1
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
2
|
Huang Z, Shen F, Chen Y, Cao K, Wang L. Chromosome-scale genome assembly and population genomics provide insights into the adaptation, domestication, and flavonoid metabolism of Chinese plum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1174-1192. [PMID: 34473873 DOI: 10.1111/tpj.15482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Globally, commercialized plum cultivars are mostly diploid Chinese plums (Prunus salicina Lindl.), also known as Japanese plums, and are one of the most abundant and variable fruit tree species. To advance Prunus genomic research, we present a chromosome-scale P. salicina genome assembly, constructed using an integrated strategy that combines Illumina, Oxford Nanopore, and high-throughput chromosome conformation capture (Hi-C) sequencing. The high-quality genome assembly consists of a 318.6-Mb sequence (contig N50 length of 2.3 Mb) with eight pseudo-chromosomes. The expansion of the P. salicina genome is led by recent segmental duplications and a long terminal repeat burst of approximately 0.2 Mya. This resulted in a significant expansion of gene families associated with flavonoid metabolism and plant resistance, which impacted fruit flavor and increased species adaptability. Population structure and domestication history suggest that Chinese plum may have originated from South China and provides a domestication route with accompanying genomic variations. Selection sweep and genetic diversity analysis enabled the identification of several critical genes associated with flowering time, stress tolerance, and flavonoid metabolism, demonstrating the essential roles of related pathways during domestication. Furthermore, we reconstructed and exploited flavonoid-anthocyanin metabolism using multi-omics analysis in Chinese plum and proposed a complete metabolic pathway. Collectively, our results will facilitate further candidate gene discovery for important agronomic traits in Chinese plum and provide insights into future functional genomic studies and DNA-informed breeding.
Collapse
Affiliation(s)
- Zhenyu Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Fei Shen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuling Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| |
Collapse
|
3
|
Suleman M, Ma M, Ge G, Hua D, Li H. The role of alternative oxidase in plant hypersensitive response. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:415-419. [PMID: 33480175 DOI: 10.1111/plb.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The innate immune system of plants is crucial in defining the fate of a plant cell during plant-pathogen interactions. This response is often accompanied by a hypersensitive reaction leading to the death of a plant cell and restricted pathogen growth. Plant mitochondria, in this case, play a key role by maintaining a balance between cell respiration and reactive oxygen species formation. One of the key features of the hypersensitive response is the shift of the normal plant respiratory pathway to a special 'alternative' pathway. Plants contain an enzyme, alternative oxidase, for maintaining metabolic homeostasis of the cell. This energy dissipating respiration provides a branch in normal respiration by using ubiquinone to form water and heat, thus maintaining the energy status of the cell. Alternative oxidase is thought to minimize production of reactive oxygen species and can also function in 'anti-apoptotic' machinery in plant cells. In this mini review, we briefly describe the alternative respiratory pathway and explain the role of alternative oxidase in important cellular processes, such as programmed cell death and the hypersensitive response.
Collapse
Affiliation(s)
- M Suleman
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - M Ma
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - G Ge
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - D Hua
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - H Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Rodríguez-Alvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:463-479. [PMID: 31813394 DOI: 10.1017/s0007485319000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.
Collapse
Affiliation(s)
- Clara I Rodríguez-Alvarez
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - Gloria Nombela
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| |
Collapse
|
5
|
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK. VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 2020; 40:715-732. [PMID: 32338074 DOI: 10.1080/07388551.2020.1756214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
6
|
Inhibition of Satellite RNA Associated Cucumber Mosaic Virus Infection by Essential Oil of Micromeria croatica (Pers.) Schott. Molecules 2019; 24:molecules24071342. [PMID: 30959741 PMCID: PMC6479972 DOI: 10.3390/molecules24071342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
The present results dealing with the antiphytoviral activity of essential oil indicate that these plant metabolites can trigger a response to viral infection. The essential oil from Micromeria croatica and the main oil components β-caryophyllene and caryophyllene oxide were tested for antiphytoviral activity on plants infected with satellite RNA associated cucumber mosaic virus. Simultaneous inoculation of virus with essential oil or with the dominant components of oil, and the treatment of plants prior to virus inoculation, resulted in a reduction of virus infection in the local and systemic host plants. Treatment with essential oil changed the level of alternative oxidase gene expression in infected Arabidopsis plants indicating a connection between the essential oil treatment, aox gene expression and the development of viral infection.
