1
|
Li H, Cheng Z, Wu D, Hu Q. Nitric oxide and mitochondrial function in cardiovascular diseases. Nitric Oxide 2025; 154:42-50. [PMID: 39577487 DOI: 10.1016/j.niox.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases. Accumulating evidence suggests that NO can act as a regulator of mitochondria, affecting mitochondrial function and cellular activity, which in turn mediates the onset and progression of disease. However, there is a lack of comprehensive understanding of how NO regulates mitochondrial function in the cardiovascular system. This review aims to summarize the regulation of mitochondrial function by nitric oxide in cardiovascular related diseases, as well as the multifaceted and complex roles of NO in the cardiovascular system. Understanding the mechanism of NO mediated mitochondrial function can provide new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Haoqi Li
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zijie Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A. Nitric Oxide-Scavenging, Anti-Migration Effects, and Glycosylation Changes after Hemin Treatment of Human Triple-Negative Breast Cancer Cells: A Mechanistic Study. ACS Pharmacol Transl Sci 2023; 6:1416-1432. [PMID: 37854626 PMCID: PMC10580390 DOI: 10.1021/acsptsci.3c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/20/2023]
Abstract
The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Amal Aljaabary
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Raghvendra Bohara
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway H91 TK33, Ireland
| | - Sharon A. Glynn
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Discipline
of Pathology, Lambe Institute for Translational Research, School of
Medicine, University of Galway, Galway H91 YR71, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
3
|
Anishkin A, Adepu KK, Bhandari D, Adams SH, Chintapalli SV. Computational Analysis Reveals Unique Binding Patterns of Oxygenated and Deoxygenated Myoglobin to the Outer Mitochondrial Membrane. Biomolecules 2023; 13:1138. [PMID: 37509174 PMCID: PMC10377724 DOI: 10.3390/biom13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Myoglobin (Mb) interaction with the outer mitochondrial membrane (OMM) promotes oxygen (O2) release. However, comprehensive molecular details on specific contact regions of the OMM with oxygenated (oxy-) and deoxygenated (deoxy-)Mb are missing. We used molecular dynamics (MD) simulations to explore the interaction of oxy- and deoxy-Mb with the membrane lipids of the OMM in two lipid compositions: (a) a typical whole membrane on average, and (b) specifically the cardiolipin-enriched cristae region (contact site). Unrestrained relaxations showed that on average, both the oxy- and deoxy-Mb established more stable contacts with the lipids typical of the cristae contact site, then with those of the average OMM. However, in steered detachment simulations, deoxy-Mb clung more tightly to the average OMM, and oxy-Mb strongly preferred the contact sites of the OMM. The MD simulation analysis further indicated that a non-specific binding, mediated by local electrostatic interactions, existed between charged or polar groups of Mb and the membrane, for stable interaction. To the best of our knowledge, this is the first computational study providing the molecular details of the direct Mb-mitochondria interaction that assisted in distinguishing the preferred localization of oxy- and deoxy-Mb on the OMM. Our findings support the existing experimental evidence on Mb-mitochondrial association and shed more insights on Mb-mediated O2 transport for cellular bioenergetics.
Collapse
Affiliation(s)
- Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kiran Kumar Adepu
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95616, USA
- Center for Alimentary and Metabolic Science, University of California Davis, Sacramento, CA 95616, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Vilela VR, Samson N, Nachbar R, Perazza LR, Lachance G, Rokatoarivelo V, Centano-Baez C, Zancan P, Sola-Penna M, Bellmann K, Di Marzo V, Laplante M, Marette A. Adipocyte-specific Nos2 deletion improves insulin resistance and dyslipidemia through brown fat activation in diet-induced obese mice. Mol Metab 2022; 57:101437. [PMID: 35033724 PMCID: PMC8802131 DOI: 10.1016/j.molmet.2022.101437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Inducible nitric oxide (NO) synthase (NOS2) is a well documented inflammatory mediator of insulin resistance in obesity. NOS2 expression is induced in both adipocytes and macrophages within adipose tissue during high-fat (HF)-induced obesity. METHODS Eight week old male mice with adipocyte selective deletion of the Nos2 gene (Nos2AD-KO) and their wildtype littermates (Nos2fl/fl) were subjected to chow or high-fat high-sucrose (HFHS) diet for 10 weeks followed by metabolic phenotyping and determination of brown adipose tissue (BAT) thermogenesis. The direct impact of NO on BAT mitochondrial respiration was also assessed in brown adipocytes. RESULTS Here, we show that HFHS-fed Nos2AD-KO mice had improved insulin sensitivity as compared to Nos2fl/fl littermates. Nos2AD-KO mice were also protected from HF-induced dyslipidemia and exhibited increased energy expenditure compared to Nos2fl/fl mice. This was linked to activation of BAT in HFHS-fed Nos2AD-KO mice as shown by increased Ucp1 and Ucp2 gene expression and augmented respiratory capacity of BAT mitochondria. Furthermore, mitochondrial respiration was inhibited by NO, or upon cytokine-induced NOS2 activation, but improved by NOS2 inhibition in brown adipocytes. CONCLUSIONS These results demonstrate a key role for adipocyte NOS2 in the development of obesity-linked insulin resistance and dyslipidemia, partly through NO dependent inhibition of BAT mitochondrial bioenergetics.
Collapse
Affiliation(s)
| | - Nolwenn Samson
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Renato Nachbar
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Lia Rossi Perazza
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Gabriel Lachance
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Volatiana Rokatoarivelo
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Carolina Centano-Baez
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Patricia Zancan
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Mauro Sola-Penna
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Kerstin Bellmann
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Vincenzo Di Marzo
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Centre NUTRISS, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada; Canada Excellence Research Chair Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND)
| | - Mathieu Laplante
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - André Marette
- Quebec Heart & Lung Institute, Université Laval, 2725 Ch Ste-Foy, Québec, QC, G1V 4G5, Canada; Institute of Nutrition and Functional Foods, Centre NUTRISS, Université Laval, 2440 Boulevard Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
5
|
Blackburn ML, Wankhade UD, Ono-Moore KD, Chintapalli SV, Fox R, Rutkowsky JM, Willis BJ, Tolentino T, Lloyd KCK, Adams SH. On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E47-E62. [PMID: 33969705 PMCID: PMC8321818 DOI: 10.1152/ajpendo.00662.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Renee Fox
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Brandon J Willis
- Mouse Biology Program, University of California, Davis, California
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
6
|
Chen C, Sun L, Zhang W, Tang Y, Li X, Jing R, Liu T. Limb ischemic preconditioning ameliorates renal microcirculation through activation of PI3K/Akt/eNOS signaling pathway after acute kidney injury. Eur J Med Res 2020; 25:10. [PMID: 32192513 PMCID: PMC7081586 DOI: 10.1186/s40001-020-00407-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Contrast-induced acute kidney injury (CI-AKI) resulting from administration of iodinated contrast media (CM) is the third leading cause of hospital-acquired acute kidney injury and is associated with substantial morbidity and mortality. Deteriorated renal microcirculation plays an important role in CI-AKI. Limb ischemic preconditioning (LIPC), where brief and non-injurious ischemia/reperfusion is applied to a limb prior to the administration of the contrast agent, is emerging as a promising strategy for CI-AKI prevention. However, it is not known whether the renal protection of LIPC against CI-AKI is mediated by regulation of renal microcirculation and the molecular mechanisms remain largely unknown. Methods In this study, we examined the renal cortical and medullary blood flow in a stable CI-AKI model using 5/6-nephrectomized (NE) rat. The LIPC and sham procedures were performed prior to the injection of CM. Furthermore, we analyzed renal medulla hypoxia using in vivo labeling of hypoxyprobe. Pharmacological inhibitions and western blotting were used to determine the underlying molecular mechanisms. Results In this study, we found LIPC significantly ameliorated CM-induced reduction of medullary blood flow and attenuated CM-induced hypoxia. PI3K inhibitor (wortmannin) treatment blocked the regulation of medullary blood flow and the attenuation of hypoxia of LIPC. Phosphorylation of Akt/eNOS was significantly decreased via wortmannin treatment compared with LIPC. Nitric oxide synthase-inhibitor [Nω-nitro-l-arginine methyl ester (L-NAME)] treatment abolished the above effects and decreased phosphorylation of eNOS, but not Akt. Conclusions Collectively, the results demonstrate that LIPC ameliorates CM-induced renal vasocontraction and is mediated by activation of PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Cheng Chen
