1
|
Endogenous zinc nanoparticles in the rat olfactory epithelium are functionally significant. Sci Rep 2020; 10:18435. [PMID: 33116197 PMCID: PMC7595131 DOI: 10.1038/s41598-020-75430-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
The role of zinc in neurobiology is rapidly expanding. Zinc is especially essential in olfactory neurobiology. Naturally occurring zinc nanoparticles were detected in olfactory and nasal respiratory epithelia and cilia in animals. The addition of these nanoparticles to a mixture of odorants, including ethyl butyrate, eugenol, and carvone, considerably increased the electrical responses of the olfactory sensory receptors. Studies of these nanoparticles by ransmission electron microscopy (TEM) and selected area electron diffraction revealed metal elemental crystalline zinc nanoparticles 2–4 nm in diameter. These particles did not contain oxidized zinc. The enhancement of the odorant responses induced by the endogenous zinc nanoparticles appears to be similar to the amplification produced by engineered zinc nanoparticles. Zinc nanoparticles produce no odor response but increase odor response if mixed with an odorant. These effects are dose-dependent and reversible. Some other metal nanoparticles, such as copper, silver, gold, and platinum, do not have the effects observed in the case of zinc nanoparticles. The olfactory enhancement was observed in young and mature mouse olfactory epithelium cultures, in the dissected olfactory epithelium of rodents, and in live conscious dogs. The physiological significance of the detected endogenous metal nanoparticles in an animal tissue has been demonstrated for the first time. Overall, our results may advance the understanding of the initial events in olfaction.
Collapse
|
2
|
Hagerty S, Daniels Y, Singletary M, Pustovyy O, Globa L, MacCrehan WA, Muramoto S, Stan G, Lau JW, Morrison EE, Sorokulova I, Vodyanoy V. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants. Biometals 2016; 29:1005-1018. [PMID: 27649965 DOI: 10.1007/s10534-016-9972-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023]
Abstract
Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.
Collapse
Affiliation(s)
- Samantha Hagerty
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Yasmine Daniels
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Melissa Singletary
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Ludmila Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - William A MacCrehan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Shin Muramoto
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Gheorghe Stan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - June W Lau
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Edward E Morrison
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Iryna Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA.
- Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
3
|
Klimmeck D, Daiber PC, Brühl A, Baumann A, Frings S, Möhrlen F. Bestrophin 2: an anion channel associated with neurogenesis in chemosensory systems. J Comp Neurol 2009; 515:585-99. [PMID: 19480000 DOI: 10.1002/cne.22075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemosensory neuroepithelia of the vertebrate olfactory system share a life-long ability to regenerate. Novel neurons proliferate from basal stem cells that continuously replace old or damaged sensory neurons. The sensory neurons of the mouse and rat olfactory system specifically express bestrophin 2, a member of the bestrophin family of calcium-activated chloride channels. This channel was recently proposed to operate as a transduction channel in olfactory sensory cilia. We raised a polyclonal antibody against bestrophin 2 and characterized the expression pattern of this protein in the mouse main olfactory epithelium, septal organ of Masera, and vomeronasal organ. Comparison with the maturation markers growth-associated protein 43 and olfactory marker protein revealed that bestrophin 2 was expressed in developing sensory neurons of all chemosensory neuroepithelia, but was restricted to proximal cilia in mature sensory neurons. Our results suggest that bestrophin 2 plays a critical role during differentiation and growth of axons and cilia. In mature olfactory receptor neurons, it appears to support growth and function of sensory cilia.
Collapse
Affiliation(s)
- Daniel Klimmeck
- Department of Molecular Physiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy VJ. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chem Senses 2009; 34:547-57. [PMID: 19525316 DOI: 10.1093/chemse/bjp031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc metal nanoparticles in picomolar concentrations strongly enhance odorant responses of olfactory sensory neurons. One- to 2-nm metallic particles contain 40-300 zinc metal atoms, which are not in an ionic state. We exposed rat olfactory epithelium to metal nanoparticles and measured odorant responses by electroolfactogram and whole-cell patch clamp. A small amount of zinc nanoparticles added to an odorant or an extracellular/intracellular particle perfusion strongly increases the odorant response in a dose-dependent manner. Zinc nanoparticles alone produce no odor effects. Copper, gold, or silver nanoparticles do not produce effects similar to those of zinc. If zinc nanoparticles are replaced by Zn(+2) ions in the same concentration range, we observed a reduction of the olfactory receptor neuron odorant response. Based on these observations, we hypothesize that zinc nanoparticles are closely located to the interface between the guanine nucleotide-binding protein and the receptor proteins and are involved in transferring signals in the initial events of olfaction. Our results suggest that zinc metal nanoparticles can be used to enhance and sustain the initial olfactory events.