Collapse
|
7
|
Zhang M, Liu S, Takano T, Zhang X. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis. PLANTA 2019; 249:417-429. [PMID: 30225672 DOI: 10.1007/s00425-018-3010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
AtMT2b interacts with AtVDAC3 in mitochondria in Arabidopsis. The overexpression of the AtMT2b and AtVDAC3 T-DNA insertion mutant confers tolerance to NaCl stress in Arabidopsis. Both AtMT2b and AtVDAC3 are involved in the regulation of the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) under NaCl stress. Metallothioneins (MTs) are small, cysteine rich, metal-binding proteins that perform multiple functions, such as heavy metal detoxification and reactive oxygen species (ROS) scavenging. MTs have been reported to be involved in mitochondrial function in mammals. However, whether a direct relationship exists between MTs and mitochondrial proteins remains unclear. In the present study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to demonstrate that AtMT2b, which is a type 2 MT in Arabidopsis, interacts with the outer mitochondrial membrane voltage-dependent anion channel AtVDAC3. AtMT2b bound AtVDAC3, leading to its co-localization in mitochondria. AtMT2b transgenic seedlings exhibited increased tolerance to salt stress, and the atvdac3 mutant showed a similar phenotype. The mitochondrial membrane potential (MMP) was maintained, and ROS generation was reduced following AtMT2b overexpression and AtVDAC3 knockout under NaCl stress. Both AtMT2b and AtVDAC3 were shown to be involved in MMP regulation and ROS production under NaCl stress but showed opposite effects. We conclude that AtMT2b might negatively interact with AtVDAC3 in mitochondria, and both proteins are involved in the regulation of MMP and ROS under NaCl stress.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
- School of Medicine, He University, Shenyang, 110163, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
8
|
Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One 2019; 14:e0210592. [PMID: 30629714 PMCID: PMC6328269 DOI: 10.1371/journal.pone.0210592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant UCPs are proved to take part in the fine-tuning of mitochondrial ROS generation. It has emerged that mitochondrion can be an important early source of intracellular ROS during plant-pathogen interaction thus plant UCPs must also play key role in this redox fine-tuning during the early phase of plant-pathogen interaction. On the contrary of this well-established assumption, the expression of plant UCPs and their activity has not been investigated in elicitor induced oxidative burst. Thus, the level of plant UCPs both at RNA and protein level and their activity was investigated and compared to AOX as a reference in Arabidopsis thaliana cells due to bacterial harpin treatments. Similar to the expression and activity of AOX, the transcript level of UCP4, UCP5 and the UCP activity increased due to harpin treatment and the consequential oxidative burst. The expression of UCP4 and UCP5 elevated 15-18-fold after 1 h of treatment, then the activity of UCP reached its maximal value at 4h of treatment. The quite rapid activation of UCP due to harpin treatment gives another possibility to fine tune the redox balance of plant cell, furthermore explains the earlier observed rapid decrease of mitochondrial membrane potential and consequent decrease of ATP synthesis after harpin treatment.
Collapse
Affiliation(s)
- Ádám Czobor
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Hajdinák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bence Németh
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Borbála Piros
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Áron Németh
- Department of Applied Biotechnology and Food Science, Fermentation Pilot Plant Laboratory, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
9
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
10
|
Gao S, Guo W, Feng W, Liu L, Song X, Chen J, Hou W, Zhu H, Tang S, Hu J. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. MOLECULAR PLANT PATHOLOGY 2016; 17:412-26. [PMID: 26123657 PMCID: PMC6638396 DOI: 10.1111/mpp.12290] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance.
Collapse
Affiliation(s)
- Shan Gao
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Forensic Science, Ministry of Public Security P.R.C., Beijing, 100038, China
| | - Wenya Guo
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Hebei Academy of Forestry Science, Shijiazhuang, 050061, China
| | - Wen Feng
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Liang Liu
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaorui Song
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jian Chen
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Wei Hou
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Hongxia Zhu
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Saijun Tang
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
11
|
Laino P, Russo MP, Guardo M, Reforgiato-Recupero G, Valè G, Cattivelli L, Moliterni VMC. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view. PHYSIOLOGIA PLANTARUM 2016; 156:444-67. [PMID: 26459956 DOI: 10.1111/ppl.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection.
Collapse
Affiliation(s)
- Paolo Laino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Maria P Russo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Maria Guardo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giuseppe Reforgiato-Recupero
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giampiero Valè
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rice Research Unit, Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Vita M C Moliterni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| |
Collapse
|
12
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
13
|
Ger MJ, Louh GY, Lin YH, Feng TY, Huang HE. Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2014; 15:892-906. [PMID: 24796566 PMCID: PMC6638834 DOI: 10.1111/mpp.12150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant ferredoxin-like protein (PFLP) is a photosynthesis-type ferredoxin (Fd) found in sweet pepper. It contains an iron-sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis-related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG-transgenic plants. These transgenic plants were then infected with the soft-rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP-mediated resistance. The results revealed that, instead of showing soft-rot symptoms, ECC activated hypersensitive response (HR)-associated events, such as the accumulation of hydrogen peroxide (H2 O2 ), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP-transgenic Arabidopsis. This PFLP-mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1-l-trans-epoxysuccinyl-leucylamido-(4-guanidino)-butane (E64) and benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), but not by myriocin and fumonisin. The PFLP-transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG-transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease-mediated pathway.
Collapse
Affiliation(s)
- Mang-Jye Ger
- Department of Life Science, National University of Kaohsiung, Kaohsiung, 811, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Salinas T, El Farouk-Ameqrane S, Ubrig E, Sauter C, Duchêne AM, Maréchal-Drouard L. Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Res 2014; 42:9937-48. [PMID: 25114051 PMCID: PMC4150812 DOI: 10.1093/nar/gku728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 β-strands forming a β-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the β-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Samira El Farouk-Ameqrane
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, associated with Strasbourg University, 15 rue René Descartes 67084 Strasbourg cedex, France
| | - Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| |
Collapse
|
15
|
Abstract
Voltage-dependent anion channels (VDACs), known as outer mitochondrial membrane proteins, are present in all eukaryotic cells. In mammals, they are now recognized to play crucial roles in the regulation of metabolic and energetic functions of mitochondria as well as in mitochondria-mediated apoptosis, in association with various proteins and non-protein modulators. Although there is much less information available for plant than for animal VDACs, their similar electrophysiological and topological properties suggest that some common functions are conserved among eukaryotic VDACs. Recently, it has been revealed that plant VDACs also have various important physiological functions not only in developmental and reproductive processes, but also in biotic and abiotic stress responses, including programmed cell death. In this review, we summarize recent findings about the sequence motifs, localization, and function of plant VDACs and discuss these results in the light of recent advances in research on animal VDACs.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan.
| | | |
Collapse
|
16
|
Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Küster H, Leubner-Metzger G, Kranner I. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One 2013; 8:e78471. [PMID: 24205239 PMCID: PMC3812160 DOI: 10.1371/journal.pone.0078471] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023] Open
Abstract
Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50°C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.