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Li Sun
- Division of Nephrology, Xuyi People's Hospital, Huaian, 211700, Jiangsu, China
| | - Wanfen Zhang
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Yushang Tang
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Xiaoping Li
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Ran Jing
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
7
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
8
|
Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C. Potential Pathway of Nitrous Oxide Formation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1177. [PMID: 32849729 PMCID: PMC7412978 DOI: 10.3389/fpls.2020.01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| | - Chuang Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| |
Collapse
|
9
|
San Martín A, Arce-Molina R, Galaz A, Pérez-Guerra G, Barros LF. Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J Biol Chem 2017; 292:9432-9438. [PMID: 28341740 PMCID: PMC5454122 DOI: 10.1074/jbc.m117.777243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) is an intercellular messenger involved in multiple bodily functions. Prolonged NO exposure irreversibly inhibits respiration by covalent modification of mitochondrial cytochrome oxidase, a phenomenon of pathological relevance. However, the speed and potency of NO's metabolic effects at physiological concentrations are incompletely characterized. To this end, we set out to investigate the metabolic effects of NO in cultured astrocytes from mice by taking advantage of the high spatiotemporal resolution afforded by genetically encoded Förster resonance energy transfer (FRET) nanosensors. NO exposure resulted in immediate and reversible intracellular glucose depletion and lactate accumulation. Consistent with cytochrome oxidase involvement, the glycolytic effect was enhanced at a low oxygen level and became irreversible at a high NO concentration or after prolonged exposure. Measurements of both glycolytic rate and mitochondrial pyruvate consumption revealed significant effects even at nanomolar NO concentrations. We conclude that NO can modulate astrocytic energy metabolism in the short term, reversibly, and at concentrations known to be released by endothelial cells under physiological conditions. These findings suggest that NO modulates the size of the astrocytic lactate reservoir involved in neuronal fueling and signaling.
Collapse
Affiliation(s)
- Alejandro San Martín
- From the Centro de Estudios Científicos (CECs), 5110466 Valdivia and
- the Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - Robinson Arce-Molina
- From the Centro de Estudios Científicos (CECs), 5110466 Valdivia and
- the Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - Alex Galaz
- From the Centro de Estudios Científicos (CECs), 5110466 Valdivia and
| | - Gustavo Pérez-Guerra
- From the Centro de Estudios Científicos (CECs), 5110466 Valdivia and
- the Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - L Felipe Barros
- From the Centro de Estudios Científicos (CECs), 5110466 Valdivia and
| |
Collapse
|
10
|
Liss P, Hansell P, Fasching A, Palm F. Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide. Ups J Med Sci 2016; 121:12-6. [PMID: 26933994 PMCID: PMC4812052 DOI: 10.3109/03009734.2016.1144664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objectives Mechanisms underlying contrast medium (CM)-induced nephropathy remain elusive, but recent attention has been directed to oxygen availability. The purpose of this study was to evaluate the effect of the low-osmolar CM iopromide and the iso-osmolar CM iodixanol on oxygen consumption (QO2) in freshly isolated proximal tubular cells (PTC) from kidneys ablated from elderly humans undergoing nephrectomy for renal carcinomas and from normoglycemic or streptozotocin-diabetic rats. Materials PTC were isolated from human kidneys, or kidneys of normoglycemic or streptozotocin-diabetic rats. QO2 was measured with Clark-type microelectrodes in a gas-tight chamber with and without each CM (10 mg I/mL medium). L-NAME was used to inhibit nitric oxide (NO) production caused by nitric oxide synthase. Results Both CM reduced QO2 in human PTC (about -35%) which was prevented by L-NAME. PTC from normoglycemic rats were unaffected by iopromide, whereas iodixanol decreased QO2 (-34%). Both CM decreased QO2 in PTC from diabetic rats (-38% and -36%, respectively). L-NAME only prevented the effect of iopromide in the diabetic rat PTC. Conclusions These observations demonstrate that CM can induce NO release from isolated PTC in vitro, which affects QO2. Our results suggest that the induction of NO release and subsequent effect on the cellular oxygen metabolism are dependent on several factors, including CM type and pre-existing risk factors for the development of CM-induced nephropathy.
Collapse
Affiliation(s)
- Per Liss
- Department of Oncology, Radiology and Clinical Immunology, Section of Radiology, University Hospital, Uppsala, Sweden
| | - Peter Hansell
- Department of Medical Cell Biology, Section of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Angelica Fasching
- Department of Medical Cell Biology, Section of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- CONTACT Fredrik Palm Department of Medical Cell Biology, Biomedical Center, Box 571, 751 23 Uppsala, Sweden
| |
Collapse
|
11
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
12
|
Arjona D, Wikström M, Ädelroth P. Nitric oxide is a potent inhibitor of the cbb(3)-type heme-copper oxidases. FEBS Lett 2015; 589:1214-8. [PMID: 25862499 DOI: 10.1016/j.febslet.2015.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/29/2022]
Abstract
C-type heme-copper oxidases terminate the respiratory chain in many pathogenic bacteria, and will encounter elevated concentrations of NO produced by the immune defense of the host. Thus, a decreased sensitivity to NO in C-type oxidases would increase the survival of these pathogens. Here we have compared the inhibitory effect of NO in C-type oxidases to that in the mitochondrial A-type. We show that O2-reduction in both the Rhodobacter sphaeroides and Vibrio cholerae C-type oxidases is strongly and reversibly inhibited by submicromolar NO, with an inhibition pattern similar to the A-type. Thus, NO tolerance in pathogens with a C-type terminal oxidase has to rely mainly on other mechanisms.
Collapse
Affiliation(s)
- Davinia Arjona
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
13
|
Zheng J, Doskey PV. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2132-2139. [PMID: 25588118 DOI: 10.1021/es504513v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.
Collapse
Affiliation(s)
- Jianqiu Zheng
- Atmospheric Sciences Program, ‡Department of Civil and Environmental Engineering, and §School of Forest Resources and Environmental Science, Michigan Technological University , Houghton, Michigan 49931-1295, United States
| | | |
Collapse
|
14
|
Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med 2015; 79:324-36. [PMID: 25464273 PMCID: PMC5275750 DOI: 10.1016/j.freeradbiomed.2014.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne R Diers
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
15
|
Persson P, Fasching A, Teerlink T, Hansell P, Palm F. l
-Citrulline, But Not
l
-Arginine, Prevents Diabetes Mellitus–Induced Glomerular Hyperfiltration and Proteinuria in Rat. Hypertension 2014; 64:323-9. [DOI: 10.1161/hypertensionaha.114.03519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus–induced oxidative stress causes increased renal oxygen consumption and intrarenal tissue hypoxia. Nitric oxide is an important determinant of renal oxygen consumption and electrolyte transport efficiency. The present study investigates whether
l
-arginine or
l
-citrulline to promote nitric oxide production prevents the diabetes mellitus–induced kidney dysfunction. Glomerular filtration rate, renal blood flow, in vivo oxygen consumption, tissue oxygen tension, and proteinuria were investigated in control and streptozotocin-diabetic rats with and without chronic
l
-arginine or
l
-citrulline treatment for 3 weeks. Untreated and
l
-arginine–treated diabetic rats displayed increased glomerular filtration rate (2600±162 versus 1599±127 and 2290±171 versus 1739±138 µL/min per kidney), whereas
l
-citrulline prevented the increase (1227±126 versus 1375±88 µL/min per kidney). Filtration fraction was increased in untreated diabetic rats because of the increase in glomerular filtration rate but not in
l
-arginine– or
l
-citrulline–treated diabetic rats. Urinary protein excretion was increased in untreated and
l
-arginine–treated diabetic rats (142±25 versus 75±7 and 128±7 versus 89±7 µg/min per kidney) but not in diabetic rats administered
l
-citrulline (67±7 versus 61±5 µg/min per kidney). The diabetes mellitus–induced tissue hypoxia, because of elevated oxygen consumption, was unaltered by any of the treatments.
l
-citrulline administered to diabetic rats increases plasma
l
-arginine concentration, which prevents the diabetes mellitus–induced glomerular hyperfiltration, filtration fraction, and proteinuria, possibly by a vascular effect.
