1
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS J 2020; 288:5569-5585. [PMID: 33296547 DOI: 10.1111/febs.15659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Extensive structural and functional studies have been carried out in the field of nucleocytoplasmic transport. Nuclear transport factors, such as Importin-α/-β, recognize nuclear localization signals (NLSs) on cargo, and together with the small GTPase Ran, facilitate their nuclear localization. However, it is now emerging that binding of nuclear transport factors to NLSs not only mediates nuclear transport but also contributes to a variety of cellular functions in eukaryotes. Here, we describe recent advances that reveal how NLSs facilitate diverse cellular functions beyond nuclear transport activity. We review separately NLS-mediated regulatory mechanisms at different levels of biological organization, including (a) assembly of higher-order structures; (b) cellular organelle dynamics; and (c) modulation of cellular stress responses and viral infections. Finally, we provide mechanistic insights into how NLSs can regulate such a broad range of functions via their structural and biochemical properties.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
3
|
Molenberghs F, Bogers JJ, De Vos WH. Confined no more: Viral mechanisms of nuclear entry and egress. Int J Biochem Cell Biol 2020; 129:105875. [PMID: 33157236 DOI: 10.1016/j.biocel.2020.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Viruses are obligatory intracellular parasites. For their efficient replication, many require access to the nuclear interior. Yet, only few viral particles are small enough to passively diffuse through the nuclear pore complexes, calling for alternative strategies to bypass the nuclear envelope barrier. Some viruses will await mitotic nuclear envelope breakdown to gain access, whereas others will exploit more active means, for instance by hijacking nuclear pore transport or by directly targeting constituents of the nuclear envelope so as to remodel and temporarily perturb its integrity. After replication, newly produced viral DNA complexes need to cross the same barrier to exit the nucleus and enter the cytoplasm, where the final stages of virion maturation take place. There are also different flavours to the feat of nuclear egress that vary in delicacy and intensity. In this review, we define the major entry and egress strategies that are exploited by different viruses and describe the molecular details thereof. Ultimately, a deeper understanding of these pathways may help identifying molecular targets for blocking viral reproduction or spreading.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences/Medicine and Health Sciences, University of Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences/Medicine and Health Sciences, University of Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences/Medicine and Health Sciences, University of Antwerp, Belgium.
| |
Collapse
|
4
|
Shukla E, Chauhan R. Host-HIV-1 Interactome: A Quest for Novel Therapeutic Intervention. Cells 2019; 8:cells8101155. [PMID: 31569640 PMCID: PMC6830350 DOI: 10.3390/cells8101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.
Collapse
Affiliation(s)
- Ekta Shukla
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| | - Radha Chauhan
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| |
Collapse
|
5
|
Miyatake H, Sanjoh A, Murakami T, Murakami H, Matsuda G, Hagiwara K, Yokoyama M, Sato H, Miyamoto Y, Dohmae N, Aida Y. Molecular Mechanism of HIV-1 Vpr for Binding to Importin-α. J Mol Biol 2016; 428:2744-57. [PMID: 27181198 DOI: 10.1016/j.jmb.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
Abstract
Viral protein R (Vpr) is an accessory gene product of human immunodeficiency virus type 1 (HIV-1) that plays multiple important roles associated with viral replication. Structural studies using NMR have revealed that Vpr consists of three α-helices and contains flexible N- and C-termini. However, the molecular mechanisms associated with Vpr function have not been elucidated. To investigate Vpr multifunctionality, we performed an X-ray crystallographic study of Vpr complexes containing importin-α, a known Vpr binding partner present in host cells. Elucidation of the crystal structure revealed that the flexible C-terminus changes its conformation to a twisted β-turn via an induced-fit mechanism, enabling binding to a minor nuclear localization signal (NLS) site of importin-α. The Vpr C-terminus can also bind with major NLS sites of importin-α in an extended conformation in different ways. These results, which represent the first reported crystallographic analysis of Vpr, demonstrate the multifunctional aspects that enable Vpr interaction with a variety of cellular proteins.
Collapse
Affiliation(s)
- Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Akira Sanjoh
- Protein Wave Corporation, 1-16-5 Nishitomigaoka, Nara 631-0006, Japan
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hironobu Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Go Matsuda
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kyoji Hagiwara
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka, 567-0085, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
6
|
Busca A, Saxena M, Kumar A. Critical role for antiapoptotic Bcl-xL and Mcl-1 in human macrophage survival and cellular IAP1/2 (cIAP1/2) in resistance to HIV-Vpr-induced apoptosis. J Biol Chem 2012; 287:15118-33. [PMID: 22403404 DOI: 10.1074/jbc.m111.312660] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophages are resistant to HIV cytopathic effects, which contributes to viral persistence and reservoir formation. HIV viral protein R (Vpr) is a potent apoptosis-inducing agent for primary monocytes. Because the biologically active Vpr is found in serum and cerebrospinal fluid of HIV-infected patients, we investigated the apoptotic effect of Vpr on monocyte-derived macrophages and phorbol 12-myristate 13-acetate-activated THP1 macrophages. Our results show that primary monocytes and THP1 cells develop resistance to Vpr-induced apoptosis following differentiation into macrophages. To determine the effect of Vpr on the expression of antiapoptotic proteins, we show that in contrast to the undifferentiated cells, Vpr did not down-regulate the expression of antiapoptotic inhibitors of apoptosis (IAPs) and Bcl2 family members in macrophages, suggesting their involvement in resistance to Vpr-induced apoptosis. However, knocking down Bcl-xL and Mcl-1 proteins induced spontaneous apoptosis with no impact on susceptibility to Vpr-induced apoptosis. In contrast, down-regulation of cellular IAP1 (cIAP1) and cIAP2 by using siRNAs and SMAC (second mitochondria-derived activator of caspases) mimetic sensitized macrophages to Vpr-induced apoptosis. Overall, our results suggest that resistance to Vpr-induced apoptosis is specifically mediated by cIAP1/2 genes independent of Bcl-xL and Mcl-1, which play a key role in maintaining cell viability. Moreover, IAP modulation may be a potential strategy to eliminate HIV persistence in macrophages.