Collapse
Affiliation(s)
- Hongying Chen
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
| | - Daniel Osuna
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología. Universidad de Salamanca, Salamanca, Spain
| | - Louise Colville
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
| | - Oscar Lorenzo
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología. Universidad de Salamanca, Salamanca, Spain
| | - Kai Graeber
- Institute for Biology II, Botany/Plant Physiology, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Institute for Plant Genetics, Unit IV – Plant Genomics, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Küster
- Institute for Plant Genetics, Unit IV – Plant Genomics, Leibniz Universität Hannover, Hannover, Germany
| | - Gerhard Leubner-Metzger
- Institute for Biology II, Botany/Plant Physiology, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ilse Kranner
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom
| |
Collapse
|
17
|
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 2013; 14:6805-47. [PMID: 23531539 PMCID: PMC3645666 DOI: 10.3390/ijms14046805] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as "signaling organelles", able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.
| |
Collapse
|
18
|
Cvetkovska M, Vanlerberghe GC. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. PLANT, CELL & ENVIRONMENT 2013; 36:721-32. [PMID: 22978428 DOI: 10.1111/pce.12009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Previously, we showed that inoculation of tobacco with Pseudomonas syringae incompatible pv. maculicola results in a rapid and persistent burst of superoxide (O(2) (-) ) from mitochondria, no change in amount of mitochondrial alternative oxidase (AOX) and induction of the hypersensitive response (HR). However, inoculation with incompatible pv. phaseolicola resulted in increased AOX, no O(2) (-) burst and no HR. Here, we show that in transgenic plants unable to induce AOX in response to pv. phaseolicola, there is now a strong mitochondrial O(2) (-) burst, similar to that normally seen only with pv. maculicola. This interaction did not however result in a HR. This indicates that AOX amount is a key determinant of the mitochondrial O(2) (-) burst but also that the burst itself is not sufficient to induce the HR. Surprisingly, the O(2) (-) burst normally seen towards pv. maculicola is delayed in plants lacking AOX. This delay is associated with a delayed HR, suggesting that the burst does promote the HR. A O(2) (-) burst can also be induced by the complex III inhibitor antimycin A (AA), but is again delayed in plants lacking AOX. The similar mitochondrial response induced by pv. maculicola and AA suggests that electron transport is a target during HR-inducing biotic interactions.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
19
|
Park YH, Choi C, Park EM, Kim HS, Park HJ, Bae SC, Ahn I, Kim MG, Park SR, Hwang DJ. Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. PLANT CELL REPORTS 2012; 31:1845-1850. [PMID: 22717673 DOI: 10.1007/s00299-012-1298-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 06/01/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.
Collapse
Affiliation(s)
- Young Ho Park
- National Academy of Agricultural Science, RDA, Suwon, 441-707, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cvetkovska M, Vanlerberghe GC. Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial pathogen in Nicotiana tabacum. PLANT, CELL & ENVIRONMENT 2012; 35:1121-36. [PMID: 22211396 DOI: 10.1111/j.1365-3040.2011.02477.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We characterized responses of Nicotiana tabacum to pathovars of the bacterial pathogen Pseudomonas syringae. These included a compatible response associated with necrotic cell death (pv. tabaci), an incompatible response that included hypersensitive response (HR) cell death (pv. maculicola) and an incompatible response that induced defences but lacked the HR (pv. phaseolicola). Signalling molecules (salicylic acid, nitric oxide, H(2)O(2)) known to induce the stress responsive tobacco Aox1a gene [that encodes the mitochondrial electron transport chain (ETC) component alternative oxidase (AOX)] accumulated preferentially during the HR, but this did not elevate Aox1a transcript or AOX protein, while the transcript and protein were strongly elevated during the defence response to pv. phaseolicola. In addition, matrix manganese superoxide dismutase (MnSOD) activity declined during the HR, unlike its response to the other pathovars, and unlike the response of other superoxide dismutase (SOD) enzymes. Finally, the HR (but not the response to pv. phaseolicola or pv. tabaci) was accompanied by an early and persistent mitochondrial superoxide (O(2)(-)) burst prior to cell death. We propose that a coordinated response of the major ETC mechanism to avoid O(2)(-) generation (AOX) and the sole enzymatic means to scavenge mitochondrial O(2)(-) (MnSOD) is important in the determination of cell fate during responses to pathogen.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
21
|
Robert N, d'Erfurth I, Marmagne A, Erhardt M, Allot M, Boivin K, Gissot L, Monachello D, Michaud M, Duchêne AM, Barbier-Brygoo H, Maréchal-Drouard L, Ephritikhine G, Filleur S. Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria. PLANT MOLECULAR BIOLOGY 2012; 78:431-46. [PMID: 22294207 DOI: 10.1007/s11103-012-9874-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/26/2011] [Indexed: 05/22/2023]
Abstract
In mammals, the Voltage-dependent anion channels (VDACs) are predominant proteins of the outer mitochondrial membrane (OMM) where they contribute to the exchange of small metabolites essential for respiration. They were shown to be as well associated with the plasma membrane (PM) and act as redox enzyme or are involved in ATP release for example. In Arabidopsis, we show that four out of six genomic sequences encode AtVDAC proteins. All four AtVDACs are ubiquitously expressed in the plant but each of them displays a specific expression pattern in root cell types. Using two complementary approaches, we demonstrate conclusively that the four expressed AtVDACs are targeted to both mitochondria and plasma membrane but in differential abundance, AtVDAC3 being the most abundant in PM, and conversely, AtVDAC4 almost exclusively associated with mitochondria. These are the first plant proteins to be shown to reside in both these two membranes. To investigate a putative function of AtVDACs, we analyzed T-DNA insertion lines in each of the corresponding genes. Knock-out mutants for AtVDAC1, AtVDAC2 and AtVDAC4 present slow growth, reduced fertility and yellow spots in leaves when atvdac3 does not show any visible difference compared to wildtype plants. Analyses of atvdac1 and atvdac4 reveal that yellow areas correspond to necrosis and the mitochondria are swollen in these two mutants. All these results suggest that, in spite of a localization in plasma membrane for three of them, AtVDAC1, AtVDAC2 and AtVDAC4 have a main function in mitochondria.
