1
|
Liu Y, Fan J, Huang H, Zhou H, Cao Y, Zhang Y, Jiang W, Zhang W, Deng J, Tan B. High dietary non-starch polysaccharides detrimental to nutrient digestibility, digestive enzyme activity, growth performance, and intestinal morphology in largemouth bass, Micropterus salmoides. Front Nutr 2022; 9:1015371. [DOI: 10.3389/fnut.2022.1015371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
An 8-weeks feeding trial was carried out to evaluate the effects of different levels of dietary non-starch polysaccharide on the growth, apparent nutrient digestibility, intestinal development, and morphology of largemouth bass (Micropterus salmoides). Seven isoproteic and isolipidic experimental diets were formulated (crude protein 47.00%, crude lipid 12.50%), containing 0, 3, 6, 9, 12, 15, and 18% non-starch polysaccharides (NSPs) (named Control, NSPs3, NSPs6, NSPs9, NSPs12, NSPs15, and NSPs18), respectively. Dietary inclusion of NSPs below 9% showed no negative impacts on fish growth and feed utilization efficiency, whereas dietary NSPs inclusion level above 9% decreased weight gain rate, specific growth rate, protein efficiency, protein deposition rate, apparent digestibility of dry matter and protein, and were accompanied by a reduction in intestinal protease, Na+/K+-ATPase and alkaline phosphatase activity and an increase in feed intake and feed coefficient. The activity of lipase was significantly decreased when dietary inclusion of 15 and 18% NSPs. Moreover, the lipid deposition rate and the apparent digestibility of lipids were significantly decreased since dietary inclusion of 9% NSPs. Dietary inclusion of NSPs above 12% significantly up-regulated intestinal GLP-2 gene’s expression, and was accompanied by significant changes in hindgut morphology, including increases in villus length and width, muscularis thickness and number of goblet cell, as well as a decrease in crypt depth. Additionally, dietary inclusion of NSPs above 3% significantly increased intestinal length index, and the viserosomatic index was significantly increased when dietary NSPs exceeded 15%. The linear regression analysis based on weight gain rate and feed coefficient showed that the appropriate dietary NSPs level of juvenile largemouth bass should not above 5.51%. In conclusion, high dietary NSPs adversely affects digestive enzyme activity and intestinal morphology, which in turn reduced the apparent digestibility of dietary nutrients and growth of juvenile largemouth bass.
Collapse
|
2
|
Xiong Y, Dong S, Zhao X, Guo KJ, Gasco L, Zoccarato I. Gene expressions and metabolomic research on the effects of polyphenols from the involucres of Castanea mollissima Blume on heat-stressed broilers chicks. Poult Sci 2016; 95:1869-80. [PMID: 27209434 DOI: 10.3382/ps/pew170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 02/05/2023] Open
Abstract
To study the effects of polyphenolic extract from involucres of Castanea mollissima Blume ( PICB: ), a novel approach using gene expression by real time polymerase chain reaction ( REAL-TIME PCR: ) coupled with metabolomic profiling technique was established to explain the mechanism of PICB on heat-stressed broiler chicks. Four thousand 28-day-old male Arbor Acres (AA) broilers were randomly assigned to 5 groups (4 replicates / group, 20 chicks / replicate), in which group 1 was normal control group fed with basic ration; groups 2, 3, 4, and 5 were fed with the basic ration with a supplementation of 0.2% Vitamin C ( VC: ), or 0.2%, 0.3%, or 0.4% of PICB respectively. After 1 wk of adaptation, heat stress was applied for 7 consecutive days. On d 3 and d 7 of heat stress, the chicks were sacrificed and sampled. The mRNA expression of heat stress protein 70 (HSP70), glutathione peroxidase ( GSH-PX: ), ornithine decarboxylase ( ODC: ), epidermal growth factor ( EGF: ) and epidermal growth factor receptor ( EGFR: ) were detected by real-time PCR using samples from jejunum mucosa. The serum and jejunum mucosa metabolomic profiles of PICB group showing best antioxidative effects and control group at d 3 were studied using the method of the gas chromatography - time of flight mass spectrometry ( GT-TOF-MS: ), followed by principal component analysis and partial least squares-discriminate analysis. Potential biomarkers were found using Student's t-test. The results showed mRNA expressions of HSP70, GSH-Px, ODC, EGF, and EGFR were altered by the supplementation of PICB. PICB exhibited antioxidative and growth promoting effects, and 0.3% PICB supplementation level exhibited the best. Three metabolites in the serum and 5 in the jejunum mucosa were identified as potential biomarkers. They were considered to be in accordance with antioxidative and growth promoting effects of PICB, which involved in the energy metabolism (sorbitol, palmitic acid), carbohydrate metabolism, amino acids metabolism (serine, L-ornithine), glutathione metabolism (glutamate, L-ornithine), GnRH signaling pathway (inositol), etc. These findings provided novel insights into our understanding of molecular mechanism of PICB effects on heat-stressed chicks.
