1
|
Yang B, Cao P, Bao G, Wu M, Chen W, Wu S, Luo D, Bi P. Inhibiting miRNA-146a suppresses mouse gallstone formation by regulating LXR/megalin/cubilin-media cholesterol absorption. Heliyon 2024; 10:e36679. [PMID: 39296173 PMCID: PMC11407981 DOI: 10.1016/j.heliyon.2024.e36679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background miRNA has been implicated in regulating cholesterol homeostasis, a critical factor in gallstone formation. Here, we focused on elucidating the role of miR-146a in this pathological process. Methods C57BL/6 mice were fed with lithogenic diet (LD) and injected with miR-146 antagomir (anta-146) via the tail vein for various weeks. The gallbladders and liver tissues were collected for cholesterol crystal imaging, gallstone mass quantification, and molecular analysis. Levels of cholesterol, bile salt, phospholipids, and metabolic parameters in serum and bile were assessed by ELISA. A 3' UTR reporter gene assay was used to verify the direct target genes for miR-146. The relative expression of metabolism genes was analyzed by quantitative real-time PCR and immunoblotting. Results miR-146a-5p expression was reduced in mice and clinical samples with gallstones. Anta-146 treatment effectively prevented LD-induced gallstone formation in mice without hepatic and cholecystic damage. The mice treated with anta-146 exhibited beneficial alterations in bile cholesterol and bile acids and lipid levels in the blood. A key biliary cholesterol transporter-Megalin was identified as a direct target of miR-146. Anta-146 administration upregulated megalin expression, thereby ameliorating impaired gallbladder cholesterol absorption associated with the LXR-megalin/cubilin pathway. Conclusion The data demonstrates that miR-146 modulates gallbladder cholesterol absorption by targeting megalin, and prevents the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Bin Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuangyan Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ding Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pinduan Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Amaral Raposo M, Sousa Oliveira E, Dos Santos A, Guadagnini D, El Mourabit H, Housset C, Lemoinne S, Abdalla Saad MJ. Impact of cholecystectomy on the gut-liver axis and metabolic disorders. Clin Res Hepatol Gastroenterol 2024; 48:102370. [PMID: 38729564 DOI: 10.1016/j.clinre.2024.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.
Collapse
Affiliation(s)
- Mariana Amaral Raposo
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Emília Sousa Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Andrey Dos Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sara Lemoinne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, European Reference Network on Hepatological Diseases (ERN Rare-Liver), Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil.
| |
Collapse
|
3
|
Ren G, Zhong R, Zou G, Du H, Zhang Y. Presence and significance of telocytes in cholelithiasis and biliary dilatation in benign biliary disorders. Sci Rep 2024; 14:14904. [PMID: 38942924 PMCID: PMC11213881 DOI: 10.1038/s41598-024-65776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Telocytes are closely associated with the regulation of tissue smooth muscle dynamics in digestive system disorders. They are widely distributed in the biliary system and exert their influence on biliary motility through mechanisms such as the regulation of CCK and their electrophysiological effects on smooth muscle cells. To investigate the relationship between telocytes and benign biliary diseases,such as gallbladder stone disease and biliary dilation syndrome, we conducted histopathological analysis on tissues affected by these conditions. Additionally, we performed immunohistochemistry and immunofluorescence double staining experiments for telocytes. The results indicate that the quantity of telocytes in the gallbladder and bile duct is significantly lower in pathological conditions compared to the control group. This reveals a close association between the decrease in telocyte quantity and impaired gallbladder motility and biliary fibrosis. Furthermore, further investigations have shown a correlation between telocytes in cholesterol gallstones and cholecystokinin-A receptor (CCK-AR), suggesting that elevated cholesterol levels may impair telocytes, leading to a reduction in the quantity of CCK-AR and ultimately resulting in impaired gallbladder motility.Therefore, we hypothesize that telocytes may play a crucial role in maintaining biliary homeostasis, and their deficiency may be associated with the development of benign biliary diseases, including gallstone disease and biliary dilation.
