1
|
Song L, Yang C, Ji G, Hu R. The role and potential treatment of macrophages in patients with infertility and endometriosis. J Reprod Immunol 2024; 166:104384. [PMID: 39442472 DOI: 10.1016/j.jri.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Endometriosis is characterized as a macrophage-related ailment due to its strong link with immune dysfunction. Understanding the status of macrophage polarization in the context of endometriosis-related infertility is crucial for advancing diagnostic and therapeutic strategies. Our comprehensive review delves into the foundational understanding of macrophages and their profound influence on both endometriosis and infertility. Additionally, we illuminate the complex role of macrophages in infertility and endometriosis specifically. Finally, we focused on four critical dimensions: follicular fluid, the intraperitoneal environment, endometrial receptivity, and strategies for managing endometriosis. It is clear that throughout the progression of endometriosis, the diverse polarization states of macrophages play a pivotal role in the internal reproductive environment of infertile individuals grappling with this condition. Modulating macrophage polarization in the reproductive environment of endometriosis patients could address infertility challenges more effectively, offering a promising pathway for treating infertility associated with endometriosis.
Collapse
Affiliation(s)
- Linlin Song
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Caihong Yang
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guiyi Ji
- Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medical Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Rong Hu
- Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medical Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
2
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2024:dmae027. [PMID: 39331957 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Li S, Li Y, Sun Y, Feng G, Yang Z, Yan X, Gao X, Jiang Y, Du Y, Zhao S, Zhao H, Chen ZJ. Deconvolution at the single-cell level reveals ovarian cell-type-specific transcriptomic changes in PCOS. Reprod Biol Endocrinol 2024; 22:24. [PMID: 38373962 PMCID: PMC10875798 DOI: 10.1186/s12958-024-01195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders in females of childbearing age. Various types of ovarian cells work together to maintain normal reproductive function, whose discordance often takes part in the development and progression of PCOS. Understanding the cellular heterogeneity and compositions of ovarian cells would provide insight into PCOS pathogenesis, but are, however, not well understood. Transcriptomic characterization of cells isolated from PCOS cases have been assessed using bulk RNA-seq but cells isolated contain a mixture of many ovarian cell types. METHODS Here we utilized the reference scRNA-seq data from human adult ovaries to deconvolute and estimate cell proportions and dysfunction of ovarian cells in PCOS, by integrating various granulosa cells(GCs) transcriptomic data. RESULTS We successfully defined 22 distinct cell clusters of human ovarian cells. Then after transcriptome integration, we obtained a gene expression matrix with 13,904 genes within 30 samples (15 control vs. 15 PCOS). Subsequent deconvolution analysis revealed decreased proportion of small antral GCs and increased proportion of KRT8high mural GCs, HTRA1high cumulus cells in PCOS, especially increased differentiation from small antral GCs to KRT8high mural GCs. For theca cells, the abundance of internal theca cells (TCs) and external TCs was both increased. Less TCF21high stroma cells (SCs) and more STARhigh SCs were observed. The proportions of NK cells and monocytes were decreased, and T cells occupied more in PCOS and communicated stronger with inTCs and exTCs. In the end, we predicted the candidate drugs which could be used to correct the proportion of ovarian cells in patients with PCOS. CONCLUSIONS Taken together, this study provides insights into the molecular alterations and cellular compositions in PCOS ovarian tissue. The findings might contribute to our understanding of PCOS pathophysiology and offer resource for PCOS basic research.
Collapse
Affiliation(s)
- Shumin Li
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Yimeng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China
| | - Gengchen Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China
| | - Ziyi Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China
| | - Xueqi Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China
| | - Xueying Gao
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Yonghui Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanzhi Du
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.
| | - Zi-Jiang Chen
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, People's Republic of China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, People's Republic of China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, People's Republic of China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Shi Y, Guo Y, Zhou J, Cui G, Cheng J, Wu Y, Zhao Y, Fang L, Han X, Yang Y, Sun Y. A spatiotemporal gene expression and cell atlases of the developing rat ovary. Cell Prolif 2023; 56:e13516. [PMID: 37309718 PMCID: PMC10693188 DOI: 10.1111/cpr.13516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
Normal ovarian development is necessary for the production of healthy oocytes. However, the characteristics of oocytes development at different stages and the regulatory relationship between oocytes and somatic cells remain to be fully explained. Here, we combined scRNA-seq and spatial transcriptomic sequencing to profile the transcriptomic atlas of developing ovarian of the rat. We identified four components from developing granulosa cells including cumulus, primitive, mural, and luteal cells, and constructed their differential transcriptional regulatory networks. Several novel growth signals from oocytes to cumulus cells were identified, such as JAG1-NOTCH2 and FGF9-FGFR2. Moreover, we observed three cumulus sequential phases during follicle development determined by the key transcriptional factors in each cumulus phase (Bckaf1, Gata6, Cebpb, etc.), as well as the potential pinpointed roles of macrophages in luteal regression. Altogether, the single-cell spatial transcriptomic profile of the ovary provides not only a new research dimension for temporal and spatial analysis of ovary development, but also valuable data resources and a research basis for in-depth excavation of the mechanisms of mammalian ovary development.
Collapse
Affiliation(s)
- Yong Shi
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of medical sciencesZhengzhou UniversityZhengzhouChina
| | - Yanjie Guo
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiayi Zhou
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guanshen Cui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
| | - Jung‐Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ying Wu
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao Han
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
| | - Yun‐Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Yingpu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Feng Y, Tang Z, Zhang W. The role of macrophages in polycystic ovarian syndrome and its typical pathological features: A narrative review. Biomed Pharmacother 2023; 167:115470. [PMID: 37716116 DOI: 10.1016/j.biopha.2023.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine and metabolic disorder in women of childbearing age, with ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology (PCOM) as the clinical features. Androgen excess, insulin resistance, obesity, adipose tissue dysfunction, ovulatory dysfunction, and gut microbiota dysbiosis are the main pathological features and pathogenesis of PCOS and are related to systemic chronic low-grade inflammation and chronic ovarian tissue inflammation in PCOS. With the advances in immune-endocrine interaction studies, research on the role of immune cells in the occurrence and development of PCOS is gradually increasing. As the core of innate immunity, macrophages play an indispensable role in systemic inflammatory response. Meanwhile, they are involved in maintaining the stability and function of the ovary as the most abundant immune cells in ovarian tissue. Studies in humans and mice have found that the polarization of macrophages into M1 type plays multiple roles in the pathogenesis of PCOS. This review describes the distribution characteristics of macrophage subpopulations in patients and animal models with PCOS, discusses the role of macrophage-related metabolic inflammation in PCOS, and summarizes the relationship between macrophages and PCOS-related pathological features and its possible mechanisms, to further understand the pathogenesis of PCOS and reveal the role of macrophages in it. In addition, research on immune-endocrine interactions can also provide direction for finding new therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhijing Tang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zaniker EJ, Babayev E, Duncan FE. Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond. Biol Rev Camb Philos Soc 2023; 98:1648-1667. [PMID: 37157877 PMCID: PMC10524764 DOI: 10.1111/brv.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Ovulation is a cyclical biological rupture event fundamental to fertilisation and endocrine function. During this process, the somatic support cells that surround the germ cell undergo a remodelling process that culminates in breakdown of the follicle wall and release of a mature egg. Ovulation is driven by known proteolytic and inflammatory pathways as well as structural alterations to the follicle vasculature and the fluid-filled antral cavity. Ovulation is one of several types of systematic remodelling that occur in the human body that can be described as rupture. Although ovulation is a physiological form of rupture, other types of rupture occur in the human body which can be pathological, physiological, or both. In this review, we use intracranial aneurysms and chorioamniotic membrane rupture as examples of rupture events that are pathological or both pathological and physiological, respectively, and compare these to the rupture process central to ovulation. Specifically, we compared existing transcriptomic profiles, immune cell functions, vascular modifications, and biomechanical forces to identify common processes that are conserved between rupture events. In our transcriptomic analysis, we found 12 differentially expressed genes in common among two different ovulation data sets and one intracranial aneurysm data set. We also found three genes that were differentially expressed in common for both ovulation data sets and one chorioamniotic membrane rupture data set. Combining analysis of all three data sets identified two genes (Angptl4 and Pfkfb4) that were upregulated across rupture systems. Some of the identified genes, such as Rgs2, Adam8, and Lox, have been characterised in multiple rupture contexts, including ovulation. Others, such as Glul, Baz1a, and Ddx3x, have not yet been characterised in the context of ovulation and warrant further investigation as potential novel regulators. We also identified overlapping functions of mast cells, macrophages, and T cells in the process of rupture. Each of these rupture systems share local vasoconstriction around the rupture site, smooth muscle contractions away from the site of rupture, and fluid shear forces that initially increase and then decrease to predispose one specific region to rupture. Experimental techniques developed to study these structural and biomechanical changes that underlie rupture, such as patient-derived microfluidic models and spatiotemporal transcriptomic analyses, have not yet been comprehensively translated to the study of ovulation. Review of the existing knowledge, transcriptomic data, and experimental techniques from studies of rupture in other biological systems yields a better understanding of the physiology of ovulation and identifies avenues for novel studies of ovulation with techniques and targets from the study of vascular biology and parturition.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
8
|
Banerjee S, Cooney LG, Stanic AK. Immune Dysfunction in Polycystic Ovary Syndrome. Immunohorizons 2023; 7:323-332. [PMID: 37195871 PMCID: PMC10579973 DOI: 10.4049/immunohorizons.2200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged individuals with ovaries. It is associated with anovulation and increased risk to fertility and metabolic, cardiovascular, and psychological health. The pathophysiology of PCOS is still inadequately understood, although there is evidence of persistent low-grade inflammation, which correlates with associated visceral obesity. Elevated proinflammatory cytokine markers and altered immune cells have been reported in PCOS and raise the possibility that immune factors contribute to ovulatory dysfunction. Because normal ovulation is modulated by immune cells and cytokines in the ovarian microenvironment, the endocrine and metabolic abnormalities associated with PCOS orchestrate the accompanying adverse effects on ovulation and implantation. This review evaluates the current literature on the relationship between PCOS and immune abnormalities, with a focus on emerging research in the field.