Collapse
Affiliation(s)
- Aurelia Busca
- Department of Biochemistry, Microbiology and Immunology, Research Institute, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | | | | |
Collapse
|
7
|
Kogan M, Rappaport J. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 2011; 8:25. [PMID: 21489275 PMCID: PMC3090340 DOI: 10.1186/1742-4690-8-25] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/13/2011] [Indexed: 01/11/2023] Open
Abstract
The HIV protein, Vpr, is a multifunctional accessory protein critical for efficient viral infection of target CD4+ T cells and macrophages. Vpr is incorporated into virions and functions to transport the preintegration complex into the nucleus where the process of viral integration into the host genome is completed. This action is particularly important in macrophages, which as a result of their terminal differentiation and non-proliferative status, would be otherwise more refractory to HIV infection. Vpr has several other critical functions including activation of HIV-1 LTR transcription, cell-cycle arrest due to DCAF-1 binding, and both direct and indirect contributions to T-cell dysfunction. The interactions of Vpr with molecular pathways in the context of macrophages, on the other hand, support accumulation of a persistent reservoir of HIV infection in cells of the myeloid lineage. The role of Vpr in the virus life cycle, as well as its effects on immune cells, appears to play an important role in the immune pathogenesis of AIDS and the development of HIV induced end-organ disease. In view of the pivotal functions of Vpr in virus infection, replication, and persistence of infection, this protein represents an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Kogan
- Department of Neuroscience, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
8
|
Zhang Y, Zhang X, Niu S, Han C, Yu J, Li D. Nuclear localization of Beet black scorch virus capsid protein and its interaction with importin α. Virus Res 2011; 155:307-15. [PMID: 21056066 DOI: 10.1016/j.virusres.2010.10.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/26/2022]
Abstract
Beet black scorch virus (BBSV) is a positive-sense, single-stranded RNA virus belonging to Necrovirus genus. In order to better understand the life cycle of BBSV, we have investigated the subcellular localization of BBSV capsid protein (CP) by its fusion with green fluorescent protein (GFP) agroinfiltrated into Nicotiana benthamiana leaves and by particle bombardment into onion (Allium cepa) epidermal cells. Confocal laser scanning microscopy (CLSM) showed that BBSV CP fused to GFP displayed enhanced fluorescence in nuclei and nuclear import of the CP was confirmed in BBSV-infected N. benthamiana leaves. Mutational analysis revealed that the N-terminal basic amino acid cluster (4)KRNKGGKKSR(13) of the CP is essential for nuclear localization. Bimolecular fluorescence complementation (BiFC) assays indicated that the CP could interact with the nuclear import factor importin α, suggesting that the CP is possibly imported into the nucleus via an importin α-dependent pathway. This is the first report of the nuclear localization of the CP encoded by a necrovirus.
Collapse
Affiliation(s)
- Yanjing Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Cohen S, Au S, Panté N. How viruses access the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1634-45. [PMID: 21167871 DOI: 10.1016/j.bbamcr.2010.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/24/2010] [Accepted: 12/08/2010] [Indexed: 10/25/2022]
Abstract
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
10
|
Abstract
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.
Collapse
|
11
|
Dennison SR, Harris F, Brandenburg K, Phoenix DA. Characterization of the N-terminal segment used by the barley yellow dwarf virus movement protein to promote interaction with the nuclear membrane of host plant cells. Peptides 2007; 28:2091-7. [PMID: 17897753 DOI: 10.1016/j.peptides.2007.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
The barley yellow dwarf virus movement protein (BYDV-MP) requires its N-terminal sequence to promote the transport of viral RNA into the nuclear compartment of host plant cells. Here, graphical analysis predicts that this sequence would form a membrane interactive amphiphilic alpha-helix. Confirming this prediction, NT1, a peptide homologue of the BYDV-MP N-terminal sequence, was found to be alpha-helical (65%) in the presence of vesicles mimics of the nuclear membrane. The peptide increased the fluidity of these nuclear membrane mimics (rise in wavenumber of circa 0.5-1.0 cm(-1)) and induced surface pressure changes of 2 mN m(-1) in lipid monolayers with corresponding compositions. Taken with isotherm analysis these results suggest that BYDV-MP forms an N-terminal amphiphilic alpha-helix, which partitions into the nuclear membrane primarily through thermodynamically stable associations with the membrane lipid headgroup region. We speculate that these associations may play a role in targeting of the nuclear membrane by BYDM-MP.
Collapse
|
12
|
Abstract
Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.
Collapse
Affiliation(s)
- Youichi Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
13
|
Kass G, Arad G, Rosenbluh J, Gafni Y, Graessmann A, Rojas MR, Gilbertson RL, Loyter A. Permeabilized mammalian cells as an experimental system for nuclear import of geminiviral karyophilic proteins and of synthetic peptides derived from their nuclear localization signal regions. J Gen Virol 2006; 87:2709-2720. [PMID: 16894212 DOI: 10.1099/vir.0.82021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The plant-infecting geminiviruses deliver their genome and viral proteins into the host cell nucleus. Members of the family Geminiviridae possess either a bipartite genome composed of two ∼2.6 kb DNAs or a monopartite genome of ∼3.0 kb DNA. The bipartite genome of Bean dwarf mosaic virus (BDMV) encodes several karyophilic proteins, among them the capsid protein (CP) and BV1 (nuclear shuttle protein). A CP is also encoded by the monopartite genome of Tomato yellow leaf curl virus (TYLCV). Here, an in vitro assay system was used for direct demonstration of nuclear import of BDMV BV1 and TYLCV CP, as well as synthetic peptides containing their putative nuclear localization signals (NLSs). Full-length recombinant BDMV BV1 and TYLCV CP mediated import of conjugated fluorescently labelled BSA molecules into nuclei of permeabilized mammalian cells. Fluorescently labelled and biotinylated BSA conjugates bearing the synthetic peptides containing aa 3–20 of TYLCV CP (CP-NLS) or aa 84–106 of BDMV BV1 (BV1-NLS) were also imported into the nuclei of permeabilized cells. This import was blocked by the addition of unlabelled BSA–NLS peptide conjugates or excess unlabelled free NLS peptides. The CP- and BV1-NLS peptides also mediated nuclear import of fluorescently labelled BSA molecules into the nuclei of microinjected mesophyll cells of Nicotiana benthamiana leaves, demonstrating their biological function in intact plant tissue. BV1-NLS and CP-NLS were shown to mediate specific binding to importin α, both in vitro and in vivo. These results are consistent with a common nuclear-import pathway for CP and BV1, probably via importin α.
