1
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
2
|
Han JY, Kim SK, Lim DW, Kwon O, Choi YR, Kang CH, Lee YJ, Lee YM. Anti-Inflammatory Effect of Ethanol Extract from Hibiscus cannabinus L. Flower in Diesel Particulate Matter-Stimulated HaCaT Cells. Nutrients 2024; 16:3805. [PMID: 39599592 PMCID: PMC11597620 DOI: 10.3390/nu16223805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Diesel Particulate Matter (DPM) is a very small particulate matter originating from cities, factories, and the use of fossil fuels in diesel vehicles. When DPM permeates the skin, it causes inflammation, leading to severe atopic dermatitis. Hibiscus cannabinus L. (Kenaf) seeds and leaves possess various beneficial properties, including anti-coagulation, antioxidant, and anti-inflammation effects. In this study, we investigated the anti-inflammatory effects of an ethanol extract of Hibiscus cannabinus L. flower (HCFE) in HaCaT cells stimulated with 100 μg/mL of DPM. METHODS The anthocyanin content of HCFE was analyzed, and its antioxidant capacity was investigated using the DPPH assay. After inducing inflammation with 100 ug/mL of DPM, the cytotoxicity of HCFE 25, 50, and 100 ug/mL was measured, and the inhibitory effect of HCFE on inflammatory mediators was evaluated. RESULTS Anthocyanin and myricetin-3-O-glucoside were present in HCFE and showed high antioxidant capacity. In addition, HCFE decreased the mRNA expression of inflammatory cytokines and chemokines such as IL-1β, IL-4, IL-6, IL-8, IL-13, and MCP-1, and significantly reduced the gene expression of CXCL10, CCL5, CCL17, and CCL22, which are known to increase in atopic dermatitis lesions. Furthermore, HCFE reduced intracellular reactive oxygen species (ROS) production, and down-regulated the activation of NF-κB, MAPKs. Inhibition of the NLRP-3 inflammasome was observed in DPM-stimulated HaCaT cells. In addition, the restoration of filaggrin and involucrin, skin barrier proteins destroyed by DPM exposure, was confirmed. CONCLUSIONS These data suggest that HCFE could be used to prevent and improve skin inflammation and atopic dermatitis through the regulation of inflammatory mediators and the inhibition of skin water loss.
Collapse
Affiliation(s)
- Ji-Ye Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
- Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Shin-Kyeom Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
- Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Do-Won Lim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
- Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Osoung Kwon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
- Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yu-Rim Choi
- Division of Crops & Food, Jeonbuk-do Agricultural Research & Extension Services, Iksan 54591, Republic of Korea
| | - Chan-Ho Kang
- Division of Crops & Food, Jeonbuk-do Agricultural Research & Extension Services, Iksan 54591, Republic of Korea
| | - Yun Jung Lee
- Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
- Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
3
|
Muneshige K, Inahashi Y, Itakura M, Iwatsuki M, Hirose T, Inoue G, Takaso M, Sunazuka T, Ohashi Y, Ohta E, Uchida K. Jietacin Derivative Inhibits TNF-α-Mediated Inflammatory Cytokines Production via Suppression of the NF-κB Pathway in Synovial Cells. Pharmaceuticals (Basel) 2022; 16:ph16010005. [PMID: 36678502 PMCID: PMC9862604 DOI: 10.3390/ph16010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Synovial inflammation plays a central role in joint destruction and pain in osteoarthritis (OA). The NF-κB pathway plays an important role in the inflammatory process and is activated in OA. A previous study reported that a jietacin derivative (JD), (Z)-2-(8-oxodec-9-yn-1-yl)-1-vinyldiazene 1-oxide, suppressed the nuclear translocation of NF-κB in a range of cancer cell lines. However, the effect of JD in synovial cells and the exact mechanism of JD as an NF-κB inhibitor remain to be determined. We investigated the effect of JD on TNF-α-induced inflammatory reaction in a synovial cell line, SW982 and human primary synovial fibroblasts (hPSFs). Additionally, we examined phosphorylated levels of p65 and p38 and expression of importin α3 and β1 using Western blotting. RNA-Seq analysis revealed that JD suppressed TNF-α-induced differential expression: among 204 genes significantly differentially expressed between vehicle and TNF-α-stimulated SW982 (183 upregulated and 21 downregulated) (FC ≥ 2, Q < 0.05), expression of 130 upregulated genes, including inflammatory cytokines (IL1A, IL1B, IL6, IL8) and chemokines (CCL2, CCL3, CCL5, CCL20, CXCL9, 10, 11), was decreased by JD treatment and that of 14 downregulated genes was increased. KEGG pathway analysis showed that DEGs were increased in the cytokine−cytokine receptor interaction, TNF signaling pathway, NF-κB signaling pathway, and rheumatoid arthritis. JD inhibited IL1B, IL6 and IL8 mRNA expression and IL-6 and IL-8 protein production in both SW982 and hPSFs. JD also suppressed p65 phosphorylation in both SW982 and hPSFs. In contrast, JD did not alter p38 phosphorylation. JD may inhibit TNF-α-mediated inflammatory cytokine production via suppression of p65 phosphorylation in both SW982 and hPSFs. Our results suggest that JD may have therapeutic potential for OA due to its anti-inflammatory action through selective suppression of the NF-κB pathway on synovial cells.
Collapse
Affiliation(s)
- Kyoko Muneshige
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Minato-ku, Shirokane, Tokyo 108-8641, Japan
| | - Yoshihisa Ohashi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
| | - Etsuro Ohta
- Department of Immunology II, Kitasato University School of Allied Health Sciences, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0375, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City 252-0374, Japan
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki 253-0083, Japan
- Correspondence:
| |
Collapse
|
4
|
Li J, Liu Y, Niu J, Jing C, Jiao N, Huang L, Jiang S, Yan L, Yang W, Li Y. Supplementation with paraformic acid in the diet improved intestinal development through modulating intestinal inflammation and microbiota in broiler chickens. Front Microbiol 2022; 13:975056. [PMID: 36204610 PMCID: PMC9531753 DOI: 10.3389/fmicb.2022.975056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to explore the effects of supplementing paraformic acid (PFA) to the diet of broiler chickens on intestinal development, inflammation, and microbiota. A total of 378 healthy 1-day-old Arbor Acres broilers with similar birth weight were used in this study, and randomly assigned into two treatment groups. The broiler chickens were received a basal diet or a basal diet supplemented with 1,000 mg/kg PFA. Results showed that PFA supplementation increased (P < 0.05) small intestinal villus height and villus height/crypt depth ratio, elevated intestinal mucosal factors (mucin 2, trefoil factor family, and zonula occludens-1) concentrations, and upregulated mNRA expression of y + L amino acid transporter 1. Moreover, PFA supplementation decreased (P < 0.05) the concentrations of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and interleukin-10), activities of caspase-3 and caspase-8, and mNRA expressions of Toll-like Receptor 4, nuclear factor-kappa B, Bax, and Bax/Bcl-2 ratio in small intestinal mucosa. Dietary PFA supplementation also increased (P < 0.05) alpha diversity of cecal microbiota and relative abundance of Alistipes. The present study demonstrated that supplementation of 1,000 mg/kg PFA showed beneficial effects in improving intestinal development, which might be attributed to the suppression of intestinal inflammation and change of gut microbiota composition in broiler chickens. These findings will aid in our knowledge of the mechanisms through which dietary PFA modulates gut development, as well as support the use of PFA in poultry industry.
Collapse
Affiliation(s)
- Junwei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Qingdao Huaxin Feed Co., Ltd., Qingdao, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Changwei Jing
- Technical Department, Shandong Chinwhiz Co., Ltd., Weifang, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Lei Yan
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Weiren Yang,
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Yang Li,
| |
Collapse
|
5
|
Jing C, Niu J, Liu Y, Jiao N, Huang L, Jiang S, Yan L, Yang W, Li Y. Tannic Acid Extracted from Galla chinensis Supplementation in the Diet Improves Intestinal Development through Suppressing Inflammatory Responses via Blockage of NF-κB in Broiler Chickens. Animals (Basel) 2022; 12:2397. [PMID: 36139256 PMCID: PMC9495145 DOI: 10.3390/ani12182397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to investigate the effects of adding tannic acid (TA) extracted from Galla chinensis to the diet of broiler chickens on intestinal development. A total of 324 healthy 1-day-old broilers were used in a 42 d study, and divided into two treatment groups at random (six replicates per group). Broilers were either received a basal diet or a basal diet supplemented with 300 mg/kg microencapsulated TA extracted from Galla chinensis. The results showed that dietary supplemented with 300 mg/kg TA from Galla chinensis improved intestinal morphology, promoted intestinal mucosal barrier integrity, and elevated mucosal expressions of nutrients transporters and tight junction protein CLDN3 in broilers. Besides, 300 mg/kg TA from Galla chinensis supplementation decreased the concentrations of inflammatory cytokines in serum and intestinal mucosa and reduced the mRNA expression of NF-κB in intestinal mucosa. Above all, supplementation of 300 mg/kg microencapsulated TA extracted from Galla chinensis showed beneficial effects in improving intestinal development, which might be attributed to the suppression of inflammatory responses via blockage of NF-κB in broiler chickens. These findings will support the use of TA sourced from Galla chinensis in poultry industry.