Collapse
Affiliation(s)
- Patrik Persson
- From the Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (P.P., A.F., P.H., F.P.); Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands (T.T.); and Division of Drug Research, Department of Medical and Health Sciences (F.P.) and Center for Medical Image Science and Visualization (F.P.), Linköping University, Linköping, Sweden
| | - Angelica Fasching
- From the Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (P.P., A.F., P.H., F.P.); Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands (T.T.); and Division of Drug Research, Department of Medical and Health Sciences (F.P.) and Center for Medical Image Science and Visualization (F.P.), Linköping University, Linköping, Sweden
| | - Tom Teerlink
- From the Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (P.P., A.F., P.H., F.P.); Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands (T.T.); and Division of Drug Research, Department of Medical and Health Sciences (F.P.) and Center for Medical Image Science and Visualization (F.P.), Linköping University, Linköping, Sweden
| | - Peter Hansell
- From the Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (P.P., A.F., P.H., F.P.); Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands (T.T.); and Division of Drug Research, Department of Medical and Health Sciences (F.P.) and Center for Medical Image Science and Visualization (F.P.), Linköping University, Linköping, Sweden
| | - Fredrik Palm
- From the Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden (P.P., A.F., P.H., F.P.); Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands (T.T.); and Division of Drug Research, Department of Medical and Health Sciences (F.P.) and Center for Medical Image Science and Visualization (F.P.), Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Dai Z, Wu Z, Yang Y, Wang J, Satterfield MC, Meininger CJ, Bazer FW, Wu G. Nitric oxide and energy metabolism in mammals. Biofactors 2013; 39:383-91. [PMID: 23553707 DOI: 10.1002/biof.1099] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a signaling molecule synthesized from L-arginine by NO synthase in animals. Increasing evidence shows that NO regulates the mammalian metabolism of energy substrates and that these effects of NO critically depend on its concentrations at the reaction site and the period of exposure. High concentrations of NO (in the micromolar range) irreversibly inhibit complexes I, II, III, IV, and V in the mitochondrial respiratory chain, whereas physiological levels of NO (in the nanomolar range) reversibly reduce cytochomrome oxidase. Thus, NO reduces oxygen consumption by isolated mitochondria to various extents. In intact cells, through cGMP and AMP-activated protein kinase signaling, physiological levels of NO acutely stimulate uptake and oxidation of glucose and fatty acids by skeletal muscle, heart, liver, and adipose tissue, while inhibiting the synthesis of glucose, glycogen and fat in the insulin-sensitive tissues, and enhancing lipolysis in white adipocytes. Chronic effects of physiological levels of NO in vivo include stimulation of angiogenesis, blood flow, mitochondrial biogenesis, and brown adipocyte development. Modulation of NO-mediated pathways through dietary supplementation with L-arginine or its precursor L-citrulline may provide an effective, practical strategy to prevent and treat metabolic syndrome, including obesity, diabetes, and dyslipidemia in mammals, including humans.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
18
|
Palm F, Nordquist L. Renal oxidative stress, oxygenation, and hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1229-41. [PMID: 21832206 DOI: 10.1152/ajpregu.00720.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.
Collapse
Affiliation(s)
- Fredrik Palm
- Dept. of Medical Cell Biology, Uppsala Univ., Biomedical Center, Box 571, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
19
|
Ong PK, Jain S, Kim S. Temporal variations of the cell-free layer width may enhance NO bioavailability in small arterioles: Effects of erythrocyte aggregation. Microvasc Res 2011; 81:303-12. [PMID: 21345341 DOI: 10.1016/j.mvr.2011.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 11/29/2022]
Abstract
Recently, we have shown that temporal variations in the cell-free layer width can potentially enhance nitric oxide (NO) bioavailability in small arterioles. Since the layer width variations can be augmented by red blood cell aggregation, we tested the hypothesis that an increase in the layer width variations due to red blood cell aggregation could provide an underlying mechanism to improve NO bioavailability in the endothelium and promote vasodilatory effects. Utilizing cell-free layer width data acquired from arterioles of the rat cremaster muscle before and after dextran infusion in reduced flow conditions (wall shear stress=0.13-0.24Pa), our computational model predicted exponential enhancements of NO bioavailability in the endothelium and soluble guanylyl cyclase (sGC) activation in the smooth muscle layer with increasing temporal variability of the layer width. These effects were mediated primarily by the transient responses of wall shear stress and NO production rate to the layer width variations. The temporal variations in the layer width were significantly enhanced (P<0.05) by aggregation, leading to significant improvements (P<0.05) in NO bioavailability and sGC activation. As a result, the significant reduction (P<0.05) of sGC activation due to the increased width of the layer after aggregation induction was diminished by the opposing effect of the layer variations. These findings highlighted the possible enhancement of NO bioavailability and vascular tone in the arteriole by the augmented layer width variations due to the aggregation.
Collapse
Affiliation(s)
- Peng Kai Ong
- Division of Bioengineering & Department of Surgery, National University of Singapore, Singapore
| | | | | |
Collapse
|
20
|
|
21
|
Aguirre E, Rodríguez-Juárez F, Bellelli A, Gnaiger E, Cadenas S. Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:557-65. [PMID: 20144583 DOI: 10.1016/j.bbabio.2010.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) inhibits mitochondrial respiration by decreasing the apparent affinity of cytochrome c oxidase (CcO) for oxygen. Using iNOS-transfected HEK 293 cells to achieve regulated intracellular NO production, we determined NO and O(2) concentrations and mitochondrial O(2) consumption by high-resolution respirometry over a range of O(2) concentrations down to nanomolar. Inhibition of respiration by NO was reversible, and complete NO removal recovered cell respiration above its routine reference values. Respiration was observed even at high NO concentrations, and the dependence of IC(50) on [O(2)] exhibits a characteristic but puzzling parabolic shape; both these features imply that CcO is protected from complete inactivation by NO and are likely to be physiologically relevant. We present a kinetic model of CcO inhibition by NO that efficiently predicts experimentally determined respiration at physiological O(2) and NO concentrations and under hypoxia, and accurately predicts the respiratory responses under hyperoxia. The model invokes competitive and uncompetitive inhibition by binding of NO to the reduced and oxidized forms of CcO, respectively, and suggests that dissociation of NO from reduced CcO may involve its O(2)-dependent oxidation. It also explains the non-linear dependence of IC(50) on O(2) concentration, and the hyperbolic increase of c(50) as a function of NO concentration.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fenández Almagro 3, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Ivanina AV, Eilers S, Kurochkin IO, Chung JS, Techa S, Piontkivska H, Sokolov EP, Sokolova IM. Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica. J Exp Biol 2010; 213:433-44. [DOI: 10.1242/jeb.038059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SUMMARY
Nitric oxide (NO) is an intracellular signaling molecule synthesized by a group of enzymes called nitric oxide synthases (NOS) and involved in regulation of many cellular functions including mitochondrial metabolism and bioenergetics. In invertebrates, the involvement of NO in bioenergetics and metabolic responses to environmental stress is poorly understood. We determined sensitivity of mitochondrial and cellular respiration to NO and the effects of cadmium (Cd) and intermittent anoxia on NO metabolism in eastern oysters, Crassostrea virginica. NOS activity was strongly suppressed by exposure to 50 μg l–1 Cd for 30 days (4.76 vs 1.19 pmol NO min–1 mg–1 protein in control and Cd-exposed oysters, respectively) and further decreased during anoxic exposure in Cd-exposed oysters but not in their control counterparts. Nitrate/nitrite content (indicative of NO levels) decreased during anoxic exposure to less than 10% of the normoxic values and recovered within 1 h of re-oxygenation in control oysters. In Cd-exposed oysters, the recovery of the normoxic NO levels lagged behind, reflecting their lower NOS activity. Oyster mitochondrial respiration was inhibited by exogenous NO, with sensitivity on a par with that of mammalian mitochondria, and ADP-stimulated mitochondrial respiration was significantly more sensitive to NO than resting respiration. In isolated gill cells, manipulations of endogenous NOS activity either with a specific NOS inhibitor (aminoguanidine) or a NOS substrate (l-arginine) had no effect on respiration, likely due to the fact that mitochondria in the resting state are relatively NO insensitive. Likewise, Cd-induced stimulation of cellular respiration did not correlate with decreased NOS activity in isolated gill cells. High sensitivity of phosphorylating (ADP-stimulated) oyster mitochondria to NO suggests that regulation of bioenergetics is an evolutionarily conserved function of NO and that NO-dependent regulation of metabolism may be most prominent under the conditions of high metabolic flux when the ADP-to-ATP ratio is high.
