1
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Noman A, Aqeel M, Irshad MK, Qari SH, Hashem M, Alamri S, AbdulMajeed AM, Al-Sadi AM. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth. Crit Rev Biotechnol 2020; 40:821-832. [PMID: 32546015 DOI: 10.1080/07388551.2020.1779174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To fight against pathogens, defense systems in plants mainly depend upon preformed as well as induced responses. Pathogen detection activates induced responses and signals are transmitted for coordinated cellular events in order to restrict infection and spread. In spite of significant developments in manipulating genes, transcription factors and proteins for their involvement in immunity, absolute tolerance/resistance to pathogens has not been seen in plants/crops. Defense responses, among diverse plant types, to different pathogens involve modifications at the physio-biochemical and molecular levels. Secreted by oomycetes, elicitins are small, highly conserved and sterol-binding extracellular proteins with PAMP (pathogen associated molecular patterns) functions and are capable of eliciting plant defense reactions. Belonging to multigene families in oomycetes, elicitins are different from other plant proteins and show a different affinity for binding sterols and other lipids. These function for sterols binding to catalyze their inter-membrane and intra- as well as inter-micelle transport. Importantly, elicitins protect plants by inducing HR (hypersensitive response) and systemic acquired resistance. Despite immense metabolic significance and the involvement in defense activities, elicitins have not yet been fully studied and many questions regarding their functional activities remain to be explained. In order to address multiple questions associated with the role of elicitins, we have reviewed the understanding and topical advancements in plant defense mechanisms with a particular interest in elicitin-based defense actions and metabolic activities. This article offers potential attributes of elicitins as the biological control of plant diseases and can be considered as a baseline toward a more profound understanding of elicitins.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Hashem
- College of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, Egypt
| | - Saad Alamri
- College of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia.,Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Awatif M AbdulMajeed
- Biology Department, Faculty of Science, University of Tabook, Umluj, Saudi Arabia
| | - Abdullah M Al-Sadi
- College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
3
|
Pang Z, Srivastava V, Liu X, Bulone V. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici. MOLECULAR PLANT PATHOLOGY 2017; 18:378-390. [PMID: 27019332 PMCID: PMC6638298 DOI: 10.1111/mpp.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 05/16/2023]
Abstract
The oomycete Phytophthora capsici is a plant pathogen responsible for important losses to vegetable production worldwide. Its asexual reproduction plays an important role in the rapid propagation and spread of the disease in the field. A global proteomics study was conducted to compare two key asexual life stages of P. capsici, i.e. the mycelium and cysts, to identify stage-specific biochemical processes. A total of 1200 proteins was identified using qualitative and quantitative proteomics. The transcript abundance of some of the enriched proteins was also analysed by quantitative real-time polymerase chain reaction. Seventy-three proteins exhibited different levels of abundance between the mycelium and cysts. The proteins enriched in the mycelium are mainly associated with glycolysis, the tricarboxylic acid (or citric acid) cycle and the pentose phosphate pathway, providing the energy required for the biosynthesis of cellular building blocks and hyphal growth. In contrast, the proteins that are predominant in cysts are essentially involved in fatty acid degradation, suggesting that the early infection stage of the pathogen relies primarily on fatty acid degradation for energy production. The data provide a better understanding of P. capsici biology and suggest potential metabolic targets at the two different developmental stages for disease control.
Collapse
Affiliation(s)
- Zhili Pang
- Department of Plant Pathology, College of Agriculture and BiotechnologyChina Agricultural UniversityBeijing100193China
- Division of GlycoscienceRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSE‐10691Sweden
| | - Vaibhav Srivastava
- Division of GlycoscienceRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSE‐10691Sweden
| | - Xili Liu
- Department of Plant Pathology, College of Agriculture and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Vincent Bulone
- Division of GlycoscienceRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSE‐10691Sweden
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of Adelaide, Waite CampusUrrbraeSA5064Australia
| |
Collapse
|
4
|
Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. ANNALS OF BOTANY 2017; 119:749-774. [PMID: 28065920 PMCID: PMC5571375 DOI: 10.1093/aob/mcw238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 10/22/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. SCOPE This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Diogo M. Magalhães
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Carolina M. Rodrigues
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Gabriella D. Arena
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Tiago S. Oliveira
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Reinaldo R. Souza-Neto
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Simone C. Picchi
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paula M. M. Martins
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paulo J. C. Santos
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Heros J. Maximo
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Inaiara S. Pacheco
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Alessandra A. De Souza
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Marcos A. Machado
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| |
Collapse
|
5
|
Liu ZQ, Qiu AL, Shi LP, Cai JS, Huang XY, Yang S, Wang B, Shen L, Huang MK, Mou SL, Ma XL, Liu YY, Lin L, Wen JY, Tang Q, Shi W, Guan DY, Lai Y, He SL. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3683-98. [PMID: 25922484 DOI: 10.1093/jxb/erv161] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.