Collapse
Affiliation(s)
- Soma Banerjee
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI
| | - Laura G. Cooney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin–Madison
| | - Aleksandar K. Stanic
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Wisconsin–Madison
| |
Collapse
|
9
|
Choi Y, Jeon H, Brännström M, Akin JW, Curry TE, Jo M. A single-cell gene expression atlas of human follicular aspirates: Identification of leukocyte subpopulations and their paracrine factors. FASEB J 2023; 37:e22843. [PMID: 36934419 DOI: 10.1096/fj.202201746rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
Leukocytes are in situ regulators critical for ovarian function. However, little is known about leukocyte subpopulations and their interaction with follicular cells in ovulatory follicles, especially in humans. Single-cell RNA sequencing (scRNA-seq) was performed using follicular aspirates obtained from four IVF patients and identified 13 cell groups: one granulosa cell group, one thecal cell group, 10 subsets of leukocytes, and one group of RBC/platelet. RNA velocity analyses on five granulosa cell populations predicted developmental dynamics denoting two projections of differentiation states. The cell type-specific transcriptomic profiling analyses revealed the presence of a diverse array of leukocyte-derived factors that can directly impact granulosa cell function by activating their receptors (e.g., cytokines and secretory ligands) and are involved in tissue remodeling (e.g., MMPs, ADAMs, ADAMTSs, and TIMPs) and angiogenesis (e.g., VEGFs, PGF, FGF, IGF, and THBS1) in ovulatory follicles. Consistent with the findings from the scRNA-seq data, the leukocyte-specific expression of CD68, IL1B, and MMP9 was verified in follicle tissues collected before and at defined hours after hCG administration from regularly cycling women. Collectively, this study demonstrates that this data can be used as an invaluable resource for identifying important leukocyte-derived factors that promote follicular cell function, thereby facilitating ovulation and luteinization in women.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - James W Akin
- Bluegrass Fertility Center, Lexington, Kentucky, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Etrusco A, Buzzaccarini G, Cucinella G, Agrusa A, Di Buono G, Noventa M, Laganà AS, Chiantera V, Gullo G. Luteinised unruptured follicle syndrome: pathophysiological background and new target therapy in assisted reproductive treatments. J OBSTET GYNAECOL 2022; 42:3424-3428. [PMID: 36469701 DOI: 10.1080/01443615.2022.2153297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Luteinised unruptured follicle syndrome (LUFS) is a cause of infertility consisting in the unruptured of the dominant follicle after the LH-surge. In fact, during assisted reproductive treatments (ART) clomiphene citrate and letrozole are frequently administered in order to achieve ovulation. However, considering the pathophysiology of LUFS, new possible therapy can be proposed. On this scenario, we performed a review of the literature searching for LUFS recurrency and its impact in infertility and ART. An inflammation theory has been proposed that can be fuel for further therapeutic possibilities. In particular, considering the increase in granulocytes accumulation, the granulocyte colony-stimulating factor (G-CSF) administration has been proposed as target therapy in IUI cycles hampered by LUFS. Although data are encouraging, randomised controlled trials are needed in order to confirm the efficacy of G-CSF administration for LUFS patients.
Collapse
Affiliation(s)
- Andrea Etrusco
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF Unit, University of Palermo, Palermo, Italy
| | - Giovanni Buzzaccarini
- Department of Women’s and Children’s Health, Gynaecologic and Obstetrics Clinic, University of Padua, Padua, Italy
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF Unit, University of Palermo, Palermo, Italy
| | - Antonino Agrusa
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Di Buono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Marco Noventa
- Department of Women’s and Children’s Health, Gynaecologic and Obstetrics Clinic, University of Padua, Padua, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), ARNAS “Civico – Di Cristina – Benfratelli”, University of Palermo, Palermo, Italy
| | - Vito Chiantera
- Unit of Gynecologic Oncology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), ARNAS “Civico – Di Cristina – Benfratelli”, University of Palermo, Palermo, Italy
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF Unit, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Reproductive immune microenvironment. J Reprod Immunol 2022; 152:103654. [PMID: 35728349 DOI: 10.1016/j.jri.2022.103654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
About 10 %-12 % of couples in the world suffer from infertility, and immunological factors are being paid more and more attention. Attempts to induce peripheral immune tolerance in pregnant women by injecting husband cells have been widely promoted, but ultimately proved unsuccessful. Over the past two decades, our understanding of how the immune system is involved in gametogenesis and embryonic development, especially in early pregnancy, has undergone a major shift, going from the periphery to the local area of reproductive tissue. However, a holistic overview of immune responses in reproductive organs and tissues is currently lacking. Here, we further highlight the importance of regional immunity research for understanding reproductive health by reviewing the research mileage of the testis, ovary, and uterine immune microenvironment. We propose the concept of "reproductive immune microenvironment (RIM)" by summarizing the common features and basic functions of the tissue microenvironment in which immune cells reside, including the interstitial space of the testis, the ovarian stroma and the endometrium. The establishment of the concept of RIM not only focuses on the comprehensive description of the immune response in reproductive tissues, but also provides a macroscopic perspective for a deeper understanding of the immune etiology of reproductive system-related diseases.
Collapse
|
12
|
Feasibility of ovarian stimulation for fertility preservation during and after blinatumomab treatment for Ph-negative B-cell acute lymphoblastic leukemia. Int J Hematol 2022; 116:453-458. [DOI: 10.1007/s12185-022-03323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
13
|
Tremblay PG, Fortin C, Sirard MA. Gene cascade analysis in human granulosa tumor cells (KGN) following exposure to high levels of free fatty acids and insulin. J Ovarian Res 2021; 14:178. [PMID: 34930403 PMCID: PMC8690403 DOI: 10.1186/s13048-021-00934-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic disorders such as obesity and diabetes are detrimental factors that compromise fertility and the success rates of medically assisted procreation procedures. During metabolic stress, adipose tissue is more likely to release free fatty acids (FFA) in the serum resulting in an increase of FFA levels not only in blood, but also in follicular fluid (FF). In humans, high concentrations of palmitic acid and stearic acid reduced granulosa cell survival and were associated with poor cumulus-oocyte complex (COC) morphology. Obesity and high levels of circulating FFA were also causatively linked to hampered insulin sensitivity in cells and compensatory hyperinsulinemia. To provide a global picture of the principal upstream signaling pathways and genomic mechanisms involved in this metabolic context, human granulosa-like tumor cells (KGN) were treated with a combination of palmitic acid, oleic acid, and stearic acid at the higher physiological concentrations found in the follicular fluid of women with a higher body mass index (BMI) (≥ 30.0 kg/m2). We also tested a high concentration of insulin alone and in combination with high concentrations of fatty acids. Transcription analysis by RNA-seq with a cut off for fold change of 1.5 and p-value 0.05 resulted in thousands of differentially expressed genes for each treatment. Using analysis software such as Ingenuity Pathway Analysis (IPA), we were able to establish that high concentrations of FFA affected the expression of genes mainly related to glucose and insulin homoeostasis, fatty acid metabolism, as well as steroidogenesis and granulosa cell differentiation processes. The combination of insulin and high concentrations of FFA affected signaling pathways related to apoptosis, inflammation, and oxidative stress. Taken together, our results provided new information on the mechanisms that might be involved in human granulosa cells exposed to high concentrations of FFA and insulin in the contexts of metabolism disorders.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chloé Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
14
|
Function of Follicular Cytokines: Roles Played during Maturation, Development and Implantation of Embryo. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111251. [PMID: 34833469 PMCID: PMC8625323 DOI: 10.3390/medicina57111251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
A balance within the immune system is necessary for the proper development of ovarian follicles. Numerous cytokines were detected in follicular fluid, the role of which in reproductive physiology seems crucial. They influence the development and maturation of the follicle, ovulation, and corpus luteum formation, as well as embryo implantation and maintenance of pregnancy. The analysis of follicular fluid requires its collection by puncturing of the ovary, which is usually executed in connection with various gynaecological procedures. When interpreting such test results, clinical indications for a given procedure and the method of patient preparation should be taken into account. This review revealed the results of currently available studies on the concentration of pro-inflammatory cytokines in follicular fluid in various forms of infertility. Additionally, it presented cytokines, whose concentration has a significant impact on the size of ovarian follicles, their number, the effectiveness of in vitro fertilisation, development of the embryo, and chances of correct implantation. Despite the many recent publications, the knowledge of follicular fluid immunology in the context of reproductive pathology is superficial and further research is required to extensively understand the roles of individual cytokines in reproductive pathology. In the future, this knowledge may enable patients’ individual qualifications to individual methods of infertility treatment, as well as the possible adjustment of the treatment regimen to the patient’s immune profile.