Collapse
Affiliation(s)
- Y Xiong
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing 102206, P.R. China
| | - S Dong
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing 102206, P.R. China
| | - X Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing 102206, P.R. China
| | - K J Guo
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing 102206, P.R. China
| | - Laura Gasco
- Department of Agricultural, Forest, and Food Sciences, Turin University. Grugliasco (TO), Italy
| | - Ivo Zoccarato
- Department of Agricultural, Forest, and Food Sciences, Turin University. Grugliasco (TO), Italy
| |
Collapse
|
3
|
Martin NA, Mount Patrick SK, Estrada TE, Frisk HA, Rogan DT, Dvorak B, Halpern MD. Active transport of bile acids decreases mucin 2 in neonatal ileum: implications for development of necrotizing enterocolitis. PLoS One 2011; 6:e27191. [PMID: 22162748 PMCID: PMC3230578 DOI: 10.1371/journal.pone.0027191] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/11/2011] [Indexed: 12/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants, but its etiology remains unclear. We have previously shown that mucin 2 (Muc2) positive goblet cells are significantly decreased in NEC. We have also shown that ileal bile acids (BAs) are significantly increased during the development of this disease. Because BAs can affect mucins, we hypothesized that elevated ileal BAs contribute to decreased Muc2 in experimental NEC. The role of Muc2 in NEC was evaluated in Winnie +/+ mice, a strain that produces aberrant Muc2. Muc2 and trefoil factor 3 (Tff3) were assessed in neonatal rats subjected to the NEC protocol when bile acids were removed, and in ileal explants from newborn and older rats cultured with and without BAs. Further, the role of active transport of BAs was determined using neonatal rats given the apical sodium dependent bile acid transporter (Asbt) inhibitor SC-435 and in neonatal Asbt knockout mice subjected to the NEC protocol. Mice with aberrant Muc2 had significantly greater incidence and severity of NEC. Using both in vivo and ex vivo techniques, we determined that BAs decrease Muc2 positive cells in neonatal but not older ileum. However, Tff3 positive cells are not decreased by BAs. In addition, active transport of BAs is required for BAs to decrease Muc2 in immature ileum. These data show that functional Muc2 plays a critical role in the prevention of NEC and BAs can potentiate the decreased Muc2 in disease development. Further, BAs have a more profound effect on Muc2 in immature versus older ileum, which may explain at least in part why NEC occurs almost exclusively in premature infants.