Collapse
Affiliation(s)
- Gongqing Ren
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Ruizi Zhong
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Gang Zou
- Department of Burns and Plastic Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Hongling Du
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Yue Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shenzhen People's Hospital, No.1017 Dongmen North Road, Shenzhen, 518020, Guangdong Province, China.
| |
Collapse
|
4
|
Gookin JL, Jewell DE, Aicher KM, Seiler GS, Cullen JM, Mathews KG. Increased lipogenesis and lipidosis of gallbladder epithelium in dogs with gallbladder mucocele formation. PLoS One 2024; 19:e0303191. [PMID: 38924032 PMCID: PMC11207163 DOI: 10.1371/journal.pone.0303191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Gallbladder disease in people is frequently associated with disorders of lipid metabolism and metabolic syndrome. A recently emergent gallbladder disease of dogs, referred to as mucocele formation, is characterized by secretion of abnormal mucus by the gallbladder epithelium and is similarly associated with hyperlipidemia, endocrinopathy, and metabolic dysfunction. The cause of gallbladder mucocele formation in dogs is unknown. METHODS A prospective case-controlled study was conducted to gain insight into disease pathogenesis by characterization of plasma lipid abnormalities in 18 dogs with gallbladder mucocele formation and 18 age and breed matched control dogs using direct infusion mass spectrometry for complex plasma lipid analysis. This analysis was complemented by histochemical and ultrastructural examination of gallbladder mucosa from dogs with gallbladder mucocele formation and control dogs for evidence of altered lipid homeostasis of the gallbladder epithelium. RESULTS Gallbladder mucocele formation in dogs carried a unique lipidomic signature of increased lipogenesis impacting 50% of lipid classes, 36% of esterified fatty acid species, and 11% of complex lipid species. Broad enrichment of complex lipids with palmitoleic acid (16:1) and decreased abundance within complex lipids of presumptive omega-3 fatty acids eicosapentaenoic (20:5) and docosahexaenoic (22:6) was significant. Severe lipidosis of gallbladder epithelium pinpoints the gallbladder as involved causally or consequently in abnormal lipid metabolism. CONCLUSION Our study supports a primary increase in lipogenesis in dogs with mucocele formation and abnormal gallbladder lipid metabolism in disease pathogenesis.
Collapse
Affiliation(s)
- Jody L. Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States of America
| | - Kathleen M. Aicher
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A & M University, College Station, TX, United States of America
| | - Gabriela S. Seiler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - John M. Cullen
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Kyle G. Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
5
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Xiang Y, Kong X, Zhang C, He C, Cai J, Lu R, Zhang B, Lu L, Yang Y. Free fatty acids and triglyceride change in the gallbladder bile of gallstone patients with pancreaticobiliary reflux. Lipids Health Dis 2021; 20:97. [PMID: 34465364 PMCID: PMC8408976 DOI: 10.1186/s12944-021-01527-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Background Pancreaticobiliary reflux (PBR) causes chronic inflammation of the gallbladder mucosa and changes in the bile components, which are known to promote gallstone formation. This study aimed to investigate the bile biochemistry changes in gallstone patients with PBR and provide new clues for research on the involvement of PBR in gallstone formation. Methods Patients undergoing surgery for gallstones between December 2020 and May 2021 were eligible for inclusion. The bile biochemistry (including amylase, lipase, triglyceride, cholesterol, free fatty acids [FFAs], alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], and γ-glutamyl transferase [γ-GT]) of the included gallstone patients was analysed to determine correlations with PBR. Results In this study, 144 gallstone patients who underwent surgery were enrolled. Overall, 15.97 % of the patients had an increased bile amylase level, which was associated with older age and significantly higher bile levels of ALP, lipase, triglyceride, and FFAs. Positive correlations were observed between amylase and lipase, triglyceride, FFAs levels in the gallbladder bile. However, the bile levels of triglyceride, FFAs, and lipase were positively correlated with each other only in the PBR group and showed no significant correlation in the control (N) group. In addition, elevated bile FFAs levels were found to be an independent risk factor for gallbladder wall thickening. Conclusions In conclusion, PBR-induced increase in FFAs and triglyceride in the gallbladder bile is a cause of gallstone formation, and an increase in bile ALP suggests the presence of cholestasis in PBR.