Collapse
|
15
|
Zhang XY, Chang HM, Yi Y, Zhu H, Liu RZ, Leung PCK. BMP6 increases CD68 expression by up-regulating CTGF expression in human granulosa-lutein cells. Mol Cell Endocrinol 2021; 536:111414. [PMID: 34314740 DOI: 10.1016/j.mce.2021.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein 6 (BMP6) and connective tissue growth factor (CTGF) are critical growth factors required for normal follicular development and luteal function. Cluster of Differentiation 68 (CD68) is an intraovarian marker of macrophages that plays an important role in modulating the physiological regression of the corpus luteum. The aim of this study was to investigate the effect of BMP6 on the expression of CTGF and the subsequent increase in CD68 expression as well as its underlying mechanisms. Primary and immortalized (SVOG) human granulosa cells obtained from infertile women undergoing in vitro fertilization treatment were used as cell models to conduct the in vitro experiments. Our results showed that BMP6 treatment significantly increased the expression levels of CTGF and CD68. Using BMP type I receptor inhibitors (dorsomorphin, DMH-1 and SB431542), we demonstrated that both activin receptor-like kinase (ALK)2 and ALK3 are involved in BMP6-induced stimulatory effects on the expression of CTGF and CD68. Additionally, SMAD4-knock down reversed the BMP6-induced up-regulation of CTGF and CD68, indicating that the canonical SMAD signaling pathway is required for these effects. Moreover, CTGF-knock down abolished the BMP6-induced up-regulation of CD68 expression. These findings indicate that intrafollicular CTGF mediates BMP6-induced increases in CD68 expression through the ALK2/ALK3-mediated SMAD-dependent signaling pathway.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Rui-Zhi Liu
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
16
|
Rehman A, Pacher P, Haskó G. Role of Macrophages in the Endocrine System. Trends Endocrinol Metab 2021; 32:238-256. [PMID: 33455863 DOI: 10.1016/j.tem.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are cells of the innate immune system that play myriad roles in the body. Macrophages are known to reside in endocrine glands, and a body of evidence now suggests that these cells interact closely with endocrine cells. Immune-endocrine interactions are important in the development of endocrine glands and their functioning during physiological states, and also become key players in pathophysiological states. Through gene expression profiling, diverse subpopulations of tissue macrophages have been discovered within endocrine organs; this has important implications for disease pathogenesis and potential pharmacotherapy. The molecular basis for the crosstalk between macrophages and endocrine cells is being unraveled, and allows the identification of multiple points for pharmacologic intervention. Macrophages in adipose tissue and pancreatic islets are key players in the process of metaflammation (metabolic inflammation) that underlies the development of insulin resistance, metabolic syndrome, diabetes mellitus, and non-alcoholic fatty liver disease. In the ovary, they play important roles in ovarian folliculogenesis and ovulation, whereas in the male reproductive tract they regulate spermatogenesis through the regulation of steroidogenesis by Leydig cells. We summarize the diverse roles played by macrophages in the endocrine system and identify potential targets for pharmacotherapy in endocrine disorders.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Zhang Z, Huang L, Brayboy L. Macrophages: an indispensable piece of ovarian health. Biol Reprod 2021; 104:527-538. [PMID: 33274732 PMCID: PMC7962765 DOI: 10.1093/biolre/ioaa219] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages are the most abundant immune cells in the ovary. In addition to their roles in the innate immune system, these heterogeneous tissue-resident cells are responsive to tissue-derived signals, adapt to their local tissue environment, and specialize in unique functions to maintain tissue homeostasis. Research in the past decades has established a strong link between macrophages and various aspects of ovarian physiology, indicating a pivotal role of macrophages in ovarian health. However, unlike other intensively studied organs, the knowledge of ovarian macrophages dates back to the time when the heterogeneity of ontogeny, phenotype, and function of macrophages was not fully understood. In this review, we discuss the evolving understanding of the biology of ovarian tissue-resident macrophages, highlight their regulatory roles in normal ovarian functions, review the association between certain ovarian pathologies and disturbed macrophage homeostasis, and finally, discuss the technologies that are essential for addressing key questions in the field.
Collapse
Affiliation(s)
- Zijing Zhang
- Division of Research, Department of Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
- Department of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lynae Brayboy
- Division of Research, Department of Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
18
|
Sominsky L, Younesi S, De Luca SN, Loone SM, Quinn KM, Spencer SJ. Ovarian follicles are resistant to monocyte perturbations-implications for ovarian health with immune disruption†. Biol Reprod 2021; 105:100-112. [PMID: 33709094 DOI: 10.1093/biolre/ioab049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 03/10/2021] [Indexed: 02/03/2023] Open
Abstract
Monocytes and macrophages are the most abundant immune cell populations in the adult ovary, with well-known roles in ovulation and corpus luteum formation and regression. They are activated and proliferate in response to immune challenge and are suppressed by anti-inflammatory treatments. It is also likely they have a functional role in the healthy ovary in supporting the maturing follicle from the primordial through to the later stages; however, this role has been unexplored until now. Here, we utilized a Cx3cr1-Dtr transgenic Wistar rat model that allows a conditional depletion of circulating monocytes, to investigate their role in ovarian follicle health. Our findings show that circulating monocyte depletion leads to a significant depletion of ovarian monocytes and monocyte-derived macrophages. Depletion of monocytes was associated with a transient reduction in circulating anti-Müllerian hormone (AMH) at 5 days postdepletion. However, the 50-60% ovarian monocyte/macrophage depletion had no effect on ovarian follicle numbers, follicle atresia, or apoptosis, within 5-21 days postdepletion. These data reveal that the healthy adult ovary is remarkably resistant to perturbations of circulating and ovarian monocytes despite acute changes in AMH. These data suggest that short-term anti-inflammatory therapies that transiently impact on circulating monocytes are unlikely to disrupt ovarian follicle health, findings that have significant implications for fertility planning relative to the experience of an immune challenge or immunosuppression.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sophie M Loone
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Carter LE, Cook DP, Collins O, Gamwell LF, Dempster HA, Wong HW, McCloskey CW, Garson K, Vuong NH, Vanderhyden BC. COX2 is induced in the ovarian epithelium during ovulatory wound repair and promotes cell survival†. Biol Reprod 2020; 101:961-974. [PMID: 31347667 DOI: 10.1093/biolre/ioz134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
The ovarian surface epithelium (OSE) is a monolayer of cells surrounding the ovary that is ruptured during ovulation. After ovulation, the wound is repaired, however, this process is poorly understood. In epithelial tissues, wound repair is mediated by an epithelial-to-mesenchymal transition (EMT). Transforming Growth Factor Beta-1 (TGFβ1) is a cytokine commonly known to induce an EMT and is present throughout the ovarian microenvironment. We, therefore, hypothesized that TGFβ1 induces an EMT in OSE cells and activates signaling pathways important for wound repair. Treating primary cultures of mouse OSE cells with TGFβ1 induced an EMT mediated by TGFβRI signaling. The transcription factor Snail was the only EMT-associated transcription factor increased by TGFβ1 and, when overexpressed, was shown to increase OSE cell migration. A polymerase chain reaction array of TGFβ signaling targets determined Cyclooxygenase-2 (Cox2) to be most highly induced by TGFβ1. Constitutive Cox2 expression modestly increased migration and robustly enhanced cell survival, under stress conditions similar to those observed during wound repair. The increase in Snail and Cox2 expression with TGFβ1 was reproduced in human OSE cultures, suggesting these responses are conserved between mouse and human. Finally, the induction of Cox2 expression in OSE cells during ovulatory wound repair was shown in vivo, suggesting TGFβ1 increases Cox2 to promote wound repair by enhancing cell survival. These data support that TGFβ1 promotes ovulatory wound repair by induction of an EMT and activation of a COX2-mediated pro-survival pathway. Understanding ovulatory wound repair may give insight into why ovulation is the primary non-hereditary risk factor for ovarian cancer.