Collapse
Affiliation(s)
- Nadia Robert
- Institut des Sciences du Végétal, CNRS-UPR 2355, Bât. 22, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Burch-Smith TM, Zambryski PC. Plasmodesmata paradigm shift: regulation from without versus within. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:239-60. [PMID: 22136566 DOI: 10.1146/annurev-arplant-042811-105453] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cells are surrounded by cellulosic cell walls, creating a potential challenge to resource sharing and information exchange between individual cells. To overcome this, plants have evolved channels called plasmodesmata that provide cytoplasmic continuity between each cell and its immediate neighbors. We first review plasmodesmata basics-their architecture, their origin, the types of cargo they transport, and their molecular components. The bulk of this review discusses the regulation of plasmodesmata formation and function. Historically, plasmodesmata research has focused intensely on uncovering regulatory or structural proteins that reside within or immediately adjacent to plasmodesmata. Recent findings, however, underscore that plasmodesmata are exquisitely sensitive to signals far removed from the plasmodesmal channel itself. Signals originating from molecules and pathways that regulate cellular homeostasis-such as reactive oxygen species, organelle-organelle signaling, and organelle-nucleus signaling-lead to astonishing alterations in gene expression that affect plasmodesmata formation and function.
Collapse
Affiliation(s)
- Tessa M Burch-Smith
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
23
|
Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4773-85. [PMID: 21705391 PMCID: PMC3192994 DOI: 10.1093/jxb/err113] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The voltage-dependent anion channel (VDAC), a major outer mitochondrial membrane protein, is thought to play an important role in energy production and apoptotic cell death in mammalian systems. However, the function of VDACs in plants is largely unknown. In order to determine the individual function of plant VDACs, molecular and genetic analysis was performed on four VDAC genes, VDAC1-VDAC4, found in Arabidopsis thaliana. VDAC1 and VDAC3 possess the eukaryotic mitochondrial porin signature (MPS) in their C-termini, while VDAC2 and VDAC4 do not. Localization analysis of VDAC-green fluorescent protein (GFP) fusions and their chimeric or mutated derivatives revealed that the MPS sequence is important for mitochondrial localization. Through the functional analysis of vdac knockout mutants due to T-DNA insertion, VDAC2 and VDAC4 which are expressed in the whole plant body are important for various physiological functions such as leaf development, the steady state of the mitochondrial membrane potential, and pollen development. Moreover, it was demonstrated that VDAC1 is not only necessary for normal growth but also important for disease resistance through regulation of hydrogen peroxide generation.
Collapse
|
24
|
Rossi FR, Gárriz A, Marina M, Romero FM, Gonzalez ME, Collado IG, Pieckenstain FL. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:888-96. [PMID: 21751851 DOI: 10.1094/mpmi-10-10-0248] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.
Collapse
|
25
|
Froidure S, Roby D, Rivas S. Expression of the Arabidopsis transcription factor AtMYB30 is post-transcriptionally regulated. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:735-9. [PMID: 20605724 DOI: 10.1016/j.plaphy.2010.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 05/01/2023]
Abstract
The Arabidopsis transcription factor AtMYB30 was previously identified as a positive regulator of plant hypersensitive cell death and defence responses to inoculation with bacterial pathogens. In this study, we attempted to generate Arabidopsis transgenic lines that overexpress AtMYB30 under the control of the constitutive 35S promoter. However, no transgenic lines overexpressing AtMYB30 could be obtained, suggesting the existence of a molecular mechanism that negatively regulates AtMYB30 expression in planta. Our results suggest that RNA silencing directly mediates downregulation of AtMYB30 expression, both in young seedlings and in adult plants. In contrast, an indirect RNA silencing mechanism is responsible for the induction of AtMYB30 expression after bacterial inoculation, possibly via the degradation of a yet unknown negative regulator of its expression. These results underline the importance of RNA silencing in the regulation of the activity of transcription factors both during plant development and in response to microbes.
Collapse
Affiliation(s)
- Solène Froidure
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA 2594/441, F-31320 Castanet Tolosan, France
| | | | | |
Collapse
|
26
|
Hanqing F, Kun S, Mingquan L, Hongyu L, Xin L, Yan L, Yifeng W. The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses. MOLECULAR PLANT PATHOLOGY 2010; 11:429-40. [PMID: 20447290 PMCID: PMC6640418 DOI: 10.1111/j.1364-3703.2010.00615.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To survive, plants possess elaborate defence mechanisms to protect themselves against virus or pathogen invasion. Recent studies have suggested that plant mitochondria may play an important role in host defence responses to biotic stresses. In contrast with animal mitochondria, plant mitochondria possess a unique respiratory pathway, the cyanide-insensitive alternative pathway, which is catalysed by the alternative oxidase (AOX). Much work has revealed that the genes encoding AOX, AOX protein and the alternative respiratory pathway are frequently induced during plant-pathogen (or virus) interaction. This raises the possibility that AOX is involved in host defence responses to biotic stresses. Thus, a key to the understanding of the role of mitochondrial respiration under biotic stresses is to learn the function and regulation of AOX. In this article, we focus on the theoretical and experimental progress made in the current understanding of the function and regulation of AOX under biotic stresses. We also address some speculative aspects to aid further research in this area.
