1
|
Eden G, Archinti M, Arnaudova R, Andreotti G, Motta A, Furlan F, Citro V, Cubellis MV, Degryse B. D2A sequence of the urokinase receptor induces cell growth through αvβ3 integrin and EGFR. Cell Mol Life Sci 2018; 75:1889-1907. [PMID: 29184982 PMCID: PMC11105377 DOI: 10.1007/s00018-017-2718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.
Collapse
Affiliation(s)
- Gabriele Eden
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Medical Clinic V, Teaching Hospital Braunschweig, Salzdahlumer Straße 90, 38126, Brunswick, Germany
| | - Marco Archinti
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Ralitsa Arnaudova
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Andrea Motta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Federico Furlan
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- BoNetwork Programme, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Citro
- Dipartimento di Biologia, Università Federico II, Naples, Italy
| | | | - Bernard Degryse
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
2
|
Magnussen S, Hadler-Olsen E, Latysheva N, Pirila E, Steigen SE, Hanes R, Salo T, Winberg JO, Uhlin-Hansen L, Svineng G. Tumour microenvironments induce expression of urokinase plasminogen activator receptor (uPAR) and concomitant activation of gelatinolytic enzymes. PLoS One 2014; 9:e105929. [PMID: 25157856 PMCID: PMC4144900 DOI: 10.1371/journal.pone.0105929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background The urokinase plasminogen activator receptor (uPAR) is associated with poor prognosis in oral squamous cell carcinoma (OSCC), and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells’ expression level of uPAR affected the activity of gelatinolytic enzymes. Methods The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM) proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography. Results We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes. Conclusions Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational modification of uPAR.
Collapse
Affiliation(s)
- Synnøve Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Emma Pirila
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sonja E. Steigen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Diagnostic Clinic - Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Robert Hanes
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu University Hospital, Oulu, Finland
- Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Diagnostic Clinic - Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Baldini E, Sorrenti S, Tuccilli C, Prinzi N, Coccaro C, Catania A, Filippini A, Bononi M, De Antoni E, D'Armiento M, Ulisse S. Emerging molecular markers for the prognosis of differentiated thyroid cancer patients. Int J Surg 2014; 12 Suppl 1:S52-6. [PMID: 24862669 DOI: 10.1016/j.ijsu.2014.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Epithelial thyroid cancers are represented by the differentiated papillary and follicular thyroid carcinomas which, following dedifferentiation, are thought to give rise to the highly aggressive and incurable anaplastic thyroid carcinomas. Although derived from the same cell type, the different thyroid tumors show specific histological features, biological behavior and degree of differentiation as a consequence of different genetic alterations. Over the last few years, our knowledge regarding the molecular alterations underlying thyroid cell malignant transformation and cancer progression has considerably increased; however, the prognosis of differentiated thyroid cancer patients still relies on high-risk clinic-pathological variables. In particular, the actual staging systems provides only a rough prediction for cancer mortality and risk of recurrences, including in each risk group patients with highly different tumor-specific progression, disease-free interval and survival time. In order to improve DTC patient's risk stratification, both the European and the American Thyroid Associations proposed practical guidelines to integrate the actual staging systems with additional clinical features such as the tumor histological variant, the results of post-ablative whole body scan and the serum thyroglobulin levels. Despite that, patients within the same risk group still show a very heterogeneous behavior in terms of disease-free interval. As a consequence, the identification of new prognostic molecular biomarkers able to testify tumor aggressiveness is highly required. Here we'll review recently characterized new molecular markers potentially able to ameliorate the prognosis in DTC patients.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | | | - Chiara Tuccilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Natalie Prinzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carmela Coccaro
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, "Sapienza" University of Rome, Italy
| | - Angelo Filippini
- Department of Surgical Sciences, "Sapienza" University of Rome, Italy
| | - Marco Bononi
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Italy
| | - Enrico De Antoni
- Department of Surgical Sciences, "Sapienza" University of Rome, Italy
| | - Massimino D'Armiento
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
4
|
Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev 2014; 34:918-56. [PMID: 24549574 DOI: 10.1002/med.21308] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, there are several studies supporting the role of urokinase-type plasminogen activator (uPA) system in cancer. The association of uPA to its receptor triggers the conversion of plasminogen into plasmin. This process is regulated by the uPA inhibitors (PAI-1 and PAI-2). Plasmin promotes degradation of basement membrane and extracellular matrix (ECM) components as well as activation of ECM latent matrix metalloproteases. Degradation and remodeling of the surrounding tissues is crucial in the early steps of tumor progression by facilitating expansion of the tumor mass, release of tumor growth factors, activation of cytokines as well as induction of tumor cell proliferation, migration, and invasion. Hence, many tumors showed a correlation between uPA system component levels and tumor aggressiveness and survival. Therefore, this review summarizes the structure of the uPA system, its contribution to cancer progression, and the clinical relevance of uPA family members in cancer diagnosis. In addition, the review evaluates the significance of uPA system in the development of cancer-targeted therapies.