Collapse
Affiliation(s)
- Nina A. Martin
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Sarah K. Mount Patrick
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Teresa E. Estrada
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Harrison A. Frisk
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Daniel T. Rogan
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Bohuslav Dvorak
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
| | - Melissa D. Halpern
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona
- * E-mail:
| |
Collapse
|
4
|
Halpern MD, Weitkamp JH, Mount Patrick SK, Dobrenen HJ, Khailova L, Correa H, Dvorak B. Apical sodium-dependent bile acid transporter upregulation is associated with necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2010; 299:G623-31. [PMID: 20616306 PMCID: PMC2950692 DOI: 10.1152/ajpgi.00242.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants. Previously, we showed that luminal bile acids (BAs) are increased and correlated with disease development and that the apical sodium-dependent BA transporter (ASBT), which transports BAs from the ileal lumen into enterocytes, is upregulated in rats with NEC. We hypothesized that intraenterocyte, rather than luminal, BAs are associated with NEC and that upregulation of ASBT may be a mechanism by which this occurs. Neonatal rats with or without the ASBT inhibitor SC-435, mice in which ASBT was knocked out, and mice that overproduce BAs were subjected to the NEC protocol. Disease development, ASBT, and the farnesoid X receptor protein, along with luminal and intraenterocyte BA levels, were assessed. In addition, ileal sections from premature infants with and without NEC were examined for ASBT via immunohistology and real-time PCR. When BAs were not transported into enterocytes (rats given SC-435 and ASBT knockout mice), severity and incidence of NEC were reduced. In contrast, in mice that overproduce BAs, ASBT was elevated, intraenterocyte BAs were increased, and disease development was increased. ASBT staining was more intense on the apical membrane of ileal enterocytes from premature infants with NEC than premature infants with non-NEC diagnoses. In addition, ASBT mRNA levels were significantly higher in infants with NEC. These data show that accumulation of intraenterocyte BAs contributes to disease development, elevated ASBT increases disease severity in experimental models of NEC, and ASBT is elevated in human NEC. These data confirm that BAs and upregulation of ASBT play a crucial role in NEC pathogenesis and suggest that inhibition of ASBT could be utilized as a therapeutic modality against this disease.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila Khailova
- 1Department of Pediatrics and Steele Children's Research Center,
| | - Hernan Correa
- 3Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bohuslav Dvorak
- 1Department of Pediatrics and Steele Children's Research Center, ,4Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
5
|
Gu J, Chen L, Shatos MA, Rios JD, Gulati A, Hodges RR, Dartt DA. Presence of EGF growth factor ligands and their effects on cultured rat conjunctival goblet cell proliferation. Exp Eye Res 2007; 86:322-34. [PMID: 18155194 DOI: 10.1016/j.exer.2007.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/03/2007] [Accepted: 11/09/2007] [Indexed: 12/19/2022]
Abstract
The amount of mucin on the ocular surface is regulated by the rate of mucin synthesis, mucin secretion, and the number of goblet cells. We have previously shown that cholinergic agonists are potent stimuli of mucin secretion. In contrast, there have been no studies on the control of goblet cell proliferation. In this study we investigate the presence of the EGF family of growth factors and their receptors in rat conjunctiva and cultured rat conjunctival goblet cells as well as their effects on activation of signaling intermediates and goblet cell proliferation. Rat conjunctival goblet cells were grown in organ culture and identified as goblet cells by their morphology and positive staining for the lectin UEA-1 and cytokeratin 7. In the rat conjunctiva, the presence of the EGF family members epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), heparin binding EGF (HB-EGF), and heregulin was determined by RT-PCR. The receptors for these ligands, EGF receptor (EGFR), erbB2, erbB3, and erbB4 were detected in both rat conjunctiva and goblet cells by Western blot analysis. Immunofluorescence microscopy of conjunctival tissue determined that EGFR was present as punctate staining in the cytoplasm of conjunctival goblet cells while ErbB2 was present in the basolateral and lateral membranes of goblet cells. ErbB3 was localized to the cytosol of rat conjunctival goblet cells. In cultured goblet cells, EGFR and ErbB2 were present in the perinuclear area of the cells. ErbB3 was widely distributed throughout the cytoplasm of the cells. ErbB4 was not detected in either the conjunctiva or goblet cells by immunofluorescence microscopy. Using a multiplex assay system we measured phosphorylation (activation) of p44/p42 mitogen-activated protein kinase (MAPK), also known as ERK, Jun N-terminal kinase (JNK), p38 MAPK and AKT (also known as protein kinase B), molecules known to be activated by EGF receptor members. EGF, TGF-alpha and HB-EGF activated the signaling intermediate proteins whereas heregulin did not. No EGF family member significantly activated AKT. Consistent with these findings, EGF, TGF-alpha and HB-EGF each stimulated goblet cell proliferation as measured by WST-1 assay or immunofluorescence microscopy using an antibody against Ki-67, a protein expressed in dividing cells. Heregulin did not cause goblet cell proliferation. We conclude that multiple members of the EGF family, EGF, TGF-alpha and HB-EGF, and heregulin are present with three of the four erbB receptor subtypes. EGF, TGF-alpha and HB-EGF all stimulated the activation of signaling intermediates and caused goblet cell proliferation.