Collapse
Affiliation(s)
- Changwei Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1#, Wuhan 430070, China
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Lei Yan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
- Shandong New Hope Liuhe Group Co., Ltd., Jiudongshui Road 592-26#, Qingdao 266100, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61#, Tai’an 271018, China
| |
Collapse
|
6
|
Peng J, Chen X, Hou M, Yang K, Yang B, Wang P, Du Y, Yu Q, Ren J, Liu J. The TCM Preparation Feilike Mixture for the Treatment of Pneumonia: Network Analysis, Pharmacological Assessment and Silico Simulation. Front Pharmacol 2022; 13:794405. [PMID: 35295341 PMCID: PMC8918795 DOI: 10.3389/fphar.2022.794405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
The Feilike mixture (FLKM) is a valid prescription that is frequently used to assist in the clinical treatment of pneumonia. However, the mechanisms of its effects remain unclear. First, through literature evaluation, it was preliminarily determined that FLKM improved clinical symptoms, regulated immune inflammation response and ameliorated pulmonary function. Then, via database search and literature mining, 759 targets of the 104 active compounds of FLKM were identified. The component-target (CT) network showed that the key active compositions were resveratrol, stigmasterol, beta-sitosterol, sesamin, and quercetin. 115 targets overlapped with pneumonia-related targets. The protein-protein interaction (PPI) network identified TNF, AKT1, IL6, JUN, VEGFA and MAPK3 as hub targets. KEGG analyses found that they were mainly enriched in immune related pathway. Next, in vivo experiment, we observed that FLKM ameliorated pathological injury of lung tissue and reduced neutrophil infiltration in rats with LPS-induced pneumonia. And FLKM decreased the concentration of TNF-α and IL-6 in BALF and downregulated the expression of p38MAPK, AKT and VEGFA in lung tissue. Finally, Molecular docking tests showed tight docking of these predicted targeted proteins with key active compounds. Molecular dynamics simulation was employed to assess stability and flexibility of receptor-ligand. Among them, AKT1- stigmasterol bound more stably, and their binding free energies were −47.91 ± 1.62 kcal/mol. This study revealed core compositions and targets for FLKM treating pneumonia and provided integrated pharmacological evidence to support its clinical efficacy.
Collapse
Affiliation(s)
- Juqin Peng
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Chen
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Hou
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Bing Yang
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pan Wang
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Du
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junguo Ren, ; Jianxun Liu,
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Traditional Chinese Medicine, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junguo Ren, ; Jianxun Liu,
| |
Collapse
|
7
|
Sueda Y, Okazaki R, Funaki Y, Hasegawa Y, Ishikawa H, Hirayama Y, Inui G, Harada T, Takata M, Morita M, Yamasaki A. Specialized Pro-Resolving Mediators Do Not Inhibit the Synthesis of Inflammatory Mediators Induced by Tumor Necrosis Factor-α in Synovial Fibroblasts. Yonago Acta Med 2022; 65:111-125. [DOI: 10.33160/yam.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuriko Sueda
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Rheumatology/ Collagen Disease Medicine, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Hiroki Ishikawa
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yuki Hirayama
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Genki Inui
- Respiratory Medicine, National Hospital Organization Yonago Medical Center, Yonago 683-0006, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Masato Morita
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
8
|
Yasuda S, Horinaka M, Iizumi Y, Goi W, Sukeno M, Sakai T. Oridonin inhibits SASP by blocking p38 and NF-κB pathways in senescent cells. Biochem Biophys Res Commun 2021; 590:55-62. [PMID: 34971958 DOI: 10.1016/j.bbrc.2021.12.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a state of irreversible cell growth arrest that functions as a biological defense mechanism against severe DNA damage. Senescent cells with DNA damage produce pro-inflammatory cytokines, such as IL-6 and IL-8, and this phenomenon is called the senescence-associated secretory phenotype (SASP). SASP factors have been implicated in various disorders, including cancer. We performed a screening assay and identified oridonin as a candidate SASP inhibitor. Oridonin is an active diterpenoid that is isolated from Isodon plants and has been reported to exhibit anti-inflammatory, antibacterial, antioxidant, and antitumor activities. It reduced the secretion of IL-6 and IL-8 in senescent cells at the protein and mRNA levels. Oridonin also inhibited p65 subunit of NF-κB activity. However, oridonin did not affect SA β-gal activity and enhanced the expression of p21. The expression and phosphorylation of p38 were down-regulated by oridonin. The p38 inhibitor SB203580 inhibited the secretion of IL-8, slightly inhibited the secretion of IL-6, and did not affect NF-κB activity. Therefore, the NF-κB and p38 pathways may contribute to the inhibition of SASP by oridonin. Oridonin has potential as a therapeutic agent for SASP-related diseases.
Collapse
Affiliation(s)
- Shusuke Yasuda
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Wakana Goi
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mamiko Sukeno
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
9
|
Abraham J, Florentine S. Licorice ( Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2600. [PMID: 34961070 PMCID: PMC8708549 DOI: 10.3390/plants10122600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/06/2023]
Abstract
Even though vaccination has started against COVID-19, people should continue maintaining personal and social caution as it takes months or years to get everyone vaccinated, and we are not sure how long the vaccine remains efficacious. In order to contribute to the mitigation of COVID-19 symptoms, the pharmaceutical industry aims to develop antiviral drugs to inhibit the SARS-CoV-2 replication and produce anti-inflammatory medications that will inhibit the acute respiratory distress syndrome (ARDS), which is the primary cause of mortality among the COVID-19 patients. In reference to these tasks, this article considers the properties of a medicinal plant named licorice (Glycyrrhiza glabra), whose phytochemicals have shown both antiviral and anti-inflammatory tendencies through previous studies. All the literature was selected through extensive search in various databases such as google scholar, Scopus, the Web of Science, and PubMed. In addition to the antiviral and anti-inflammatory properties, one of the licorice components has an autophagy-enhancing mechanism that studies have suggested to be necessary for COVID-19 treatment. Based on reviewing relevant professional and historical literature regarding the medicinal properties of licorice, it is suggested that it may be worthwhile to conduct in vitro and in vivo studies, including clinical trials with glycyrrhizic and glycyrrhetinic acids together with other flavonoids found in licorice, as there is the potentiality to provide natural interventions against COVID-19 symptoms.
Collapse
Affiliation(s)
- Joji Abraham
- School of Engineering, Information Technology, and Physical Sciences, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Singarayer Florentine
- Centre for Environmental Management, School of Science, Psychology, and Sport, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia;
| |
Collapse
|
10
|
Ko HM, Lee SH, Jee W, Jung JH, Kim KI, Jung HJ, Jang HJ. Gancaonin N from Glycyrrhiza uralensis Attenuates the Inflammatory Response by Downregulating the NF-κB/MAPK Pathway on an Acute Pneumonia In Vitro Model. Pharmaceutics 2021; 13:pharmaceutics13071028. [PMID: 34371720 PMCID: PMC8309055 DOI: 10.3390/pharmaceutics13071028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Acute pneumonia is an inflammatory disease caused by several pathogens, with symptoms such as fever and chest pain, to which children are particularly vulnerable. Gancaonin N is a prenylated isoflavone of Glycyrrhiza uralensis that has been used in the treatment of various diseases in oriental medicine. There are little data on the anti-inflammatory efficacy of Gancaonin N, and its effects and mechanisms on acute pneumonia are unknown. Therefore, this study was conducted as a preliminary analysis of the anti-inflammatory effect of Gancaonin N in lipopolysaccharide (LPS)-induced RAW264.7 cells, and to identify its preventive effect on the lung inflammatory response and the molecular mechanisms underlying it. In this study, Gancaonin N inhibited the production of NO and PGE2 in LPS-induced RAW264.7 cells and significantly reduced the expression of iNOS and COX-2 proteins at non-cytotoxic concentrations. In addition, in LPS-induced A549 cells, Gancaonin N significantly reduced the expression of COX-2 and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Moreover, Gancaonin N reduced MAPK signaling pathway phosphorylation and NF-κB nuclear translocation. Therefore, Gancaonin N relieved the inflammatory response by inactivating the MAPK and NF-κB signaling pathways; thus, it is a potential natural anti-inflammatory agent that can be used in the treatment of acute pneumonia.
Collapse
Affiliation(s)
- Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Korea
| | - Hee-Jae Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 23 Kyungheedaero, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Korea
- Correspondence: (H.-J.J.); (H.-J.J.)
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.M.K.); (S.-H.L.); (W.J.); (J.H.J.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (H.-J.J.); (H.-J.J.)