Collapse
Affiliation(s)
- Ahmed H Mekkawy
- Department of Surgery, Cancer Research Laboratories, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | | | | |
Collapse
|
5
|
Nieves EC, Manchanda N. A cleavage-resistant urokinase plasminogen activator receptor exhibits dysregulated cell-surface clearance. J Biol Chem 2010; 285:12595-603. [PMID: 20177061 PMCID: PMC2857136 DOI: 10.1074/jbc.m109.008581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 02/02/2010] [Indexed: 11/06/2022] Open
Abstract
Urokinase plasminogen activator receptor (u-PAR) binds urokinase plasminogen activator (u-PA) and participates in plasminogen activation in addition to modulating several cellular processes such as adhesion, proliferation, and migration. u-PAR is susceptible to proteolysis by its cognate ligand and several other proteases. To elucidate the biological significance of receptor cleavage by u-PA, we engineered and expressed a two-chain urokinase plasminogen activator (tcu-PA) cleavage-resistant u-PAR (cr-u-PAR). This mutated receptor was similar to wild-type u-PAR in binding u-PA and initiating plasminogen activation. However, cr-u-PAR exhibited accelerated internalization and resurfacing due to direct association with the endocytic receptor alpha(2)-macroglobulin receptor/low density lipoprotein receptor-related protein in the absence of the enzyme x inhibitor complex of tcu-PA and plasminogen activator inhibitor-1 (tcu-PA.PAI-1). cr-u-PAR-expressing cells had enhanced migration compared with wild-type u-PAR-expressing cells, and cr-u-PAR was less sensitive to chymotrypsin cleavage as compared with wt u-PAR. Our studies suggest that these mutations in the linker region result in a rearrangement within the cr-u-PAR structure that makes it resemble its ligand-bound form. This constitutively active variant may mimic highly glycosylated cleavage-resistant u-PAR expressed in certain highly malignant cancer-cells.
Collapse
Affiliation(s)
- Evelyn C Nieves
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
6
|
Regulation of histidine-rich glycoprotein (HRG) function via plasmin-mediated proteolytic cleavage. Biochem J 2009; 424:27-37. [DOI: 10.1042/bj20090794] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The plasminogen/plasmin system is involved in a variety of normal physiological and pathological processes, including tissue remodelling, angiogenesis and tumour metastasis. Plasminogen activators and receptors for plasminogen/plasminogen activators are essential for the processing of plasminogen to form the active serine protease plasmin. Plasmin can in turn positively or negatively regulate further plasminogen activation via plasminmediated cleavage of receptors and activators. HRG (histidine-rich glycoprotein), a relatively abundant (approx. 100–150 μg/ml) plasma glycoprotein, has a multi-domain structure that can interact with many ligands, including Zn2+, heparin, HS (heparan sulfate) and plasminogen. HRG has been shown to function as an adaptor molecule to tether plasminogen to GAG (glycosaminoglycan)-bearing surfaces and to regulate plasminogen activation via various mechanisms. As HRG itself is sensitive to plasmin cleavage, the present study examines in detail the cleavage of human HRG by plasmin and the effect of this cleavage on various functions of HRG. HRG fragments, generated by plasmin cleavage, are held together by disulfide linkages and are not released from the molecule under non-reducing conditions. Plasmin-mediated cleavage partially inhibited HRG binding to cell surface HS, but enhanced HRG binding to necrotic cells and to plasminogen. However, both intact and plasmin-cleaved HRG enhanced the binding of plasminogen to heparin-coated surfaces to a similar extent. Furthermore, the presence of heparin, Zn2+ or acidic pH was found to protect HRG from plasmin cleavage. Thus proteolytic cleavage of HRG by plasmin may provide a feedback mechanism to regulate the effects of HRG on the plasminogen/plasmin system and other functions of HRG.