Collapse
Affiliation(s)
- Lauren E Carter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Olga Collins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisa F Gamwell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Holly A Dempster
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Howard W Wong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ken Garson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nhung H Vuong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S, Lu H, Pettersson K, Palm K, Katayama S, Hovatta O, Kere J, Lanner F, Damdimopoulou P. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun 2020; 11:1147. [PMID: 32123174 PMCID: PMC7052271 DOI: 10.1038/s41467-020-14936-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 01/05/2023] Open
Abstract
The human ovary orchestrates sex hormone production and undergoes monthly structural changes to release mature oocytes. The outer lining of the ovary (cortex) has a key role in defining fertility in women as it harbors the ovarian reserve. It has been postulated that putative oogonial stem cells exist in the ovarian cortex and that these can be captured by DDX4 antibody isolation. Here, we report single-cell transcriptomes and cell surface antigen profiles of over 24,000 cells from high quality ovarian cortex samples from 21 patients. Our data identify transcriptional profiles of six main cell types; oocytes, granulosa cells, immune cells, endothelial cells, perivascular cells, and stromal cells. Cells captured by DDX4 antibody are perivascular cells, not oogonial stem cells. Our data do not support the existence of germline stem cells in adult human ovaries, thereby reinforcing the dogma of a limited ovarian reserve.
Collapse
Affiliation(s)
- Magdalena Wagner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Iyadh Douagi
- Center of Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Petropoulos
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine, Centre de recherche du CHUM, University of Montreal, Montreal, Canada
| | - Haojiang Lu
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Pettersson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Palm
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Gynecology and Obstetrics, Visby hospital, Visby, Sweden
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Research Institute, Helsinki, and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden. .,Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Noël L, Fransolet M, Jacobs N, Foidart JM, Nisolle M, Munaut C. A paracrine interaction between granulosa cells and leukocytes in the preovulatory follicle causes the increase in follicular G-CSF levels. J Assist Reprod Genet 2020; 37:405-416. [PMID: 31955341 PMCID: PMC7056696 DOI: 10.1007/s10815-020-01692-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/10/2020] [Indexed: 11/28/2022] Open
Abstract
Objective Follicular granulocyte colony-stimulating factor (G-CSF) is a new biomarker of oocyte quality and embryo implantation in in vitro fertilization (IVF) cycles. Its role in reproduction is poorly understood. Our study aimed to investigate the mechanisms and cells responsible for G-CSF production in the preovulatory follicle. Design Laboratory research study. Setting Single-center study. Interventions Granulosa cells and leukocytes were isolated from the follicular fluids (FF) or the blood of women undergoing IVF and from the blood of a control group of women with spontaneous ovulatory cycles to perform cocultures. Main outcome measure G-CSF-secreted protein was quantified in the conditioned media of cocultures. Results G-CSF secretion was considerably increased in cocultures of granulosa cells and leukocytes. This effect was maximal when leukocytes were isolated from the blood of women in the late follicular phase of the menstrual cycle or from the FF of women undergoing IVF. The leukocyte population isolated from the FF samples of women undergoing IVF had a higher proportion of granulocytes than that isolated from the corresponding blood samples. Leukocytes induced the synthesis and secretion of G-CSF by granulosa cells. Among a range of other FF cytokines/chemokines, only growth-regulated oncogene alpha (GROα) was also increased. Conclusion The notable rise in G-CSF at the time of ovulation coincides with the accumulation of follicular granulocytes, which stimulate G-CSF production by granulosa cells via paracrine interactions. High follicular G-CSF concentrations may occur in follicles with optimal granulosa–leukocyte interactions, which could explain the increased implantation rate of embryos arising from these follicles. Electronic supplementary material The online version of this article (10.1007/s10815-020-01692-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laure Noël
- Centre de Procréation Médicalement Assistée, University of Liege, site CHR Liege, Boulevard du 12ème de Ligne 1, 4000, Liege, Belgium.,Laboratory of Tumor and Development Biology, University of Liege, 4000, Liege, Belgium
| | - Maïté Fransolet
- Laboratory of Tumor and Development Biology, University of Liege, 4000, Liege, Belgium
| | - Nathalie Jacobs
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liege, 4000, Liege, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology, University of Liege, 4000, Liege, Belgium
| | - Michelle Nisolle
- Centre de Procréation Médicalement Assistée, University of Liege, site CHR Liege, Boulevard du 12ème de Ligne 1, 4000, Liege, Belgium.,Laboratory of Tumor and Development Biology, University of Liege, 4000, Liege, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, University of Liege, 4000, Liege, Belgium.
| |
Collapse
|
23
|
Abstract
Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.
Collapse
|
24
|
Gene expression analysis of follicular cells revealed inflammation as a potential IVF failure cause. J Assist Reprod Genet 2019; 36:1195-1210. [PMID: 31001707 DOI: 10.1007/s10815-019-01447-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/29/2019] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Hormonal stimulation prior to IVF influences the ovarian environment and therefore impacts oocytes and subsequent embryo quality. Not every patient has the same response to the same treatment and many fail for unknown reasons. Knowing why a cycle has failed and how the follicles were affected would allow clinicians to adapt the treatment accordingly and improve success rate. This study examines the hypothesis that transcriptomic analysis of follicular cells from failed IVF cycles reveals potential reasons for failure and provides new information on the physiological mechanisms related to IVF failure. METHODS Follicular cells (granulosa cells) were obtained from IVF patients of four Canadian fertility clinics. Using microarray analysis, patients that did not become pregnant following the IVF cycle were compared to those that did. Functional analysis was performed using ingenuity pathway analysis and qRT-PCR was used to validate the microarray results in a larger cohort of patients. RESULTS The microarray showed 165 differentially expressed genes (DEGs) in the negative group compared to the pregnancy group. DEGs include many pro-inflammatory cytokines and other factors related to inflammation, suggesting that this process might be altered when IVF fails. Overexpression of several factors, some of which act upstream from vascular endothelial growth factor (VEGF), also indicates increased permeability and vasodilation. Some DEGs were related to abnormal differentiation and increased apoptosis. CONCLUSIONS Our results suggest that failure to conceive following IVF cycles could be associated with an imbalance between pro-inflammatory and anti-inflammatory mediators. The findings of this study identify potential failure causes and pathways for further investigation. Stimulatory protocols personalized according to patient response could improve the chances of later success.
Collapse
|
25
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
26
|
Martins KR, Haas CS, Ferst JG, Rovani MT, Goetten AL, Duggavathi R, Bordignon V, Portela VV, Ferreira R, Gonçalves PB, Gasperin BG, Lucia T. Oncostatin M and its receptors mRNA regulation in bovine granulosa and luteal cells. Theriogenology 2019; 125:324-330. [DOI: 10.1016/j.theriogenology.2018.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/13/2023]
|
27
|
Patel MV, Shen Z, Wira CR. Poly (I:C) and LPS induce distinct immune responses by ovarian stromal fibroblasts. J Reprod Immunol 2018; 127:36-42. [PMID: 29758486 PMCID: PMC5991091 DOI: 10.1016/j.jri.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Despite its anatomical location, the ovary is a site of pathogen exposure in the human female reproductive tract (FRT). However, the role of ovarian stromal fibroblasts in immune protection is unclear. We generated a population of ovarian stromal fibroblasts derived from normal human ovaries that expressed the pattern recognition receptors TLR3, TLR4, RIG-I, & MDA5. Poly (I:C) and LPS, respective mimics of viral and bacterial infections, selectively upregulated antiviral gene expression and secretion of chemokines and antimicrobials. Poly (I:C) exclusively stimulated the expression of interferon (IFN) β, IFNλ1, and the IFN-stimulated gene OAS2. Poly (I:C) also significantly increased secretion of elafin, CCL20, and RANTES, but had no effect on SDF-1α. In contrast, LPS had no effect on IFN or ISG expression but significantly increased secretion of RANTES and SDF-1α. Secretions from poly (I:C)-treated fibroblasts had both greater anti-HIV activity and induced higher levels of CD4 + T cell chemotaxis than those from LPS-treated cells. Our studies demonstrate a potential key role for ovarian fibroblasts in innate immune protection against incoming pathogens in the normal ovary.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
28
|
Tanaka Y, Kuwahara A, Ushigoe K, Yano Y, Taniguchi Y, Yamamoto Y, Matsuzaki T, Yasui T, Irahara M. Expression of cytokine-induced neutrophil chemoattractant suppresses tumor necrosis factor alpha expression and thereby prevents the follicles from undergoing atresia and apoptosis. Reprod Med Biol 2017; 16:157-165. [PMID: 29259464 PMCID: PMC5661809 DOI: 10.1002/rmb2.12022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
Aim Cytokine-induced neutrophil chemoattractant (CINC/gro) is a CXC family chemokine, similar to interleukin-8 in rats, and is one of the factors that regulates ovulation. However, the mechanism that regulates atresia of the ovaries postovulation is not clearly defined. Methods Whether antibody-blocking of CINC/gro can alter the number of ovulated oocytes and modulate neutrophil infiltration was investigated. The effect of the antibody on the level of inflammatory cytokine production and follicular atresia was examined. Apoptosis was measured by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and via analysis of the messenger RNA expression of Bcl-2 and Bcl2-associated X (Bax). Results The anti-CINC/gro antibody treatment decreased the number of ovulated oocytes. The messenger RNA levels of cyclooxygenase-2 and interleukin-1 beta were decreased by the antibody treatment, whereas that of tumor necrosis factor (TNF) alpha was increased. The TUNEL analysis revealed a larger number of apoptotic cells in the antibody group, compared with those in the control group, as well as a significant increase in the Bax/Bcl-2 ratio 24 hours after human chorionic gonadotropin administration. Conclusion These findings suggest that ovulation is accelerated by neutrophil infiltration into the theca layer. The CINC/gro appears to synergize with interleukin-1 beta for ovulation. By contrast, the data suggest that CINC/gro expression suppresses TNF alpha expression and that CINC/gro expression therefore prevents the follicles from undergoing atresia and apoptosis.