Collapse
Affiliation(s)
- A. V. Ivanina
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - S. Eilers
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - I. O. Kurochkin
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - J. S. Chung
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - S. Techa
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - H. Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242-0001, USA
| | - E. P. Sokolov
- Department of General Surgery, Carolinas Medical Center, 1000 Blythe Boulevard, Charlotte, NC 28203-5871, USA
| | - I. M. Sokolova
- Biology Department, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
23
|
Palm F, Onozato M, Welch WJ, Wilcox CS. Blood pressure, blood flow, and oxygenation in the clipped kidney of chronic 2-kidney, 1-clip rats: effects of tempol and Angiotensin blockade. Hypertension 2010; 55:298-304. [PMID: 20048199 DOI: 10.1161/hypertensionaha.109.135426] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II maintains renal cortical blood flow and renal oxygenation in the clipped kidney of early 2-kidney, 1-clip Goldblatt hypertensive (2K,1C) rats. The involvement of Ang II is believed to decline, whereas oxidative stress increases during the progression of 2K,1C hypertension. We investigated the hypothesis that the acute administration of drugs to inhibit reactive oxygen species (Tempol), angiotensin II type 1 receptors (candesartan), or angiotensin-converting enzyme (enalaprilat) lowers mean arterial pressure and increases kidney blood flow and oxygenation in the clipped kidney of chronic 2K,1C rats in contrast to sham controls. Twelve months after left renal artery clipping or sham, mean arterial pressure, renal cortical blood flow, and renal cortical and medullary oxygen tension were measured after acute administration of Tempol followed by enalaprilat or candesartan followed by enalaprilat. The mean arterial pressure of the 2K,1C rat was reduced by candesartan (-9%) and, more effectively, by Tempol (-35%). All of the applied treatments had similar blood pressure-lowering effects in sham rats (average: -21%). Only Tempol increased cortical blood flow (+35%) and cortical and medullary oxygen tensions (+17% and +94%, respectively) in clipped kidneys of 2K,1C rats. Administration of enalaprilat had no additional effect, except for a modest reduction in cortical blood flow in the clipped kidney of 2K,1C rats when coadministered with candesartan (-10%). In conclusion, acute administration of Tempol is more effective than candesartan in reducing the mean arterial blood pressure and improving renal blood perfusion and oxygenation in the clipped kidney of chronic 2K,1C rats.
Collapse
Affiliation(s)
- Fredrik Palm
- Division of Nephrology and Hypertension, Hypertension, Kidney, and Vascular Center, and Angiogenesis Program of the Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
24
|
Gases in the mitochondria. Mitochondrion 2009; 10:83-93. [PMID: 20005988 DOI: 10.1016/j.mito.2009.12.142] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/03/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
Abstract
Gasomodulators - nitric oxide, carbon monoxide and hydrogen sulphide - are important physiological mediators that have been implicated in disorders such as neurodegeneration and sepsis. Some of their biological functions involve the mitochondria. In particular, their inhibition of cytochrome c oxidase has received much attention as this can cause energy depletion and cytotoxicity. However, reports that cellular energy production and cell survival are maintained even in the presence of gasomodulators are not uncommon. In both cases, modulation of mitochondrial targets by the gasomodulators appears to be an important event. We provide an overview of the effects of the gasomodulators on the mitochondria.
Collapse
|
25
|
Palm F, Fasching A, Hansell P, Källskog O. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. Am J Physiol Renal Physiol 2009; 298:F416-20. [PMID: 19923416 DOI: 10.1152/ajprenal.00229.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is a potent regulator of both vascular tone and cellular oxygen consumption (Q(O(2)). Diabetic kidneys have reduced NO availability and increased Q(O(2)). However, the exact nitric oxide synthase (NOS) isoform regulating Q(O(2)), hemodynamics, and excretory function in the diabetic kidney remains unclear. We therefore investigated the effects of both selective neuronal NOS (NOS1) inhibition and nonselective NOS inhibition. Oxygen utilization, electrolyte transport efficiency [tubular Na(+) transport (T(Na))/Q(O(2))], renal blood flow (RBF), glomerular filtration rate (GFR), and mean arterial pressure (MAP) were measured in vivo in control and streptozotocin-diabetic rats before and after administration of the selective NOS1 inhibitor S-methyl-L-thiocitrulline (SMTC) or the nonselective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Diabetic rats had higher baseline Q(O(2)) and GFR than control rats, although RBF was similar in the groups. SMTC and L-NAME increased Q(O(2)) and reduced T(Na)/Q(O(2)) only in the diabetic animals, whereas both inhibitors increased MAP and reduced RBF in both groups. GFR was reduced by L-NAME, but SMTC had no effect in either group. Carbachol increased RBF and decreased MAP in SMTC-treated rats, whereas it had no effect in L-NAME-treated rats, indicating that SMTC selectively inhibited NOS1. In conclusion, NO regulates RBF and GFR similarly in both control and diabetic rats. However, selective NOS1 inhibition increased Qo(2) and reduced T(Na)/Q(O(2)) in the diabetic rat kidney, indicating a pivotal role of NO produced by NOS1 in maintaining control of Q(O(2)) and tissue oxygenation in these kidneys.
Collapse
Affiliation(s)
- Fredrik Palm
- Division of Integrative Physiology, Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
26
|
Presley T, Vedam K, Liu X, Zweier JL, Ilangovan G. Activation of Hsp90/NOS and increased NO generation does not impair mitochondrial respiratory chain by competitive binding at cytochrome c oxidase in low oxygen concentrations. Cell Stress Chaperones 2009; 14:611-27. [PMID: 19412660 PMCID: PMC2866951 DOI: 10.1007/s12192-009-0114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/02/2009] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is known to regulate mitochondrial respiration, especially during metabolic stress and disease, by nitrosation of the mitochondrial electron transport chain (ETC) complexes (irreversible) and by a competitive binding at O2 binding site of cytochrome c oxidase (CcO) in complex IV (reversible). In this study, by using bovine aortic endothelial cells, we demonstrate that the inhibitory effect of endogenously generated NO by nitric oxide synthase (NOS) activation, by either NOS stimulators or association with heat shock protein 90 (Hsp90), is significant only at high prevailing pO2 through nitrosation of mitochondrial ETC complexes, but it does not inhibit the respiration by competitive binding at CcO at very low pO2. ETC complexes activity measurements confirmed that significant reduction in complex IV activity was noticed at higher pO2, but it was unaffected at low pO2 in these cells. This was further extended to heat-shocked cells, where NOS was activated by the induction/activation of (Hsp90) through heat shock at an elevated temperature of 42 degrees C. From these results, we conclude that the entire attenuation of respiration by endogenous NO is due to irreversible inhibition by nitrosation of ETC complexes but not through reversible inhibition by competing with O2 binding at CcO at complex IV.