Collapse
|
7
|
Buergy D, Weber T, Maurer GD, Mudduluru G, Medved F, Leupold JH, Brauckhoff M, Post S, Dralle H, Allgayer H. Urokinase receptor, MMP-1 and MMP-9 are markers to differentiate prognosis, adenoma and carcinoma in thyroid malignancies. Int J Cancer 2009; 125:894-901. [PMID: 19480010 DOI: 10.1002/ijc.24462] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The identification of high-risk patients with thyroid cancer and the preoperative differentiation between follicular adenoma and carcinoma remain clinically challenging. Our study was conducted to analyze whether the quantification of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator receptor (u-PAR) and transcription factor binding to the u-PAR promoter improve prognostic predictability and differential diagnosis of thyroid tumors. Tumor/normal tissue was collected from 69 prospectively followed patients with thyroid carcinomas (papillary, medullary, follicular and anaplastic, PTC, MTC, FTC and ATC) or follicular adenomas. U-PAR, MMP-1, MMP-7 and MMP-9 amounts were determined by ELISA, and transcription factor binding was determined by electrophoretic mobility shift assay. Binding of transcription factors to the u-PAR promoter was observed, but not associated with u-PAR expression. Carcinomas except MTC expressed significantly more u-PAR/MMPs than adenomas/normal tissues, this being associated with advanced pT- or M-stages. MMP-1 and MMP-9 were significantly higher in follicular carcinomas than in adenomas. In carcinomas, high u-PAR-gene expression correlated significantly with high MMP-9, the latter being associated with MMP-7 in normal tissues. Poor survival in differentiated tumors was associated in trend (p = 0.07); poor survival of all patients (p = 0.043) and especially of patients with carcinomas of follicular origin (including ATC), but not medullary carcinomas, were significantly associated with high u-PAR-protein (p = 0.015). Quantification of u-PAR is of prognostic relevance in thyroid carcinomas of non-c-cell origin, and u-PAR in part may be regulated nontranscriptionally in thyroid cancers. This is the first study to suggest MMP-1/-9 as significant differentiation markers between follicular adenoma and follicular carcinoma.
Collapse
Affiliation(s)
- Daniel Buergy
- Department of Experimental Surgery and Molecular Oncology of Solid Tumors, Mannheim Faculty, University of Heidelberg, and DKFZ Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bernstein AM, Twining SS, Warejcka DJ, Tall E, Masur SK. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell 2007; 18:2716-27. [PMID: 17507651 PMCID: PMC1924808 DOI: 10.1091/mbc.e06-10-0912] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 01/20/2023] Open
Abstract
Fibroblasts migrate into and repopulate connective tissue wounds. At the wound edge, fibroblasts differentiate into myofibroblasts, and they promote wound closure. Regulated fibroblast-to-myofibroblast differentiation is critical for regenerative healing. Previous studies have focused on the role in fibroblasts of urokinase plasmingen activator/urokinase plasmingen activator receptor (uPA/uPAR), an extracellular protease system that promotes matrix remodeling, growth factor activation, and cell migration. Whereas fibroblasts have substantial uPA activity and uPAR expression, we discovered that cultured myofibroblasts eventually lost cell surface uPA/uPAR. This led us to investigate the relevance of uPA/uPAR activity to myofibroblast differentiation. We found that fibroblasts expressed increased amounts of full-length cell surface uPAR (D1D2D3) compared with myofibroblasts, which had reduced expression of D1D2D3 but increased expression of the truncated form of uPAR (D2D3) on their cell surface. Retaining full-length uPAR was found to be essential for regulating myofibroblast differentiation, because 1) protease inhibitors that prevented uPAR cleavage also prevented myofibroblast differentiation, and 2) overexpression of cDNA for a noncleavable form of uPAR inhibited myofibroblast differentiation. These data support a novel hypothesis that maintaining full-length uPAR on the cell surface regulates the fibroblast to myofibroblast transition and that down-regulation of uPAR is necessary for myofibroblast differentiation.