Collapse
Affiliation(s)
- Yukai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xiangyu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Chuanqi He
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Ruiqi Lu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Bosen Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Liu Lu
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yulong Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
7
|
Wang HH, Portincasa P, Liu M, Tso P, Wang DQH. An Update on the Lithogenic Mechanisms of Cholecystokinin a Receptor (CCKAR), an Important Gallstone Gene for Lith13. Genes (Basel) 2020; 11:E1438. [PMID: 33260332 PMCID: PMC7761502 DOI: 10.3390/genes11121438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK's regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical-chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy;
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (M.L.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
8
|
Abstract
Bile is composed of multiple macromolecules, including bile acids, free cholesterol, phospholipids, bilirubin, and inorganic ions that aid in digestion, nutrient absorption, and disposal of the insoluble products of heme catabolism. The synthesis and release of bile acids is tightly controlled and dependent on feedback mechanisms that regulate enterohepatic circulation. Alterations in bile composition, impaired gallbladder relaxation, and accelerated nucleation are the principal mechanisms leading to biliary stone formation. Various physiologic conditions and disease states alter bile composition and metabolism, thus increasing the risk of developing gallstones.
Collapse
Affiliation(s)
| | | | - Zeljka Jutric
- Department of Surgery, University of California Irvine; Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA, USA.
| |
Collapse
|
9
|
Kim DB, Paik CN, Song DS, Kim YJ, Lee JM. The characteristics of small intestinal bacterial overgrowth in patients with gallstone diseases. J Gastroenterol Hepatol 2018; 33:1477-1484. [PMID: 29392773 DOI: 10.1111/jgh.14113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Small intestinal bacterial overgrowth (SIBO) might be prevalent in gallstone disease, including cases involving cholecystectomy and gallstones. The study aimed to investigate the prevalence and characteristics of SIBO in patients with gallstone disease. METHODS This prospective study evaluated 265 patients for gallstone disease (200, gallstones; 65, cholecystectomy) and 39 healthy controls. Laboratory data, abdominal ultrasonography, and glucose breath test (GBT) with bowel symptom questionnaire were performed. RESULTS Glucose breath test positivity (+) in patients with gallstone disease (36.6%) was significantly higher than that in controls (20.5%). GBT+ in the gallstone group (40.5%) was significantly higher than that in the control or cholecystectomy group (24.6%). The number of patients with gallstone, tend to be higher in the GBT (H2 )+, (CH4 )+, and (mixed)+ groups (56 [28.0%], 11 [5.5%], and 14 [7.00%]), respectively. Gallbladder disease was independently associated with fatty liver, metabolic syndrome, and SIBO. Of 97 GBT+ patients, 70 (72.1%), 12 (12.4%), and 15 (15.5%) were in the GBT (H2 )+, (CH4 )+, and (mixed)+ groups, respectively. GBT (CH4 )+ or GBT (mixed)+ were significantly associated with the gallstone group compared with the cholecystectomy group. The GBT (mixed)+ group had higher total symptom scores than the GBT- group for hard stool and urgency tendency, or the GBT (H2 )+ group in hard stool and loose stool tendency. Gallstone was the only independent factor for SIBO in patients with gallstone diseases. CONCLUSIONS Small intestinal bacterial overgrowth is common among patients with gallstone. Especially, CH4 or mixed-type SIBO seems to be prevalent and to worsen intestinal symptoms.
