1
|
Ancestral regulatory mechanisms specify conserved midbrain circuitry in arthropods and vertebrates. Proc Natl Acad Sci U S A 2020; 117:19544-19555. [PMID: 32747566 PMCID: PMC7431035 DOI: 10.1073/pnas.1918797117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Comparative developmental genetics indicate insect and mammalian forebrains form and function in comparable ways. However, these data are open to opposing interpretations that advocate either a single origin of the brain and its adaptive modification during animal evolution; or multiple, independent origins of the many different brains present in extant Bilateria. Here, we describe conserved regulatory elements that mediate the spatiotemporal expression of developmental control genes directing the formation and function of midbrain circuits in flies, mice, and humans. These circuits develop from corresponding midbrain-hindbrain boundary regions and regulate comparable behaviors for balance and motor control. Our findings suggest that conserved regulatory mechanisms specify cephalic circuits for sensory integration and coordinated behavior common to all animals that possess a brain. Corresponding attributes of neural development and function suggest arthropod and vertebrate brains may have an evolutionarily conserved organization. However, the underlying mechanisms have remained elusive. Here, we identify a gene regulatory and character identity network defining the deutocerebral–tritocerebral boundary (DTB) in Drosophila. This network comprises genes homologous to those directing midbrain-hindbrain boundary (MHB) formation in vertebrates and their closest chordate relatives. Genetic tracing reveals that the embryonic DTB gives rise to adult midbrain circuits that in flies control auditory and vestibular information processing and motor coordination, as do MHB-derived circuits in vertebrates. DTB-specific gene expression and function are directed by cis-regulatory elements of developmental control genes that include homologs of mammalian Zinc finger of the cerebellum and Purkinje cell protein 4. Drosophila DTB-specific cis-regulatory elements correspond to regulatory sequences of human ENGRAILED-2, PAX-2, and DACHSHUND-1 that direct MHB-specific expression in the embryonic mouse brain. We show that cis-regulatory elements and the gene networks they regulate direct the formation and function of midbrain circuits for balance and motor coordination in insects and mammals. Regulatory mechanisms mediating the genetic specification of cephalic neural circuits in arthropods correspond to those in chordates, thereby implying their origin before the divergence of deuterostomes and ecdysozoans.
Collapse
|
2
|
Bridi JC, Ludlow ZN, Hirth F. Lineage-specific determination of ring neuron circuitry in the central complex of Drosophila. Biol Open 2019; 8:bio.045062. [PMID: 31285267 PMCID: PMC6679397 DOI: 10.1242/bio.045062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ellipsoid body (EB) of the Drosophila central complex mediates sensorimotor integration and action selection for adaptive behaviours. Insights into its physiological function are steadily accumulating, however the developmental origin and genetic specification have remained largely elusive. Here we identify two stem cells in the embryonic neuroectoderm as precursor cells of neuronal progeny that establish EB circuits in the adult brain. Genetic tracing of embryonic neuroblasts ppd5 and mosaic analysis with a repressible cell marker identified lineage-related progeny as Pox neuro (Poxn)-expressing EB ring neurons, R1-R4. During embryonic brain development, engrailed function is required for the initial formation of Poxn-expressing ppd5-derived progeny. Postembryonic determination of R1-R4 identity depends on lineage-specific Poxn function that separates neuronal subtypes of ppd5-derived progeny into hemi-lineages with projections either terminating in the EB ring neuropil or the superior protocerebrum (SP). Poxn knockdown in ppd5-derived progeny results in identity transformation of engrailed-expressing hemi-lineages from SP to EB-specific circuits. In contrast, lineage-specific knockdown of engrailed leads to reduced numbers of Poxn-expressing ring neurons. These findings establish neuroblasts ppd5-derived ring neurons as lineage-related sister cells that require engrailed and Poxn function for the proper formation of EB circuitry in the adult central complex of Drosophila.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Zoe N Ludlow
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| |
Collapse
|
3
|
Shaw RE, Kottler B, Ludlow ZN, Buhl E, Kim D, Morais da Silva S, Miedzik A, Coum A, Hodge JJ, Hirth F, Sousa-Nunes R. In vivo expansion of functionally integrated GABAergic interneurons by targeted increase in neural progenitors. EMBO J 2018; 37:e98163. [PMID: 29728368 PMCID: PMC6028031 DOI: 10.15252/embj.201798163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023] Open
Abstract
A central hypothesis for brain evolution is that it might occur via expansion of progenitor cells and subsequent lineage-dependent formation of neural circuits. Here, we report in vivo amplification and functional integration of lineage-specific circuitry in Drosophila Levels of the cell fate determinant Prospero were attenuated in specific brain lineages within a range that expanded not only progenitors but also neuronal progeny, without tumor formation. Resulting supernumerary neural stem cells underwent normal functional transitions, progressed through the temporal patterning cascade, and generated progeny with molecular signatures matching source lineages. Fully differentiated supernumerary gamma-amino butyric acid (GABA)-ergic interneurons formed functional connections in the central complex of the adult brain, as revealed by in vivo calcium imaging and open-field behavioral analysis. Our results show that quantitative control of a single transcription factor is sufficient to tune neuron numbers and clonal circuitry, and provide molecular insight into a likely mechanism of brain evolution.