Collapse
Affiliation(s)
- Tennille Presley
- The Center for Biomedical EPR Spectroscopy and Imaging, Biophysics Program, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH USA
| | - Kaushik Vedam
- The Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Ave, Room 392, Biomedical Research Tower, Columbus, OH 43210 USA
| | - Xiaoping Liu
- The Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Ave, Room 392, Biomedical Research Tower, Columbus, OH 43210 USA
| | - Jay L. Zweier
- The Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Ave, Room 392, Biomedical Research Tower, Columbus, OH 43210 USA
| | - Govindasamy Ilangovan
- The Center for Biomedical EPR Spectroscopy and Imaging, Biophysics Program, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH USA
- The Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Ave, Room 392, Biomedical Research Tower, Columbus, OH 43210 USA
| |
Collapse
|
27
|
Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, Serra MP, Poderoso JJ, Carreras MC. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood) 2009; 234:1020-8. [PMID: 19546350 DOI: 10.3181/0902-mr-81] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are specialized organelles that control energy metabolism and also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or, conversely, promote cell arrest and programmed cell death by a limited number of oxidative or nitrative reactions. Nitric oxide (NO) regulates oxygen uptake by reversible inhibition of cytochrome oxidase and the production of superoxide anion from the mitochondrial electron transfer chain. In this sense, NO produced by mtNOS will set the oxygen uptake level and contribute to oxidation-reduction reaction (redox)-dependent cell signaling. Modulation of translocation and activation of neuronal nitric oxide synthase (mtNOS activity) under different physiologic or pathologic conditions represents an adaptive response properly modulated to adjust mitochondria to different cell challenges.
Collapse
Affiliation(s)
- Paola V Finocchietto
- Laboratory of Oxygen Metabolism, University Hospital, 1120 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reactivity of nitric oxide with the [4Fe-4S] cluster of dihydroxyacid dehydratase from Escherichia coli. Biochem J 2009; 417:783-9. [PMID: 18945212 DOI: 10.1042/bj20081423] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.
Collapse
|
29
|
Poderoso JJ. The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys 2009; 484:214-20. [PMID: 19159609 DOI: 10.1016/j.abb.2008.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/23/2008] [Accepted: 12/30/2008] [Indexed: 01/01/2023]
Abstract
Mitochondria require nitric oxide ((.)NO) to exert a delicate control of metabolic rate as well as to regulate life functions, cell cycle activation and arrest, and apoptosis. All activities depend on the matrical (.)NO steady state concentration as provided by mitochondrial (mtNOS) and cytosolic sources (eNOS) and reduced by forming superoxide anion and H2O2 and a low peroxynirite (ONOO(-)) yield. We review herein the biochemical pathways involved in the control of (.)NO mitochondrial level and its biological and physiological significance in hormone effects and aging. At high ()NO, the cost of this physiological regulation is that ONOO(-) excess will lead to nitrosation/nitration and oxidization of mitochondrial and cell proteins and lipids. The disruption of (.)NO modulation of mitochondrial respiration supports then, a platform for prevalent neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
- Juan J Poderoso
- Director of the Laboratory of Oxygen Metabolism, University Hospital, CONICET and University of Buenos Aires, Córdoba 2351, 1120 Buenos Aires, Argentina.
| |
Collapse
|
30
|
Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal 2008; 10:1185-98. [PMID: 18331202 PMCID: PMC2932548 DOI: 10.1089/ars.2007.1959] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) affects two key aspects of O2 supply and demand: It regulates vascular tone and blood flow by activating soluble guanylate cyclase (sGC) in the vascular smooth muscle, and it controls mitochondrial O2 consumption by inhibiting cytochrome c oxidase. However, significant gaps exist in our quantitative understanding of the regulation of NO production in the vascular region. Large apparent discrepancies exist among the published reports that have analyzed the various pathways in terms of the perivascular NO concentration, the efficacy of NO in causing vasodilation (EC50), its efficacy in tissue respiration (IC50), and the paracrine and endocrine NO release. In this study, we review the NO literature, analyzing NO levels on various scales, identifying and analyzing the discrepancies in the reported data, and proposing hypotheses that can potentially reconcile these discrepancies. Resolving these issues is highly relevant to improving our understanding of vascular biology and to developing pharmaceutical agents that target NO pathways, such as vasodilating drugs.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
31
|
Mason MG, Holladay RS, Nicholls P, Shepherd M, Cooper CE. A Quantitative Approach to Nitric Oxide Inhibition of Terminal Oxidases of the Respiratory Chain. Methods Enzymol 2008; 437:135-59. [DOI: 10.1016/s0076-6879(07)37008-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Palm F, Friederich M, Carlsson PO, Hansell P, Teerlink T, Liss P. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol 2008; 294:F30-7. [DOI: 10.1152/ajprenal.00166.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) is a potent regulator of both vascular tone and oxygen utilization. Diabetes is commonly associated with both NO deficiency and reduced renomedullary oxygen availability. Arginine availability as regulator of NO production has gained growing interest. We hypothesized that arginine limitation causes diabetes-induced renomedullary NO deficiency, which directly influences renomedullary oxygen tension (Po2). Medullary NO, Po2, and blood flow were measured in control and streptozotocin-induced diabetic rats, which were treated or not treated with α-tocopherol, and administered l-arginine followed by Nω-nitro-l-arginine methyl ester. Major components of arginine metabolism were also investigated. Diabetic rats had reduced renomedullary NO levels compared with controls. Arginine selectively increased NO levels in diabetic rats and totally restored NO levels in α-tocopherol-treated animals. Tocopherol prevented the reduction in medullary Po2 in the diabetic animals. Although blood flow increased equally in all groups, arginine increased Po2 exclusively in the diabetic groups. Diabetes decreased plasma arginine and asymmetric dimethylarginine concentrations, but increased hepatic CAT-2A and plasma ornithine independently of α-tocopherol treatment. In conclusion, diabetic rats had reduced renomedullary NO due to decreased plasma arginine following increased hepatic arginine uptake and degradation. This was unrelated to oxidative stress. The diabetes-induced reduction in renomedullary Po2 was restored by either acute arginine administration, which also restored NO levels, or long-term antioxidant treatment. Arginine increased medullary NO and Po2 independently of altered hemodynamics in the diabetic groups. This reveals a direct regulatory function of NO for renomedullary Po2 especially during situations of elevated oxidative stress.
Collapse
|
33
|
Rodríguez-Juárez F, Aguirre E, Cadenas S. Relative sensitivity of soluble guanylate cyclase and mitochondrial respiration to endogenous nitric oxide at physiological oxygen concentration. Biochem J 2007; 405:223-31. [PMID: 17441787 PMCID: PMC1904527 DOI: 10.1042/bj20070033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.