Collapse
Affiliation(s)
- Gideon Kass
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gabriel Arad
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Rosenbluh
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yedidya Gafni
- Department of Plant Genetics, ARO, The Volcani Center, Bet-Dagan 50250, Israel
| | - Adolf Graessmann
- Institut für Molekularbiologie und Biochemie, Free University of Berlin, 14195 Berlin, Germany
| | - Maria R Rojas
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Robert L Gilbertson
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Abraham Loyter
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Krichevsky A, Kozlovsky SV, Gafni Y, Citovsky V. Nuclear import and export of plant virus proteins and genomes. MOLECULAR PLANT PATHOLOGY 2006; 7:131-146. [PMID: 20507434 DOI: 10.1111/j.1364-3703.2006.00321.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Nuclear import and export are crucial processes for any eukaryotic cell, as they govern substrate exchange between the nucleus and the cytoplasm. Proteins involved in the nuclear transport network are generally conserved among eukaryotes, from yeast and fungi to animals and plants. Various pathogens, including some plant viruses, need to enter the host nucleus to gain access to its replication machinery or to integrate their DNA into the host genome; the newly replicated viral genomes then need to exit the nucleus to spread between host cells. To gain the ability to enter and exit the nucleus, these pathogens encode proteins that recognize cellular nuclear transport receptors and utilize the host's nuclear import and export pathways. Here, we review and discuss our current knowledge about the molecular mechanisms by which plant viruses find their way into and out of the host cell nucleus.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
15
|
Liu K, Xia Z, Zhang Y, Wen Y, Wang D, Brandenburg K, Harris F, Phoenix DA. Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: role of a putative amphiphilic alpha-helix at the N-terminus of the movement protein. Biopolymers 2005; 79:86-96. [PMID: 15971210 DOI: 10.1002/bip.20334] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The open reading frame 4 (ORF 4) gene product of barley yellow dwarf virus (BYDV) may act as a movement protein (MP) by assisting the transport of viral genomic RNA across the nuclear envelope (NE) of host plant cells. To investigate interactions between BYDV MP and the NE, wild-type and mutant open reading frame (ORF 4)-green fluorescent protein (GFP) fusion cistrons were expressed in insect cells. A fusion protein expressed by the wild-type ORF 4-GFP cistron associated with the NE and caused protrusions from its surface. The fusion protein expressed by the mutant ORF 4-GFP cistron lacked a putative amphiphilic alpha-helix at its N-terminus and although associating with the NE, showed decreased levels of protrusions. A peptide homologue of this putative alpha-helix induced an increase of 7 degrees C in the phase transition temperature of dimyrystoyl phosphatidylserine (DMPS) membranes, accompanied by a decrease in membrane fluidity, but exhibited no significant interaction with either dimyristoyl phosphatidylcholine (DMPC) or dimyristoyl phosphatidylethanolamine (DMPE) membranes. These results strongly support the view that BYDV MP may interact with the NE to help transport viral genomic RNA into the nuclear compartment. This function of BYDV MP appears to involve protrusions on the surface of the NE and may require the presence of an N-terminal amphiphilic alpha-helix, which is speculated to destabilize membranes, thereby assisting the entry of BYDV-GAV into the nuclear compartment.
Collapse
Affiliation(s)
- Kunfan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hariton-Gazal E, Rosenbluh J, Zakai N, Fridkin G, Brack-Werner R, Wolff H, Devaux C, Gilon C, Loyter A. Functional analysis of backbone cyclic peptides bearing the arm domain of the HIV-1 Rev protein: characterization of the karyophilic properties and inhibition of Rev-induced gene expression. Biochemistry 2005; 44:11555-66. [PMID: 16114892 DOI: 10.1021/bi050752b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work describes the synthesis and activity of a novel backbone cyclic (BC) peptide library based on the sequence of the HIV-1 Rev arginine-rich motif (ARM). All the peptides in the library possess the same sequence but differ in their ring-moiety properties. The BC peptides were synthesized using simultaneous multiple-peptide synthesis and were fully assembled using bis(trichloromethyl)carbonate as a coupling agent. All the peptides in the library had inhibitory effects on the binding of Rev-GFP to importin beta in vitro. Studies performed with one of the BC Rev-ARM analogues, Rev-13, demonstrated that, like its parental linear peptide, it is karyophilic; i.e., it is able to mediate the nuclear import of conjugated bovine serum albumin (BSA) molecules. The cell penetrating properties of the BC peptides were assessed utilizing an ELISA-based system. This assay provides a quantitative evaluation of cell penetration. Most of the peptides from the library were able to penetrate intact Colo-205 cells to varying degrees. Furthermore, these BC peptides were able to carry BSA into intact Colo-205 cells. In addition to its cell penetrating and binding properties, the BC Rev-13 analogue inhibited Rev-induced gene expression in HeLa cells by 60-70% in the low micromolar range and exhibited no cell toxicity. The potential of BC peptides bearing ARM domains as lead compounds for the production of anti-HIV drugs is discussed.