| |
Collapse
|
11
|
Mahmoud DE, Kaabachi W, Sassi N, Mokhtar A, Moalla M, Ammar LB, Jemmali S, Rekik S, Tarhouni L, Kallel-Sellami M, Cheour E, Laadhar L. SFRP5 Enhances Wnt5a Induced-Inflammation in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Front Immunol 2021; 12:663683. [PMID: 34211463 PMCID: PMC8239419 DOI: 10.3389/fimmu.2021.663683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tissue derived fibroblast-like synoviocytes (td-FLS) are key actors in pannus formation and contribute to joint destruction and inflammation during rheumatoid arthritis (RA). Several members of the Wnt family, including Wnt5a, may contribute to RA td-FLS activation and can potentially serve as therapeutic targets. Objective The present work aimed to investigate the expression of Wnt5a signaling elements in RA td-FLS and their potential precursors (fluid derived (fd) FLS and fibrocytes). We also studied the role of Wnt5a in RA td-FLS pro-inflammatory activity and whether the inhibitor SFRP5 could restore Wnt5a-induced synovial dysfunction in vitro. Materials and Methods The levels of Wnt5a, SFRP5, Wnt5a receptors/coreceptors and Wnt5a pro-inflammatory targets were determined in cultured RA td-FLS, fd-FLS and fibrocytes using qPCR under basal conditions. The expression of pro-inflammatory molecules was assessed after RA td-FLS stimulation with Wnt5a and SFRP5 at different time points. Results Our data showed that td-FLS, fd-FLS and fibrocytes from patients with RA expressed similar levels of Wnt5a and a set of Wnt5a receptors/coreceptors. We also demonstrated that Wnt5a stimulated the expression of the pro-inflammatory targets, especially IL1β, IL8 and IL6 in RA td-FLS. Wnt5a-induced inflammation was enhanced in the presence of SFRP5. Furthermore, Wnt5a alone and in conjunction with SFRP5 inhibited the gene expression of TCF4 and the protein levels of the canonical coreceptor LRP5. Conclusion Wnt5a pro-inflammatory effect is not inhibited but enhanced by SFRP5 in RA td-FLS. This research highlights the importance of carefully evaluating changes in Wnt5a response in the presence of SFRP5.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Wajih Kaabachi
- Medicine School of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Nadia Sassi
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Amel Mokhtar
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Myriam Moalla
- Rheumatology Department, La Rabta Hospital, Tunis, Tunisia
| | | | - Samia Jemmali
- Rheumatology Department, La Rabta Hospital, Tunis, Tunisia
| | - Sonia Rekik
- Rheumatology Department, La Rabta Hospital, Tunis, Tunisia
| | - Lamjed Tarhouni
- Department of Hand and Reconstructive Surgery, Kassab Institute of Traumatic and Orthopedic Surgery, Tunis, Tunisia
| | - Maryam Kallel-Sellami
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Elhem Cheour
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Lilia Laadhar
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| |
Collapse
|
12
|
Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, Farhadi E, Mahmoudi M. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:3. [PMID: 33546769 PMCID: PMC7863458 DOI: 10.1186/s13317-020-00145-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Swelling and the progressive destruction of articular cartilage are major characteristics of rheumatoid arthritis (RA), a systemic autoimmune disease that directly affects the synovial joints and often causes severe disability in the affected positions. Recent studies have shown that type B synoviocytes, which are also called fibroblast-like synoviocytes (FLSs), as the most commonly and chiefly resident cells, play a crucial role in early-onset and disease progression by producing various mediators. During the pathogenesis of RA, the FLSs' phenotype is altered, and represent invasive behavior similar to that observed in tumor conditions. Modified and stressful microenvironment by FLSs leads to the recruitment of other immune cells and, eventually, pannus formation. The origins of this cancerous phenotype stem fundamentally from the significant metabolic changes in glucose, lipids, and oxygen metabolism pathways. Moreover, the genetic abnormalities and epigenetic alterations have recently been implicated in cancer-like behaviors of RA FLSs. In this review, we will focus on the mechanisms underlying the transformation of FLSs to a cancer-like phenotype during RA. A comprehensive understanding of these mechanisms may lead to devising more effective and targeted treatment strategies.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Sharafat Vaziri
- Joint Reconstruction Reseach Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Yagi K, Goto Y, Kato K, Suzuki N, Kondo A, Waseda Y, Mizutani J, Kawaguchi Y, Joyo Y, Waguri-Nagaya Y, Murakami H. p38 Mitogen-Activated Protein Kinase Is Involved in Interleukin-6 Secretion from Human Ligamentum Flavum-Derived Cells Stimulated by Tumor Necrosis Factor-α. Asian Spine J 2020; 15:713-720. [PMID: 33355843 PMCID: PMC8696066 DOI: 10.31616/asj.2020.0425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022] Open
Abstract
Study Design Human ligamentum flavum–derived cells (HFCs) were obtained from surgical samples for a basic experimental study. Purpose We sought to evaluate the inflammatory response of human ligamentum flavum cells to investigate hypertrophic changes occurring in the ligamentum flavum. Overview of Literature Lumbar spinal stenosis (LSS) is a disease commonly observed in the elderly. The number of patients with LSS has increased over time, yet the pathomechanisms of LSS still have not been fully elucidated. One of the clinical features of LSS is hypertrophy of the ligamentum flavum, which results in narrowing of the lumbar spinal canal. Some reports have suggested that ligamentum flavum hypertrophy is associated with inflammation and fibrosis; meanwhile, the p38 mitogen-activated protein (MAP) kinase is involved in the hypertrophy of human ligamentum flavum cells. Methods HFCs were obtained from patients with LSS who underwent surgery. HFCs were stimulated by tumor necrosis factor-α (TNF-α) and a p38 MAP kinase inhibitor, SB203580. Phosphorylation of the p38 MAP kinase was analyzed by western blotting. The concentration of interleukin-6 (IL-6) in the conditioned medium was measured by enzyme-linked immunoassay and IL-6 messenger RNA expression levels were determined by real-time polymerase chain reaction. Results TNF-α induced the phosphorylation of p38 MAP kinase in a time-dependent manner, which was suppressed by the p38 MAP kinase inhibitor, SB203580. TNF-α also stimulated IL-6 release in both a time- and dose-dependent manner. On its own, SB203580 did not stimulate IL-6 secretion from HFCs; however, it dramatically suppressed the degree of IL-6 release stimulated by TNF-α from HFCs. Conclusions This is the first report suggesting that TNF-α stimulates the gene expression and protein secretion of IL-6 via p38 MAP kinase in HFCs. A noted association between tissue hypertrophy and inflammation suggests that the p38 MAP kinase inflammatory pathway may be a therapeutic molecular target for LSS.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Goto
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenji Kato
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Suzuki
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Kondo
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuya Waseda
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jun Mizutani
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yohei Kawaguchi
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Joyo
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuko Waguri-Nagaya
- Department of Orthopaedic Surgery, Nagoya City East Medical Center, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
14
|
Higham A, Singh D. Dexamethasone and p38 MAPK inhibition of cytokine production from human lung fibroblasts. Fundam Clin Pharmacol 2020; 35:714-724. [PMID: 33145838 PMCID: PMC8451891 DOI: 10.1111/fcp.12627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Lung fibroblasts are involved in airway inflammation and remodelling in COPD. We report an investigation of the effects of combining a p38 MAPK inhibitor with a corticosteroid on cytokine production by a human lung fibroblast cell line and primary fibroblasts obtained from human lung tissue. Our main interest was to determine whether additive or synergistic anti‐inflammatory effects would be observed. We observed inhibition of IL‐6 and CXCL8 secretion from both lung fibroblast models by dexamethasone (maximal inhibition 40–90%) and the p38 MAPK inhibitor BIRB (maximal inhibition 30–60%), used alone and evidence of increased anti‐inflammatory effects when used in combination. This combination effect was more apparent for TNF‐a stimulated cytokine production (maximal inhibition increased by 10–20%). Interaction ratio analysis showed this enhanced effect to be additive rather than synergistic interaction. Similar results were obtained using both fibroblast cell culture models. Combining a p38 MAPK to corticosteroids may help reduce fibroblast mediated inflammation in COPD.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
15
|
The Use of Platelet-Rich Plasma for the Treatment of Osteonecrosis of the Femoral Head: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2642439. [PMID: 32219128 PMCID: PMC7081027 DOI: 10.1155/2020/2642439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
Background As a pathological process, osteonecrosis of the femoral head (ONFH) is characterized by the avascularity of the femoral head, cellular necrosis, microfracture, and the collapse of the articular surface. Currently, critical treatment for early-stage ONFH is limited to core decompression. However, the efficacy of core decompression remains controversial. To improve the core decompression efficacy, regenerative techniques such as the use of platelet-rich plasma (PRP) were proposed for early-stage ONFH. As a type of autologous plasma containing concentrations of platelets greater than the baseline, PRP plays an important role in tissue repair, regeneration, and the differentiation of mesenchymal stem cells (MSCs). In this review, we present a comprehensive overview of the operation modes, mechanism, and efficacy of PRP for early-stage ONFH treatment. Methods We searched for relevant studies in the PubMed, Web of Science, and Embase databases. By searching these electronic databases, the identification of either clinical or experimental studies evaluating PRP, MSC, core decompression, and ONFH was our goal. Results Seventeen studies of PRP and avascular necrosis of the femoral head were evaluated in our review. Ten studies related to the possible mechanism of PRP for treating ONFH were reviewed. Seven studies of the operation modes of PRP in treating ONFH were identified. We reviewed the efficacy of PRP in treating ONFH systematically and made an attempt to compare the PRP operation modes in 7 studies and other operation modes in past studies for early-stage ONFH treatment. Conclusion PRP treats ONFH mainly through three mechanisms: inducing angiogenesis and osteogenesis to accelerate bone healing, inhibiting inflammatory reactions in necrotic lesions, and preventing apoptosis induced by glucocorticoids. In addition, as an adjunctive therapy for core decompression, the use of PRP is recommended to improve the treatment of early-stage ONFH patients, especially when combined with stem cells and bone grafts, by inducing osteogenic activity and stimulating the differentiation of stem cells in necrotic lesions.
Collapse
|
16
|
Wang Q, Onuma K, Liu C, Wong H, Bloom MS, Elliott EE, Cao RR, Hu N, Lingampalli N, Sharpe O, Zhao X, Sohn DH, Lepus CM, Sokolove J, Mao R, Cisar CT, Raghu H, Chu CR, Giori NJ, Willingham SB, Prohaska SS, Cheng Z, Weissman IL, Robinson WH. Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight 2019; 4:128616. [PMID: 31534047 PMCID: PMC6795293 DOI: 10.1172/jci.insight.128616] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the leading cause of joint failure, yet the underlying mechanisms remain elusive, and no approved therapies that slow progression exist. Dysregulated integrin function was previously implicated in OA pathogenesis. However, the roles of integrin αVβ3 and the integrin-associated receptor CD47 in OA remain largely unknown. Here, transcriptomic and proteomic analyses of human and murine osteoarthritic tissues revealed dysregulated expression of αVβ3, CD47, and their ligands. Using genetically deficient mice and pharmacologic inhibitors, we showed that αVβ3, CD47, and the downstream signaling molecules Fyn and FAK are crucial to OA pathogenesis. MicroPET/CT imaging of a mouse model showed elevated ligand-binding capacities of integrin αVβ3 and CD47 in osteoarthritic joints. Further, our in vitro studies demonstrated that chondrocyte breakdown products, derived from articular cartilage of individuals with OA, induced αVβ3/CD47-dependent expression of inflammatory and degradative mediators, and revealed the downstream signaling network. Our findings identify a central role for dysregulated αVβ3 and CD47 signaling in OA pathogenesis and suggest that activation of αVβ3 and CD47 signaling in many articular cell types contributes to inflammation and joint destruction in OA. Thus, the data presented here provide a rationale for targeting αVβ3, CD47, and their signaling pathways as a disease-modifying therapy.