Collapse
Affiliation(s)
- Yu Tanaka
- Department of Obstetrics and Gynecology Japanese Red Cross Kochi Hospital Kochi Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Kenjiro Ushigoe
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Yuya Yano
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Yuka Taniguchi
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Toshiyuki Yasui
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology Institute of Health Biosciences The University of Tokushima Graduate School Tokushima Japan
| |
Collapse
|
29
|
Ibrahim LA, Kramer JM, Williams RS, Bromfield JJ. Human granulosa-luteal cells initiate an innate immune response to pathogen-associated molecules. Reproduction 2017; 152:261-70. [PMID: 27512120 DOI: 10.1530/rep-15-0573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/04/2016] [Indexed: 12/23/2022]
Abstract
The microenvironment of the ovarian follicle is key to the developmental success of the oocyte. Minor changes within the follicular microenvironment can significantly disrupt oocyte development, compromising the formation of competent embryos and reducing fertility. Previously described as a sterile environment, the ovarian follicle of women has been shown to contain colonizing bacterial strains, whereas in domestic species, pathogen-associated molecules are concentrated in the follicular fluid of animals with uterine infection. The aim of this study is to determine whether human granulosa-luteal cells mount an innate immune response to pathogen-associated molecules, potentially disrupting the microenvironment of the ovarian follicle. Human granulosa-luteal cells were collected from patients undergoing assisted reproduction. Cells were cultured in the presence of pathogen-associated molecules (LPS, FSL-1 and Pam3CSK4) for 24h. Supernatants and total RNA were collected for assessment by PCR and ELISA. Granulosa-luteal cells were shown to express the molecular machinery required to respond to a range of pathogen-associated molecules. Expression of TLR4 varied up to 15-fold between individual patients. Granulosa-luteal cells increased the expression of the inflammatory mediators IL1B, IL6 and CXCL8 in the presence of the TLR4 agonist E. coli LPS. Similarly, the TLR2/6 ligand, FSL-1, increased the expression of IL6 and CXCL8. Although no detectable changes in CYP19A1 or STAR expression were observed in granulosa-luteal cells following challenge, a significant reduction in progesterone secretion was measured after treatment with FSL-1. These findings demonstrate the ability of human granulosa-luteal cells to respond to pathogen-associated molecules and generate an innate immune response.
Collapse
Affiliation(s)
- Laila A Ibrahim
- D. H. Barron Reproductive and Perinatal Biology Research ProgramGainesville, Florida, USA Department of Animal SciencesUniversity of Florida, Gainesville, Florida, USA
| | - Joseph M Kramer
- D. H. Barron Reproductive and Perinatal Biology Research ProgramGainesville, Florida, USA Department of Obstetrics and GynecologyCollege of Medicine, University of Florida, Gainesville, Florida, USA
| | - R Stan Williams
- D. H. Barron Reproductive and Perinatal Biology Research ProgramGainesville, Florida, USA Department of Obstetrics and GynecologyCollege of Medicine, University of Florida, Gainesville, Florida, USA
| | - John J Bromfield
- D. H. Barron Reproductive and Perinatal Biology Research ProgramGainesville, Florida, USA Department of Animal SciencesUniversity of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Cells expressing CD4, CD8, MHCII and endoglin in the canine corpus luteum of pregnancy, and prepartum activation of the luteal TNFα system. Theriogenology 2017; 98:123-132. [DOI: 10.1016/j.theriogenology.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023]
|
31
|
Bishop CV, Xu F, Steinbach R, Ficco E, Hyzer J, Blue S, Stouffer RL, Hennebold JD. Changes in immune cell distribution and their cytokine/chemokine production during regression of the rhesus macaque corpus luteum. Biol Reprod 2017; 96:1210-1220. [PMID: 28575196 PMCID: PMC6279079 DOI: 10.1093/biolre/iox052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Our previous flow cytometry results demonstrated a significant increase in neutrophils, macrophages/monocytes, and natural killer (NK) cells in dispersed rhesus monkey corpora lutea (CL) after progesterone (P4) levels had fallen below 0.3 ng/ml for ≥3 days during the natural menstrual cycle. In this study, immunohistochemistry revealed the CD11b+ cells (neutrophils, macrophages/monocytes) present in the CL after luteal P4 synthesis ceased were distributed throughout the tissue. CD16+ cells (presumptive NK cells) were observed mainly near the vasculature in functional CL, until their numbers increased and they became widely distributed in regressing CL. To determine if the immune cells that enter luteal tissue during structural regression are functionally different from those that are present during peak function, CD11b+ or CD16+ populations were enriched from mid-late stage (functional) and regressing (days 1.8 ± 0.3 postmenses) CL using antibody-conjugated magnetic microbeads. Flow cytometry analyses revealed the majority of CD11b+ cells expressed CD14, a protein mainly produced by macrophages/monocytes. The antibody-enriched and depleted fractions were cultured for 24 h, and the media then analyzed for the production of 29 cytokines/chemokines. From the mid-late CL, the CD11b+-enriched fraction produced three cytokines/chemokines, whereas CD16+-enriched cells only produced the chemokine CCL2. However, CD11b +-enriched cells isolated from regressed CL produced eight cytokines/chemokines. The CD16+-enriched cells isolated from regressing CL produced significant levels of only three cytokines. Thus, the CD11b+ cells that appear in the rhesus macaque CL after functional regression produce several cytokines/chemokines that likely play a role in orchestrating structural regression.