Collapse
Affiliation(s)
- Elana Hariton-Gazal
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9104, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Varin A, Decrion AZ, Sabbah E, Quivy V, Sire J, Van Lint C, Roques BP, Aggarwal BB, Herbein G. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-kappaB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J Biol Chem 2005; 280:42557-67. [PMID: 16243842 DOI: 10.1074/jbc.m502211200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus (HIV) Vpr protein plays a critical role in AIDS pathogenesis, especially by allowing viral replication within nondividing cells such as mononuclear phagocytes. Most of the data obtained so far have been in experiments with endogenous Vpr protein; therefore the effects of extracellular Vpr protein remain largely unknown. We used synthetic Vpr protein to activate nuclear transcription factors activator protein-1 (AP-1) and NF-kappaB in the promonocytic cell line U937 and in primary macrophages. Synthetic HIV-1 Vpr protein activated AP-1, c-Jun N-terminal kinase, and MKK7 in both U937 cells and primary macrophages. Synthetic Vpr activated NF-kappaB in primary macrophages and to a lesser extent in U937 cells. Because synthetic Vpr activated AP-1 and NF-kappaB, which bind to the HIV-1 long terminal repeat, we investigated the effect of synthetic Vpr on HIV-1 replication. We observed that synthetic Vpr stimulated HIV-1 long terminal repeat in U937 cells and enhanced viral replication in chronically infected U1 promonocytic cells. Similarly, synthetic Vpr stimulated HIV-1 replication in acutely infected primary macrophages. Activation of transcription factors and enhancement of viral replication in U937 cells and primary macrophages were mediated by both the N-terminal and the C-terminal moieties of synthetic Vpr. Therefore, our results suggest that extracellular Vpr could fuel the progression of AIDS via stimulation of HIV-1 provirus present in such cellular reservoirs as mononuclear phagocytes in HIV-infected patients.
Collapse
Affiliation(s)
- Audrey Varin
- Department of Virology, EA3186, IFR133, Franche-Comté University, F-25030 Besançon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Le Rouzic E, Benichou S. The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2005; 2:11. [PMID: 15725353 PMCID: PMC554975 DOI: 10.1186/1742-4690-2-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/22/2005] [Indexed: 12/30/2022] Open
Abstract
The genomes of human and simian immunodeficiency viruses (HIV and SIV) encode the gag, pol and env genes and contain at least six supplementary open reading frames termed tat, rev, nef, vif, vpr, vpx and vpu. While the tat and rev genes encode regulatory proteins absolutely required for virus replication, nef, vif, vpr, vpx and vpu encode for small proteins referred to "auxiliary" (or "accessory"), since their expression is usually dispensable for virus growth in many in vitro systems. However, these auxiliary proteins are essential for viral replication and pathogenesis in vivo. The two vpr- and vpx-related genes are found only in members of the HIV-2/SIVsm/SIVmac group, whereas primate lentiviruses from other lineages (HIV-1, SIVcpz, SIVagm, SIVmnd and SIVsyk) contain a single vpr gene. In this review, we will mainly focus on vpr from HIV-1 and discuss the most recent developments in our understanding of Vpr functions and its role during the virus replication cycle.
Collapse
Affiliation(s)
- Erwann Le Rouzic
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| | - Serge Benichou
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| |
Collapse
|
19
|
Rosenbluh J, Singh SK, Gafni Y, Graessmann A, Loyter A. Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:230-40. [PMID: 15328056 DOI: 10.1016/j.bbamem.2004.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/13/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
The results of the present work demonstrate that core histones are able to penetrate the plasma membrane of plant cells. Confocal microscopy has revealed that incubation of petunia protoplasts with fluorescently labeled core histones resulted in cell penetration and nuclear import of the externally added histones. Intracellular accumulation was also confirmed by an ELISA-based quantitative method using biotin-labeled histones. Penetration into petunia protoplasts and cultured cells was found to be non-saturable, occurred at room temperature and at 4 degrees C and was not inhibited by Nocodazole. Furthermore, penetration of the biotinylated histone was neither blocked by the addition of an excess of free biotin molecules, nor by non-biotinylated histone molecules. All these results clearly indicate that the observed uptake is due to direct translocation through the cell plasma membrane and does not occur via endocytosis. Our results also show that the histones H2A and H4 were able to mediate penetration of covalently attached BSA molecules demonstrating the potential of the histones as carriers for the delivery of macromolecules into plant cells. To the best of our knowledge, the findings of the present paper demonstrate, for the first time, the activity of cell penetrating proteins (CPPs) in plant cells.
Collapse
Affiliation(s)
- Joseph Rosenbluh
- Department of Biological Chemistry, The Alexander Silberman Institute of Life, Sciences, The Hebrew University of Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
20
|
Citovsky V, Kapelnikov A, Oliel S, Zakai N, Rojas MR, Gilbertson RL, Tzfira T, Loyter A. Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 2004; 279:29528-33. [PMID: 15123622 DOI: 10.1074/jbc.m403159200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium, the only known organism capable of trans-kingdom DNA transfer, genetically transforms plants by transferring a segment of its DNA, T-DNA, into the nucleus of the host cell where it integrates into the plant genome. One of the central events in this genetic transformation process is nuclear import of the T-DNA molecule, which to a large degree is mediated by the bacterial virulence protein VirE2. VirE2 is distinguished by its nuclear targeting, which occurs only in plant but not in animal cells and is facilitated by the cellular VIP1 protein. The molecular mechanism of the VIP1 function is still unclear. Here, we used in vitro assays for nuclear import and quantification of protein-protein interactions to directly demonstrate formation of ternary complexes between VirE2, VIP1, and a component of the cellular nuclear import machinery, karyopherin alpha. Our results indicate that VIP1 functions as a molecular bridge between VirE2 and karyopherin alpha, allowing VirE2 to utilize the host cell nuclear import machinery even without being directly recognized by its components.