Collapse
Affiliation(s)
- Audrey M Bernstein
- Departments of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Barinka C, Parry G, Callahan J, Shaw DE, Kuo A, Bdeir K, Cines DB, Mazar A, Lubkowski J. Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol 2006; 363:482-95. [PMID: 16979660 PMCID: PMC3443620 DOI: 10.1016/j.jmb.2006.08.063] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/17/2006] [Accepted: 08/22/2006] [Indexed: 01/07/2023]
Abstract
Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 A. We report the 1.9 A crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.
Collapse
Affiliation(s)
- Cyril Barinka
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Graham Parry
- Attenuon, LLC, 11535 Sorrento Valley Road, Suite 401, San Diego, CA 92121, USA
| | - Jennifer Callahan
- Attenuon, LLC, 11535 Sorrento Valley Road, Suite 401, San Diego, CA 92121, USA
| | - David E. Shaw
- D.E. Shaw Research and Development, 39th Floor, Tower 45, 120 West Forty-Fifth Street New York, NY 10036, USA
| | - Alice Kuo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 513A Stellar-Chance, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 513A Stellar-Chance, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Douglas B. Cines
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 513A Stellar-Chance, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Andrew Mazar
- Attenuon, LLC, 11535 Sorrento Valley Road, Suite 401, San Diego, CA 92121, USA
| | - Jacek Lubkowski
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Corresponding author: (e-mail) ; (phone) 301 846-5494; (fax) 301 846-7517; (mobile) 301 693-9622
| |
Collapse
|
11
|
Ulisse S, Baldini E, Toller M, Marchioni E, Giacomelli L, De Antoni E, Ferretti E, Marzullo A, Graziano FM, Trimboli P, Biordi L, Curcio F, Gulino A, Ambesi-Impiombato FS, D'Armiento M. Differential expression of the components of the plasminogen activating system in human thyroid tumour derived cell lines and papillary carcinomas. Eur J Cancer 2006; 42:2631-8. [PMID: 16928445 DOI: 10.1016/j.ejca.2006.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
We characterised the expression of the plasminogen activators (uPA and tPA), the uPA receptor (uPAR) and the PAs inhibitors (PAI-1 and PAI-2) in human thyroid cell lines derived from normal thyroid, follicular adenoma, follicular, papillary and anaplastic carcinomas. Urokinase PA activity was detected in the supernatant of normal thyrocytes and augmented in those of all tumour cells. Quantitative RT-PCR analysis showed that uPA, uPAR and PAI-1 mRNAs increased in all carcinoma cells. Similar results were found in 13 papillary thyroid carcinoma (PTC) tissues which were mirrored in Western blot experiments. A correlation was found between tumour size and uPA mRNA increase, and higher levels of uPA and uPAR mRNAs were found in metastatic PTC. In conclusion, thyroid carcinoma cell lines and PTC overexpress uPA, uPAR and PAI-1 and the correlation of uPA and its cognate receptor with tumour size and metastasis may suggest their potential prognostic relevance in thyroid cancer.