Collapse
Affiliation(s)
- Qian Wang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Kazuhiro Onuma
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Changhao Liu
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, California, USA
| | - Heidi Wong
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Eileen E. Elliott
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Richard R.L. Cao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Nick Hu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Xiaoyan Zhao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Dong Hyun Sohn
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, South Korea
| | - Christin M. Lepus
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Rong Mao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Cecilia T. Cisar
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Harini Raghu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Constance R. Chu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopedic Surgery
| | - Nicholas J. Giori
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopedic Surgery
| | - Stephen B. Willingham
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Susan S. Prohaska
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, California, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
17
|
Kowalski EH, Kneibner D, Kridin K, Amber KT. Serum and blister fluid levels of cytokines and chemokines in pemphigus and bullous pemphigoid. Autoimmun Rev 2019; 18:526-534. [DOI: 10.1016/j.autrev.2019.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
|
18
|
Shadnoush M, Nazemian V, Manaheji H, Zaringhalam J. The Effect of Orally Administered Probiotics on the Behavioral, Cellular, and Molecular Aspects of Adjuvant-Induced Arthritis. Basic Clin Neurosci 2018; 9:325-336. [PMID: 30719247 PMCID: PMC6360491 DOI: 10.32598/bcn.9.5.325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Introduction: Rheumatoid Arthritis (RA) is a chronic autoimmune disease, which is accompanied with pain, hyperalgesia, and edema. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pathways sustain the RA symptoms considerably. There is a strong correlation between the expression of cytokines and opioid receptors in the arthritis process. Studies have shown that probiotics via different pathways such as reducing the levels of pro-inflammatory cytokines can alleviate inflammatory symptoms. Therefore, based on the crucial role of cellular and humoral immunity in induction of RA symptoms and potency of probiotics in modulation of immune responses, the purpose of this study was to investigate the effect of orally administered probiotics on the behavioral, cellular and molecular aspects of adjuvant-induced arthritis in male Wistar rats. Methods: Complete Freund’s Adjuvant (CFA)-induced arthritis was caused by single subcutaneous injection of CFA into the rat’s hind paw on day 0. Different doses of probiotics (1/250, 1/500 and 1/1000 [109 CFU/g]) were administered daily (gavage) after CFA injection. Hyperalgesia, edema, serum IL-1β levels, μ-Opioid Receptor (MOR) expression, and p38MAPK (Mitogen-Activated Protein Kinase) activities were assessed on days 0, 7, 14 and 21 of the study. Results: The results of this study indicated the efficacy of probiotics in reducing hyperalgesia, edema, serum levels of Interleukin-1β, and p38MAPK pathway activity during different phases of arthritis as well as increasing the expression of MORs during chronic phase of CFA-induced arthritis. Conclusion: It seems that probiotics can effectively reduce inflammatory symptoms by inhibiting the intracellular signaling pathway and cytokine production.
Collapse
Affiliation(s)
- Mahdi Shadnoush
- Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Vida Nazemian
- Neurophysiology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Apoptotic and Anti-Inflammatory Effects of Eupatorium japonicum Thunb. in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1383697. [PMID: 30112359 PMCID: PMC6077679 DOI: 10.1155/2018/1383697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by synovitis, hyperplasia, and the destruction of bone and cartilage. A variety of immunosuppressive biological agents have been developed because the pathogenesis of RA is related predominantly to the inflammatory response. However, rheumatoid arthritis fibroblast-like synovial cells (RAFLS), which are known to play an important role in RA progression, exhibit resistance to immunosuppressants through cancer-like properties. In this study, we identified a novel therapeutic compound for RA, which reduced inflammation and the abnormal proliferation of RAFLS in natural product library made from Korean native plants. Eupatorium japonicum Thunb. (EJT) extract, a component of the natural product library, most effectively reduced viability through the induction of ROS-mediated apoptosis in a dose-dependent manner. In addition, the increased ROS induced the expression of ATF4 and CHOP, key players in ER stress-mediated apoptosis. Interestingly, EJT extract treatment dose-dependently reduced the expression of IL-1β and the transcription of MMP-9, which were induced by TNF-α treatment, through the inhibition of NF-κB and p38 activation. Collectively, we found that EJT extract exerted apoptotic effects through increases in ROS production and CHOP expression and exerted anti-inflammatory effects through the suppression of NF-κB activation, IL-1β expression, and MMP-9 transcription.
Collapse
|
20
|
Elie BT, Pechenyy Y, Uddin F, Contel M. A heterometallic ruthenium-gold complex displays antiproliferative, antimigratory, and antiangiogenic properties and inhibits metastasis and angiogenesis-associated proteases in renal cancer. J Biol Inorg Chem 2018; 23:399-411. [PMID: 29508136 PMCID: PMC6173830 DOI: 10.1007/s00775-018-1546-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
Heterobimetallic compounds are designed to harness chemotherapeutic traits of distinct metal species into a single molecule. The ruthenium-gold (Ru-Au) family of compounds based on Au-N-heterocyclic carbene (NHC) fragments [Cl2(p-cymene)Ru(μ-dppm)Au(NHC)]ClO4 was conceived to combine the known antiproliferative and cytotoxic properties of Au-NHC-based compounds and the antimigratory, antimetastatic, and antiangiogenic characteristic of specific Ru-based compounds. Following recent studies of the anticancer efficacies of these Ru-Au-NHC complexes with promising potential as chemotherapeutics against colorectal, and renal cancers in vitro, we report here on the mechanism of a selected compound, [Cl2(p-cymene)Ru(μ-dppm)Au(IMes)]ClO4 (RANCE-1, 1). The studies were carried out in vitro using a human clear cell renal carcinoma cell line (Caki-1). These studies indicate that bimetallic compound RANCE-1 (1) is significantly more cytotoxic than the Ru (2) or Au (3) monometallic derivatives. RANCE-1 significantly inhibits migration, invasion, and angiogenesis, which are essential for metastasis. RANCE-1 was found to disturb pericellular proteolysis by inhibiting cathepsins, and the metalloproteases MMP and ADAM which play key roles in the etiopathogenesis of cancer. RANCE-1 also inhibits the mitochondrial protein TrxR that is often overexpressed in cancer cells and facilitates apoptosis evasion. We found that while auranofin perturbed migration and invasion to similar degrees as RANCE-1 (1) in Caki-1 renal cancer cells, RANCE-1 (1) inhibited antiangiogenic formation and VEGF expression. We found that auranofin and RANCE-1 (1) have distinct proteolytic profiles. In summary, RANCE-1 constitutes a very promising candidate for further preclinical evaluations in renal cancer.
Collapse
Affiliation(s)
- Benelita T Elie
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Biology Department, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Yuriy Pechenyy
- Biology Department, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Fathema Uddin
- Biology Department, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Chemistry PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Xu S, Xiao Y, Zeng S, Zou Y, Qiu Q, Huang M, Zhan Z, Liang L, Yang X, Xu H. Piperlongumine inhibits the proliferation, migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm Res 2018; 67:233-243. [PMID: 29119225 DOI: 10.1007/s00011-017-1112-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Recent studies have indicated that piperlongumine (PLM) may exert anti-inflammatory effects. In the present study, we determined the effect of PLM on the proliferation, apoptosis, migration and invasion of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) (referred to herein as RA FLS). We further explored the mechanisms by which the studied compound inhibits the functions of RA FLS. METHODS RA FLS viability and apoptosis were tested using MTT and Annexin V/PI assays, respectively. We performed an EDU assay to examine the proliferation of RA FLS. The migration and invasion of these cells were measured using a transwell chamber method and wound closure assay. The MMP-1, MMP-3, and MMP-13 levels in the culture supernatants of RA FLS were detected using a Luminex Assay kit. The intracellular ROS levels were detected using DCFH-DA. The expression levels of signal transduction proteins were measured using western blot. RESULTS We found that PLM induced apoptosis in RA FLS at concentrations of 15 and 20 μM. The proliferation of RA FLS was downregulated by PLM at concentrations of 1, 5 and 10 μM. Migration and invasion of RA FLS were reduced by PLM at concentrations of 1, 5 and 10 μM. PLM also inhibited cytoskeletal reorganization in migrating RA FLS and decreased TNF-α-induced intracellular ROS production. Moreover, we demonstrated the inhibitory effect of PLM on activation of the p38, JNK, NF-κB and STAT3 pathways. CONCLUSIONS Our findings suggest that PLM can inhibit proliferation, migration and invasion of RA FLS. Moreover, these data suggests that PLM might have therapeutic potential for the treatment of RA.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Youjun Xiao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Yaoyao Zou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Zhongping Zhan
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
22
|
Effects of dietary lysine restriction on inflammatory responses in piglets. Sci Rep 2018; 8:2451. [PMID: 29402921 PMCID: PMC5799382 DOI: 10.1038/s41598-018-20689-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/23/2018] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to investigate the effects of lysine restriction on inflammatory responses in piglets. 38 male piglets with similar body weight of 9.62 kg were randomly divided into control group (basal diet) and lysine-restricted group (diet containing 70% lysine of the control diet). The results showed that lysine restriction increased the serum concentration of IgG an IgM. Piglets fed the lysine-restricted diet exhibited overexpression of interleukin-8 (IL-8) in the kidney (P < 0.05) and IL-6 and IL-4 in the spleen (P < 0.05). The mRNA abundances of IL-4 in the kidney (P < 0.05) and IL-10 in the liver (P < 0.05) were significantly lower in the lysine-restricted group compared with the control group. Meanwhile, lysine restriction increased the mRNA level of Tlr8 in the kidney (P < 0.05) but decreased the mRNA level of Tlr8 in the liver (P < 0.05). Finally, lysine restriction markedly enhanced extracellular signal regulated kinases 1/2 (ERK1/2) phosphorylation in the kidney and liver and nuclear transcription factor kappa B (NF-κB) was activated in the liver and spleen in response to dietary lysine restriction. In conclusion, lysine restriction affected inflammatory responses in the kidney, liver, and spleen via mediating serum antibody volume, inflammatory cytokines, Tlrs system, and ERK1/2 and NF-κB signals in piglets.
Collapse
|
23
|
Kaieda A, Takahashi M, Takai T, Goto M, Miyazaki T, Hori Y, Unno S, Kawamoto T, Tanaka T, Itono S, Takagi T, Hamada T, Shirasaki M, Okada K, Snell G, Bragstad K, Sang BC, Uchikawa O, Miwatashi S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg Med Chem 2018; 26:647-660. [PMID: 29291937 DOI: 10.1016/j.bmc.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.