Collapse
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Waldhuber MG, Bateson M, Tan J, Greenway AL, McPhee DA. Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization. Virology 2003; 313:91-104. [PMID: 12951024 DOI: 10.1016/s0042-6822(03)00258-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein is known to arrest the cell cycle in G(2)/M and induce apoptosis following arrest. The functions of Vpr relative to its location in the cell remain unresolved. We now demonstrate that the location and function of Vpr are dependent on the makeup of fusion proteins and that the functions of G(2)/M arrest and apoptosis are separable. Using green fluorescence protein mutants (EGFP or EYFP), we found that fusion at either the N- or C-terminus compromised the ability of Vpr to arrest cell cycling, relative to that of His-Vpr or wild-type protein. Additionally, utilizing the ability to specifically identify cells expressing the fusion proteins, we confirm that Vpr can induce apoptosis, but appears to be independent of cell-cycle arrest in G(2)/M. Both N- and C-terminal Vpr/EYFP fusion proteins induced apoptosis but caused minimal G(2)/M arrest. These studies with Vpr fusion proteins indicate that the functions of Vpr leading to G(2)/M arrest and apoptosis are separable and that fusion of Vpr to EGFP or EYFP affected the localization of the protein. Our findings suggest that nuclear membrane localization and nuclear import and export are strongly governed by modification of the N-terminus of Vpr.
Collapse
Affiliation(s)
- Megan G Waldhuber
- Department of Microbiology, Monash University, Clayton, Victoria, 3168, Australia
| | | | | | | | | |
Collapse
|
22
|
Sherman MP, de Noronha CMC, Eckstein LA, Hataye J, Mundt P, Williams SAF, Neidleman JA, Goldsmith MA, Greene WC. Nuclear export of Vpr is required for efficient replication of human immunodeficiency virus type 1 in tissue macrophages. J Virol 2003; 77:7582-9. [PMID: 12805458 PMCID: PMC164827 DOI: 10.1128/jvi.77.13.7582-7589.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses must gain access to the host cell nucleus for subsequent replication and viral propagation. Human immunodeficiency virus type 1 (HIV-1) and other primate lentiviruses are distinguished from the gammaretroviruses by their ability to infect nondividing cells such as macrophages, an important viral reservoir in vivo. Rather than requiring nuclear membrane breakdown during cell division, the HIV-1 preintegration complex (PIC) enters the nucleus by traversing the central aqueous channel of the limiting nuclear pore complex. The HIV-1 PIC contains three nucleophilic proteins, matrix, integrase, and Vpr, all of which have been implicated in nuclear targeting. The mechanism by which Vpr can display such nucleophilic properties and yet also be available for incorporation into virions assembling at the plasma membrane is unresolved. We recently characterized Vpr as a nucleocytoplasmic shuttling protein that contains two novel nuclear import signals and an exportin-1-dependent nuclear export signal (NES). We now demonstrate that mutation of this NES impairs the incorporation of Vpr into newly formed virions. Furthermore, we find that the Vpr NES is required for efficient HIV replication in tissue macrophages present in human spleens and tonsils. These findings underscore how the nucleocytoplasmic shuttling of Vpr not only contributes to nuclear import of the HIV-1 PIC but also enables Vpr to be present in the cytoplasm for incorporation into virions, leading to enhancement of viral spread within nondividing tissue macrophages.
Collapse
Affiliation(s)
- Michael P Sherman
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Krichevsky A, Graessmann A, Nissim A, Piller SC, Zakai N, Loyter A. Antibody fragments selected by phage display against the nuclear localization signal of the HIV-1 Vpr protein inhibit nuclear import in permeabilized and intact cultured cells. Virology 2003; 305:77-92. [PMID: 12504543 DOI: 10.1006/viro.2002.1765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HIV-1 Vpr protein harbors a nuclear localization signal in its N-terminal domain. A peptide bearing this domain and which is designated VprN has been used as a target to screen a phage display single chain Fv (scFv) library. Here we report the isolation of anti-VprN scFv fragments from this library. The purified scFv fragments were able to bind the VprN peptide in an ELISA-based system and to inhibit VprN-mediated nuclear import in permeabilized as well as in intact microinjected cells. Furthermore, the anti-VprN scFv fragments recognized the full-length recombinant Vpr protein and inhibited its nuclear import. The same scFv fragments did not inhibit nuclear import mediated by the nuclear localization signal of the SV40 large T-antigen demonstrating a specific effect. The use of the described inhibitory anti-VprN scFv fragments to study nuclear import of viral karyophilic proteins and their therapeutic potential is discussed.
Collapse
Affiliation(s)
- A Krichevsky
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Sherman MP, Schubert U, Williams SA, de Noronha CMC, Kreisberg JF, Henklein P, Greene WC. HIV-1 Vpr displays natural protein-transducing properties: implications for viral pathogenesis. Virology 2002; 302:95-105. [PMID: 12429519 DOI: 10.1006/viro.2002.1576] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 14-kDa Vpr protein of human immunodeficiency virus type 1 (HIV-1) serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest in proliferating T lymphocytes, and the modulation of HIV-1-induced apoptosis. Extracellular Vpr has been detected in the sera and cerebral spinal fluid of HIV-infected patients. However, it is not known whether such forms of Vpr are biologically active. Vpr contains a carboxy-terminal basic amino acid rich segment stretch that is homologous to domains that mediate the energy- and receptor-independent cellular uptake of polypeptides by a process termed protein transduction. Similar functional protein-transducing domains are present in HIV-1 Tat, herpes simplex virus-1 DNA-binding protein VP22, and the Drosophila antennapedia homeotic transcription factor. We now demonstrate effective transduction of biologically active, synthetic Vpr (sVpr) as well as the Vpr-beta-galactosidase fusion protein. However, in contrast to other transducing proteins, Vpr transduction is not enhanced by protein denaturation, and Vpr's carboxy-terminal basic domain alone is not sufficient for its transduction across biological membranes. In contrast, the full-length Vpr protein effectively transduces a broad array of cells, leading to dose-dependent G2 cell-cycle arrest and apoptosis. Addition of Vpr into the extracellular medium also rescues the replication of Vpr-deficient strains of HIV-1 in human macrophage cultures. Native Vpr may thus be optimized for protein transduction, a feature that might enhance and extend the pathological effects of HIV infection.