Collapse
Affiliation(s)
- S Ulisse
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio, 67100-L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Beaufort N, Leduc D, Rousselle JC, Namane A, Chignard M, Pidard D. Plasmin cleaves the juxtamembrane domain and releases truncated species of the urokinase receptor (CD87) from human bronchial epithelial cells. FEBS Lett 2004; 574:89-94. [PMID: 15358545 DOI: 10.1016/j.febslet.2004.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/02/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
The three-domain (D1D2D3) urokinase receptor (CD87) is highly susceptible to cleavage within the D1-D2 linker sequence, but also within the juxtamembrane region by yet poorly characterized proteinases, allowing the release of D1 and D2D3 species in various (patho)physiological body fluids. Using immunoblot analysis and ELISA applied to a recombinant soluble CD87 and to CD87-expressing epithelial cells, we establish that exogenous or in situ generated plasmin proteolyzes CD87 in the D1-D2 linker and D3 carboxyterminal sequences, producing a major soluble D2D3 species. Mass spectrometry analysis of the fragmentation of CD87-related synthetic peptides, and aminoterminal sequencing of D2D3 reveal Arg83, Arg89, and Arg281 as residues targeted by plasmin within human CD87.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Unité de Défense Innée et Inflammation/Inserm E336, Département de Médecine Moléculaire, Institut Pasteur, 25-28 rue du Docteur Roux, F-75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
13
|
Gellert GC, Goldfarb RH, Kitson RP. Physical association of uPAR with the alphaV integrin on the surface of human NK cells. Biochem Biophys Res Commun 2004; 315:1025-32. [PMID: 14985115 DOI: 10.1016/j.bbrc.2004.01.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Indexed: 11/29/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) serves as a receptor for urokinase plasminogen activator (uPA) and plays a role in invasion and migration of certain immune cells, including NK cells. Although uPAR is anchored to the plasma membrane via a glycosylphosphatidylinositol lipid moiety, we have previously shown that uPAR crosslinking results in MAP kinase signaling and increased integrin expression on the surface of the human NK cell line, YT. We report, herein, that the binding of uPA to uPAR also activates the MAP kinase signaling cascade. Furthermore, we show the physical association between uPAR and integrins on YT cells using cocapping and fluorescence microscopy. These results suggest that signaling initiated by either uPAR binding to uPA or by uPAR clustering may depend on the physical association of uPAR with integrins, a process that may be a prerequisite for NK cell accumulation within established tumor metastases during adoptive therapy.
Collapse
Affiliation(s)
- Ginelle C Gellert
- Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
14
|
Beaufort N, Leduc D, Rousselle JC, Magdolen V, Luther T, Namane A, Chignard M, Pidard D. Proteolytic Regulation of the Urokinase Receptor/CD87 on Monocytic Cells by Neutrophil Elastase and Cathepsin G. THE JOURNAL OF IMMUNOLOGY 2003; 172:540-9. [PMID: 14688365 DOI: 10.4049/jimmunol.172.1.540] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The urokinase receptor (CD87) participates to the pericellular proteolytic potential of migrating cells and to the recruitment of leukocytes during inflammation. It consists of three structurally homologous domains, with the C-terminal domain D3 attached to cell membranes through a GPI anchor. CD87 is susceptible to an endoproteolytic processing removing the N-terminal domain D1 and generating truncated D2D3 membrane species, thus modulating CD87-associated functions. Full-length or truncated CD87 can be also released from cells via juxtamembrane cleavage by phospholipases and/or by yet unidentified proteinases. Using a recombinant CD87 and the CD87-positive monocytic U937 cell line and isolated blood monocytes, we show by protein immunoblotting and flow immunocytometry that the human neutrophil serine-proteinases elastase and cathepsin G cleave CD87 within the D1-D2 linker sequence, while in addition cathepsin G is highly efficient in cleaving the C terminus of D3. The combination of cathepsin G and elastase provided by degranulated neutrophils results in enzymatic cooperation leading to the release from monocytic cells of a truncated D2D3 species resembling that previously described in pathological body fluids. Using mass spectrometry analysis, the proteolytic fragmentation of synthetic peptides mapping the D1-D2 linker and D3 C-terminal domains identifies potential cleavage sites for each enzyme and suggests the existence of a mechanism regulating the CD87(D1-D2)-associated chemotactic activity. Finally, isolated or combined elastase and cathepsin G drastically reduce the capacity of cells to bind urokinase. Secretable leukocyte serine-proteinases are thus endowed with high potential for the regulation of CD87 expression and function on inflammatory cells.