and as a result of changes in intracellular Ca(2+) homeostasis ([Ca(2+)](i)) secreted insulin within the physiological range of glucose concentrations. This approach to engineering PHHI-derived islet cells may be of use in gene therapy for PHHI and in cell engineering techniques for administering insulin for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- W M MacFarlane
- Department of Molecular Biology, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LI, Bulman MP, Ayres S, Shepherd M, Clark P, Millward A, Demaine A, Wilkin T, Docherty K, Hattersley AT. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest 1999; 104:R33-9. [PMID: 10545530 PMCID: PMC481047 DOI: 10.1172/jci7449] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcription factor insulin promoter factor-1 (IPF-1) plays a central role in both the development of the pancreas and the regulation of insulin gene expression in the mature pancreatic beta cell. A dominant-negative frameshift mutation in the IPF-l gene was identified in a single family and shown to cause pancreatic agenesis when homozygous and maturity-onset diabetes of the young (MODY) when heterozygous. We studied the role of IPF-1 in Caucasian diabetic and nondiabetic subjects from the United Kingdom. Three novel IPF-1 missense mutations (C18R, D76N, and R197H) were identified in patients with type 2 diabetes. Functional analyses of these mutations demonstrated decreased binding activity to the human insulin gene promoter and reduced activation of the insulin gene in response to hyperglycemia in the human beta-cell line Nes2y. These mutations are present in 1% of the population and predisposed the subject to type 2 diabetes with a relative risk of 3.0. They were not highly penetrant MODY mutations, as there were nondiabetic mutation carriers 25-53 years of age. We conclude that mutations in the IPF-1 gene may predispose to type 2 diabetes and are a rare cause of MODY and pancreatic agenesis, with the phenotype depending upon the severity of the mutation.
Collapse
Affiliation(s)
- W M Macfarlane
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 1999; 274:1011-6. [PMID: 9873045 DOI: 10.1074/jbc.274.2.1011] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the mechanisms whereby glucose stimulates insulin gene transcription in pancreatic beta-cells involves activation of the homeodomain transcription factor PDX1 (pancreatic/duodenal homeobox-1) via a stress-activated pathway involving stress-activated protein kinase 2 (SAPK2, also termed RK/p38, CSBP, and Mxi2). In the present study we show, by Western blotting and electrophoretic mobility shift assay, that in human islets of Langerhans incubated in low glucose (3 mM) PDX1 exists as an inactive 31-kDa protein localized exclusively in the cytoplasm. Transfer of the islets to high (16 mM) glucose results in rapid (within 10 min) conversion of PDX1 to an active 46-kDa form that was present predominantly in the nucleus. Activation of PDX1 appears to involve phosphorylation, as shown by incorporation of 32Pi into the 46-kDa form of the protein. These effects of glucose could be mimicked by chemical stress (sodium arsenite), or by overexpression of SAPK2 in the beta-cell line MIN6. Overexpression of SAPK2 also stimulated PDX1-dependent transcription of a -50 to -250 region of the human insulin gene promoter linked to a firefly luciferase reporter gene. The effects of glucose were inhibited by the SAPK2 inhibitor SB 203580, and by wortmannin and LY 294002, which inhibit phosphatidylinositol 3-kinase, although the effects of stress (arsenite) were inhibited only by SB 203580. These results demonstrate that glucose regulates the insulin gene promoter through activation and nuclear translocation of PDX1 via the SAPK2 pathway.
Collapse
Affiliation(s)
- W M Macfarlane
- Department of Molecular and Cell Biology, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Insulin Gene Expression. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2558(08)60090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|