Collapse
Affiliation(s)
- Félix Rodríguez-Juárez
- CNIC (Centro Nacional de Investigaciones Cardiovasculares), Biology of Nitric Oxide Laboratory, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Enara Aguirre
- CNIC (Centro Nacional de Investigaciones Cardiovasculares), Biology of Nitric Oxide Laboratory, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Susana Cadenas
- CNIC (Centro Nacional de Investigaciones Cardiovasculares), Biology of Nitric Oxide Laboratory, Melchor Fernández Almagro 3, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Abstract
The role of nitric oxide (NO) as a highly diffusible free radical gaseous vasodilator is intrinsically linked to the control of blood flow and oxygen (O(2)) delivery to tissue. NO also is involved in regulating mitochondrial O(2) metabolism, growth of new blood vessels, and blood oxygenation through control of respiratory ventilation. Hemoglobin and myoglobin may help to conserve NO for subsequent release of a NO-related vasoactive species under hypoxic conditions. NO has a major role in regulating microvascular O(2), and dysfunctional NO signaling is associated with the pathogenesis of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Donald G Buerk
- Departments of Physiology and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Carreras MC, Poderoso JJ. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol 2007; 292:C1569-80. [PMID: 17496232 DOI: 10.1152/ajpcell.00248.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are the specialized organelles for energy metabolism, but, as a typical example of system biology, they also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or oppositely promote cell arrest and programmed cell death by a limited number of oxidative or nitrosative reactions. These reactions are influenced by matrix nitric oxide (NO) steady-state concentration, either from local production or by gas diffusion to mitochondria from the canonical sources. Likewise, in a range of ∼30–200 nM, NO turns mitochondrial O2utilization down by binding to cytochrome oxidase and elicits a burst of superoxide anion and hydrogen peroxide that diffuses outside mitochondria. Depending on NO levels and antioxidant defenses, more or less H2O2accumulates in cytosol and nucleus, and the resulting redox grading contributes to dual activation of proliferating and proapoptotic cascades, like ERK1/2 or p38 MAPK. Moreover, these sequential activating pathways participate in rat liver and brain development and in thyroid modulation of mitochondrial metabolism and contribute to hypothyroid phenotype through complex I nitration. On the contrary, lack of NO disrupts pathways like S-nitrosylation or H2O2production and likewise is a gateway to disease in amyotrophic lateral sclerosis with superoxide dismutase 1 mutations or to cancer proliferation.
Collapse
Affiliation(s)
- Maria Cecilia Carreras
- Laboratory of Oxygen Metabolism, University Hospital of Buenos Aires, Cordoba 2351, 1120 Buenos Aires, Argentina.
| | | |
Collapse
|
36
|
D'Amico G, Lam F, Hagen T, Moncada S. Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 2007; 119:2291-8. [PMID: 16723735 DOI: 10.1242/jcs.02914] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Wolfson Institute for Biomedical Research, University College London, UK.
| | | | | | | |
Collapse
|
37
|
Shiva S, Brookes PS, Darley-Usmar VM. Methods for measuring the regulation of respiration by nitric oxide. Methods Cell Biol 2007; 80:395-416. [PMID: 17445706 DOI: 10.1016/s0091-679x(06)80020-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sruti Shiva
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Abstract
The kidneys are second only to the heart in terms of O2 consumption; however, relative to other organs, the kidneys receive a very high blood flow and oxygen extraction in the healthy kidney is low. Despite low arterial-venous O2 extraction, the kidneys are particularly susceptible to hypoxic injury and much interest surrounds the role of renal hypoxia in the development and progression of both acute and chronic renal disease. Numerous regulatory mechanisms have been identified that act to maintain renal parenchymal oxygenation within homeostatic limits in the in vivo kidney. However, the processes by which many of these mechanisms act to modulate renal oxygenation and the factors that influence these processes remain poorly understood. A number of such mechanisms specific to the kidney are reviewed herein, including the relationship between renal blood flow and O2 consumption, pre- and post-glomerular arterial-venous O2 shunting, tubulovascular cross-talk, the differential control of regional kidney blood flow and the tubuloglomerular feedback mechanism. The roles of these mechanisms in the control of renal oxygenation, as well as how dysfunction of these mechanisms may lead to renal hypoxia, are discussed.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53202, USA.
| |
Collapse
|
39
|
Abstract
Diabetic nephropathy is a major cause of morbidity and mortality. The exact mechanism mediating the negative influence of hyperglycaemia on renal function remains unclear, although several hypotheses have been postulated. The cellular mechanisms include glucose-induced excessive formation of reactive oxygen species, increased glucose flux through the polyol pathway and formation of advanced glycation end-products. The renal effects in vivo of each and every one of these mechanisms are even less clear. However, there is growing evidence that hyperglycaemia results in altered renal oxygen metabolism and decreased renal oxygen tension and that these changes are linked to altered kidney function. Clinical data regarding renal oxygen metabolism and oxygen tension are currently rudimentary and our present understanding regarding renal oxygenation during diabetes is predominantly derived from data obtained from animal models of experimental diabetic nephropathy. This review will present recent findings regarding the link between hyperglycaemia and diabetes-induced alterations in renal oxygen metabolism and renal oxygen availability. A possible link between reduced renal oxygen tension and the development of diabetic nephropathy includes increased polyol pathway activity and oxidative stress, which result in decreased renal oxygenation and subsequent activation of hypoxia-inducible factors. This initiates increased gene expression of numerous genes known to be involved in development of diabetic nephropathy.
Collapse
Affiliation(s)
- Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Nohl H, Staniek K, Kozlov AV. The existence and significance of a mitochondrial nitrite reductase. Redox Rep 2006; 10:281-6. [PMID: 16438799 DOI: 10.1179/135100005x83707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.
Collapse
Affiliation(s)
- Hans Nohl
- Research Institute for Biochemical Pharmacology and Toxicology, University of Veterinary Medicine of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
41
|
Keynes R, Griffiths C, Hall C, Garthwaite J. Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates. Biochem J 2006; 387:685-94. [PMID: 15579136 PMCID: PMC1134998 DOI: 10.1042/bj20041431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mechanisms which inactivate NO (nitric oxide) are probably important in governing the physiological and pathological effects of this ubiquitous signalling molecule. Cells isolated from the cerebellum, a brain region rich in the NO signalling pathway, consume NO avidly. This property was preserved in brain homogenates and required both particulate and supernatant fractions. A purified fraction of the particulate component was rich in phospholipids, and NO consumption was inhibited by procedures that inhibited lipid peroxidation, namely a transition metal chelator, the vitamin E analogue Trolox and ascorbate oxidase. The requirement for the supernatant was accounted for by its content of ascorbate which catalyses metal-dependent lipid peroxidation. The NO-degrading activity of the homogenate was mimicked by a representative mixture of brain lipids together with ascorbate and, under these conditions, the lipids underwent peroxidation. In a suspension of cerebellar cells, there was a continuous low level of lipid peroxidation, and consumption of NO by the cells was decreased by approx. 50% by lipid-peroxidation inhibitors. Lipid peroxidation was also abolished when NO was supplied at a continuously low rate (approximately 100 nM/min), which explains why NO consumption by this process is saturable. Part of the activity remaining after the inhibition of lipid peroxidation was accounted for by contaminating red blood cells, but there was also another component whose activity was greatly enhanced when the cells were maintained under air-equilibrated conditions. A similar NO-consuming process was present in cerebellar glial cells grown in tissue culture but not in blood platelets or leucocytes, suggesting a specialized mechanism.