Collapse
Affiliation(s)
- Zhi-qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-lian Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lan-ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jin-sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xue-ying Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Bo Wang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lei Shen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Mu-kun Huang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shao-liang Mou
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiao-Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan-yan Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Lin Lin
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jia-yu Wen
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Qian Tang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Wei Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - De-yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yan Lai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shui-lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
6
|
Attard A, Gourgues M, Galiana E, Panabières F, Ponchet M, Keller H. Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:83-94. [PMID: 17766006 DOI: 10.1016/j.jplph.2007.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/11/2007] [Accepted: 07/12/2007] [Indexed: 05/17/2023]
Abstract
Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant-pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.
Collapse
Affiliation(s)
- Agnès Attard
- Unité Mixte de Recherches, Interactions Plantes-Microorganismes et Santé Végétale, INRA1064-CNRS6192-UNSA, BP 167, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | | | | | | | | | | |
Collapse
|
7
|
Prakob W, Judelson HS. Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 2007; 44:726-39. [PMID: 17215149 DOI: 10.1016/j.fgb.2006.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
A large-scale screen for genes induced during sexual development was performed in the heterothallic oomycete Phytophthora infestans, the potato blight agent. Of 15,644 unigenes on an Affymetrix chip, 87 were induced >10-fold during mating, with 28 induced >100-fold. This was validated in independent matings using RNA blots and RT-PCR. Only 44 genes resembled sequences in GenBank. These encoded regulators such as protein kinases, protein phosphatases, and transcription factors, plus enzymes with metabolic, transport, or cell-cycle activities. Several genes were induced during both mating and asexual sporogenesis, suggesting crosstalk between those pathways. In the homothallic species P. phaseoli, 20% of the 87 genes were expressed at higher levels during conditions conducive to oosporogenesis than non-conducive conditions, while the rest were at similar levels. Many of the latter exhibited higher mRNA concentrations in P. phaseoli than in any non-mating culture of P. infestans, suggesting that part of the sexual pathway is active constitutively in homothallics.
Collapse
Affiliation(s)
- Waraporn Prakob
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
8
|
Judelson HS. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. ADVANCES IN GENETICS 2007; 57:97-141. [PMID: 17352903 DOI: 10.1016/s0065-2660(06)57003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genus Phytophthora includes many destructive pathogens of plants. Although having "fungus-like" appearances, Phytophthora species reside in a eukaryotic kingdom separate from that of true fungi. Distinct strategies are therefore required to study and defend against Phytophthora. Large sequence databases have recently been developed for several species, and tools for functional genomics have been enhanced. This chapter will review current progress in understanding the genome and transcriptome of Phytophthora, and provide examples of how genomics resources are advancing molecular studies of pathogenesis, development, transcription, and evolution. A better understanding of these remarkable pathogens should lead to new approaches for managing their diseases.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
9
|
Jiang RHY, Tyler BM, Govers F. Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1311-21. [PMID: 17153915 DOI: 10.1094/mpmi-19-1311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Comparative analysis of two Phytophthora genomes revealed overall colinearity in four genomic regions consisting of a 1.5-Mb sequence of Phytophthora sojae and a 0.9-Mb sequence of P. ramorum. In these regions with conserved synteny, the gene order is largely similar; however, genome rearrangements also have occurred. Deletions and duplications often were found in association with genes encoding secreted proteins, including effectors that are important for interaction with host plants. Among secreted protein genes, different evolutionary patterns were found. Elicitin genes that code for a complex family of highly conserved Phytophthora-specific elicitors show conservation in gene number and order, and often are clustered. In contrast, the race-specific elicitor gene Avrlb-1 appeared to be missing from the region with conserved synteny, as were its five homologs that are scattered over the four genomic regions. Some gene families encoding secreted proteins were found to be expanded in one species compared with the other. This could be the result of either repeated gene duplications in one species or specific deletions in the other. These different evolutionary patterns may shed light on the functions of these secreted proteins in the biology and pathology of the two Phytophthora spp.