Collapse
Affiliation(s)
- Jian Gu
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Halpern MD, Holubec H, Saunders TA, Dvorak K, Clark JA, Doelle SM, Ballatori N, Dvorak B. Bile acids induce ileal damage during experimental necrotizing enterocolitis. Gastroenterology 2006; 130:359-72. [PMID: 16472592 PMCID: PMC3417808 DOI: 10.1053/j.gastro.2005.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/12/2005] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants. While the effect of bile acids (BAs) on intestinal mucosal injury is known, we investigated the contribution of BAs during the development of NEC in neonatal rats. METHODS Premature rats were fed with cow's milk-based formula and subjected to asphyxia and cold stress to develop NEC. Jejunal and ileal luminal BAs, portal blood BAs, and messenger RNA and protein for the apical sodium-dependent bile acid transporter, the ileal bile acid binding protein, and the heteromeric organic solute transporter (Ostalpha/Ostbeta)were evaluated. RESULTS Ileal luminal BAs levels were increased significantly during disease development and the removal of ileal BAs significantly decreased the incidence and severity of disease. Furthermore, when NEC was reduced via treatment with epidermal growth factor (EGF), BA levels were reduced significantly. Jejunal luminal BA levels were similar between animals with NEC and controls, but portal/ileal luminal BA ratios were decreased significantly in animals with NEC. The apical sodium-dependent bile acid transporter was up-regulated at the site of injury in animals with NEC and decreased after EGF treatment; however, the ileal bile acid binding protein was up-regulated only in the NEC and EGF group. Ostalpha/Ostbeta expression was low in all groups, and only slightly increased in the NEC group. CONCLUSIONS These data strongly suggest that BAs play a role in the development of ileal damage in experimental NEC and that alterations in BA transport in the neonatal ileum may contribute to disease development.
Collapse
Affiliation(s)
- Melissa D Halpern
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Halpern MD, Holubec H, Clark JA, Saunders TA, Williams CS, Dvorak K, Dvorak B. Epidermal growth factor reduces hepatic sequelae in experimental necrotizing enterocolitis. Neonatology 2005; 89:227-35. [PMID: 16319449 DOI: 10.1159/000090015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/17/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Neonatal necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of premature infants. We recently demonstrated that the gut/liver axis plays an important role in the pathophysiology of NEC through the release of inflammatory mediators into the intestinal lumen. We have also shown that supplementation of formula with epidermal growth factor (EGF) dramatically decreases ileal pathology associated with experimental NEC. In this study, we examined the effects of EGF on the liver portion of the gut/liver axis in the neonatal rat model of NEC. METHODS Newborn rats were divided into three experimental groups, NEC, hand-fed with growth-factor free formula; NEC + EGF, hand-fed with formula supplemented with 500 ng/ml rat EGF; or DF, dam fed. All animals were exposed to asphyxia and cold stress twice daily for 4 days to develop NEC. RESULTS EGF receptor expression was significantly (p <or= 0.01) decreased in the NEC+EGF group compared to the NEC group. EGF supplementation significantly decreased Kupffer cell numbers (p <or= 0.01) as well as hepatic tumor necrosis factor (TNF)-alpha and interleukin-18 production (p <or= 0.05). Further, TNF-alpha in the intestinal luminal contents of the NEC+EGF group were normalized to levels observed in DF controls compared to the NEC group (p <or= 0.05). Activated nuclear factor-kappaB was also substantially decreased in the NEC+EGF group versus the NEC group. CONCLUSION The results of this study indicate that EGF normalizes cytokine overproduction in the liver of neonatal rats with NEC, which contributes to diminished intestinal damage during the development of experimental NEC. These data suggest that supplementation of formula with EGF can have beneficial effects on the gut/liver axis during NEC pathogenesis.