Collapse
Affiliation(s)
- Rachel E Shaw
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Benjamin Kottler
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Zoe N Ludlow
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Dongwook Kim
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sara Morais da Silva
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alina Miedzik
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Antoine Coum
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Jl Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Intrabodies: Development and Application in Functional Genomics and Therapy. Antibodies (Basel) 2004. [DOI: 10.1007/978-1-4419-8877-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Affiliation(s)
- Yurong Yang Wheeler
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, 27157, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
6
|
Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 2003; 130:2365-73. [PMID: 12702651 DOI: 10.1242/dev.00438] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies on expression and function of key developmental control genes suggest that the embryonic vertebrate brain has a tripartite ground plan that consists of a forebrain/midbrain, a hindbrain and an intervening midbrain/hindbrain boundary region, which are characterized by the specific expression of the Otx, Hox and Pax2/5/8 genes, respectively. We show that the embryonic brain of the fruitfly Drosophila melanogaster expresses all three sets of homologous genes in a similar tripartite pattern. Thus, a Pax2/5/8 expression domain is located at the interface of brain-specific otd/Otx2 and unpg/Gbx2 expression domains anterior to Hox expression regions. We identify this territory as the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain. Mutational inactivation of otd/Otx2 and unpg/Gbx2 result in the loss or misplacement of the brain-specific expression domains of Pax2/5/8 and Hox genes. In addition, otd/Otx2 and unpg/Gbx2 appear to negatively regulate each other at the interface of their brain-specific expression domains. Our studies demonstrate that the deutocerebral/tritocerebral boundary region in the embryonic Drosophila brain displays developmental genetic features similar to those observed for the midbrain/hindbrain boundary region in vertebrate brain development. This suggests that a tripartite organization of the embryonic brain was already established in the last common urbilaterian ancestor of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Frank Hirth
- Institute of Zoology, Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
7
|
der Maur AA, Zahnd C, Fischer F, Spinelli S, Honegger A, Cambillau C, Escher D, Plückthun A, Barberis A. Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework. J Biol Chem 2002; 277:45075-85. [PMID: 12215438 DOI: 10.1074/jbc.m205264200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-chain Fv antibody fragments (scFv) represent a convenient antibody format for intracellular expression in eukaryotic or prokaryotic cells. These so-called intrabodies have great potential in functional genomics as a tool to study the function of newly identified proteins in vivo, for example by binding-induced modulation of their activity or by blocking interactions with other proteins. However, the intracellular expression and activity of many single-chain Fvs are limited by their instability and folding efficiency in the reducing intracellular environment, where the highly conserved intrachain disulfide bonds do not form. In the present work, we used an in vivo selection system to isolate novel antigen-binding intrabodies. We screened two intrabody libraries carrying a randomized third hypervariable loop onto the heavy chain of a stable framework, which had been further optimized by random mutagenesis for better behavior in the selection system, and we biophysically characterized the selected variants to interpret the outcome of the selection. Our results show that single-framework intrabody libraries can be directly screened in vivo to rapidly select antigen-specific intrabodies.
Collapse
|
8
|
Target validation through protein-domain knockout – applications of intracellularly stable single-chain antibodies. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1477-3627(02)02172-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Hassanzadeh Gh G, Devoogdt N, Ghysen A, De Baetselier P, Muyldermans S, Dambly-Chaudière C. The regulated expression of an intrabody produces a mutant phenotype in Drosophila. FEBS Lett 1998; 437:81-6. [PMID: 9804176 DOI: 10.1016/s0014-5793(98)01205-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intrabodies show great promise for controlling gene expression. As an initial attempt to evaluate the intrabody technology in Drosophila, the gene poxn was used as target. Transgenic flies harboring different anti-Poxn scFv genes integrated into various chromosomes were obtained. In one transformant, a phenocopy resembling the hypomorphic poxn-phenotype was produced in embryos and larvae following induction of expression of alpha-Poxn2 intrabody. The antisense approach was used as control. Parameters that can affect the success of intrabody technology are described.
Collapse
Affiliation(s)
- G Hassanzadeh Gh
- Department of Ultrastructure, Immunology and Parasitology, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Sint-Genesius-Rode, Belgium
| | | | | | | | | | | |
Collapse
|