Collapse
Affiliation(s)
- Akira Kaieda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Takai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Goto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuri Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoko Unno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Terufumi Takagi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Teruki Hamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mikio Shirasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kengo Okada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Gyorgy Snell
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Ken Bragstad
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Bi-Ching Sang
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Osamu Uchikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Seiji Miwatashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
24
|
Tong S, Yin J, Liu J. Platelet-rich plasma has beneficial effects in mice with osteonecrosis of the femoral head by promoting angiogenesis. Exp Ther Med 2018; 15:1781-1788. [PMID: 29434765 PMCID: PMC5776555 DOI: 10.3892/etm.2017.5655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
Platelet-rich plasma (PRP) is autologous and multifunctional. Platelet concentrate from blood contains highly concentrated platelets and various types of cells, including growth factors. PRP promotes the recovery of cell proliferation and differentiation. Osteonecrosis of the femoral head is a disease caused by femoral head damage or an insufficient blood supply, which leads to the death of bone cells and abnormal bone marrow composition. The subsequent repair of bone cells may result in changes to the structure of femoral head, femoral head collapse and joint dysfunction. PRP may promote the repair of injured articular cartilage in patients with joint diseases through the removal of harmful inflammatory factors. In the present study, the therapeutic effects and primary mechanism of PRP action were investigated using a glucocorticoid-induced femoral head osteonecrosis mouse model. Dexamethasone (DEX) and phosphate-buffered saline were used as controls. The therapeutic efficacy of PRP to treat osteonecrosis in murine femoral heads was evaluated by assessing clinical arthritis scores. The present study indicated that mice with osteonecrosis of the femoral head treated with PRP exhibited downregulated expression of interleukin (IL)-17A, IL-1β, tumor necrosis factor-α, receptor activator of nuclear factor κ-B ligand, IL-6 and interferon-γ in the inflammatory tissue. In addition, the levels of hepatocyte growth factor, intercellular adhesion molecule-1, osteopontin, platelet-derived endothelial cell growth factor, vascular endothelial growth factor, platelet-derived growth factor, insulin-like growth factor-1 and transforming growth factor-β were increased following treatment with PRP. Joint tissue histological staining demonstrated that PRP alleviated osteonecrosis of the femoral head and reduced humoral and cellular immune responses that promoted beneficial effects on the histological parameters. Furthermore, the concentration of glucocorticoids were significantly decreased in the serum of PRP-treated mice with osteonecrosis compared with the DEX group (P<0.01). Notably, PRP promoted beneficial effects in mice with osteonecrosis of the femoral head by stimulating angiogenesis. Therefore, the present study indicated that treatment with PRP promotes beneficial effects by preventing joint inflammation, cartilage destruction and bone damage, and stimulating the repair of joint tissue in mice with osteonecrosis of the femoral head. These preclinical data suggest that PRP may be developed as a novel method of treating osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Shichao Tong
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200231, P.R. China
| | - Jimin Yin
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200231, P.R. China
| | - Ji Liu
- Department of Orthopedics, Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
25
|
Retinoid interferon-induced mortality19 (GRIM19) inhibits proliferation and invasion in rheumatoid arthritis fibroblast-like synoviocytes. Biomed Pharmacother 2018; 98:719-725. [DOI: 10.1016/j.biopha.2017.12.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 01/10/2023] Open
|
26
|
Huang G, Hua S, Yang T, Ma J, Yu W, Chen X. Platelet-rich plasma shows beneficial effects for patients with knee osteoarthritis by suppressing inflammatory factors. Exp Ther Med 2018; 15:3096-3102. [PMID: 29599843 DOI: 10.3892/etm.2018.5794] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
Knee osteoarthritis is a degenerative disease that may develop due ageing, obesity, strain, congenital abnormal joints, joint deformity or trauma. It is caused by many factors, such as degradation of articular cartilage injury, joint edge and subchondral bone hyperplasia of reactivity. Platelet-rich plasma (PRP) is an autologous blood sample that contains highly concentrated platelets and multiple cell growth factors. PRP promotes synovial cell proliferation and differentiation and may recover cartilage morphology. In the present study, the clinical efficacy of PRP was investigated in patients with knee osteoarthritis aged between 18 and 30 years in a phase-III clinical study. Following an 8-week baseline, patients with knee osteoarthritis were randomized into once-weekly, double-blind treatment with PRP (2-14 ml) or placebo groups. The results indicated that patients with osteoarthritis treated with PRP had modulated plasma concentrations of inflammatory factors and pro-angiogenic factors compared with the placebo group. Treatment responses were assessed by median percent reduction in inflammatory and pro-angiogenic factors and these improved with PRP treatment compared with the placebo. Clinical data indicated that PRP alleviated knee osteoarthritis and reduced humoral and cellular immune responses that led to beneficial effects on histological parameters. Inflammation was significantly alleviated in patients receiving PRP compared with the placebo group. The most common treatment-emergent adverse events in the presence of PRP were hypertension and proteinuria. In conclusion, treatment with PRP for patients with knee osteoarthritis presented beneficial effects in alleviating joint inflammation, cartilage destruction and bone damage, and repairing joint tissue. These results suggested that PRP may be a potential therapeutic agent for knee osteoarthritis.
Collapse
Affiliation(s)
- Guilin Huang
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Sha Hua
- Department of Rheumatism, Immunity Branch, Xi'an No.5 Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Tuanmin Yang
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Jianbing Ma
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Wenxing Yu
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Xiujin Chen
- Department of Orthopedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
27
|
Khansai M, Phitak T, Klangjorhor J, Udomrak S, Fanhchaksai K, Pothacharoen P, Kongtawelert P. Effects of sesamin on primary human synovial fibroblasts and SW982 cell line induced by tumor necrosis factor-alpha as a synovitis-like model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:532. [PMID: 29237438 PMCID: PMC5729244 DOI: 10.1186/s12906-017-2035-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic synovitis, cartilage degradation and bone deformities. Synovitis is the term for inflammation of the synovial membrane, an early stage of RA. The pathogenesis of the disease occurs through cytokine induction. The major cytokine that increases the severity of RA is TNF-α. Thus, inhibition of the TNF-α cascade is an effective way to diminish the progression of the disease. We are interested in investigating the difference between primary human synovial fibroblast (hSF) cells and SW982 as synovitis models induced by TNF-α and in monitoring their responses to sesamin as an anti-inflammatory phytochemical. METHOD The designed experiments were performed in hSF cells or the SW982 cell line treated with 10 ng/ml TNF-α with or without 0.25, 0.5 or 1 μM sesamin. Subsequently, pro-inflammatory cytokine genes and proteins were measured in parallel with a study of associated signalling transduction involved in inflammatory processes, including NF-κB and MAPK pathways. RESULTS The results demonstrated that although hSF and SW982 cells responded to TNF-α induction in the same fashion, they reacted at different levels. TNF-α could induce IL-6, IL-8 and IL-1β in both cell types, but the levels in SW982 cells were much higher than in hSF cells. This characteristic was due to the different induction of MAPKs in each cell type. Both cell types reacted to sesamin in almost the same fashion. However, hSF cells were more sensitive to sesamin than SW982 cells in terms of the anti-RA effect. CONCLUSIONS The responses of TNF-α-induced hSF and SW982 were different at the signal transduction level. However, the two cell types showed almost the same reaction to sesamin treatment in terms of the end point of the response.
Collapse
Affiliation(s)
- Manatsanan Khansai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jeerawan Klangjorhor
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasimol Udomrak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanda Fanhchaksai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Wu HY, Tang XQ, Liu H, Mao XF, Wang YX. Both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB signal pathways mediate exenatide-stimulated expression of M2 microglial markers. J Neuroimmunol 2017; 316:17-22. [PMID: 29249556 DOI: 10.1016/j.jneuroim.2017.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
GLP-1 receptor agonists, exenatide and GLP-1, promoted M2 type polarization in monocytes/macrophages and microglial cells. This study explored the signal basis underlying exenatide-stimulated expression of M2 microglia-specific genes, including the cytoplasmic marker Arg 1, surface marker CD206, and secretion protein marker IL-4. Treatment with exenatide in cultured primary microglial cells concentration dependently stimulated the expression of Arg 1, CD206 and IL-4, but did not significantly alter LPS-stimulated expression of TNF-α, IL-1β and IL-6. The stimulatory effects of exenatide were completely prevented by the GLP-1 receptor antagonist exendin(9-39), but not altered by application of LPS. Furthermore, the adenylyl cyclase inhibitor DDA, PKA inhibitor H89 and CREB inhibitor KG501 completely blocked exenatide-induced overexpression of Arg 1, CD206 and IL-4. In addition, exenatide-stimulated expression of Arg 1 and CD206 was totally blocked by the p38 MAPK inhibitor SB203580 and gene silencer siRNA/p38β (but not siRNA/p38α), whereas the expressed IL-4 was not significantly altered by the p38 inhibitor or other MAPK subtype inhibitors. These findings revealed that both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB mediated GLP-1 receptor agonism-induced overexpression of M2 microglial biomarkers.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
29
|
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. PHARMACEUTICAL BIOLOGY 2017; 55:5-18. [PMID: 27650551 PMCID: PMC7012004 DOI: 10.1080/13880209.2016.1225775] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 06/13/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Increasing incidence and impact of inflammatory diseases have encouraged the search of new pharmacological strategies to face them. Licorice has been used to treat inflammatory diseases since ancient times in China. OBJECTIVE To summarize the current knowledge on anti-inflammatory properties and mechanisms of compounds isolated from licorice, to introduce the traditional use, modern clinical trials and officially approved drugs, to evaluate the safety and to obtain new insights for further research of licorice. METHODS PubMed, Web of Science, Science Direct and ResearchGate were information sources for the search terms 'licorice', 'licorice metabolites', 'anti-inflammatory', 'triterpenoids', 'flavonoids' and their combinations, mainly from year 2010 to 2016 without language restriction. Studies were selected from Science Citation Index journals, in vitro studies with Jadad score less than 2 points and in vivo and clinical studies with experimental flaws were excluded. RESULTS Two hundred and ninety-five papers were searched and 93 papers were reviewed. Licorice extract, 3 triterpenes and 13 flavonoids exhibit evident anti-inflammatory properties mainly by decreasing TNF, MMPs, PGE2 and free radicals, which also explained its traditional applications in stimulating digestive system functions, eliminating phlegm, relieving coughing, nourishing qi and alleviating pain in TCM. Five hundred and fifty-four drugs containing licorice have been approved by CFDA. The side effect may due to the cortical hormone like action. CONCLUSION Licorice and its natural compounds have demonstrated anti-inflammatory activities. More pharmacokinetic studies using different models with different dosages should be carried out, and the maximum tolerated dose is also critical for clinical use of licorice extract and purified compounds.