Collapse
Affiliation(s)
- Melissa D Halpern
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Ariz., USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen LL, Johansson JK, Hodges RR, Zoukhri D, Ghinelli E, Rios JD, Dartt DA. Differential effects of the EGF family of growth factors on protein secretion, MAPK activation, and intracellular calcium concentration in rat lacrimal gland. Exp Eye Res 2005; 80:379-89. [PMID: 15721620 DOI: 10.1016/j.exer.2004.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 10/04/2004] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the expression of the EGF family of growth factors and EGF receptor subtypes (ErbB1-4) present in lacrimal gland and determine the effects of these growth factors on different functions of rat lacrimal gland. RT-PCR was used to detect mRNA expression in the lacrimal gland of selected members of the EGF family of growth factors, namely EGF, transforming growth factor alpha (TGF-alpha), heparin-binding EGF (HB-EGF), and heregulin. The presence of ErbB receptors was investigated by immunofluorescence microscopy and western blot analysis. The effects of EGF, TGF-alpha, HB-EGF, and heregulin on protein secretion from lacrimal gland acini were examined using a fluorescent assay for peroxidase, a marker of protein secretion. Fura-2 tetra-acetoxymethyl ester was used to measure the effects of the growth factors on intracellular [Ca2+] ([Ca2+]i) in acini. MAPK activation in acini by these growth factors was also examined by western blot analysis using antibodies specific to phosphorylated p42/44 MAPK and total p42 MAPK. Rat lacrimal gland expressed EGF, TGF-alpha, HB-EGF, and heregulin mRNA, and all four ErbB receptors were present in the lacrimal gland as detected by western blot analyses. ErbB 1 and ErbB2 were located in basal and lateral membranes of acinar and ductal cells. The location of ErbB3 could not be determined while ErbB4 was found in ductal cells. Heregulin (10(-7) m) significantly increased protein secretion in lacrimal gland acini whereas all growth factors tested significantly increased [Ca2+]i at 10(-7) m. TGF-alpha (10(-9) m), heregulin (10(-7) m), EGF (10(-7) m), and HB-EGF (10(-7) m) significantly increased the amount of phosphorylated MAPK in lacrimal gland acini. We conclude that all members of the EGF family of growth factors studied are synthesised in rat lacrimal gland, could activate all four ErbB receptors that are present in this tissue, and differentially activate lacrimal gland functions.
Collapse
Affiliation(s)
- L L Chen
- Schepens Eye Research Institute, Harvard Medical School, Department of Ophthalmology, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Halpern MD, Holubec H, Dominguez JA, Meza YG, Williams CS, Ruth MC, McCuskey RS, Dvorak B. Hepatic inflammatory mediators contribute to intestinal damage in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2003; 284:G695-702. [PMID: 12529262 DOI: 10.1152/ajpgi.00353.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a common and devastating gastrointestinal disease of premature infants. Along with pathological effects in the ileum, severe NEC is often accompanied by multisystem organ failure, including liver failure. The aim of this study was to determine the changes in hepatic cytokines and inflammatory mediators in experimental NEC. The well-established neonatal rat model of NEC was used in this study, and changes in liver morphology, numbers of Kupffer cells (KC), gene expression, and histological localization of IL-18, TNF-alpha, and inducible nitric oxide synthase were evaluated. Intestinal luminal TNF-alpha levels were also measured. Production of hepatic IL-18 and TNF-alpha and numbers of KC were increased in rats with NEC and correlated with the progression of intestinal damage during NEC development. Furthermore, increased levels of TNF-alpha in the intestinal lumen of rats with NEC was significantly decreased when KC were inhibited with gadolinium chloride. These results suggest an important role of the liver and the gut-liver axis in NEC pathogenesis.