Collapse
Affiliation(s)
- Feng Hanqing
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Characterization of Citrus sinensis type 1 mitochondrial alternative oxidase and expression analysis in biotic stress. Biosci Rep 2009; 30:59-71, 1 p following 71. [DOI: 10.1042/bsr20080180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The higher plant mitochondrial electron transport chain contains an alternative pathway that ends with the AOX (alternative oxidase). The AOX proteins are encoded by a small gene family composed of two discrete gene subfamilies. Aox1 is present in both monocot and eudicot plants, whereas Aox2 is only present in eudicot plants. We isolated a genomic clone from Citrus sinensis containing the Aox1a gene. The orange Aox1a consists of four exons interrupted by three introns and its promoter harbours diverse putative stress-specific regulatory motifs including pathogen response elements. The role of the Aox1a gene was evaluated during the compatible interaction between C. sinensis and Xanthomonas axonopodis pv. citri and no induction of the Aox1a at the transcriptional level was observed. On the other hand, Aox1a was studied in orange plants during non-host interactions with Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, which result in hypersensitive response. Both phytopathogens produced a strong induction of Aox1a, reaching a maximum at 8 h post-infiltration. Exogenous application of salicylic acid produced a slight increase in the steady-state level of Aox1a, whereas the application of fungi elicitors showed the highest induction. These results suggest that AOX1a plays a role during biotic stress in non-host plant pathogen interaction.
Collapse
|
29
|
Kusano T, Tateda C, Berberich T, Takahashi Y. Voltage-dependent anion channels: their roles in plant defense and cell death. PLANT CELL REPORTS 2009; 28:1301-1308. [PMID: 19585120 DOI: 10.1007/s00299-009-0741-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
The voltage-dependent anion channels (VDACs), mitochondrial outer membrane components, are present in organisms from fungi to animals and plants. They are thought to function in the regulation of metabolite transport between mitochondria and the cytoplasm. Sufficient knowledge on plant VDACs has been accumulated, so that we can here summarize the current information. Then, the involvement of mitochondria in plant defense and cell death is overviewed. While, in mammals, it is suggested that VDAC, also known as a component of the permeability transition pore (PTP) complex formed in the junction site of mitochondrial outer and inner membrane, is a key player in mitochondria-mediated cell death, little is known about the role of plant VDACs in this process. We have shown that plant VDACs are involved in mitochondria-mediated cell death and in defense against a non-host pathogen. In light of the current findings, we discuss the role of the PTP complex and VDAC as its component in plant pathogen defense and cell death.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Laboratory of Plant Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai-City, Miyagi, 980-8577, Japan.
| | | | | | | |
Collapse
|
30
|
Yan J, He H, Tong S, Zhang W, Wang J, Li X, Yang Y. Voltage-dependent anion channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in ABA-mediated early seedling development. Int J Mol Sci 2009; 10:2476-2486. [PMID: 19582214 PMCID: PMC2705501 DOI: 10.3390/ijms10062476] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/13/2009] [Accepted: 05/17/2009] [Indexed: 01/24/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.
Collapse
Affiliation(s)
- Jinping Yan
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
- Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Road, Kunming 650223, China
| | - Han He
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Shibo Tong
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Wanrong Zhang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Jianmei Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Xufeng Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
| | - Yi Yang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; E-Mails:
(J.Y.);
(H.H.);
(S.T.);
(W.Z.);
(J.W.);
(X.L.)
- Author to whom correspondence should be addressed; E-mail:
; Tel. +86-28-85410957; Fax: +86-28-85410957
| |
Collapse
|
31
|
Lee SM, Hoang MHT, Han HJ, Kim HS, Lee K, Kim KE, Kim DH, Lee SY, Chung WS. Pathogen inducible voltage-dependent anion channel (AtVDAC) isoforms are localized to mitochondria membrane in Arabidopsis. Mol Cells 2009; 27:321-7. [PMID: 19326079 DOI: 10.1007/s10059-009-0041-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/06/2008] [Accepted: 12/18/2008] [Indexed: 12/01/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are reported to be porin-type, beta-barrel diffusion pores. They are prominently localized in the outer mitochondrial membrane and are involved in metabolite exchange between the organelle and the cytosol. In this study, we have investigated a family of VDAC isoforms in Arabidopsis thaliana (AtVDAC). We have shown that the heterologous expression of AtVDAC proteins can functionally complement a yeast mutant lacking the endogenous mitochondrial VDAC gene. AtVDACs tagged with GFP were localized to mitochondria in both yeast and plant cells. We also looked at the response of AtVDACs to biotic and abiotic stresses and found that four AtVDAC transcripts were rapidly up-regulated in response to a bacterial pathogen.
Collapse
Affiliation(s)
- Sang Min Lee
- Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cecchini NM, Monteoliva MI, Blanco F, Holuigue L, Alvarez ME. Features of basal and race-specific defences in photosynthetic Arabidopsis thaliana suspension cultured cells. MOLECULAR PLANT PATHOLOGY 2009; 10:305-10. [PMID: 19236577 PMCID: PMC6640368 DOI: 10.1111/j.1364-3703.2008.00529.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant suspension cell cultures display many features of the innate immune responses observed in planta and have been extensively applied to the study of basal and race-specific defences. However, no single model including photosynthetic cultured cells has been used for the exhaustive characterization of both basal and race-specific defences to date. In this article, we report the activation of basal and race-specific defences in green cultured cells from Arabidopsis thaliana. Inoculation of cultured cells with isogenic virulent or avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) was used to evaluate race-specific defences. The proliferation of avirulent Pst was found to be lower than that of virulent Pst in the inoculated cultures. Extracellular pH changes, sustained oxidative burst (5-13 h post-inoculation), enhancement of salicylic acid, and massive cell death were specifically stimulated by the avirulent bacterium. Neither avirulent nor virulent Pst induced markers of basal resistance, such as callose deposition or early oxidative burst (1-5 h post-inoculation). However, both basal defences were activated when cells were exposed to Pseudomonas syringae pv. phaseolicola or to the Pst mutant defective in the type III secretion system (TTSS), Pst-hrpL(-). Thus, in these cells, basal defences may be inhibited by Pst in a TTSS-dependent manner. Recapitulation of classical defence features demonstrates the usefulness of this system for the fine characterization of plant innate immune components.