Collapse
Affiliation(s)
- Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Chuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yong-Sheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Namba S, Nakano R, Kitanaka T, Kitanaka N, Nakayama T, Sugiya H. ERK2 and JNK1 contribute to TNF-α-induced IL-8 expression in synovial fibroblasts. PLoS One 2017; 12:e0182923. [PMID: 28806729 PMCID: PMC5555573 DOI: 10.1371/journal.pone.0182923] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) induces the expression and secretion of interleukin 8 (IL-8), which contributes to synovitis in rheumatoid arthritis (RA). To elucidate the mechanism of the onset of RA, we used synovial fibroblasts without autoimmune inflammatory diseases and investigated MAPK signaling pathways in TNF-α-induced IL-8 expression. Synovial fibroblasts isolated from healthy dogs were characterized by flow cytometry, which were positive for the fibroblast markers CD29, CD44, and CD90 but negative for the hematopoietic cell markers CD14, CD34, CD45, and HLA-DR. TNF-α stimulated the secretion and mRNA expression of IL-8 in a time- and dose-dependent manner. ERK and JNK inhibitors attenuated TNF-α-induced IL-8 expression and secretion. TNF-α induced the phosphorylation of ERK1/2 and JNK1/2. TNF-α-induced IL-8 expression was attenuated both in ERK2- and JNK1-knockdown cells. TNF-α-induced ERK1/2 or JNK1/2 was observed in ERK2- or JNK1-knockdown cells, respectively, showing that there is no crosstalk between ERK2 and JNK1 pathways. These observations indicate that the individual activation of ERK2 and JNK1 pathways contributes to TNF-α-induced IL-8 expression in synovial fibroblasts, which appears to be involved in the progress in RA.
Collapse
Affiliation(s)
- Shinichi Namba
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
31
|
Tong S, Zhang C, Liu J. Platelet-rich plasma exhibits beneficial effects for rheumatoid arthritis mice by suppressing inflammatory factors. Mol Med Rep 2017; 16:4082-4088. [PMID: 28765945 DOI: 10.3892/mmr.2017.7091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 03/21/2017] [Indexed: 11/05/2022] Open
Abstract
Platelet-rich plasma (PRP) is a multifunctional blood product containing highly concentrated platelets, and various cell growth factors which promote cell proliferation and differentiation. PRP exhibited benefits in injurious articular cartilage repair and the removal of inflammatory factors in clinical studies. Rheumatoid arthritis (RA) is an autoimmune disease manifesting primarily as inflammatory arthritis, which is associated with notable morbidity in humans. In the present study, the therapeutic effects and primary mechanism of PRP on a type II collagen‑induced arthritis (CIA) mouse model was investigated. Inflammatory factors interleukin (IL)‑6, IL‑8, IL‑17, IL‑1β, tumor necrosis factor (TNF)‑α and interferon (IFN)‑γ were analyzed in PRP and PBS‑treated groups. Vascular endothelial growth factor (VEGF), platelet‑derived growth factor (PDGF), insulin‑like growth factor (IGF)‑1 and transforming growth factor (TGF)‑β expression in peripheral whole blood was additionally analyzed. The therapeutic efficacy of PRP for RA mice was evaluated using clinical arthritis scores. The results of the present study demonstrated that treatment with PRP alleviated arthritis, and reduced humoral and cellular immune responses, leading to beneficial effects on histological parameters as observed using joint tissue histological staining. CIA mice treated with PRP exhibited downregulated expression of IL‑6, IL‑8, IL‑17A, IL‑1β, TNF‑α, receptor activator for nuclear factor‑κB and IFN‑γ in inflammatory tissue. In addition, VEGF, PDGF, IGF‑1 and TGF‑β expression in peripheral whole blood was increased following treatment with PRP. The serum concentration of anti‑collagen antibody was decreased in PRP‑treated CIA mice. In conclusion, CIA mice treated with PRP exhibited beneficial effects, including decreased joint inflammation, cartilage destruction and bone damage, and increased repair of joint tissue. The results of the present study suggested that PRP may be an effective therapeutic agent for RA.
Collapse
Affiliation(s)
- Shichao Tong
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Changqing Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Ji Liu
- Department of Orthopedics, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
32
|
Acceleration of tendon-bone healing of anterior cruciate ligament graft using intermittent negative pressure in rabbits. J Orthop Surg Res 2017; 12:60. [PMID: 28420425 PMCID: PMC5395760 DOI: 10.1186/s13018-017-0561-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Background The purpose of this study was to test effects of negative pressure on tendon–bone healing after reconstruction of anterior cruciate ligament (ACL) in rabbits. Methods Hind legs of 24 New Zealand White rabbits were randomly selected as negative pressure group and the contralateral hind legs as control. Reconstruction of the ACL was done. Joints of the negative pressure side were placed with drainage tubes connecting the micro-negative pressure aspirator. Control side was placed with ordinary drainage tubes. Drainage tubes on both sides were removed at the same time 5 days after operation. After 6 weeks, joint fluid was drawn to detect the expression levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α); at the same time, femur–ligament–tibia complex was obtained to determine tendon graft tension and to observe the histomorphology, blood vessels of the tendon–bone interface, and expression of vascular endothelial growth factor (VEGF). Results The maximum load breakage of tendon graft was significantly greater in the negative pressure group than in the control group (P < 0.05). Histological studies of the tendon–bone interface found that there was more new bone formation containing chondroid cells and aligned connective tissue in the negative pressure group than in the control group. Expression of VEGF was higher in the negative pressure group than in the control group (P < 0.01). Content of IL-1β and TNF-α in synovial fluid is lower in the negative pressure group than in the control group (P < 0.01). Conclusions Intermittent negative pressure plays an active role in tendon–bone healing and creeping substitution of ACL reconstruction in the rabbits.
Collapse
|
33
|
Lin Y, Luo Z. NLRP6 facilitates the interaction between TAB2/3 and TRIM38 in rheumatoid arthritis fibroblast-like synoviocytes. FEBS Lett 2017; 591:1141-1149. [PMID: 28295271 DOI: 10.1002/1873-3468.12622] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
In the present study, we investigated the role of nucleotide oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) in rheumatoid arthritis (RA) and explored the underlying mechanism. We found that both mRNA and protein levels of NLRP6 are attenuated in synovial tissues and fibroblast-like synoviocytes (FLS) of RA patients compared to patients with osteoarthritis. We also observed that pro-inflammatory cytokine production is decreased and nuclear factor-kappa B activation is inhibited in NLRP6-overexpressing RA-FLS. Furthermore, we found that NLRP6 overexpression promotes transforming growth factor-b-activated kinase 1-binding protein 2/3 lysosome-dependent degradation, and we provide evidence showing that NLRP6 plays the role of providing the docking site to facilitate the interaction between transforming growth factor-b-activated kinase 1-binding protein 2/3 and tripartite motif 38 in RA-FLS.
Collapse
Affiliation(s)
- Yang Lin
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengqiang Luo
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Nakashyan V, Tipton DA, Karydis A, Livada R, Stein SH. Effect of 1,25(OH) 2 D 3 and 20(OH)D 3 on interleukin-1β-stimulated interleukin-6 and -8 production by human gingival fibroblasts. J Periodontal Res 2017; 52:832-841. [PMID: 28345770 DOI: 10.1111/jre.12452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Vitamin D-1,25(OH)2 D3 or 1,25D3-maintains healthy osseous tissue, stimulates the production of the antimicrobial peptide cathelicidin and has anti-inflammatory effects, but it can cause hypercalcemia. Evidence links diminished serum levels of 1,25D3 with increased gingival inflammation. Periodontitis progression is associated with increased local production of inflammatory mediators by immune cells and gingival fibroblasts. These include interleukin (IL)-6, a regulator of osteoclastic bone resorption, and the neutrophil chemoattractant IL-8, both regulated by signaling pathways, including NF-κB and MAPK/AP-1. The objectives were to determine the effects of 1,25D3 or a non-calcemic analog, 20-hydroxyvitamin D3 -20(OH)D3 or 20D3-on IL-1β-stimulated IL-6 and IL-8 production, and NF-κB and MAPK/AP-1 activation, by human gingival fibroblasts. MATERIAL AND METHODS Human gingival fibroblasts were incubated ± IL-1β, with or without exposure to 1,25D3 or 20D3. IL-6 and IL-8 in culture supernatants were measured by enzyme-linked immunosorbent assay. NF-κB (p65) and AP-1 (phospho-cJun) and were measured in nuclear extracts via binding to specific oligonucleotides. Data were analyzed using ANOVA and Scheffe's F procedure for post hoc comparisons. RESULTS IL-1β-stimulated IL-6 and IL-8 levels were both significantly inhibited (40%-60%) (P<.045) by 1,25D3, but not 20D3 (0%-15% inhibition, not statistically significant). Both 1,25D3 and 20D3 significantly and similarly inhibited IL-1β-stimulated nuclear levels of p65 and phospho-cJun (P<.02). CONCLUSION Reduction of the activation of NF-κB and AP-1 alone is not able to inhibit strongly the IL-1β stimulated IL-6 and IL-8 gene expression. 1,25D3 but not 20D3 may affect some of the many other factors/processes/pathways that in turn regulate the expression of these genes. However, the results suggest that topical application of ligands of the vitamin D receptor may be useful in the local treatment of periodontitis while reducing adverse systemic effects.