Collapse
Affiliation(s)
- Rays H Y Jiang
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Binnenhaven 5, NL-6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
10
|
Abstract
The oomycetes form a phylogenetically distinct group of eukaryotic microorganisms that includes some of the most notorious pathogens of plants. Oomycetes accomplish parasitic colonization of plants by modulating host cell defenses through an array of disease effector proteins. The biology of effectors is poorly understood but tremendous progress has been made in recent years. This review classifies and catalogues the effector secretome of oomycetes. Two classes of effectors target distinct sites in the host plant: Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, where they target different subcellular compartments. Considering that five species are undergoing genome sequencing and annotation, we are rapidly moving toward genome-wide catalogues of oomycete effectors. Already, it is evident that the effector secretome of pathogenic oomycetes is more complex than expected, with perhaps several hundred proteins dedicated to manipulating host cell structure and function.
Collapse
Affiliation(s)
- Sophien Kamoun
- Department of Plant Pathology, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| |
Collapse
|
11
|
Jiang RHY, Tyler BM, Whisson SC, Hardham AR, Govers F. Ancient Origin of Elicitin Gene Clusters in Phytophthora Genomes. Mol Biol Evol 2005; 23:338-51. [PMID: 16237208 DOI: 10.1093/molbev/msj039] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genus Phytophthora belongs to the oomycetes in the eukaryotic stramenopile lineage and is comprised of over 65 species that are all destructive plant pathogens on a wide range of dicotyledons. Phytophthora produces elicitins (ELIs), a group of extracellular elicitor proteins that cause a hypersensitive response in tobacco. Database mining revealed several new classes of elicitin-like (ELL) sequences with diverse elicitin domains in Phytophthora infestans, Phytophthora sojae, Phytophthora brassicae, and Phytophthora ramorum. ELIs and ELLs were shown to be unique to Phytophthora and Pythium species. They are ubiquitous among Phytophthora species and belong to one of the most highly conserved and complex protein families in the Phytophthora genus. Phylogeny construction with elicitin domains derived from 156 ELIs and ELLs showed that most of the diversified family members existed prior to divergence of Phytophthora species from a common ancestor. Analysis to discriminate diversifying and purifying selection showed that all 17 ELI and ELL clades are under purifying selection. Within highly similar ELI groups there was no evidence for positively selected amino acids suggesting that purifying selection contributes to the continued existence of this diverse protein family. Characteristic cysteine spacing patterns were found for each phylogenetic clade. Except for the canonical clade ELI-1, ELIs and ELLs possess C-terminal domains of variable length, many of which have a high threonine, serine, or proline content suggesting an association with the cell wall. In addition, some ELIs and ELLs have a predicted glycosylphosphatidylinositol site suggesting anchoring of the C-terminal domain to the cell membrane. The eli and ell genes belonging to different clades are clustered in the genomes. Overall, eli and ell genes are expressed at different levels and in different life cycle stages but those sharing the same phylogenetic clade appear to have similar expression patterns.
Collapse
Affiliation(s)
- Rays H Y Jiang
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Panabières F, Amselem J, Galiana E, Le Berre JY. Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet Biol 2005; 42:611-23. [PMID: 15950158 DOI: 10.1016/j.fgb.2005.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/07/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Phytophthora parasitica is a soilborne oomycete pathogen capable of infecting a wide range of plants, including many solanaceous plants. In a first step towards large-scale gene discovery, we generated expressed sequence tags (ESTs) from a cDNA library constructed using mycelium grown in synthetic medium. A total of 3568 ESTs were assembled into 2269 contiguous sequences. Functional categorization could be performed for 65.45% of ESTs. A significant portion of the transcripts encodes proteins of common metabolic pathways. The most prominent sequences correspond to members of the elicitin family, and enzymes involved in the lipid metabolism. A number of genes potentially involved in pathogenesis were also identified, which may constitute virulence determinants.