Collapse
Affiliation(s)
- Melissa D Halpern
- Department of Pediatrics and Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dvorak B, Halpern MD, Holubec H, Dvorakova K, Dominguez JA, Williams CS, Meza YG, Kozakova H, McCuskey RS. Maternal milk reduces severity of necrotizing enterocolitis and increases intestinal IL-10 in a neonatal rat model. Pediatr Res 2003; 53:426-33. [PMID: 12595590 DOI: 10.1203/01.pdr.0000050657.56817.e0] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Maternal milk has been suggested to be partially protective against NEC; however, the mechanisms of this protection are not defined. The aim of this study was to examine the effect(s) of artificial feeding of rat milk (RM)-versus cow milk-based rat milk substitute (RMS) on the development of NEC in a neonatal rat model and elucidate the role of inflammatory cytokines in NEC pathogenesis. Newborn rats were artificially fed with either collected RM or RMS. Experimental NEC was induced by exposure to asphyxia and cold stress and evaluated by histologic scoring of damage in ileum. Intestinal cytokine mRNA expression was determined by real-time PCR. Cytokine histologic localization was performed by confocal microscopy. Similar to human NEC, artificial feeding of RM reduces the incidence and severity of NEC injury in neonatal rats. Freezing and thawing of collected RM did not eliminate the protective effect of maternal milk. Ileal IL-10 expression was significantly increased in the RM group compared with RMS. Increased IL-10 peptide production was detected in the RM group with signal localized predominantly in the cytoplasm of villus epithelial cells. These results suggest that the protective effect of maternal milk is associated with increased production of anti-inflammatory IL-10 in the site of injury. Better understanding of the mechanisms underlying these protective effects could be beneficial either in the prevention of NEC or in the development of future therapeutic strategies to cure NEC.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Asphyxia/immunology
- Asphyxia/metabolism
- Cold Temperature
- Disease Models, Animal
- Enteral Nutrition
- Enterocolitis, Necrotizing/diet therapy
- Enterocolitis, Necrotizing/epidemiology
- Enterocolitis, Necrotizing/immunology
- Female
- Ileum/immunology
- Ileum/metabolism
- Ileum/ultrastructure
- Incidence
- Interleukin-10/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/ultrastructure
- Microscopy, Electron, Scanning
- Milk
- Rats
- Rats, Sprague-Dawley
- Severity of Illness Index
- Stress, Physiological/immunology
- Stress, Physiological/metabolism
- Weight Gain
Collapse
Affiliation(s)
- Bohuslav Dvorak
- Department of Pediatrics and Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Halpern MD, Dominguez JA, Dvorakova K, Holubec H, Williams CS, Meza YG, Ruth MC, Dvorak B. Ileal cytokine dysregulation in experimental necrotizing enterocolitis is reduced by epidermal growth factor. J Pediatr Gastroenterol Nutr 2003; 36:126-33. [PMID: 12500008 DOI: 10.1097/00005176-200301000-00024] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of premature infants. We have shown in previous studies that proinflammatory interleukin-18 and interleukin-12 are up-regulated in the ileum of rats with experimental NEC and that epidermal growth factor (EGF) reduces the development of disease. Here we investigated whether the protective effects of EGF are a result of changes in ileal interleukin-18, interleukin-12 and/or antiinflammatory interleukin-10. METHODS Newborn rats were artificially fed with either growth-factor-free rat milk substitute (RMS) or RMS supplemented with 500 ng/mL EGF (RMS + EGF) and NEC was induced via exposure to asphyxia and cold stress. Cytokine expression and localization were assessed using reverse-transcription real-time polymerase chain reaction and immunohistology/confocal microscopy. RESULTS Enteral administration of EGF (RMS + EGF) decreased overproduction of interleukin-18 and increased interleukin-10 production in the ileum. Furthermore, increased interleukin-10 production was associated with up-regulation of the transcription factor Sp1 in RMS + EGF rats. CONCLUSIONS These data suggest that EGF may reduce NEC via increased interleukin-10 and decreased interleukin-18 and that EGF-mediated up-regulation of Sp1 may account for the increased interleukin-10.