Collapse
Affiliation(s)
- V Nakashyan
- College of Dentistry, Department of Periodontology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D A Tipton
- College of Dentistry, Department of Periodontology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Karydis
- College of Dentistry, Department of Periodontology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - R Livada
- College of Dentistry, Department of Periodontology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S H Stein
- College of Dentistry, Department of Periodontology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
35
|
Wu P, Ma G, Zhu X, Gu T, Zhang J, Sun Y, Xu H, Huo R, Wang B, Shen B, Chen X, Li N. Cyr61/CCN1 is involved in the pathogenesis of psoriasis vulgaris via promoting IL-8 production by keratinocytes in a JNK/NF-κB pathway. Clin Immunol 2017; 174:53-62. [DOI: 10.1016/j.clim.2016.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/06/2016] [Accepted: 11/11/2016] [Indexed: 12/27/2022]
|
36
|
Na HS, Song YR, Kim S, Heo JY, Chung HY, Chung J. Aloin Inhibits Interleukin (IL)-1β−Stimulated IL-8 Production in KB Cells. J Periodontol 2016; 87:e108-15. [DOI: 10.1902/jop.2016.150447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells. Tumour Biol 2015; 37:4991-9. [PMID: 26537583 DOI: 10.1007/s13277-015-4345-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.
Collapse
|
38
|
Rosillo MA, Sánchez-Hidalgo M, González-Benjumea A, Fernández-Bolaños JG, Lubberts E, Alarcón-de-la-Lastra C. Preventive effects of dietary hydroxytyrosol acetate, an extra virgin olive oil polyphenol in murine collagen-induced arthritis. Mol Nutr Food Res 2015; 59:2537-46. [DOI: 10.1002/mnfr.201500304] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Erik Lubberts
- Department of Rheumatology; Erasmus MC; University Medical Center; Rotterdam The Netherlands
| | | |
Collapse
|
39
|
Hawtree S, Muthana M, Wilkinson JM, Akil M, Wilson AG. Histone deacetylase 1 regulates tissue destruction in rheumatoid arthritis. Hum Mol Genet 2015; 24:5367-77. [DOI: 10.1093/hmg/ddv258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/03/2015] [Indexed: 01/03/2023] Open
|
40
|
To WS, Aungier SR, Cartwright AJ, Ito K, Midwood KS. Potent anti-inflammatory effects of the narrow spectrum kinase inhibitor RV1088 on rheumatoid arthritis synovial membrane cells. Br J Pharmacol 2015; 172:3805-16. [PMID: 25891413 PMCID: PMC4523337 DOI: 10.1111/bph.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/29/2015] [Accepted: 04/08/2015] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose To investigate whether a narrow spectrum kinase inhibitor RV1088, which simultaneously targets specific MAPKs, Src and spleen tyrosine kinase (Syk), is more effective at inhibiting inflammatory signalling in rheumatoid arthritis (RA) than single kinase inhibitors (SKIs). Experimental Approach elisas were used to determine the efficacy of RV1088, clinically relevant SKIs and the pharmaceutical Humira on pro-inflammatory cytokine production by activated RA synovial fibroblasts, primary human monocytes and macrophages, as well as spontaneous cytokine synthesis by synovial membrane cells from RA patients. In human macrophages, RNAi knockdown of individual kinases was used to reveal the effect of inhibition of kinase expression on cytokine synthesis. Key Results RV1088 reduced TNF-α, IL-6 and IL-8 production in all individual activated cell types with low, nM, IC50s. SKIs, and combinations of SKIs, were significantly less effective than RV1088. RNAi of specific kinases in macrophages also caused only modest inhibition of pro-inflammatory cytokine production. RV1088 was also significantly more effective at inhibiting IL-6 and IL-8 production by monocytes and RA synovial fibroblasts compared with Humira. Finally, RV1088 was the only inhibitor that was effective in reducing TNF-α, IL-6 and IL-8 synthesis in RA synovial membrane cells with low nM IC50s. Conclusions and Implications This study demonstrates potent anti-inflammatory effect of RV1088, highlighting that distinct signalling pathways drive TNF-α, IL-6 and IL-8 production in the different cell types found in RA joints. As such, targeting numerous signalling pathways simultaneously using RV1088 could offer a more powerful method of reducing inflammation in RA than targeting individual kinases.
Collapse
Affiliation(s)
- Wing S To
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Susan R Aungier
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alison J Cartwright
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kazuhiro Ito
- Airway Disease, National Heart and Lung Institute, Imperial College, London, UK
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Hong C, Shen C, Ding H, Huang S, Mu Y, Su H, Wei W, Ma J, Zheng F. An involvement of SR-B1 mediated p38 MAPK signaling pathway in serum amyloid A-induced angiogenesis in rheumatoid arthritis. Mol Immunol 2015; 66:340-5. [PMID: 25932604 DOI: 10.1016/j.molimm.2015.03.254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
Serum amyloid A (SAA) has been reported high expression in autoimmune diseases, such as rheumatoid arthritis (RA). However, detailed molecular mechanisms induced by SAA in the pathogenesis of RA are still unclear. Herein, we focused on the role of SAA-SR-B1 mediated p38 MAPK signaling pathway in the process of RA angiogenesis. Our results showed that both SAA and SR-B1 predominantly localized to vascular endothelial cells, lining and sublining layers in RA synovium. In a series of in vitro experiments with human umbilical vein endothelial cells (HUVECs), SAA induced the endothelial cells (ECs) proliferation, migration and tube formation. However, blockage of SR-B1 and p38 MAPK inhibited SAA-induced cells proliferation, migration and tube formation. In conclusion, our data showed a possible molecular mechanism for SAA-SR-B1 induced angiogenesis events via p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chengcheng Hong
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Chen Shen
- Departmemt of Medical Laboratory, Jining No.1 People's Hospital, 272011 Shandong Province, China
| | - Hongmei Ding
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Shanshan Huang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Yun Mu
- Department of Medical Laboratory, Tianjin Children's Hospital, 300074 Tianjin, China
| | - Huihui Su
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Wei Wei
- Department of Rheumatology, General Hospital, Tianjin Medical University, 300052 Tianjin, China
| | - Jun Ma
- Department of Health Statistics, College of Public Health, Tianjin Medical University, 300203, Tianjin, China.
| | - Fang Zheng
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China.
| |
Collapse
|
42
|
Dietary extra-virgin olive oil prevents inflammatory response and cartilage matrix degradation in murine collagen-induced arthritis. Eur J Nutr 2015; 55:315-25. [DOI: 10.1007/s00394-015-0850-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
|
43
|
Zhu X, Xiao L, Huo R, Zhang J, Lin J, Xie J, Sun S, He Y, Sun Y, Zhou Z, Shen B, Li N. Cyr61 is involved in neutrophil infiltration in joints by inducing IL-8 production by fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2014; 15:R187. [PMID: 24517278 PMCID: PMC3978874 DOI: 10.1186/ar4377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction It is well known that neutrophils play very important roles in the development of rheumatoid arthritis (RA) and interleukin (IL)-8 is a critical chemokine in promoting neutrophil migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in RA promotes FLS proliferation and Th17 cell differentiation, thus Cyr61 is a pro-inflammatory factor in RA pathogenesis. In this study, we explored the role of Cyr61 in neutrophil migration to the joints of RA patients. Methods RA FLS were treated with Cyr61 and IL-8 expression was analyzed by real-time PCR and ELISA. The migration of neutrophils recruited by the culture supernatants was determined by the use of a chemotaxis assay. Mice with collagen-induced arthritis (CIA) were treated with anti-Cyr61 monoclonal antibodies (mAb), or IgG1 as a control. Arthritis severity was determined by visual examination of the paws and joint destruction was determined by hematoxylin-eosin (H&E) staining. Signal transduction pathways in Cyr61-induced IL-8 production were investigated by real-time PCR, western blotting, confocal microscopy, luciferase reporter assay or chromatin immunoprecipitation (ChIP) assay. Results We found that Cyr61 induced IL-8 production by RA FLS in an IL-1β and TNF-α independent pathway. Moreover, we identified that Cyr61-induced IL-8-mediated neutrophil migration in vitro. Using a CIA animal model, we found that treatment with anti-Cyr61 mAb led to a reduction in MIP-2 (a counterpart of human IL-8) expression and decrease in neutrophil infiltration, which is consistent with an attenuation of inflammation in vivo. Mechanistically, we showed that Cyr61 induced IL-8 production in FLS via AKT, JNK and ERK1/2-dependent AP-1, C/EBPβ and NF-κB signaling pathways. Conclusions Our results here reveal a novel role of Cyr61 in the pathogenesis of RA. It promotes neutrophil infiltration via up-regulation of IL-8 production in FLS. Taken together with our previous work, this study provides further evidence that Cyr61 plays a key role in the vicious cycle formed by the interaction between infiltrating neutrophils, proliferated FLS and activated Th17 cells in the development of RA.
Collapse
|
44
|
Zhou JJ, Ma JD, Mo YQ, Zheng DH, Chen LF, Wei XN, Dai L. Down-regulating peroxisome proliferator-activated receptor-gamma coactivator-1 beta alleviates the proinflammatory effect of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting extracellular signal-regulated kinase, p38 and nuclear factor-kappaB activation. Arthritis Res Ther 2014; 16:472. [PMID: 25367151 PMCID: PMC4237730 DOI: 10.1186/s13075-014-0472-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/16/2014] [Indexed: 11/28/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction and disability. Peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1β) is a transcriptional coactivator that plays important roles in regulating multiple aspects of energy metabolism and cytokine signaling pathways. PGC-1β overexpression leads to the attenuation of macrophage-mediated inflammation. In this study, we aimed to determine the expression of PGC-1β in RA synovium and fibroblast-like synoviocytes (FLS), and explore the mechanisms of PGC-1β on both the proinflammatory effects and apoptosis in RA-FLS. Methods Synovium was obtained from 31 patients with active RA, as well as 13 osteoarthritis (OA) and 10 orthopedic arthropathies (Orth.A) as “less inflamed” disease controls. FLS were then isolated and cultured. Synovial PGC-1β expression was determined by immunohistochemistry staining, while FLS PGC-1β expression was detected by immunofluorescence staining, quantitative real-time PCR (qPCR) assay and western blot. PGC-1β was depleted by lentivirus sh-RNA, and up-regulated by pcDNA3.1- PGC-1β. The expression of proinflammatory cytokines, matrix metalloproteinases and receptor activator of nuclear factor-kappaB ligand was analyzed by qPCR, cytometric bead array and western blot. The expression of mitogen-activated protein kinases and nuclear factor-kappaB (NF-κB) was determined by qPCR and western blot. Besides, cell apoptosis was examined using flow cytometry. The interaction between PGC-1β and NF-κB was performed by dual-luciferase reporter gene assays. Results (A) Synovial PGC-1β was over-expressed in RA patients compared with OA or Orth.A patients. (B) PGC-1β expression significantly increased in RA-FLS compared with OA-FLS. (C) PGC-1β mediated the expression of proinflammatory cytokines and apoptosis through extracellular signal-regulated kinase (ERK), p38 and NF-κB in RA-FLS. (D) PGC-1β mediated NF-κB transcription in RA-FLS, but did not affect ERK and p38. Conclusion The results indicate that PGC-1β may play important roles in the proinflammatory effects and apoptosis of RA-FLS.