Collapse
Affiliation(s)
- Franck Panabières
- INRA UMR 1064, Unité Interactions Plantes-Microorganismes et Santé Végétale, 400 route des Chappes, F-06930 Sophia-Antipolis cedex, France.
| | | | | | | |
Collapse
|
13
|
Huitema E, Vleeshouwers VGAA, Cakir C, Kamoun S, Govers F. Differences in intensity and specificity of hypersensitive response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:183-93. [PMID: 15782632 DOI: 10.1094/mpmi-18-0183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Elicitins form a family of structurally related proteins that induce the hypersensitive response (HR) in plants, particularly Nicotiana spp. The elicitin family is composed of several classes. Most species of the plant-pathogenic oomycete genus Phytophthora produce the well-characterized 10-kDa canonical elicitins (class I), such as INF1 of the potato and tomato pathogen Phytophthora infestans. Two genes, inf2A and inf2B, encoding a distinct class (class III) of elicitin-like proteins, also occur in P. infestans. Unlike secreted class I elicitins, class III elicitins are thought to be cell-surface-anchored polypeptides. Molecular characterization of the inf2 genes indicated that they are widespread in Phytophthora spp. and occur as a small gene family. In addition, Southern blot and Northern blot hybridizations using gene-specific probes showed that inf2A and inf2B genes and transcripts can be detected in 17 different P. infestans isolates. Functional secreted expression in plant cells of the elicitin domain of the infl and inf2 genes was conducted using a binary Potato virus X (PVX) vector (agroinfection) and Agrobacterium tumefaciens transient transformation assays (agroinfiltration), and resulted in HR-like necrotic symptoms and induction of defense response genes in tobacco. However, comparative analyses of elicitor activity of INF1, INF2A, and INF2B revealed significant differences in intensity, specificity, and consistency of HR induction. Whereas INF1 induced the HR in Nicotiana benthamiana, INF2A induced weak symptoms and INF2B induced no symptoms on this plant. Nonetheless, similar to INF1, HR induction by INF2A in N. benthamiana required the ubiquitin ligase-associated protein SGT1. Overall, these results suggest that variation in the resistance of Nicotiana spp. to P. infestans is shadowed by variation in the response to INF elicitins. The ability of tobacco, but not N. benthamiana, to respond to INF2B could explain differences in resistance to P. infestans observed for these two species.
Collapse
Affiliation(s)
- Edgar Huitema
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, USA
| | | | | | | | | |
Collapse
|
14
|
Huitema E, Bos JIB, Tian M, Win J, Waugh ME, Kamoun S. Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol 2004; 12:193-200. [PMID: 15051070 DOI: 10.1016/j.tim.2004.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Edgar Huitema
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Sophien Kamoun
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| |
Collapse
|
16
|
Qutob D, Huitema E, Gijzen M, Kamoun S. Variation in structure and activity among elicitins from Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2003; 4:119-124. [PMID: 20569371 DOI: 10.1046/j.1364-3703.2003.00158.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Transcripts encoding elicitin-like protein domains were identified from similarity searches of Phytophthora sojae expressed sequence tags and were characterized with regard to molecular structure and elicitor activity. The P. sojae elicitin family consists of at least nine genes with products similar to previously described elicitins (SOJA-2, SOJB, SOJ2, SOJ3, SOJ5, SOJ6 and SOJ7) or highly diverged from known sequences (SOJX and SOJY). The predicted structural features of seven (SOJA-2, SOJB, SOJ2, SOJ3, SOJ6, SOJX and SOJY) of the elicitin preproteins were compared. All of the predicted elicitins possess a leader signal sequence and a core elicitin domain. Five (SOJ2, SOJ3, SOJ6, SOJX and SOJY) of the characterized elicitins also contain a variable C-terminal region. In addition, SOJX and SOJY contain a C-terminal hydrophobic membrane-spanning domain. An analysis of expression patterns of the elicitin transcripts showed that SOJA-2, SOJB, SOJ2, SOJ3 and SOJ6 were expressed in axenically grown mycelia and during infection, but not in zoospores. In contrast, SOJX and SOJY were predominantly and specifically expressed in zoospores. Selected elicitin domains were also tested for the induction of the hypersensitive response (HR) in Nicotiana spp. All of the elicitin protein domains tested induced the HR, except for SOJX and SOJY. Overall, the results show that the P. sojae elicitin gene family is large and diverse, with varying patterns of expression and HR-inducing activity.