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Unité de Défense Innée et Inflammation, Institut National de la Santé et de la Recherche Médicale, Equipe 336, Institut Pasteur, 25 rue du Dr. Roux, F-75724 Paris cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Montuori N, Carriero MV, Salzano S, Rossi G, Ragno P. The Cleavage of the Urokinase Receptor Regulates Its Multiple Functions. J Biol Chem 2002; 277:46932-9. [PMID: 12297505 DOI: 10.1074/jbc.m207494200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The urokinase-type plasminogen activator (uPA) is able to cleave its cell surface receptor (uPAR) anchored to the cell membrane through a glycophosphatidylinositol tail. The cleavage leads to the formation of cell surface truncated forms, devoid of the N-terminal domain 1 (D1) and unmasks or disrupts, depending on the cleavage site, a sequence in the D1-D2 linker region (residues 88-92), which in the soluble form is a potent chemoattractant for monocyte-like cells. To investigate the possible role(s) of the cleaved forms of cell surface glycophosphatidylinositol-anchored uPAR, uPAR-negative human embrional kidney 293 cells were transfected with the cDNA of intact uPAR (uPAR-293) or with cDNAs corresponding to the truncated forms of uPAR exposing (D2D3-293) or lacking (D2D3wc-293) the peptide 88-92 (P88-92). Cell adhesion assays and co-immunoprecipitation experiments indicated that the removal of D1, independently of the presence of P88-92, abolished the lateral interaction of uPAR with integrins and its capability to regulate integrin adhesive functions. The expression of intact uPAR induced also a moderate increase in 293 cell proliferation, which was accompanied by the activation of ERK. Also this effect was abolished by D1 removal, independently of the presence of P88-92. The expression of intact and truncated uPARs regulated cell directional migration toward uPA, the specific uPAR ligand, and toward fMLP, a bacterial chemotactic peptide. In fact, the uPA-dependent cell migration required the expression of intact uPAR, including D1, whereas the fMLP-dependent cell migration required the expression of a P88-92 containing uPAR and was independent of the presence of D1. Together these observations indicate that uPA-mediated uPAR cleavage and D1 removal, occurring on the cell surface of several cell types, can play a fundamental role in the regulation of multiple uPAR functions.
Collapse
MESH Headings
- Blotting, Western
- Cell Adhesion
- Cell Division
- Cell Line
- Cell Movement
- DNA, Complementary/metabolism
- Humans
- Ligands
- Microscopy, Fluorescence
- Mutation
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Formyl Peptide
- Receptors, Immunologic/metabolism
- Receptors, Peptide/metabolism
- Receptors, Urokinase Plasminogen Activator
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Nunzia Montuori
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, via Pansini 5, I-80131, Naples, Italy
| | | | | | | | | |
Collapse
|
16
|
Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 2002; 1:445-57. [PMID: 12124174 DOI: 10.1016/s1535-6108(02)00072-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urokinase plasminogen activator receptor (uPAR) activates alpha5beta1 integrin and ERK signaling, inducing in vivo proliferation of HEp3 human carcinoma. Here we demonstrate that EGFR mediates the uPAR/integrin/fibronectin (FN) induced growth pathway. Its activation is ligand-independent and does not require high EGFR, but does require high uPAR expression. Only when uPAR level is constitutively elevated does EGFR become alpha5beta1-associated and activated. Domain 1 of uPAR is crucial for EGFR activation, and FAK links integrin and EGFR signaling. Inhibition of EGFR kinase blocks uPAR induced signal to ERK, implicating EGFR as an important effector of the pathway. Disruption of uPAR or EGFR signaling reduces HEp3 proliferation in vivo. These findings unveil a mechanism whereby uPAR subverts ligand-regulated EGFR signaling, providing cancer cells with proliferative advantage.