Collapse
Affiliation(s)
- Michael P Sherman
- Gladstone Institute of Virology and Immunology, San Fransisco, California 94141, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Khiytani DK, Dimmock NJ. Characterization of a human immunodeficiency virus type 1 pre-integration complex in which the majority of the cDNA is resistant to DNase I digestion. J Gen Virol 2002; 83:2523-2532. [PMID: 12237436 DOI: 10.1099/0022-1317-83-10-2523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) pre-integration complex (PIC) is a cytoplasmic nucleoprotein structure derived from the core of the virion and is responsible for reverse transcription of viral RNA to cDNA, transport to the nucleus and integration of the cDNA into the genome of the infected target cell. Others have shown by Mu phage-mediated PCR footprinting that only the LTRs of the cDNA of PICs isolated early in infection are protected by bound protein, while the rest of the genome is susceptible to nuclease attack. Here, using DNase I footprinting, we confirmed that the majority of the cDNA of PICs isolated at 8.5 h after infection with cell-free virus was sensitive to digestion with DNase I and that only part of the LTRs (approximately 6% of the total cDNA) was protected. However, PICs isolated 90 min later (at 10 h post-infection) were very different in that the majority (approximately 90%) of cDNA was protected from nuclease degradation. These late PICs were integration active in vitro. We conclude that HIV-1 has at least two types of PIC, an early PIC characterized by protein bound only at the LTRs, and a late, and possibly more mature form, in which protein is bound along the length of the cDNA.
Collapse
Affiliation(s)
- Dheeraj K Khiytani
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| | - Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| |
Collapse
|
26
|
Goto S, Kamada K, Soh Y, Ihara Y, Kondo T. Significance of nuclear glutathione S-transferase pi in resistance to anti-cancer drugs. Jpn J Cancer Res 2002; 93:1047-56. [PMID: 12359059 PMCID: PMC5927137 DOI: 10.1111/j.1349-7006.2002.tb02482.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent study has shown that nuclear glutathione S-transferase (GST) pi accumulates in cancer cells resistant to doxorubicin hydrochloride (DOX) and may function to prevent nuclear DNA damage caused by DOX (Goto et al., FASEB J., 15, 2702 - 2714 (2001)). It is not clear if the amount of nuclear GSTpi increases in response to other anti-cancer drugs and if so, what is the physiological significance of the nuclear transfer of GSTpi in the acquisition of drug-resistance in cancer cells. In the present study, we employed three cancer cell lines, HCT8 human colonic cancer cells, A549 human lung adenocarcinoma cells, and T98G human glioblastoma cells. We estimated the nuclear transfer of GSTpi induced by the anti-cancer drugs cisplatin (CDDP), irinotecan hydrochloride (CPT-11), etoposide (VP-16) and 5-fluorouracil (5-FU). It was found that: (1) Nuclear GSTpi accumulated in these cancer cells in response to CDDP, DOX, CPT-11, VP-16 and 5-FU. (2) An inhibitor of the nuclear transport of GSTpi, edible mushroom lectin (Agaricus bisporus lectin, ABL), increased the sensitivity of the cancer cells to DOX and CDDP, and partially to CPT-11. Treatment with ABL had no apparent effect on the cytotoxicity of VP-16 and 5-FU. These results suggest that inhibitors of the nuclear transfer of GSTpi have practical value in producing an increase of sensitivity to DOX, CDDP and CPT-11.
Collapse
Affiliation(s)
- Shinji Goto
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan.
| | | | | | | | | |
Collapse
|
27
|
Fattori D, Kinzel O, Ingallinella P, Bianchi E, Pessi A. A practical approach to the synthesis of hairpin polyamide-peptide conjugates through the use of a safety-catch linker. Bioorg Med Chem Lett 2002; 12:1143-7. [PMID: 11934575 DOI: 10.1016/s0960-894x(02)00122-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hairpin polyamides are high-affinity, sequence selective DNA binders. The use of a safety-catch linker for the solid phase synthesis of hairpin polyamides allows for easy preparation of derivatives ready for chemoselective ligation with unprotected peptides. Examples of ligations reported include thioether bond formation and thioester-mediated amide bond formation ('Native Chemical Ligation').
Collapse
Affiliation(s)
- Daniela Fattori
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy
| | | | | | | | | |
Collapse
|
28
|
Goto S, Ihara Y, Urata Y, Izumi S, Abe K, Koji T, Kondo T. Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transferase pi. FASEB J 2001; 15:2702-14. [PMID: 11726546 DOI: 10.1096/fj.01-0376com] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glutathione S-transferase (GST) functions in xenobiotic biotransformation and drug metabolism. Increased expression of GSTpi, an isozyme of GST, has been found in cancer cells resistant to doxorubicin hydrochloride (DOX) or cis-diamminedichloroplatinum (II) (CDDP), and this increase was believed to be correlated with drug resistance of cancer cells. GST is mainly expressed in the cytoplasm; GSTpi in the nucleus has been reported in cancer cells, but the meaning of this result is not known. Here, we studied changes in the amount of nuclear GSTpi after exposure of cancer cells to anticancer drugs, and role of the nuclear GSTpi in drug resistance. We found nuclear GSTpi in cancer cells resistant to DOX, and the amount of nuclear GSTpi was enhanced by treatment of the cancer cells with DOX or CDDP. We also found that a mushroom lectin, an inhibitor of nuclear transport, inhibited the nuclear transfer of GSTpi, suggesting the existence of a specific transport system for the nuclear transfer of GSTpi. Nuclear GSTpi protected DNA against damage by anticancer drugs. These results suggest a possible role of GSTpi in the acquisition of resistance to anticancer drugs by cancer cells.