Collapse
Affiliation(s)
- Robert G. Keynes
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
| | - Charmaine H. Griffiths
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
| | - Catherine Hall
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Nowicki PT, Reber KM, Giannone PJ, Nankervis CA, Hammond S, Besner GE, Caniano DA. Intestinal O2 consumption in necrotizing enterocolitis: role of nitric oxide. Pediatr Res 2006; 59:500-5. [PMID: 16549519 DOI: 10.1203/01.pdr.0000203094.27615.5f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We tested the hypothesis that inducible isoform of nitric oxide synthase (iNOS)-derived nitric oxide (NO) inhibits oxygen consumption (VO2) in human intestine resected for necrotizing enterocolitis (NEC). Each NEC resection specimen was divided into two sections based on histologic appearance: healthy or diseased. Intestine removed from infants for reasons other than NEC was used as control. The tissue injury score (0-6, with 6 indicating complete necrosis) was 0.4 +/- 0.2 in control tissue, 1.2 +/- 0.4 in NEC-healthy tissue, and 4.6 +/- 0.5 in NEC-diseased tissue. Prominent iNOS staining was present in villus enterocytes in NEC-healthy tissue but not in the other tissue types. Intestinal VO2 (per direct oximetry, in nM O2/min/g) was significantly greater in control tissue than in NEC-healthy or NEC-diseased tissues. Accumulation of NO into buffer bathing intestinal slices (in nM NO/microL/g) was greater in NEC-healthy tissue than control or NEC-diseased tissues. The specific iNOS antagonist L-Nomega-(1-iminoethyl)-lysine (L-NIL) reduced buffer NO concentration 76% and increased VO2 by 90% in NEC-healthy tissue; however, L-NIL had no effect on NO or VO2 in control or NEC-diseased tissue. Addition of exogenous NO via S-nitroso-N-acetylpenicillamine depressed VO2 in NEC-healthy and control tissues but not NEC-diseased tissue. A significant correlation was present between buffer NO concentration and VO2 in NEC-healthy tissue. We conclude that iNOS-derived NO suppresses VO2 in intestine resected for NEC that demonstrates a relatively normal histology on light microscopy.
Collapse
Affiliation(s)
- Philip T Nowicki
- Department of Pediatrics, Ohio State University, Columbus, Ohio 43205, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Marks JD, Boriboun C, Wang J. Mitochondrial nitric oxide mediates decreased vulnerability of hippocampal neurons from immature animals to NMDA. J Neurosci 2006; 25:6561-75. [PMID: 16014717 PMCID: PMC6725441 DOI: 10.1523/jneurosci.1450-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial membrane potential (DeltaPsim)-dependent Ca2+ uptake plays a central role in neurodegeneration after NMDA receptor activation. NMDA-induced DeltaPsim dissipation increases during postnatal development, coincident with increasing vulnerability to NMDA. NMDA receptor activation also produces nitric oxide (NO), which can inhibit mitochondrial respiration, dissipating DeltaPsim. Because DeltaPsim dissipation reduces mitochondrial Ca2+ uptake, we hypothesized that NO mediates the NMDA-induced DeltaPsim dissipation in immature neurons, underlying their decreased vulnerability to excitotoxicity. Using hippocampal neurons cultured from 5- and 19-d-old rats, we measured NMDA-induced changes in [Ca2+]cytosol, DeltaPsim, NO, and [Ca2+]mito. In postnatal day 5 (P5) neurons, NMDA mildly dissipated DeltaPsim in a NO synthase (NOS)-dependent manner and increased NO. The NMDA-induced NO increase was abolished with carbonyl cyanide 4-(trifluoromethoxy)phenyl-hydrazone and regulated by [Ca2+]mito. Mitochondrial Ca2+ uptake inhibition prevented the NO increase, whereas inhibition of mitochondrial Ca2+ extrusion increased it. Consistent with this mitochondrial regulation, NOS and cytochrome oxidase immunoreactivity demonstrated mitochondrial localization of NOS. Furthermore, NOS blockade increased mitochondrial Ca2+ uptake during NMDA. Finally, at physiologic O2 tensions (3% O2), NMDA had little effect on survival of P5 neurons, but NOS blockade during NMDA markedly worsened survival, demonstrating marked neuroprotection by mitochondrial NO. In P19 neurons, NMDA dissipated DeltaPsim in an NO-insensitive manner. NMDA-induced NO production was not regulated by DeltaPsim, and NOS immunoreactivity was cytosolic, without mitochondrial localization. NOS blockade also protected P19 neurons from NMDA. These data demonstrate that mitochondrial NOS mediates much of the decreased vulnerability to NMDA in immature hippocampal neurons and that cytosolic NOS contributes to NMDA toxicity in mature neurons.
Collapse
Affiliation(s)
- Jeremy D Marks
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
44
|
Mason MG, Nicholls P, Wilson MT, Cooper CE. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci U S A 2006; 103:708-13. [PMID: 16407136 PMCID: PMC1334642 DOI: 10.1073/pnas.0506562103] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NO reversibly inhibits mitochondrial respiration via binding to cytochrome c oxidase (CCO). This inhibition has been proposed to be a physiological control mechanism and/or to contribute to pathophysiology. Oxygen reacts with CCO at a heme iron:copper binuclear center (a(3)/Cu(B)). Reports have variously suggested that during inhibition NO can interact with the binuclear center containing zero (fully oxidized), one (singly reduced), and two (fully reduced) additional electrons. It has also been suggested that two NO molecules can interact with the enzyme simultaneously. We used steady-state and kinetic modeling techniques to reevaluate NO inhibition of CCO. At high flux and low oxygen tensions NO interacts predominantly with the fully reduced (ferrous/cuprous) center in competition with oxygen. However, as the oxygen tension is raised (or the consumption rate is decreased) the reaction with the oxidized enzyme becomes increasingly important. There is no requirement for NO to bind to the singly reduced binuclear center. NO interacts with either ferrous heme iron or oxidized copper, but not both simultaneously. The affinity (K(D)) of NO for the oxygen-binding ferrous heme site is 0.2 nM. The noncompetitive interaction with oxidized copper results in oxidation of NO to nitrite and behaves kinetically as if it had an apparent affinity of 28 nM; at low levels of NO, significant binding to copper can occur without appreciable enzyme inhibition. The combination of competitive (heme) and noncompetitive (copper) modes of binding enables NO to interact with mitochondria across the full in vivo dynamic range of oxygen tension and consumption rates.
Collapse
Affiliation(s)
- Maria G Mason
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | | | | | | |
Collapse
|
45
|
Palm F, Buerk DG, Carlsson PO, Hansell P, Liss P. Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation. Diabetes 2005; 54:3282-7. [PMID: 16249456 DOI: 10.2337/diabetes.54.11.3282] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitric oxide (NO) regulates vascular tone and mitochondrial respiration. We investigated the hypothesis that there is reduced NO concentration in the renal cortex of diabetic rats that mediates reduced renal cortical blood perfusion and oxygen tension (P O2). Streptozotocin-induced diabetic and control rats were injected with l-arginine followed by Nomega-nitro-L-arginine-metyl-ester (L-NAME). NO and P O2 were measured using microsensors, and local blood flow was recorded by laser-Doppler flowmetry. Plasma arginine and asymmetric dimethylarginine (ADMA) were analyzed by high-performance liquid chromatography. L-Arginine increased cortical NO concentrations more in diabetic animals, whereas changes in blood flow were similar. Cortical P O2 was unaffected by L-arginine in both groups. L-NAME decreased NO in control animals by 87 +/- 15 nmol/l compared with 45 +/- 7 nmol/l in diabetic animals. L-NAME decreased blood perfusion more in diabetic animals, but it only affected P O2 in control animals. Plasma arginine was significantly lower in diabetic animals (79.7 +/- 6.7 vs. 127.9 +/- 3.9 mmol/l), whereas ADMA was unchanged. A larger increase in renal cortical NO concentration after l-arginine injection, a smaller decrease in NO after L-NAME, and reduced plasma arginine suggest substrate limitation for NO formation in the renal cortex of diabetic animals. This demonstrates a new mechanism for diabetes-induced alteration in renal oxygen metabolism and local blood flow regulation.