Collapse
Affiliation(s)
- David Liu
- Department of Medicine, Division of Medical Oncology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
17
|
Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 2001; 12:863-79. [PMID: 11294892 PMCID: PMC32272 DOI: 10.1091/mbc.12.4.863] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We discovered that a shift between the state of tumorigenicity and dormancy in human carcinoma (HEp3) is attained through regulation of the balance between two classical mitogen-activated protein kinase (MAPK)-signaling pathways, the mitogenic extracellular regulated kinase (ERK) and the apoptotic/growth suppressive stress-activated protein kinase 2 (p38(MAPK)), and that urokinase plasminogen activator receptor (uPAR) is an important regulator of these events. This is a novel function for uPAR whereby, when expressed at high level, it enters into frequent, activating interactions with the alpha5beta1-integrin, which facilitates the formation of insoluble fibronectin (FN) fibrils. Activation of alpha5beta1-integrin by uPAR generates persistently high level of active ERK necessary for tumor growth in vivo. Our results show that ERK activation is generated through a convergence of two pathways: a positive signal through uPAR-activated alpha5beta1, which activates ERK, and a signal generated by the presence of FN fibrils that suppresses p38 activity. When fibrils are removed or their assembly is blocked, p38 activity increases. Low uPAR derivatives of HEp3 cells, which are growth arrested (dormant) in vivo, have a high p38/ERK activity ratio, but in spite of a similar level of alpha5beta1-integrin, they do not assemble FN fibrils. However, when p38 activity is inhibited by pharmacological (SB203580) or genetic (dominant negative-p38) approaches, their ERK becomes activated, uPAR is overexpressed, alpha5beta1-integrins are activated, and dormancy is interrupted. Restoration of these properties in dormant cells can be mimicked by a direct re-expression of uPAR through transfection with a uPAR-coding plasmid. We conclude that overexpression of uPAR and its interaction with the integrin are responsible for generating two feedback loops; one increases the ERK activity that feeds back by increasing the expression of uPAR. The second loop, through the presence of FN fibrils, suppresses p38 activity, further increasing ERK activity. Together these results indicate that uPAR and its interaction with the integrin should be considered important targets for induction of tumor dormancy.
Collapse
Affiliation(s)
- J A Aguirre-Ghiso
- Rochelle Belfer Chemotherapy Foundation Laboratory, Division of Medical Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
18
|
Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 2000; 12:613-20. [PMID: 10978898 DOI: 10.1016/s0955-0674(00)00140-x] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) binds the urokinase-type plasminogen activator (uPA) and facilitates a proteolytic cascade focused at the cell surface. More recently, uPAR was recognized as a multifunctional protein that, through its interactions with integrins, initiates signaling events that alter cell adhesion, migration and proliferation. Results obtained recently have led to new insights into the structural aspects of uPAR interaction with integrins, provided a more detailed description of the signaling pathway they induce, and determined that uPAR signaling plays a role in cell migration and tumorigenicity.
Collapse
Affiliation(s)
- L Ossowski
- Rochelle Belfer Chemotherapy Foundation, Division of Medical Oncology, Department of Medicine, Box 1178, Mount Sinai School of Medicine, New York, New York 11029, USA.
| | | |
Collapse
|
19
|
Montuori N, Salzano S, Rossi G, Ragno P. Urokinase-type plasminogen activator up-regulates the expression of its cellular receptor. FEBS Lett 2000; 476:166-70. [PMID: 10913606 DOI: 10.1016/s0014-5793(00)01713-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expression of the receptor for the urokinase-type plasminogen activator (uPAR) can be regulated by several hormones, cytokines, tumor promoters, etc. Recently, it has been reported that uPAR is capable of transducing signals, even though it is lacking a transmembrane domain and a cytoplasmatic tail. We now report that uPAR cell surface expression can be positively regulated by its ligand, uPA, in thyroid cells. The effect of uPA is independent of its proteolytic activity, since inactivated uPA or its aminoterminal fragment have the same effects of the active enzyme. The increase of uPAR on the cell surface correlates with an increase of specific uPAR mRNA. Finally, uPA up-regulates uPAR expression also in other cell lines of different type and origin, thus suggesting that the regulatory role of uPA on uPAR expression is not restricted to thyroid cells, but it occurs in different tissues, both normal and tumoral.
Collapse
Affiliation(s)
- N Montuori
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli, Naples, Italy
| | | | | | | |
Collapse
|