Collapse
Affiliation(s)
- S Goto
- Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Goff SP. Intracellular trafficking of retroviral genomes during the early phase of infection: viral exploitation of cellular pathways. J Gene Med 2001; 3:517-28. [PMID: 11778899 DOI: 10.1002/1521-2254(200111)3:6<517::aid-jgm234>3.0.co;2-e] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Retroviruses enter cells through specific cell-surface receptors and then embark on a journey that ultimately leads to the establishment of the integrated proviral DNA. The steps of the journey include the reverse transcription of the viral RNA into DNA, the trafficking of the viral protein-DNA complex through the cytoplasm, the entry of the complex into the nucleus, and the insertion of the linear viral DNA into the host genome. All these steps are likely to involve specific interactions of viral proteins with host machinery. Our knowledge of the details of these interactions is very limited but is rapidly expanding, and should provide a deeper understanding of the pathways and components used by the different classes of retroviruses. This knowledge in turn should enable the development of better and more efficient retroviral vectors for use in gene therapy protocols in vivo.
Collapse
Affiliation(s)
- S P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Murphy EA, Waring AJ, Murphy JC, Willson RC, Longmuir KJ. Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid. Nucleic Acids Res 2001; 29:3694-704. [PMID: 11522841 PMCID: PMC55880 DOI: 10.1093/nar/29.17.3694] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently described a basic technology to efficiently combine compacted DNA with phospholipids and hydrophobic peptides, to produce homogenous complexes that are completely resistant to nuclease. We have developed this technology further to form gene delivery complexes that transfect cells effectively in vitro. In addition to plasmid DNA, the complexes contained two basic components: (i) a DNA compacting peptide (-CGKKKFKLKH), either conjugated to lipid or extended to contain (WLPLPWGW-) and (ii) either phosphatidylethanolamine or phosphatidylcholine. Complexes containing a 5.5-fold charge equivalence (peptide charge/DNA charge) of WLPLPWGWCGKKKFKLKH and 5 nmol dimyristoleoylphosphatidylethanolamine/microg DNA produced the highest luciferase gene expression, exceeding 1 x 10(9) relative light units/s/mg protein (>3 microg luciferase per mg protein). These complexes transfected OVCAR-3, COS-7 and HeLa cells at either similar or superior levels when compared to polyethylenimine or lipofectamine complexes. With green fluorescent protein reporter gene, >50% of HeLa cells were positive 30 h after addition of these complexes. Furthermore, these optimal complexes were the least sensitive to pre-treatment of cells with chloroquine, indicating efficient endosomal escape. Our results indicated that self-assembling complexes of plasmid DNA, amphiphilic peptide and phosphatidylethanolamine are highly effective non-viral gene delivery systems.
Collapse
Affiliation(s)
- E A Murphy
- Department of Physiology and Biophysics, College of Medicine, University of California, Irvine, CA 92697-4560, USA.
| | | | | | | | | |
Collapse
|
31
|
Sherman MP, de Noronha CM, Heusch MI, Greene S, Greene WC. Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 2001; 75:1522-32. [PMID: 11152524 PMCID: PMC114057 DOI: 10.1128/jvi.75.3.1522-1532.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2000] [Accepted: 09/26/2000] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is capable of infecting nondividing cells such as macrophages because the viral preintegration complex is able to actively traverse the limiting nuclear pore due to the redundant and possibly overlapping nuclear import signals present in Vpr, matrix, and integrase. We have previously recognized the presence of at least two distinct and novel nuclear import signals residing within Vpr that, unlike matrix and integrase, bypass the classical importin alpha/beta-dependent signals and do not require energy or a RanGTP gradient. We now report that the carboxy-terminal region of Vpr (amino acids 73 to 96) contains a bipartite nuclear localization signal (NLS) composed of multiple arginine residues. Surprisingly, when the leucine-rich Vpr(1-71) fragment, previously shown to harbor an NLS, or full-length Vpr is fused to the C terminus of a green fluorescent protein-pyruvate kinase (GFP-PK) chimera, the resultant protein is almost exclusively detected in the cytoplasm. However, the addition of leptomycin B (LMB), a potent inhibitor of CRM1-dependent nuclear export, produces a shift from a cytoplasmic localization to a nuclear pattern, suggesting that these Vpr fusion proteins shuttle into and out of the nucleus. Studies of nuclear import with GFP-PK-Vpr fusion proteins in the presence of LMB reveals that both of the leucine-rich alpha-helices are required for effective nuclear uptake and thus define a unique NLS. Using a modified heterokaryon analysis, we have localized the Vpr nuclear export signal to the second leucine-rich helix, overlapping a portion of the amino-terminal nuclear import signal. These studies thus define HIV-1 Vpr as a nucleocytoplasmic shuttling protein.
Collapse
Affiliation(s)
- M P Sherman
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
32
|
Depienne C, Roques P, Créminon C, Fritsch L, Casseron R, Dormont D, Dargemont C, Benichou S. Cellular distribution and karyophilic properties of matrix, integrase, and Vpr proteins from the human and simian immunodeficiency viruses. Exp Cell Res 2000; 260:387-95. [PMID: 11035935 DOI: 10.1006/excr.2000.5016] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infections by human and simian immunodeficiency viruses (HIV and SIV) are independent of host cell division since the preintegration complex (PIC), containing the viral DNA, is able to undergo active nuclear import after viral entry. In order to clarify the mechanisms responsible for nuclear import of the PIC, we have analyzed the subcellular distribution and the karyophilic properties of its viral components, matrix protein (MA), integrase (IN), Vpr, and Vpx. Although MA has been reported to contain a nuclear localization signal, the MA/GFP fusions are excluded from the nucleus and associated with cellular membranes. In contrast, both HIV-1 and SIV IN and Vpr localize in the nucleus of transfected cells. Interestingly, only Vpx from SIVsm virus accumulate in the nucleus while SIVsm Vpr is uniformly distributed throughout nucleus and cytoplasm. Coexpression of MA, Vpr, and IN does not induce any change in their respective intracellular localizations. Finally, we confirm the karyophilic properties of HIV-1 IN and Vpr using an in vitro nuclear import assay. These results indicate that the viral proteins IN and Vpr, which are strongly associated with the viral DNA within PIC, may participate in the nuclear import of the HIV PIC.