Collapse
Affiliation(s)
- Cecily V. Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
| | - Fuhua Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
| | - Rosemary Steinbach
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
| | - Ellie Ficco
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
| | - Jeffrey Hyzer
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
| | - Steven Blue
- Endocrine Technology Support Core Laboratory, Oregon National Primate
Research Center, Beaverton, Oregon, USA
| | - Richard L. Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science
University, Portland, Oregon, USA
| | - Jon D. Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science
University, Portland, Oregon, USA
| |
Collapse
|
32
|
Shen Z, Rodriguez-Garcia M, Ochsenbauer C, Wira CR. Characterization of immune cells and infection by HIV in human ovarian tissues. Am J Reprod Immunol 2017; 78. [PMID: 28397318 DOI: 10.1111/aji.12687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023] Open
Abstract
PROBLEM New HIV infections in women are predominantly spread through sexual intercourse. Recent non-human primate studies demonstrated that simian immunodeficiency virus (SIV) deposited in the vagina infected immune cells in the ovary. Whether immune cells in the human ovary are susceptible to HIV infection is unknown. METHOD OF STUDY Immune cells were isolated from ovaries and characterized by flow cytometry. Cells were exposed to HIV for 2 hours. HIV infection was measured by flow cytometry and p24 secretion following 6 days in culture. RESULTS CD4+ T cells and CD14+ cells are present in the ovary and susceptible to infection by HIV-BaL. Among the CD45+ cells present, 30% were CD3+ T cells (with similar proportions of CD4+ or CD8+ T cells), and 7%-10% were CD14+ cells. Both CD4+ T cells and CD14+ cells were productively infected and supported replication. CONCLUSION Immune cells in the ovary are potential targets for HIV infection.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama, Birmingham, AL, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
33
|
Lee HJ, Kim JY, Park JE, Yoon YD, Tsang BK, Kim JM. Induction of Fas-Mediated Apoptosis by Interferon-γ is Dependent on Granulosa Cell Differentiation and Follicular Maturation in the Rat Ovary. Dev Reprod 2016; 20:315-329. [PMID: 28144637 PMCID: PMC5270607 DOI: 10.12717/dr.2016.20.4.315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/20/2016] [Accepted: 12/13/2016] [Indexed: 11/17/2022]
Abstract
Fas ligand (FasL) and its receptor Fas have been implicated in granulosa cell apoptosis during follicular atresia. Although interferon-gamma (IFN-γ) is believed to be involved in the regulation Fas expression in differentiated granulosa or granulosa-luteal cells, the expression of this cytokine and its role in the regulation of the granulosa cell Fas/FasL system and apoptosis during follicular maturation have not been thoroughly investigated. In the present study, we have examined the presence of IFN-γ in ovarian follicles at different stage of development by immunohistochemistry and related their relative intensities with follicular expression of Fas and FasL, and with differences in granulosa cell sensitivity to Fas activation by exogenous agonistic Anti-Fas monoclonal antibody (Fas mAb). Although IFN-γ immunostaining was detectable in oocyte and granulosa cells in antral follicles, most intense immunoreactivity for the cytokine was observed in these cells of preantral follicles. Intense immunoreactivity for IFN-γ was most evident in granulosa cells of atretic early antral follicles where increased Fas and FasL expression and apoptosis were also observed. Whereas low concentrations of IFN-γ (10-100 U/mL) significantly increased Fas expression in undifferentiated granulosa cells (from preantral or very early antral follicles) in vitro, very higher concentrations (≥ 1,000 U/mL) were required to up-regulate of Fas in differentiated cells isolated from eCG-primed (antral) follicles. Addition of agonistic Fas mAb to cultures of granulosa cells at the two stages of differentiation and pretreated with IFN-γ (100 U/mL) elicited morphological and biochemical apoptotic features which were more prominent in cells not previously exposed to the gonadotropin in vivo. These findings suggested that IFN-γ is an important physiologic intra-ovarian regulator of follicular atresia and plays a pivotal role in regulation of expression of Fas receptor and subsequent apoptotic response in undifferentiated (or poorly differentiated) granulosa cells at an early (penultimate) stage of follicular development.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703, Republic of Korea
| | - Ji Eun Park
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Yong-Dal Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1Y 4E9
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
34
|
Shibata T, Sakamoto J, Osaka Y, Neyatani N, Fujita S, Oka Y, Takagi H, Mori H, Fujita H, Tanaka Y, Sasagawa T. Myeloperoxidase in blood neutrophils during normal and abnormal menstrual cycles in women of reproductive age. Int J Lab Hematol 2016; 39:169-174. [PMID: 28013526 DOI: 10.1111/ijlh.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We previously reported that granulocyte colony-stimulating factor (G-CSF) plays a critical role in ovulation, suggesting that neutrophils may maintain ovulation. We assessed myeloperoxidase (MPO), a major and specific enzyme of neutrophils, in women with abnormal and normal menstrual cycles to clarify the relationship between MPO and ovulation. METHODS We analyzed MPO activity in blood neutrophils of women with abnormal menstrual cycles (indicative of anovulation, n = 12) and age- and body mass index-matched normal menstrual cycles (indicative of ovulation, n = 24) using two parameters as a marker of MPO, Neut X and mean peroxidase index (MPXI). RESULTS MPO of women with abnormal menstrual cycles was significantly lower than that of women with normal menstrual cycles [Neut X: 62.6 ± 1.1 (mean ± standard error of the mean) vs. 66.2 ± 0.3, P = 0.009; MPXI: -0.54 ± 1.66 vs. 4.91 ± 0.53, P = 0.008]. Among women with normal menstrual cycles, MPO was highest in the follicular phase (Neut X: 67.0 ± 0.3; P = 0.033). CONCLUSION The difference in MPO between women with abnormal and normal menstrual cycles and the upregulation of MPO before ovulation suggest that neutrophils and MPO are closely related to ovulation.
Collapse
Affiliation(s)
- T Shibata
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - J Sakamoto
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Y Osaka
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - N Neyatani
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - S Fujita
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Y Oka
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - H Takagi
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - H Mori
- Department of Central Clinical Laboratory, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
| | - H Fujita
- Department of Central Clinical Laboratory, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
| | - Y Tanaka
- Department of Central Clinical Laboratory, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
| | - T Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
35
|
Santanam N, Zoneraich N, Parthasarathy S. Myeloperoxidase as a Potential Target in Women With Endometriosis Undergoing IVF. Reprod Sci 2016; 24:619-626. [PMID: 27662901 DOI: 10.1177/1933719116667225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As infertility is intimately associated with endometriosis, the levels of myeloperoxidase (MPO), a leukocyte enzyme and an oxidative stress marker, were determined in a case-control prospective study of 68 women with and without endometriosis undergoing in vitro fertilization in the outpatient fertility center within a tertiary care academic medical center. Measured values included plasma and follicular fluid (FF) concentrations of MPO, plasma estradiol, as well as oocyte quality, fertilization, implantation, and pregnancy rates in these women. In FF (mean ± standard error of mean [SEM]), the MPO concentrations (ng/mL) for controls were 4.3 ± 0.37, mild endometriosis (stages I-II) 3.9 ± 0.17, and moderate/severe endometriosis (stages III-IV) 16.6 ± 12.5 ( P < 0.0143). In FF, among patients supplemented with vitamins E and C, the MPO levels decreased significantly only in moderate/severe endometriosis from 25.3 ± 22.0 ng/mL to 4.9 ± 1.61 ng/mL, respectively. Plasma levels of MPO between groups did not change. Outcome data revealed a trend toward decreased percentage of mature oocytes, implantation rate, and clinical pregnancy rate with severity of endometriosis and MPO levels. Myeloperoxidase may be a potential oxidative stress target for endometriosis-associated infertility.
Collapse
Affiliation(s)
- Nalini Santanam
- 1 Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,2 Department of Pharmacology, Physiology & Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nathaniel Zoneraich
- 1 Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,3 Advanced Fertility Care, Scottsdale, AZ, USA
| | - Sampath Parthasarathy
- 1 Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,4 Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
36
|
Sheldon IM, Owens SE, Turner ML. Innate immunity and the sensing of infection, damage and danger in the female genital tract. J Reprod Immunol 2016; 119:67-73. [PMID: 27498991 DOI: 10.1016/j.jri.2016.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility.
Collapse
Affiliation(s)
- Iain Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | - Siân-Eleri Owens
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Matthew Lloyd Turner
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| |
Collapse
|
37
|
Al-Alem L, Puttabyatappa M, Rosewell K, Brännström M, Akin J, Boldt J, Muse K, Curry TE. Chemokine Ligand 20: A Signal for Leukocyte Recruitment During Human Ovulation? Endocrinology 2015; 156:3358-69. [PMID: 26125463 PMCID: PMC4541627 DOI: 10.1210/en.2014-1874] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ovulation is one of the cornerstones of female fertility. Disruption of the ovulatory process results in infertility, which affects approximately 10% of couples. Using a unique model in which the dominant follicle is collected across the periovulatory period in women, we have identified a leukocyte chemoattractant, chemokine ligand 20 (CCL20), in the human ovary. CCL20 mRNA is massively induced after an in vivo human chorionic gonadotropin (hCG) stimulus in granulosa (>10 000-fold) and theca (>4000-fold) cells collected during the early ovulatory (12-18 h) and late ovulatory (18-34 h) periods after hCG administration. Because the LH surge sets in motion an inflammatory reaction characterized by an influx of leukocytes and CCL20 is known to recruit leukocytes in other systems, the composition of ovarian leukocytes (CD45+) containing the CCL20 receptor CCR6 was determined immediately prior to ovulation. CD45+/CCR6+ cells were primarily natural killer cells (41%) along with B cells (12%), T cells (11%), neutrophils (10%), and monocytes (9%). Importantly, exogenous CCL20 stimulated ovarian leukocyte migration 59% within 90 minutes. Due to the difficulties in obtaining human follicles, an in vitro model was developed using granulosa-lutein cells to explore CCL20 regulation. CCL20 expression increased 40-fold within 6 hours after hCG, was regulated partially by the epithelial growth factor pathway, and was positively correlated with progesterone production. These results demonstrate that hCG dramatically increases CCL20 expression in the human ovary, that ovarian leukocytes contain the CCL20 receptor, and that CCL20 stimulates leukocyte migration. Our findings raise the prospect that CCL20 may aid in the final ovulatory events and contribute to fertility in women.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - Muraly Puttabyatappa
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - Kathy Rosewell
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - Mats Brännström
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - James Akin
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - Jeffrey Boldt
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - Ken Muse
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| | - Thomas E Curry
- Department of Obstetrics and Gynecology (L.A.-A., M.P., K.R., K.M., T.E.C.), College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298; Department of Obstetrics and Gynecology (M.B.), Sahlgrenska Academy, University of Gothenburg, 40530 Göteborg, Sweden; Stockholm IVF (M.B.), St Görans Sjukhus, 112 81 Stockholm, Sweden; and Bluegrass Fertility Center (J.A., J.B.), Lexington, Kentucky 40503
| |
Collapse
|
38
|
Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 2015; 36:65-91. [PMID: 25541635 PMCID: PMC4496428 DOI: 10.1210/er.2014-1079] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology (K.H., D.L.R., S.A.R., R.J.R.), School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia 5005; Medical Research Council Centre for Reproductive Health (R.A.A.), The University of Edinburgh, The Queens Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton, Victoria, Australia 3800; Bio-X Institutes (J.W.), Shanghai Jiao Tong University, Shanghai 200240, China; and Institute of Cell Biology and Centre for Integrative Physiology (E.E.T), The University of Edinburgh, Edinburgh EH8 9XE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Seminal Fluid Signalling in the Female Reproductive Tract: Implications for Reproductive Success and Offspring Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:127-58. [PMID: 26178848 DOI: 10.1007/978-3-319-18881-2_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carriage of sperm is not the only function of seminal fluid in mammals. Studies in mice show that at conception, seminal fluid interacts with the female reproductive tract to induce responses which influence whether or not pregnancy will occur, and to set in train effects that help shape subsequent fetal development. In particular, seminal fluid initiates female immune adaptation processes required to tolerate male transplantation antigens present in seminal fluid and inherited by the conceptus. A tolerogenic immune environment to facilitate pregnancy depends on regulatory T cells (Treg cells), which recognise male antigens and function to suppress inflammation and immune rejection responses. The female response to seminal fluid stimulates the generation of Treg cells that protect the conceptus from inflammatory damage, to support implantation and placental development. Seminal fluid also elicits molecular and cellular changes in the oviduct and endometrium that directly promote embryo development and implantation competence. The plasma fraction of seminal fluid plays a key role in this process with soluble factors, including TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the peri-conception immune environment. Recent studies show that conception in the absence of seminal plasma in mice impairs embryo development and alters fetal development to impact the phenotype of offspring, with adverse effects on adult metabolic function particularly in males. This review summarises our current understanding of the molecular responses to seminal fluid and how this contributes to the establishment of pregnancy, generation of an immune-regulatory environment and programming long-term offspring health.