Collapse
|
45
|
Le Goff B, Singbrant S, Tonkin BA, Martin TJ, Romas E, Sims NA, Walsh NC. Oncostatin M acting via OSMR, augments the actions of IL-1 and TNF in synovial fibroblasts. Cytokine 2014; 68:101-9. [DOI: 10.1016/j.cyto.2014.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/02/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
46
|
Pesce M, Felaco P, Franceschelli S, Speranza L, Grilli A, De Lutiis MA, Ferrone A, Sirolli V, Bonomini M, Felaco M, Patruno A. Effect of erythropoietin on primed leucocyte expression profile. Open Biol 2014; 4:140026. [PMID: 24920275 PMCID: PMC4077059 DOI: 10.1098/rsob.140026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/20/2014] [Indexed: 02/04/2023] Open
Abstract
Resistance to erythropoietin (EPO) affects a significant number of anaemic patients with end-stage renal disease. Previous reports suggest that inflammation is one of the major independent predictors of EPO resistance, and the effects of EPO treatment on inflammatory mediators are not well established. The aim of this study was to investigate EPO-induced modification to gene expression in primary cultured leucocytes. Microarray experiments were performed on primed ex vivo peripheral blood mononuclear cells (PBMCs) and treated with human EPO-α. Data suggested that EPO-α modulated genes involved in cell movement and interaction in primed PBMCs. Of note, EPO-α exerts anti-inflammatory effects inhibiting the expression of pro-inflammatory cytokine IL-8 and its receptor CXCR2; by contrast, EPO-α increases expression of genes relating to promotion of inflammation encoding for IL-1β and CCL8, and induces de novo synthesis of IL-1α, CXCL1 and CXCL5 in primed cells. The reduction in MAPK p38-α activity is involved in modulating both IL-1β and IL-8 expression. Unlike the induction of MAPK, Erk1/2 activity leads to upregulation of IL-1β, but does not affect IL-8 expression and release. Furthermore, EPO-α treatment of primed cells induces the activation of caspase-1 upstream higher secretion of IL-1β, and this process is not dependent on caspase-8 activation. In conclusion, our findings highlight new potential molecules involved in EPO resistance and confirm the anti-inflammatory role for EPO, but also suggest a plausible in vivo scenario in which the positive correlation found between EPO resistance and elevated levels of some pro-inflammatory mediators is due to treatment with EPO itself.
Collapse
Affiliation(s)
- Mirko Pesce
- Department of Psychological, Humanistic and Territorial Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Paolo Felaco
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Sara Franceschelli
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Alfredo Grilli
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Maria Anna De Lutiis
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Mario Bonomini
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University 'G. D'Annunzio', Chieti, Italy
| |
Collapse
|
47
|
Kwon YJ, Lee SW, Park YB, Lee SK, Park MC. Secreted frizzled-related protein 5 suppresses inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes through down-regulation of c-Jun N-terminal kinase. Rheumatology (Oxford) 2014; 53:1704-11. [PMID: 24764263 DOI: 10.1093/rheumatology/keu167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE This study was performed to investigate the effect of secreted frizzled-related protein 5 (Sfrp5), a novel anti-inflammatory adipokine that competes with the frizzled proteins for Wnt binding, on inflammatory response and the c-Jun N-terminal kinase (JNK) signalling pathway in RA. METHODS Expression of Sfrp5 mRNA in peripheral blood mononuclear cells (PBMCs) and fibroblast-like synoviocytes (FLSs) from patients with RA and OA was determined using real-time quantitative PCR (qPCR). Sfrp5 RNA interference (RNAi) plasmids were transfected to abrogate Sfrp5 expression in RA FLSs, and adenovirus containing the Sfrp5 transcript was delivered into RA FLSs to strengthen Sfrp5 expression. Levels of pro-inflammatory genes and their protein products were determined using real-time qPCR and ELISA in RA FLSs. Production of mitogen-activated protein kinase kinase 7 (MKK-7), JNK and c-Jun were assessed by Western blot analysis. RESULTS Expression of Sfrp5 mRNA was decreased in PMBCs and FLSs from patients with RA compared with patients with OA. Gene expression and production of IL-1β, IL-6, chemokine ligand 2 (CCL-2), CCL-7, cyclooxygenase 2 and MMP-9 were markedly increased in Sfrp5 RNAi plasmid-transfected RA FLSs, while transfection with adenoviral vectors encoding Sfrp5 induced reductions in those levels. Phosphorylated forms of MKK-7, JNK and c-Jun were increased by Sfrp5 RNAi plasmids and were decreased by adenoviral vectors encoding Sfrp5. CONCLUSION Sfrp5 suppressed the inflammatory response and down-regulated JNK signalling in RA FLSs. These findings provide evidence for the anti-inflammatory effect of Sfrp5 in RA.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo-Kon Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
48
|
Nishikawa M, Owaki H, Takahi K, Fuji T. Disease activity, knee function, and walking ability in patients with rheumatoid arthritis 10 years after primary total knee arthroplasty. J Orthop Surg (Hong Kong) 2014; 22:84-7. [PMID: 24781621 DOI: 10.1177/230949901402200121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To evaluate disease activity, knee function, and walking ability of patients with rheumatoid arthritis (RA) over 10 years after total knee arthroplasty (TKA). METHODS Four men and 26 women (mean age, 59.9 years) underwent 42 TKAs for RA with a mean duration of 151.3 months and were followed up for a mean of 142.3 months. Preoperatively, disease activity was assessed by C-reactive protein (CRP) level only, and the range of knee motion was recorded. At the final follow-up, tender joint count, swollen joint count, visual analogue scale of RA symptoms, and the Modified Health Assessment Questionnaire (MHAQ) score were assessed. Disease activity was evaluated using CRP, matrix metalloproteinase-3, and Disease Activity Score. Range of motion and Knee Society knee and function scores were also assessed. RESULTS The use of methotrexate increased from 4 patients preoperatively to 20 patients at the final follow-up (p<0.001), and the mean dose increased from 3.9 to 6.3 mg/week (p<0.001). Among the 30 patients, the mean CRP level decreased from 2.63 mg/dl preoperatively to 0.61 mg/dl at the final follow-up (p<0.001). Disease activity was controlled. At the final follow-up, disease activity was in remission in 10 patients, low in 11, and moderate in 9. The mean Knee Society knee score was excellent (91.0), but the mean function score was poor (57.0) and diverse. Severe walking disability (function score, <40) was noted in 8 patients (11 TKAs). Knee and function scores did not correlate. CONCLUSION Walking ability in patients with RA after TKA was generally poor. Poor function was associated with a history of spinal or lower extremity fracture surgery and the MHAQ score.
Collapse
Affiliation(s)
| | - Hajime Owaki
- Department of Orthopaedic Surgery, Osaka Koseinenkin Hospital, Japan; Department of Rheumatology, Osaka Koseinenkin Hospital, Osaka, Japan
| | - Koichiro Takahi
- Department of Orthopaedic Surgery, National Hospital Organization Toneyama National Hospital, Osaka, Japan
| | - Takeshi Fuji
- Department of Orthopaedic Surgery, Osaka Koseinenkin Hospital, Japan
| |
Collapse
|
49
|
Wada TT, Araki Y, Sato K, Aizaki Y, Yokota K, Kim YT, Oda H, Kurokawa R, Mimura T. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem Biophys Res Commun 2014; 444:682-6. [DOI: 10.1016/j.bbrc.2014.01.195] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022]
|
50
|
MacNeil AJ, Junkins RD, Wu Z, Lin TJ. Stem cell factor induces AP-1-dependent mast cell IL-6 production via MAPK kinase 3 activity. J Leukoc Biol 2014; 95:903-15. [PMID: 24453276 DOI: 10.1189/jlb.0713401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mast cells are critical immune effectors abundant in tissues interfacing with the environment and have major roles in allergen-induced inflammation and host responses to infection. SCF is a regulator of mast cell function and growth. However, the critical mechanisms in SCF-directed events remain incompletely defined. Here, we have investigated the role of MKK3 in mast cell SCF signaling-dependent functions by using BMMCs from MKK3-deficient mice. MKK3 was phosphorylated rapidly and persistently following SCF-induced activation and contributed to mast cell proliferation but not survival or migration in response to SCF. Analysis of SCF-induced mast cell mediator secretion demonstrated that IL-6 production is specifically dependent on MKK3 signals, both independently and in concert with IgE. Analysis of SCF-induced signaling showed that sustained p38 phosphorylation was impaired in MKK3-deficient mast cells, where as early JNK and IκBα activation were enhanced. Notably, SCF-inducible expression and activation of c-Jun, a component of the AP-1 transcription factor, was significantly dependent on MKK3. Accordingly, AP-1 DNA-binding activity and interaction with the IL6 gene promoter was markedly impaired in MKK3-deficient mast cells, whereas transcription factors of the Egr family, NF-κB, and NFAT retained near-full activity. These results designate MKK3 as a novel, positive regulator of SCF-induced mast cell proliferation and a critical signaling protein for AP-1-dependent IL-6 production.
Collapse
Affiliation(s)
- Adam J MacNeil
- Departments of Microbiology & Immunology and Pediatrics, Dalhousie University, and Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Robert D Junkins
- Departments of Microbiology & Immunology and Pediatrics, Dalhousie University, and Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Zhengli Wu
- Departments of Microbiology & Immunology and Pediatrics, Dalhousie University, and Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Departments of Microbiology & Immunology and Pediatrics, Dalhousie University, and Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|