Collapse
Affiliation(s)
- Nilmini Viswaprakash
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Rützler M, Zwiebel LJ. Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:777-90. [PMID: 16094545 DOI: 10.1007/s00359-005-0044-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/03/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Insects have an enormous impact on global public health as disease vectors and as agricultural enablers as well as pests and olfaction is an important sensory input to their behavior. As such it is of great value to understand the interplay of the molecular components of the olfactory system which, in addition to fostering a better understanding of insect neurobiology, may ultimately aid in devising novel intervention strategies to reduce disease transmission or crop damage. Since the first discovery of odorant receptors in vertebrates over a decade ago, much of our view on how the insect olfactory system might work has been derived from observations made in vertebrates and other invertebrates, such as lobsters or nematodes. Together with the advantages of a wide range of genetic tools, the identification of the first insect odorant receptors in Drosophila melanogaster in 1999 paved the way for rapid progress in unraveling the question of how olfactory signal transduction and processing occurs in the fruitfly. This review intends to summarize much of this progress and to point out some areas where advances can be expected in the near future.
Collapse
Affiliation(s)
- M Rützler
- Department of Biological Sciences, Program in Developmental Biology and Center for Molecular Neuroscience, Vanderbilt University, VU Station B 351634, Nashville, TN 37235-3582, USA
| | | |
Collapse
|
6
|
Menco BP, Carr VM, Ezeh PI, Liman ER, Yankova MP. Ultrastructural localization of G-proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells. J Comp Neurol 2001; 438:468-89. [PMID: 11559902 DOI: 10.1002/cne.1329] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microvilli of vomeronasal organ (VNO) sensory epithelium receptor cells project into the VNO lumen. This lumen is continuous with the outside environment. Therefore, the microvilli are believed to be the subcellular sites of VNO receptor cells that interact with incoming VNO-targeted odors, including pheromones. Candidate molecules, which are implicated in VNO signaling cascades, are shown to be present in VNO receptor cells. However, ultrastructural evidence that such molecules are localized within the microvilli is sparse. The present study provides firm evidence that immunoreactivity for several candidate VNO signaling molecules, notably the G-protein subunits G(ialpha2) and G(oalpha), and the transient receptor potential channel 2 (TRP2), is localized prominently and selectively in VNO receptor cell microvilli. Although G(ialpha2) and G(oalpha) are localized separately in the microvilli of two cell types that are otherwise indistinguishable in their apical and microvillar morphology, the microvilli of both cell types are TRP2(+). VNO topographical distinctions were also apparent. Centrally within the VNO sensory epithelium, the numbers of receptor cells with G(ialpha2)(+) and G(oalpha)(+) microvilli were equal. However, near the sensory/non-sensory border, cells with G(ialpha2)(+) microvilli predominated. Scattered ciliated cells in this transition zone resembled neither VNO nor main olfactory organ (MO) receptor cells and may represent the same ciliated cells as those found in the non-sensory part of the VNO. Thus, this study shows that, analogous to the cilia of MO receptor cells, microvilli of VNO receptor cells are enriched selectively in proteins involved putatively in signal transduction. This provides important support for the role of these molecules in VNO signaling.
Collapse
Affiliation(s)
- B P Menco
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208-3520, USA.
| | | | | | | | | |
Collapse
|
7
|
Sinnarajah S, Dessauer CW, Srikumar D, Chen J, Yuen J, Yilma S, Dennis JC, Morrison EE, Vodyanoy V, Kehrl JH. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 2001; 409:1051-5. [PMID: 11234015 DOI: 10.1038/35059104] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein alpha-subunits alpha(i) and alpha(q), lack such activity for alpha(s) (refs 3-6). But several RGS proteins inhibit cAMP production by Gs-linked receptors. Here we report that RGS2 reduces cAMP production by odorant-stimulated olfactory epithelium membranes, in which the alpha(s) family member alpha(olf) links odorant receptors to adenylyl cyclase activation. Unexpectedly, RGS2 reduces odorant-elicited cAMP production, not by acting on alpha(olf) but by inhibiting the activity of adenylyl cyclase type III, the predominant adenylyl cyclase isoform in olfactory neurons. Furthermore, whole-cell voltage clamp recordings of odorant-stimulated olfactory neurons indicate that endogenous RGS2 negatively regulates odorant-evoked intracellular signalling. These results reveal a mechanism for controlling the activities of adenylyl cyclases, which probably contributes to the ability of olfactory neurons to discriminate odours.
Collapse
Affiliation(s)
- S Sinnarajah
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|