Collapse
|
40
|
Madondo MT, Tuyaerts S, Turnbull BB, Vanderstraeten A, Kohrt H, Narasimhan B, Amant F, Quinn M, Plebanski M. Variability in CRP, regulatory T cells and effector T cells over time in gynaecological cancer patients: a study of potential oscillatory behaviour and correlations. J Transl Med 2014; 12:179. [PMID: 24957270 PMCID: PMC4082498 DOI: 10.1186/1479-5876-12-179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 06/16/2014] [Indexed: 01/06/2023] Open
Abstract
Background The inflammatory marker, C reactive protein has been proposed to also be a biomarker for adaptive immune responses in cancer patients with a possible application in time based chemotherapy. Fluxes in serum CRP levels were suggested to be indicative of a cyclical process in which, immune activation is followed by auto-regulating immune suppression. The applicability of CRP as a biomarker for regulatory or effector T cells was therefore investigated in a cohort of patients with gynaecological malignancies. Methods Peripheral blood samples were obtained from a cohort of patients at 7 time points over a period of 12 days. Serum and mononuclear cells were isolated and CRP levels in serum were detected using ELISA while regulatory and effector T cell frequencies were assessed using flow cytometry. To test periodicity, periodogram analysis of data was employed while Pearson correlation and the Wilcoxon signed rank test were used to determine correlations. Results The statistical analysis used showed no evidence of periodic oscillation in either serum CRP concentrations or Teff and Treg frequencies. Furthermore, there was no apparent correlation between serum CRP concentrations and the corresponding frequencies of Tregs or Teffs. Relative to healthy individuals, the disease state in the patients neither significantly affected the mean frequency of Tregs nor the mean coefficient of variation within the Treg population over time. However, both Teff mean frequency and mean coefficient of variation were significantly reduced in patients. Conclusion Using our methods we were unable to detect CRP oscillations that could be used as a consistent serial biomarker for time based chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Magdalena Plebanski
- Department of Immunology, Vaccine and Infectious Diseases Laboratory, Monash University, Melbourne, Australia.
| |
Collapse
|
41
|
Cohen-Fredarow A, Tadmor A, Raz T, Meterani N, Addadi Y, Nevo N, Solomonov I, Sagi I, Mor G, Neeman M, Dekel N. Ovarian dendritic cells act as a double-edged pro-ovulatory and anti-inflammatory sword. Mol Endocrinol 2014; 28:1039-54. [PMID: 24825398 DOI: 10.1210/me.2013-1400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ovulation and inflammation share common attributes, including immune cell invasion into the ovary. The present study aims at deciphering the role of dendritic cells (DCs) in ovulation and corpus luteum formation. Using a CD11c-EYFP transgenic mouse model, ovarian transplantation experiments, and fluorescence-activated cell sorting analyses, we demonstrate that CD11c-positive, F4/80-negative cells, representing DCs, are recruited to the ovary under gonadotropin regulation. By conditional ablation of these cells in CD11c-DTR transgenic mice, we revealed that they are essential for expansion of the cumulus-oocyte complex, release of the ovum from the ovarian follicle, formation of a functional corpus luteum, and enhanced lymphangiogenesis. These experiments were complemented by allogeneic DC transplantation after conditional ablation of CD11c-positive cells that rescued ovulation. The pro-ovulatory effects of these cells were mediated by up-regulation of ovulation-essential genes. Interestingly, we detected a remarkable anti-inflammatory capacity of ovarian DCs, which seemingly serves to restrict the ovulatory-associated inflammation. In addition to discovering the role of DCs in ovulation, this study implies the extended capabilities of these cells, beyond their classic immunologic role, which is relevant also to other biological systems.
Collapse
Affiliation(s)
- Adva Cohen-Fredarow
- Department of Biological Regulation (A.C.-F., A.T., N.M., Y.A., N.N., I.So., I.Sa., M.N., N.D.), Weizmann Institute of Science, Rehovot 76100, Israel; Koret School of Veterinary Medicine (T.R.), The Hebrew University of Jerusalem, Rehovot 76100, Israel; B-nano Ltd (Y.A.), Rehovot 76326, Israel; and Department of Obstetrics Gynecology and Reproductive Science (G.M.), Reproductive Immunology Unit, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miyamoto A, Shirasuna K, Haneda S, Shimizu T, Matsui M. CELL BIOLOGY SYMPOSIUM: perspectives: possible roles of polymorphonuclear neutrophils in angiogenesis and lymphangiogenesis in the corpus luteum during development and early pregnancy in ruminants. J Anim Sci 2014; 92:1834-9. [PMID: 24663155 DOI: 10.2527/jas.2013-7332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The establishment of pregnancy requires well-balanced regulation of the endocrine and immune systems and involves interactions among the conceptus, oviduct-uterus, and corpus luteum (CL). In particular, a rapid increase in plasma progesterone during the first week after ovulation is critical for the growth of the conceptus and successful pregnancy in cattle. Events involved in maternal recognition of pregnancy (MRP) may commence within 1 wk from AI, when interferon-stimulated gene expression in circulating polymorphonuclear neutrophils (PMN) increases in pregnant cows. To regulate optimal endocrine conditions within this time, the CL must develop rapidly, with active angiogenesis and lymphangiogenesis. The major angiogenic factors, vascular endothelial growth factor and fibroblast growth factor 2, contribute to the development of the CL but may also act as chemoattractants for PMN. Indeed, the number of PMN is greatest in the new CL, where PMN together with IL-8 induce active angiogenesis and lymphangiogenesis. During MRP, the conceptus secretes interferon tau (IFNT), which prevents CL regression by inhibiting luteolytic release of PGF2α from uterine endometrium. In addition, IFNT and PGE2 reach the CL and may contribute to desensitizing the CL to the luteolytic effects of PGF2α. In the bovine CL, lymphangiogenesis, stimulated by IFNT, may occur during MRP, and thus a shift of local immunity might occur at this timing. The aforementioned evidence supports the possible involvement of PMN in the establishment of pregnancy via CL regulation. Further investigation could expand our understanding of the communication between zygotes, PMN, and reproductive organs during early pregnancy. This should provide new insight into the contribution of neutrophils to CL function and immune tolerance during early pregnancy in ruminants.