Collapse
Affiliation(s)
- Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, Box 571, SE-751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Exil VJ, Gardner CD, Rottman JN, Sims H, Bartelds B, Khuchua Z, Sindhal R, Ni G, Strauss AW. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase. Am J Physiol Heart Circ Physiol 2005; 290:H1289-97. [PMID: 16199475 DOI: 10.1152/ajpheart.00811.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD deficiency with a phenotype induced by the stresses of fasting and cold, which includes hypoglycemia, hypothermia, and severe bradycardia. The administration of glucose did not rescue the mice under stress conditions, but rewarming alone consistently led to heart rate recovery. Brown adipose tissue (BAT) from the VLCAD-/- mice showed elevated levels of the uncoupling protein isoforms and peroxisome proliferator-activated receptor-alpha. Biochemical assessment of the VLCAD(/- mice BAT showed increased oxygen consumption, attributed to uncoupled respiration in the absence of stress. ADP-stimulated respiration was 23.05 (SD 4.17) and 68.24 (SD 6.3) nmol O2.min(-1).mg mitochondrial protein(-1) for VLCAD+/+ and VLCAD-/- mice, respectively (P < 0.001), and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated respiration was 35.9 (SD 3.6) and 49.3 (SD 9) nmol O2.min(-1).mg mitochondrial protein(-1) for VLCAD+/+ and VLCAD-/- mice, respectively (P < 0.20), but these rates were insufficient to protect them in the cold. We conclude that disturbed mitochondrial bioenergetics in BAT is a critical contributing factor for the cold sensitivity in VLCAD deficiency. Our observations provide insights into the possible mechanisms of stress-induced death in human newborns with abnormal fat metabolism and elucidate targeting of specific substrates for particular metabolic needs.
Collapse
Affiliation(s)
- Vernat J Exil
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-9119, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nalwaya N, Deen WM. Nitric Oxide, Oxygen, and Superoxide Formation and Consumption in Macrophage Cultures. Chem Res Toxicol 2005; 18:486-93. [PMID: 15777088 DOI: 10.1021/tx049879c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To examine the potential for generating toxic nitrogen oxides during the immune response, rates of formation and consumption of NO, O2, and O2- were measured in murine macrophage-like RAW264.7 cells. Cellular kinetic parameters for NO and O2 were obtained by monitoring their time-dependent concentrations in a closed chamber, and net cellular synthesis of O2- was quantified from ferricytochrome c reduction in cultures where NO synthesis was inhibited. Also measured was the photosensitive generation of O2- in the culture media. Unactivated cells (without NO synthesis) had an O2 consumption rate of 32+/-3 pmol s-1 (10(6) cells)-1, typical of mammalian cells. Also typical was that adding NO rapidly and reversibly inhibited respiration. Activated cells synthesized NO at a rate of 4.9+/-0.6 pmol s-1 (10(6) cells)-1. When NO synthesis was inhibited, they consumed three times as much O2 as unactivated cells [108+/-17 pmol s-1 (10(6) cells)-1]; however, O2 consumption of activated cells exposed to 1 microM NO was calculated to be comparable to that of NO-free unactivated cells. Rates of intracellular NO consumption were small, implying that enzymatic consumption does little to limit net NO synthesis by macrophages. Accounting for O2- generation in the culture media resulted in net rates of cellular O2- synthesis smaller than previously reported; the rate was 6% of NO synthesis in activated cells and was undetectable in unactivated cells.
Collapse
Affiliation(s)
- Nitesh Nalwaya
- Department of Chemical Engineering and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
48
|
Lamkin-Kennard KA, Buerk DG, Jaron D. Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvasc Res 2005; 68:38-50. [PMID: 15219419 DOI: 10.1016/j.mvr.2004.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Indexed: 11/22/2022]
Abstract
Biotransport of nitric oxide (NO) and of oxygen (O(2)) in the microcirculation are inherently interdependent, since all nitric oxide synthase (NOS) isoforms (eNOS, nNOS, and iNOS) require O(2) to produce NO. Furthermore, tissue O(2) consumption is reversibly inhibited by NO. To investigate these complex interactions, a mathematical model was developed for coupled mass transport of NO and O(2) around a cylindrical arteriole using finite element computational methods. Steady-state radial NO and O(2) gradients in the bloodstream, plasma layer, endothelium, vascular wall, and surrounding tissue were simulated for different conditions. Special cases of the model were solved, including O(2)-dependent NO production from eNOS alone, and with additional NO production from either nNOS or iNOS at specified locations. The model predicts that (a) concentration changes in one species can have significant effects on transport of the other species with the degree of interaction dependent on spatial gradients; (b) eNOS NO production rates required to maintain the concentration of NO in the vascular wall are more dependent on NO scavenging in blood than in tissue; (c) relatively low rates of NO production in tissue from either nNOS or iNOS can elevate vascular wall NO, compensating for possible reductions in NO production from eNOS; (d) depending on their physical location, nNOS and iNOS can be very sensitive to O(2); and (e) increased tissue NO can increase O(2) delivery to more distal regions by inhibiting O(2) consumption in other regions.
Collapse
Affiliation(s)
- Kathleen A Lamkin-Kennard
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Antunes F, Boveris A, Cadenas E. On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci U S A 2004; 101:16774-9. [PMID: 15546991 PMCID: PMC534717 DOI: 10.1073/pnas.0405368101] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The detailed molecular mechanism for the reversible inhibition of mitochondrial respiration by NO has puzzled investigators: The rate constants for the binding of NO and O2 to the reduced binuclear center CuB/a3 of cytochrome oxidase (COX) are similar, and NO is able to dissociate slowly from this center whereas O2 is kinetically trapped, which altogether seems to favor the complex of COX with O2 over the complex of COX with NO. Paradoxically, the inhibition of COX by NO is observed at high ratios of O2 to NO (in the 40-500 range) and is very fast (seconds or faster). In this work, we used simple mathematical models to investigate this paradox and other important biological questions concerning the inhibition of COX by NO. The results showed that all known features of the inhibition of COX by NO can be accounted for by a direct competition between NO and O2 for the reduced binuclear center CuB/a3 of COX. Besides conciliating apparently contradictory data, this work provided an explanation for the so-called excess capacity of COX by showing that the COX activity found in tissues actually is optimized to avoid an excessive inhibition of mitochondrial respiration by NO, allowing a moderate, but not excessive, overlap between the roles of NO in COX inhibition and in cellular signaling. In pathological situations such as COX-deficiency diseases and chronic inflammation, an excessive inhibition of the mitochondrial respiration is predicted.
Collapse
Affiliation(s)
- Fernando Antunes
- Grupo de Bioquímica dos Oxidantes e Antioxidantes, Centro de Química e Bioquímica, da Faculdade de Ciências da Universidade de Lisboa, P-1749-016 Lisbon, Portugal.
| | | | | |
Collapse
|
50
|
Keynes RG, Duport S, Garthwaite J. Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide. Eur J Neurosci 2004; 19:1163-73. [PMID: 15016075 DOI: 10.1111/j.1460-9568.2004.03217.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nitric oxide (NO) has been proposed to mediate neurodegeneration arising from NMDA receptor activity, but the issue remains controversial. The hypothesis was re-examined using organotypic slice cultures of rat hippocampus, with steps being taken to avoid known artefacts. The NO-cGMP signalling pathway was well preserved in such cultures. Brief exposure to NMDA resulted in a concentration-dependent delayed neuronal death that could be nullified by administration of the NMDA antagonist MK801 (10 microm) given postexposure. Two inhibitors of NO synthesis failed to protect the slices, despite fully blocking NMDA-induced cGMP accumulation. By comparing NMDA-induced cGMP accumulation with that produced by an NO donor, toxic NMDA concentrations were estimated to produce only physiological NO concentrations (2 nm). In studies of the vulnerability of the slices to exogenous NO, it was found that continuous exposure to up to 4.5 microm NO failed to affect ATP levels (measured after 6 h) or cause damage during 24 h, whereas treatment with the respiratory inhibitors myxothiazol or cyanide caused ATP depletion and complete cell death within 24 h. An NO concentration of 10 microm was required for ATP depletion and cell death, presumably through respiratory inhibition. It is concluded that sustained activity of neuronal NO synthase in intact hippocampal tissue can generate only low nanomolar NO concentrations, which are unlikely to be toxic. At the same time, the tissue is remarkably resistant to exogenous NO at up to 1000-fold higher concentrations. Together, the results seriously question the proposed role of NO in NMDA receptor-mediated excitotoxicity.
Collapse
Affiliation(s)
- Robert G Keynes
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|