Collapse
Affiliation(s)
- Dinah Qutob
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ont., N5V 4T3, Canada
| | | | | | | |
Collapse
|
17
|
Baillieul F, de Ruffray P, Kauffmann S. Molecular cloning and biological activity of alpha-, beta-, and gamma-megaspermin, three elicitins secreted by Phytophthora megasperma H20. PLANT PHYSIOLOGY 2003; 131:155-66. [PMID: 12529524 PMCID: PMC166796 DOI: 10.1104/pp.012658] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Revised: 09/18/2002] [Accepted: 10/17/2002] [Indexed: 05/19/2023]
Abstract
We report on the molecular cloning of the Phytophthora megasperma H20 (PmH20) glycoprotein shown previously as an inducer of the hypersensitive response, of localized acquired resistance and of systemic acquired resistance in tobacco (Nicotiana tabacum), and of the PmH20 alpha- and beta-megaspermin, two elicitins of class I-A and I-B, respectively. The structure of the glycoprotein shows a signal peptide of 20 amino acids followed by the typical elicitin 98-amino acid-long domain and a 77-amino acid-long C-terminal domain carrying an O-glycosylated moiety. The molecular mass deduced from the translated cDNA sequence is 14,920 and 18,676 D as determined by mass spectrometry. This structure together with multiple sequence alignments and phylogenetic analyses indicate that the glycoprotein belongs to class III elicitins. It is the first class III elicitin protein characterized, which we named gamma-megaspermin. We compared the biological activity of the three PmH20 elicitins when applied to tobacco cv Samsun NN plants. Although alpha- and gamma-megaspermin were similarly active, beta-megaspermin was the most active in inducing the hypersensitive response and localized acquired resistance, which was assessed by measuring the levels of acidic and basic pathogenesis-related proteins and of the antioxidant phytoalexin scopoletin. The three elicitins induced similar levels of systemic acquired resistance measured as the expression of acidic PR proteins and is increased resistance to challenge tobacco mosaic virus infection.
Collapse
Affiliation(s)
- Fabienne Baillieul
- Laboratoire de Biologie et Physiologie Végétales, Unité de Formation et de Recherche des Sciences, Université de Reims, Boite Postale 1039, 51687 Reims, France
| | | | | |
Collapse
|
18
|
Tyler BM. Molecular basis of recognition between phytophthora pathogens and their hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:137-167. [PMID: 12147757 DOI: 10.1146/annurev.phyto.40.120601.125310] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA.
| |
Collapse
|
19
|
Soragni E, Bolchi A, Balestrini R, Gambaretto C, Percudani R, Bonfante P, Ottonello S. A nutrient-regulated, dual localization phospholipase A(2) in the symbiotic fungus Tuber borchii. EMBO J 2001; 20:5079-90. [PMID: 11566873 PMCID: PMC125632 DOI: 10.1093/emboj/20.18.5079] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Important morphogenetic transitions in fungi are triggered by starvation-induced changes in the expression of structural surface proteins. Here, we report that nutrient deprivation causes a strong and reversible up-regulation of TbSP1, a surface-associated, Ca(2+)-dependent phospholipase from the mycorrhizal fungus Tuber borchii. TbSP1 is the first phospholipase A(2) to be described in fungi and identifies a novel class of phospholipid-hydrolyzing enzymes. The TbSP1 phospholipase, which is synthesized initially as a pre-protein, is processed efficiently and secreted during the mycelial phase. The mature protein, however, also localizes to the inner cell wall layer, close to the plasma membrane, in both free-living and symbiosis-engaged hyphae. It thus appears that a dual localization phospholipase A(2) is involved in the adaptation of a symbiotic fungus to conditions of persistent nutritional limitation. Moreover, the fact that TbSP1-related sequences are present in Streptomyces and Neurospora, and not in wholly sequenced non-filamentous microorganisms, points to a general role for TbSP1 phospholipases A(2) in the organization of multicellular filamentous structures in bacteria and fungi.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | | | - Raffaella Balestrini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | | | | | - Paola Bonfante
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | - Simone Ottonello
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| |
Collapse
|