Collapse
Affiliation(s)
- A Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | |
Collapse
|
43
|
Miyamoto A, Shirasuna K, Shimizu T, Matsui M. Impact of angiogenic and innate immune systems on the corpus luteum function during its formation and maintenance in ruminants. Reprod Biol 2013; 13:272-8. [PMID: 24287035 DOI: 10.1016/j.repbio.2013.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/25/2022]
Abstract
The corpus luteum (CL) is formed from an ovulated follicle, and grows rapidly to secrete progesterone (P4) thereby supporting implantation and maintenance of pregnancy. It is now evident that angiogenesis is necessary to form the structure of the developing CL as well as to acquire the steroidogenic capacity to secrete large amounts of P4. It is of interest that the increases in CL size, plasma P4 concentration and luteal blood flow are occurring in parallel during the first seven days after ovulation. Angiogenic factors, such as vascular endothelial growth factor-A (VEGFA) and basic fibroblast growth factor (FGF2), play a central role in promoting cell proliferation and angiogenesis in the developing CL. Angiopoietins regulate the stability of blood vessels, which directly affects angiogenesis or angiolysis via angiogenic factors. Vasohibin-1 is a novel negative feedback regulator, which inhibits VEGF-based vasculogenesis. It became evident that the immune cells, i.e., macrophages, eosinophils and neutrophils are recruited into the CL - using the innate immune system - just after ovulation which is accompanied by bleeding. The immune cells support active angiogenesis and thus the growth of the CL. In cows, the lymphatic system, but not blood vascular system, is reconstituted during early pregnancy, and embryonic trophoblast-derived interferon tau could play a crucial role in inducing lymphangiogenesis. This novel phenomenon may support a maternal recognition of pregnancy in shifting the local systems in such a way that they ensure a long-term supply of P4 over the period of pregnancy. Overall, the current findings support the concept that several major components involved in the regulation of the CL development and maintenance overlap in stimulating steroidogenesis, angiogenesis, vascular function and the innate immune system.
Collapse
Affiliation(s)
- Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan.
| | | | | | | |
Collapse
|
44
|
Shirasuna K, Shimizu T, Matsui M, Miyamoto A. Emerging roles of immune cells in luteal angiogenesis. Reprod Fertil Dev 2013; 25:351-61. [PMID: 22951090 DOI: 10.1071/rd12096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/01/2012] [Indexed: 12/29/2022] Open
Abstract
In the mammalian ovary, the corpus luteum (CL) is a unique transient endocrine organ displaying rapid angiogenesis and time-dependent accumulation of immune cells. The CL closely resembles 'transitory tumours', and the rate of luteal growth equals that of the fastest growing tumours. Recently, attention has focused on multiple roles of immune cells in luteal function, not only in luteolysis (CL disruption by immune responses involving T lymphocytes and macrophages), but also in CL development (CL remodelling by different immune responses involving neutrophils and macrophages). Neutrophils and macrophages regulate angiogenesis, lymphangiogenesis, and steroidogenesis by releasing cytokines in the CL. In addition, functional polarisation of neutrophils (proinflammatory N1 vs anti-inflammatory N2) and macrophages (proinflammatory M1 vs anti-inflammatory M2) has been demonstrated. This new concept concurs with the phenomenon of immune function within the luteal microenvironment: active development of the CL infiltrating anti-inflammatory N2 and M2 versus luteal regression together with proinflammatory N1 and M1. Conversely, excessive angiogenic factors and leucocyte infiltration result in indefinite disordered tumour development. However, the negative feedback regulator vasohibin-1 in the CL prevents excessive tumour-like vasculogenesis, suggesting that CL development has well coordinated time-dependent mechanisms. In this review, we discuss the physiological roles of immune cells involved in innate immunity (e.g. neutrophils and macrophages) in the local regulation of CL development with a primary focus on the cow.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | |
Collapse
|
45
|
Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest 2013; 123:3472-87. [PMID: 23867505 DOI: 10.1172/jci60561] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 05/09/2013] [Indexed: 01/02/2023] Open
Abstract
Macrophages are prominent in the uterus and ovary at conception. Here we utilize the Cd11b-Dtr mouse model of acute macrophage depletion to define the essential role of macrophages in early pregnancy. Macrophage depletion after conception caused embryo implantation arrest associated with diminished plasma progesterone and poor uterine receptivity. Implantation failure was alleviated by administration of bone marrow-derived CD11b+F4/80+ monocytes/macrophages. In the ovaries of macrophage-depleted mice, corpora lutea were profoundly abnormal, with elevated Ptgs2, Hif1a, and other inflammation and apoptosis genes and with diminished expression of steroidogenesis genes Star, Cyp11a1, and Hsd3b1. Infertility was rescued by exogenous progesterone, which confirmed that uterine refractoriness was fully attributable to the underlying luteal defect. In normally developing corpora lutea, macrophages were intimately juxtaposed with endothelial cells and expressed the proangiogenic marker TIE2. After macrophage depletion, substantial disruption of the luteal microvascular network occurred and was associated with altered ovarian expression of genes that encode vascular endothelial growth factors. These data indicate a critical role for macrophages in supporting the extensive vascular network required for corpus luteum integrity and production of progesterone essential for establishing pregnancy. Our findings raise the prospect that disruption of macrophage-endothelial cell interactions underpinning corpus luteum development contributes to infertility in women in whom luteal insufficiency is implicated.
Collapse
Affiliation(s)
- Alison S Care
- Robinson Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Shirasuna K, Nitta A, Sineenard J, Shimizu T, Bollwein H, Miyamoto A. Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domest Anim Endocrinol 2012; 43:198-211. [PMID: 22560178 DOI: 10.1016/j.domaniend.2012.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/18/2012] [Accepted: 03/28/2012] [Indexed: 01/05/2023]
Abstract
The bovine corpus luteum (CL) is a unique, transient organ with well-coordinated mechanisms by which its development, maintenance, and regression are effectively controlled. Angiogenic factors, such as vascular endothelial growth factor A and basic fibroblast growth factor, play an essential role in promoting progesterone secretion, cell proliferation, and angiogenesis. These processes are critically regulated, through both angiogenic and immune systems, by the specific immune cells, including macrophages, eosinophils, and neutrophils, that are recruited into the developing CL. The bovine luteolytic cascade appears to be similar to that of general acute inflammation in terms of time-dependent infiltration by immune cells (neutrophils, macrophages, and T lymphocytes) and drastic changes in vascular tonus and blood flow, which are regulated by luteal nitric oxide and the vasoconstrictive factors endothelin-1 and angiotensin II. Over the period of maternal recognition of pregnancy, the maternal immune system should be well controlled to accept the semiallograft fetus. The information on the presence of the developing embryo in the genital tract is suggested to be transmitted to the ovary by both the endocrine system and the circulating immune cells. In the bovine CL, the lymphatic system, but not the blood vascular system, is reconstituted during early pregnancy, and interferon tau from the embryo could trigger this novel phenomenon. Collectively, the angiogenic and vasoactive factors produced by luteal cells and the time-dependently recruited immune cells within the CL and their interactions appear to play critical roles in regulating luteal functions throughout the life span of the CL.
Collapse
Affiliation(s)
- K Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Lamaita RM, Pontes A, Belo AV, Caetano JPJ, Andrade SP, Cãndido EB, Traiman P, Carneiro MM, Silva-Filho AL. Inflammatory Response Patterns in ICSI Patients. Reprod Sci 2012; 19:704-11. [DOI: 10.1177/1933719111428518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Rívia Mara Lamaita
- Department of Obstetrics and Gynecology of Paulista State University, Botucatu, SP, Brazil
- Pró-Criar Clinic of Assisted Reproduction, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Anaglória Pontes
- Department of Obstetrics and Gynecology of Paulista State University, Botucatu, SP, Brazil
| | - Andrezza V. Belo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Pedro J. Caetano
- Pró-Criar Clinic of Assisted Reproduction, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Sílvia P. Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Batista Cãndido
- Department of Gynecology and Obstetrics of the School of Medicine of the Federal University of Minas Gerais
| | - Paulo Traiman
- Department of Obstetrics and Gynecology of Paulista State University, Botucatu, SP, Brazil
| | - Márcia Mendonça Carneiro
- Department of Gynecology and Obstetrics of the School of Medicine of the Federal University of Minas Gerais
| | - Agnaldo L. Silva-Filho
- Department of Obstetrics and Gynecology of Paulista State University, Botucatu, SP, Brazil
- Department of Gynecology and Obstetrics of the School of Medicine of the Federal University of Minas Gerais
| |
Collapse
|
48
|
Kawano Y, Zeineh K, Furukawa Y, Utsunomiya Y, Okamoto M, Narahara H. The Effects of Epidermal Growth Factor and Transforming Growth Factor-a on Secretion of Interleukin-8 and Growth-Regulated Oncogene-a in Human Granulosa-Lutein Cells. Gynecol Obstet Invest 2012; 73:189-94. [DOI: 10.1159/000331665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022]
|
49
|
Merkwitz C, Lochhead P, Tsikolia N, Koch D, Sygnecka K, Sakurai M, Spanel-Borowski K, Ricken AM. Expression of KIT in the ovary, and the role of somatic precursor cells. ACTA ACUST UNITED AC 2011; 46:131-84. [DOI: 10.1016/j.proghi.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Połeć A, Ráki M, Åbyholm T, Tanbo TG, Fedorcsák P. Interaction between granulosa-lutein cells and monocytes regulates secretion of angiogenic factors in vitro. Hum Reprod 2011; 26:2819-29. [DOI: 10.1093/humrep/der216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|