Collapse
Affiliation(s)
- Nicolás Miguel Cecchini
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
33
|
Errakhi R, Dauphin A, Meimoun P, Lehner A, Reboutier D, Vatsa P, Briand J, Madiona K, Rona JP, Barakate M, Wendehenne D, Beaulieu C, Bouteau F. An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4259-70. [PMID: 19015217 DOI: 10.1093/jxb/ern267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The pathogenicity of various Streptomyces scabies isolates involved in potato scab disease was correlated with the production of thaxtomin A. Since calcium is known as an essential second messenger associated with pathogen-induced plant responses and cell death, it was investigated whether thaxtomin A could induce a Ca2+ influx related to cell death and to other putative plant responses using Arabidopsis thaliana suspension cells, which is a convenient model to study plant-microbe interactions. A. thaliana cells were treated with micromolar concentrations of thaxtomin A. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements with the apoaequorin Ca2+ reporter protein and by external pH measurement. Involvement of anion and calcium channels in signal transduction leading to programmed cell death was determined by using specific inhibitors. These data suggest that this toxin induces a rapid Ca2+ influx and cell death in A. thaliana cell suspensions. Moreover, these data provide strong evidence that the Ca2+ influx induced by thaxtomin A is necessary to achieve this cell death and is a prerequisite to early thaxtomin A-induced responses: anion current increase, alkalization of the external medium, and the expression of PAL1 coding for a key enzyme of the phenylpropanoid pathway.
Collapse
Affiliation(s)
- R Errakhi
- LEM (EA 3514), Université Paris Diderot-Paris7, 2, place Jussieu, F-75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Künstler A, Hafez Y, Király L. Transient suppression of a catalase and an alternative oxidase gene during virus-induced local lesion formation (hypersensitive response) is independent of the extent of leaf necrotization. ACTA ACUST UNITED AC 2007. [DOI: 10.1556/aphyt.42.2007.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Matos AR, Hourton-Cabassa C, Ciçek D, Rezé N, Arrabaça JD, Zachowski A, Moreau F. Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and FAD3+ cell suspensions altered in membrane lipid composition. PLANT & CELL PHYSIOLOGY 2007; 48:856-65. [PMID: 17507388 DOI: 10.1093/pcp/pcm061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To investigate how the fatty acid composition of membrane lipids influences cell growth and mitochondrial respiration, in particular the expression and capacity of alternative oxidase (AOX), under cold stress, we used the Arabidopsis thaliana fad2 knockout and FAD3+ -overexpressing cultured cells lines affected in extrachloroplastic fatty acid desaturation activities. At 22 degrees C, fad2 mitochondria exhibited a low polyunsaturated fatty acid content and low protein to lipid ratio, while mitochondria from FAD3+ were enriched in linolenic acid and in total membrane protein. As a consequence, both mutants showed a higher membrane microviscosity than the wild type. After exposure to 9 degrees C, FAD3+ mitochondria exhibited lower microviscosity and lower rigidification upon a temperature downshift than fad2. Furthermore, the extent of reduction of cell growth and respiratiory rates in the phosphorylating state was positively related to the cold sensitivity of each cell line, being more pronounced in fad2 that in the wild type, whereas the stability of those parameters reflected the cold resistance of FAD3+. In contrast, an increase in AOX capacity was observed in the three cell lines at 9 degrees C. These inductions were correlated to AOX protein amounts and seem to result from an accumulation of AOX1c transcripts in the three cell lines and of AOX1a transcripts in wild-type and fad2 cells. The fact that there is no direct relationship between the degree of cold tolerance of each cell line and their ability to enhance their AOX capacity suggests that the participation of AOX in the response of Arabidopsis cells to cold stress does not necessarily favor cold tolerance.
Collapse
Affiliation(s)
- Ana Rita Matos
- Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7180 Physiologie Cellulaire et Moléculaire des Plantes, Le Raphaël, 3 Rue Galilée, F-94200 Ivry sur Seine, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Amirsadeghi S, Robson CA, Vanlerberghe GC. The role of the mitochondrion in plant responses to biotic stress. PHYSIOLOGIA PLANTARUM 2007; 129:253-266. [PMID: 0 DOI: 10.1111/j.1399-3054.2006.00775.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
37
|
Hofius D, Tsitsigiannis DI, Jones JDG, Mundy J. Inducible cell death in plant immunity. Semin Cancer Biol 2006; 17:166-87. [PMID: 17218111 DOI: 10.1016/j.semcancer.2006.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/02/2006] [Indexed: 01/06/2023]
Abstract
Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways and their molecular components in plants are reviewed here.
Collapse
Affiliation(s)
- Daniel Hofius
- Department of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
38
|
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A. Early signaling events induced by elicitors of plant defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:711-24. [PMID: 16838784 DOI: 10.1094/mpmi-19-0711] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elicitor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models.
Collapse
Affiliation(s)
- Angela Garcia-Brugger
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante Microbe Environnement, INRA, Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pandey AK, Ger MJ, Huang HE, Yip MK, Zeng J, Feng TY. Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent hypersensitive cell death in response to Erwinia carotovora. PLANT MOLECULAR BIOLOGY 2005; 59:771-80. [PMID: 16270229 DOI: 10.1007/s11103-005-1002-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 07/15/2005] [Indexed: 05/05/2023]
Abstract
Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpin(Pss)-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H(2)O(2) and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN(-) mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.