Collapse
Affiliation(s)
- C Depienne
- CEA, Service de Neurovirologie, 60-68 avenue de la Division Leclerc, Fontenay-aux-Roses, 92 265, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kamata M, Aida Y. Two putative alpha-helical domains of human immunodeficiency virus type 1 Vpr mediate nuclear localization by at least two mechanisms. J Virol 2000; 74:7179-86. [PMID: 10888660 PMCID: PMC112238 DOI: 10.1128/jvi.74.15.7179-7186.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify the domains of Vpr that are involved nuclear localization, we transfected HeLa cells with a panel of expression vectors that encode mutant Vpr protein with deletions or substitutions within putative domains. Immunofluorescence staining of transfected cells revealed that wild-type Vpr was localized predominantly in the nucleus and the nuclear envelope and certainly in the cytoplasm. Introduction of substitutions or deletions within alphaH1 or alphaH2 resulted, by contrast, in diffuse expression over the entire cell. In addition, double mutations within both of these alpha-helical domains led to the complete absence of Vpr from nuclei. Next, we prepared HeLa cells that express chimeric proteins which consist of the alphaH1 and alphaH2 domains fused individually with green fluorescent protein (GFP) and a Flag tag and extracted them with digitonin and Triton X-100 prior to fixation. Flag-alphaH1-GFP was detected in the nucleus but not in the cytoplasm, while Flag-alphaH2-GFP was retained predominantly in the nucleus and in a small amount in the cytoplasm. The immunostaining patterns were almost eliminated by substitutions in each chimeric protein. Thus, it appeared that the two alpha-helical domains might be involved in nuclear import by binding to certain cellular factors. Taken together, our data suggest that the two putative alpha-helical domains mediate the nuclear localization of Vpr by at least two mechanisms.
Collapse
Affiliation(s)
- M Kamata
- RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | |
Collapse
|
34
|
Jans DA, Jans P, Jülich T, Briggs LJ, Xiao CY, Piller SC. Intranuclear binding by the HIV-1 regulatory protein VPR is dependent on cytosolic factors. Biochem Biophys Res Commun 2000; 270:1055-62. [PMID: 10772949 DOI: 10.1006/bbrc.2000.2559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory protein Vpr of the human immunodeficiency virus HIV-1 performs multiple functions during the HIV replicative cycle. It is involved in the transport of the viral preintegration complex into the nucleus, and has the ability to interact with nuclear proteins such as transcription factors and cyclin-dependent kinases. In this study we examine for the first time the kinetics of intranuclear binding and accumulation at the nuclear envelope of fluorescently labelled full-length Vpr in vitro. We show that intranuclear binding is strongly dependent on the presence of cytosolic factors; in the absence of cytosol, Vpr associates predominantly with the nuclear envelope. Specific regulation of the interactions of Vpr with cytosolic factors, as well as with sites at the nuclear envelope and within the nucleus, is thus implicated, but conventional nuclear transport factors such as importin alpha/beta do not appear to be involved.
Collapse
Affiliation(s)
- D A Jans
- Nuclear Signaling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, ACT, 2601, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Lentiviruses are associated with chronic diseases of the hematological and neurological systems in animals and man. In particular, human immunodeficiency virus type 1 (HIV-1) is the etiological agent of the global AIDS epidemic. The genomes of lentiviruses are complex, encoding a number of regulatory and accessory proteins not found in other retroviruses. This complexity is reflected in their replication cycle, which reveals intricate regulatory pathways and unique mechanisms for viral persistence. In this review, we highlight some of these unique features for HIV-1, with particular focus on the transcriptional and posttranscriptional control of gene expression. Although our understanding of the biology of HIV-1 is far from complete, the knowledge gained thus far has already led to novel strategies for both virus intervention and exploiting the lentiviruses for therapeutic applications.
Collapse
Affiliation(s)
- H Tang
- Department of Medicine and Biology, University of California, San Diego 92093-0665, USA.
| | | | | |
Collapse
|
36
|
Wecker K, Roques BP. NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:359-69. [PMID: 10561576 DOI: 10.1046/j.1432-1327.1999.00858.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) genome encodes a highly conserved 16 kDa regulatory gene product, Vpr (viral protein of regulation, 96 amino acid residues), which is incorporated into virions, in quantities equivalent to those of the viral Gag proteins. In the infected cells, Vpr is believed to function in the early phase of HIV-1 replication, including nuclear migration of preintegration complex, transcription of the provirus genome and viral multiplication by blocking cells in the G2 phase. Vpr has a critical role in long-term AIDS disease by inducing infection in nondividing cells such as monocytes and macrophages. Mutations have suggested that the N-terminal domain of Vpr encompassing the first 40 residues could be required for nuclear localization, packaging into virions and binding of transcription factor (TFIIB, Sp1), viral proteins (p6) and cellular proteins (RIP1, UNG, karyopherins). To gain insight into the structure-function relationship of Vpr, (1-51)Vpr was synthesized and its structure analyzed by circular dichroism and two-dimensional 1H NMR in aqueous trifluoroethanol (30%) solution and refined by restrained molecular dynamics. The structure is characterized by three turns around the first three prolines, Pro5, Pro10, Pro14, followed by a long amphipathic alpha helix-turn-alpha helix (Asp17-Ile46) motif ended by a turn extending from Tyr47 to Thr49. The alpha helix-turn-alpha helix motif and the amphipathic helix are well known for being implicated in protein-protein or protein-nucleic acid interaction. Therefore structural characteristics of the (1-51) N-terminal fragment of Vpr could explain why this region of Vpr plays a role in several biological functions of this protein.
Collapse
Affiliation(s)
- K Wecker
- Département de Pharmacochemie Moléculair et Structurale, INSERM U266--CNRS UMR 8600, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | |
Collapse
|