Collapse
Affiliation(s)
- Melissa D Halpern
- Department of Pediatrics and Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85750-5073, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Halpern MD, Holubec H, Dominguez JA, Williams CS, Meza YG, McWilliam DL, Payne CM, McCuskey RS, Besselsen DG, Dvorak B. Up-regulation of IL-18 and IL-12 in the ileum of neonatal rats with necrotizing enterocolitis. Pediatr Res 2002; 51:733-9. [PMID: 12032269 DOI: 10.1203/00006450-200206000-00012] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Necrotizing enterocolitis (NEC) is a common and devastating gastrointestinal disease of premature infants. Because the proinflammatory cytokines IL-18, IL-12, and interferon (IFN)-gamma have been implicated in other diseases of the small intestine, we hypothesized that these cytokines would play an important role in NEC pathogenesis. NEC was induced in newborn rats via enteral feeding with rat milk substitute and asphyxia and cold stress (RMS). Dam-fed, asphyxia- and cold-stressed littermates were used as controls (DF). After 96 h, the distal ileum was removed from all animals and processed to determine expression and localization of IL-18, IL-12, and IFN-gamma using real-time reverse transcriptase PCR and immunohistology. IL-18 and IL-12 mRNA from the RMS group were increased (p < or = 0.05) compared with DF controls, and there was a correlation between increasing IL-18 and IL-12 mRNA levels and progression of tissue damage (r = 0.629 and 0.588, respectively; p < or = 0.05). Immunohistology revealed IL-18 in the cytoplasm of villi and crypt enterocytes and IL-12-positive monocytes/macrophages were increased with disease progression (r = 0.503, p < or = 0.05). No differences in the number of IFN-gamma-positive cells were observed between groups. These data demonstrate up-regulation of IL-18 and IL-12 in experimental NEC and a correlation between production of these proinflammatory cytokines and progression of tissue damage.
Collapse
Affiliation(s)
- Melissa D Halpern
- Department of Pediatrics and Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724-5073, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dvorak B, Halpern MD, Holubec H, Williams CS, McWilliam DL, Dominguez JA, Stepankova R, Payne CM, McCuskey RS. Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model. Am J Physiol Gastrointest Liver Physiol 2002; 282:G156-64. [PMID: 11751169 DOI: 10.1152/ajpgi.00196.2001] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of prematurely born infants. Maternal milk plays an important protective role against NEC development and is the major source of epidermal growth factor (EGF) for neonates. The aim of this study was to examine the effect of orally administered EGF on the incidence of NEC in a neonatal rat model. Newborn rats were artificially fed either with growth factor-free rat milk substitute (RMS) or RMS supplemented with 500 ng/ml of EGF (RMS+EGF). Experimental NEC was induced by exposure to asphyxia and cold stress. Development of NEC was evaluated by gross and histological scoring of damage in the ileum. Ileal EGF receptor (EGF-R), EGF, and transforming growth factor-alpha mRNA expression was assessed by RT competitive-PCR, and the EGF-R was localized by immunohistochemistry. EGF supplementation of formula reduced the incidence and severity of NEC in rats (13/16 RMS vs. 4/13 RMS+EGF). Ileal EGF-R mRNA expression was markedly increased in the RMS group compared with RMS+EGF. Enhanced EGF-R expression in the RMS group was localized predominantly in the epithelial cells of injured ileum. These data suggest a new potential therapeutic approach for the prevention and treatment of NEC.
Collapse
Affiliation(s)
- Bohuslav Dvorak
- Department of Pediatrics and Steele Memorial Children's Research Center, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dvorak B, Williams CS, McWilliam DL, Shinohara H, Dominguez JA, McCuskey RS, Philipps AF, Koldovsky O. Milk-borne epidermal growth factor modulates intestinal transforming growth factor-alpha levels in neonatal rats. Pediatr Res 2000; 47:194-200. [PMID: 10674346 DOI: 10.1203/00006450-200002000-00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Epidermal growth factor (EGF) is present in milk from various mammalian species, but its physiologic function in neonatal development remains unclear. Transforming growth factor-alpha (TGF-alpha) is a peptide structurally related to EGF, and its presence is detected in the developing small intestine of rats. The purpose of the present study was to examine the effect of milk-borne EGF on endogenous production of EGF and TGF-alpha in the small intestine of suckling rats. Neonatal rats were fed via gastrostomy either growth factor-free rat milk substitute (RMS) or RMS supplemented with EGF (100 ng/mL of RMS) from 8 to 12 d of age. Artificially reared rats were then compared with their dam-fed littermates. Animals fed the EGF-deficient diet RMS had markedly increased EGF and TGF-alpha mRNA levels in duodenum and ileum compared with dam-fed controls and significantly elevated total intestinal content of TGF-alpha peptide. Intestinal EGF content and EGF serum levels were significantly decreased in the RMS group compared with controls. The addition of EGF to the RMS diet normalized TGF-alpha mRNA levels in the duodenum and ileum, EGF mRNA levels in the ileum, and total intestinal TGF-alpha content and EGF serum levels to the levels measured in dam-fed littermates. Motility studies showed that enteral administration of EGF did not affect stomach emptying and intestinal transit. These studies indicate that exogenous milk-borne EGF modulates endogenous production of TGF-alpha in developing small intestine. It is likely that neither TGF-alpha nor EGF are solely responsible for small intestinal overgrowth of artificially reared neonatal rats.