Collapse
Affiliation(s)
- Ajay-Kumar Pandey
- Institute of Plant and Microbial Biology, Academia Sinica 115, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Meyer D, Lauber E, Roby D, Arlat M, Kroj T. Optimization of pathogenicity assays to study the Arabidopsis thaliana-Xanthomonas campestris pv. campestris pathosystem. MOLECULAR PLANT PATHOLOGY 2005; 6:327-33. [PMID: 20565661 DOI: 10.1111/j.1364-3703.2005.00287.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY The cruciferous weed Arabidopsis thaliana and the causal agent of black rot disease of Crucifers Xanthomonas campestris pv. campestris (Xcc) are both model organisms in plant pathology. Their interaction has been studied successfully in the past, but these investigations suffered from high variability. In the present study, we describe an improved Arabidopsis-Xcc pathosystem that is based on a wound inoculation procedure. We show that after wound inoculation, Xcc colonizes the vascular system of Arabidopsis leaves and causes typical black rot symptoms in a compatible interaction, while in an incompatible interaction bacterial multiplication is inhibited. The highly synchronous and reproducible symptom expression allowed the development of a disease scoring scheme that enabled us to analyse the effects of mutations in individual genes on plant resistance or on bacterial virulence in a simple and precise manner. This optimized Arabidopsis-Xcc pathosystem will be a robust tool for further genetic and post-genomic investigation of fundamental questions in plant pathology.
Collapse
Affiliation(s)
- Damien Meyer
- Laboratoire des Interactions Plantes-Microorganismes, UMR CNRS/INRA 2594, BP52627, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
41
|
Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G. Identification of New Intrinsic Proteins in Arabidopsis Plasma Membrane Proteome. Mol Cell Proteomics 2004; 3:675-91. [PMID: 15060130 DOI: 10.1074/mcp.m400001-mcp200] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.
Collapse
Affiliation(s)
- Anne Marmagne
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique-Unité Propre de Recherche, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Swidzinski JA, Leaver CJ, Sweetlove LJ. A proteomic analysis of plant programmed cell death. PHYTOCHEMISTRY 2004; 65:1829-38. [PMID: 15276441 DOI: 10.1016/j.phytochem.2004.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 03/30/2004] [Indexed: 05/21/2023]
Abstract
Programmed cell death (PCD) is an active cellular suicide that occurs in animals and plants throughout development and in response to both abiotic and biotic stresses. In contrast to animals, little is known about the molecular machinery that regulates plant PCD. We have previously identified transcriptomic changes associated with heat- and senescence-induced PCD in an Arabidopsis cell suspension culture [Plant J. 30 (2002) 431]. However, since plant PCD is also likely to involve elements that are regulated post-transcriptionally, we have undertaken a proteomic analysis in the Arabidopsis system. We identified 11 proteins that increased in abundance relative to total protein in both treatments despite extensive degradation of other proteins. We argue that some of these proteins are maintained during PCD and may therefore have specific functions in the PCD pathway. The increased abundance of several antioxidant proteins as well as a measured increase in free Fe2+ content of the cells indicates an oxidative stress in this system. Several mitochondrial proteins were identified, confirming the importance of this organelle during PCD. We also identified an extracellular glycoprotein that may function in the transmission of a 'death signal' from cell to cell. Putative roles for the identified proteins are presented.
Collapse
Affiliation(s)
- Jodi A Swidzinski
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | |
Collapse
|
43
|
Finnegan PM, Soole KL, Umbach AL. Alternative Mitochondrial Electron Transport Proteins in Higher Plants. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Singh DP, Moore CA, Gilliland A, Carr JP. Activation of multiple antiviral defence mechanisms by salicylic acid. MOLECULAR PLANT PATHOLOGY 2004; 5:57-63. [PMID: 20565582 DOI: 10.1111/j.1364-3703.2004.00203.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SUMMARY The plant signal molecule salicylic acid (SA) can induce resistance to a wide range of pathogen types. In the case of viruses, SA can stimulate the inhibition of all three main stages in virus infection: replication, cell-to-cell movement and long-distance movement. Induction of resistance by SA appears to depend, in part, on downstream signalling via the mitochondrion. However, evidence has recently emerged that SA may stimulate a separate downstream pathway, leading to the induction of an additional mechanism of resistance based on RNA interference. In this review our aims are to document these recent advances and to suggest possible future avenues of research on SA-induced resistance to viruses.
Collapse
Affiliation(s)
- Davinder P Singh
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
45
|
Godbole A, Varghese J, Sarin A, Mathew MK. VDAC is a conserved element of death pathways in plant and animal systems. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:87-96. [PMID: 12972297 DOI: 10.1016/s0167-4889(03)00102-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Programmed cell death (PCD) is very much a part of plant life, although the underlying mechanisms are not so well understood as in animals. In animal cells, the voltage-dependent anion channel (VDAC), a major mitochondrial outer membrane transporter, plays an important role in apoptosis by participating in the release of intermembrane space proteins. To characterize plant PCD pathways by investigating the function of putative components in a mammalian apoptotic context, we have overexpressed a rice VDAC (osVDAC4) in the Jurkat T-cell line. Overexpression of osVDAC4 induces apoptosis, which can be blocked by Bcl-2 and the VDAC inhibitor DIDS. Modifying endogenous VDAC function by DIDS and hexokinase II (HxKII) in Jurkat cells inhibits mitochondria-mediated apoptotic pathways. Finally, we show that DIDS also abrogates heat-induced PCD in cucumber cotyledons. Our data suggest that VDAC is a conserved mitochondrial element of the death machinery in both plant and animal cells.
Collapse
Affiliation(s)
- A Godbole
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore 560 065, India
| | | | | | | |
Collapse
|
46
|
Gilliland A, Singh DP, Hayward JM, Moore CA, Murphy AM, York CJ, Slator J, Carr JP. Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus. PLANT PHYSIOLOGY 2003; 132:1518-28. [PMID: 12857832 PMCID: PMC167090 DOI: 10.1104/pp.102.017640] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 01/21/2003] [Accepted: 03/02/2003] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA), a natural defensive signal chemical, and antimycin A, a cytochrome pathway inhibitor, induce resistance to Tobacco mosaic virus (TMV). Pharmacological evidence suggested signaling during resistance induction by both chemicals involved alternative oxidase (AOX), sole component of the alternative respiratory pathway (AP). Roles of the AP include regulation of intramitochondrial reactive oxygen species and maintenance of metabolic homeostasis. Transgenic tobacco (Nicotiana tabacum) with modified AP capacities (2- to 3-fold increased or decreased) showed no alteration in phenotype with respect to basal susceptibility to TMV or the ability to display SA-induced resistance to systemic viral disease. However, in directly inoculated tissue, antimycin A-induced TMV resistance was inhibited in plants with increased AP capacities, whereas SA and antimycin A-induced resistance was transiently enhanced in plant lines with decreased AP capacities. We conclude that SA-induced TMV resistance results from activation of multiple mechanisms, a subset of which are inducible by antimycin A and influenced by AOX. Other antiviral factors, potentially including the SA-inducible RNA-dependent RNA polymerase, are regulated by AOX-independent mechanisms.
Collapse
Affiliation(s)
- Androulla Gilliland
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. THE PLANT CELL 2003; 15:365-79. [PMID: 12566578 PMCID: PMC141207 DOI: 10.1105/tpc.006999] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 11/14/2002] [Indexed: 05/17/2023]
Abstract
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.
Collapse
Affiliation(s)
- Claudine Balagué
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 215, BP 27, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van Boxtel J, Jacobs M, Homblé F. Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:43-51. [PMID: 12527425 DOI: 10.1016/s0167-4781(02)00590-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is a mitochondrial outer membrane ion channel. Different isoforms exist in plants but information about their specific role remains to be established. Our purpose is to find out the structural features common to three rice VDAC isoforms and to investigate their (post)transcriptional regulation in response to an osmotic stress. Two new cDNAs encoding mitochondrial VDAC from rice (Oryza sativa) were isolated, sequenced and characterized: a phylogenetic reconstruction permitted identification of orthologues in Poaceae and computer-based analyses predicted 18 transmembrane beta-strands, one amphipathic alpha-helix and two different phosphorylation motifs. The expression of three rice vdac genes was investigated. Northern blot analyses indicated that they were expressed in all plant tissues. There was a differential expression of osvdac1 and osvdac3, whereas osvdac2 was homogeneously expressed in all tissues. No change in vdac expression was observed under an osmotic stress. However, a fast-enhanced expression of vdac was observed in roots during the recovery period after stress release. This enhanced expression is not correlated to the amount of VDAC protein detected in roots suggesting a posttranscriptional regulation.
Collapse
Affiliation(s)
- Fawaz Al Bitar
- Laboratoire de Physiologie Végétale, Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
McDonald AE, Sieger SM, Vanlerberghe GC. Methods and approaches to study plant mitochondrial alternative oxidase. PHYSIOLOGIA PLANTARUM 2002; 116:135-143. [PMID: 12354188 DOI: 10.1034/j.1399-3054.2002.1160201.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The alternative oxidase is a non-proton motive 'alternative' to electron transport through the cytochrome pathway. Despite its wasteful nature in terms of energy conservation, the pathway is likely present throughout the plant kingdom and appears to be expressed in most plant tissues. A small alternative oxidase gene family exists, the members of which are differentially expressed in response to environmental, developmental and other cell signals. The alternative oxidase enzyme possesses tight biochemical regulatory properties that determine its ability to compete with the cytochrome pathway for electrons. Studies show that alternative oxidase can be a prominent component of total respiration in important crop species. All these characteristics suggest this pathway plays an important role in metabolism and/or other aspects of cell physiology. This brief review is an introduction to experimental methods and approaches applicable to different areas of alternative oxidase research. We hope it provides a framework for further investigation of this fascinating component of primary plant metabolism.
Collapse
Affiliation(s)
- Allison E. McDonald
- Division of Life Sciences and Department of Botany, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | | | | |
Collapse
|
50
|
Robson CA, Vanlerberghe GC. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. PLANT PHYSIOLOGY 2002; 129:1908-20. [PMID: 12177505 PMCID: PMC166780 DOI: 10.1104/pp.004853] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 04/09/2002] [Accepted: 04/26/2002] [Indexed: 05/14/2023]
Abstract
The plant mitochondrial electron transport chain is branched such that electrons at ubiquinol can be diverted to oxygen via the alternative oxidase (AOX). This pathway does not contribute to ATP synthesis but can dampen the mitochondrial generation of reactive oxygen species. Here, we establish that transgenic tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells lacking AOX (AS8 cells) show increased susceptibility to three different death-inducing compounds (H(2)O(2), salicylic acid [SA], and the protein phosphatase inhibitor cantharidin) in comparison with wild-type cells. The timing and extent of AS8 cell death are very similar among the three treatments and, in each case, are accompanied by the accumulation of oligonucleosomal fragments of DNA, indicative of programmed cell death. Death induced by H(2)O(2) or SA occurs by a mitochondria-dependent pathway characterized by cytochrome c release from the mitochondrion. Conversely, death induced by cantharidin occurs by a pathway without any obvious mitochondrial involvement. The ability of AOX to attenuate these death pathways may relate to its ability to maintain mitochondrial function after insult with a death-inducing compound or may relate to its ability to prevent chronic oxidative stress within the mitochondrion. In support of the latter, long-term treatment of AS8 cells with an antioxidant compound increased the resistance of AS8 cells to SA- or cantharidin-induced death. The results indicate that plants maintain both mitochondria-dependent and -independent pathways of programmed cell death and that AOX may act as an important mitochondrial "survival protein" against such death.
Collapse
Affiliation(s)
- Christine A Robson
- Division of Life Sciences and Department of Botany, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
| | | |
Collapse
|