Collapse
Affiliation(s)
- B Dvorak
- Department of Pediatrics and Steele Memorial Children's Research Center, University of Arizona, Tucson 85724-5073, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The primary factors in feeding premature infants are dependent on the development and maturation of digestion and absorption. The maturation of digestive and absorptive functions of carbohydrates, proteins, fats, minerals, and vitamins in the young premature infant were determined in relation to availability of hydrolytic enzymes, such as lipases, proteases, amylases, glucosidases, and lactase. The feeding is dependent on the ability of the premature infant to secrete salivary enzymes, gastric acid, pepsin, pancreatic exocrine enzymes, the presence of enterohepatic circulation, and the hydrolytic and absorptive capacity of the entercocyte. To evaluate the complexity of the gut maturation process, we proposed a unified concept where the ontogeny of the gastrointestinal system is the result of the following four major determinants: genetic endowment, intrinsic developmental and biological clock, endogenous regulatory mechanisms, and environmental influences. The developmental clock represents a predetermined temporal sequence of happenings in ontogeny that is inherently controlled. By 20 weeks of gestation, the anatomic differentiation of the fetal gut has progressed to the extent that it resembles that of a newborn. Secretory and absorptive functions, however, develop at different rates; the intestinal absorptive process is only partially available before 26 weeks of gestation, whereas gastric and pancreatic secretion is only basal and can be stimulated only partially even in the full-term newborn period. Regulatory mechanisms control the expression of the genetic endowment at various stages in gastrointestinal development. Neural-hormonal factors play major roles in the ontogeny of the gut. Adrenalectomy, hypophysectomy, and thyroidectomy delay the development of the gut. Administration of glucocorticoids or thyroxine at the critical stage in maturation causes early appearance of enzymes within the intestine. Other hormones that are potentially important in regulating gastrointestinal development include cholecystokinin, gastrin, secretin, which have trophic effects on the gastrointestinal tract, and insulin, insulin-like growth factors, and epidermial growth factor. The development of gastrointestinal secretory function, particularly in response to hormonal stimulation, has received considerable attention. The degree of response of the target cell is determined not only by the amount of effective hormone reaching it but also by the number and affinity of receptors on its surface. Human newborns have high levels of gastrin in their sera, yet have low acid output. Exogenous gastrin is an ineffective stimulant despite the presence of seemingly "anatomically developed" parietal cells. It seems that neither endogenous nor exogenous gastrin has an effect on the target cell. If one accepts the role of circulating gastrin levels in the regulation of its own receptor, one can hypothesize the absence of a regulatory effect of gastrin in the newborn period. It was shown that hormonal regulation of migrating activity by motilin is also absent in the preterm and term infant. Plasma levels of motilin in neonates are comparable to those found in adults, but migrating motor complexes occur in the absence of cycling of plasma concentrations. Interestingly, however, the motilin receptor appears to be present. In conclusion, the feeding mode content, concentration, and volume of the very young premature infant can be assessed by the development of digestive and absorptive capacity and gut motility. The concomitant changes in gut hormones and regulatory peptides during ontogeny and feeding will add a new dimension in the understanding of when, what, and how to feed the very young premature infant.
Collapse
Affiliation(s)
- A Lebenthal
- Department of Pediatrics, Mt Scopus, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|