Collapse
Affiliation(s)
- Dae Bum Kim
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang-Nyol Paik
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon Ji Kim
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Min Lee
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Gallstone disease is a major epidemiologic and economic burden worldwide, and the most frequent form is cholesterol gallstone disease. RECENT FINDINGS Major pathogenetic factors for cholesterol gallstones include a genetic background, hepatic hypersecretion of cholesterol, and supersaturated bile which give life to precipitating cholesterol crystals that accumulate and grow in a sluggish gallbladder. Additional factors include mucin and inflammatory changes in the gallbladder, slow intestinal motility, increased intestinal absorption of cholesterol, and altered gut microbiota. Mechanisms of disease are linked with insulin resistance, obesity, the metabolic syndrome, and type 2 diabetes. The role of nuclear receptors, signaling pathways, gut microbiota, and epigenome are being actively investigated. SUMMARY Ongoing research on cholesterol gallstone disease is intensively investigating several pathogenic mechanisms, associated metabolic disorders, new therapeutic approaches, and novel strategies for primary prevention, including lifestyles.
Collapse
Affiliation(s)
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, Bari, Italy
| |
Collapse
|
11
|
Abstract
The high prevalence of cholesterol gallstones, the availability of new information about pathogenesis, and the relevant health costs due to the management of cholelithiasis in both children and adults contribute to a growing interest in this disease. From an epidemiologic point of view, the risk of gallstones has been associated with higher risk of incident ischemic heart disease, total mortality, and disease-specific mortality (including cancer) independently from the presence of traditional risk factors such as body weight, lifestyle, diabetes, and dyslipidemia. This evidence points to the existence of complex pathogenic pathways linking the occurrence of gallstones to altered systemic homeostasis involving multiple organs and dynamics. In fact, the formation of gallstones is secondary to local factors strictly dependent on the gallbladder (that is, impaired smooth muscle function, wall inflammation, and intraluminal mucin accumulation) and bile (that is, supersaturation in cholesterol and precipitation of solid crystals) but also to "extra-gallbladder" features such as gene polymorphism, epigenetic factors, expression and activity of nuclear receptors, hormonal factors (in particular, insulin resistance), multi-level alterations in cholesterol metabolism, altered intestinal motility, and variations in gut microbiota. Of note, the majority of these factors are potentially manageable. Thus, cholelithiasis appears as the expression of systemic unbalances that, besides the classic therapeutic approaches to patients with clinical evidence of symptomatic disease or complications (surgery and, in a small subgroup of subjects, oral litholysis with bile acids), could be managed with tools oriented to primary prevention (changes in diet and lifestyle and pharmacologic prevention in subgroups at high risk), and there could be relevant implications in reducing both prevalence and health costs.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine - Hospital of Bisceglie, ASL BAT, Bisceglie, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol 2016; 6:1549-77. [PMID: 27347902 DOI: 10.1002/cphy.c150050] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The gallbladder stores and concentrates bile between meals. Gallbladder motor function is regulated by bile acids via the membrane bile acid receptor, TGR5, and by neurohormonal signals linked to digestion, for example, cholecystokinin and FGF15/19 intestinal hormones, which trigger gallbladder emptying and refilling, respectively. The cycle of gallbladder filling and emptying controls the flow of bile into the intestine and thereby the enterohepatic circulation of bile acids. The gallbladder also largely contributes to the regulation of bile composition by unique absorptive and secretory capacities. The gallbladder epithelium secretes bicarbonate and mucins, which both provide cytoprotection against bile acids. The reversal of fluid transport from absorption to secretion occurs together with bicarbonate secretion after feeding, predominantly in response to an adenosine 3',5'-cyclic monophosphate (cAMP)-dependent pathway triggered by neurohormonal factors, such as vasoactive intestinal peptide. Mucin secretion in the gallbladder is stimulated predominantly by calcium-dependent pathways that are activated by ATP present in bile, and bile acids. The gallbladder epithelium has the capacity to absorb cholesterol and provides a cholecystohepatic shunt pathway for bile acids. Changes in gallbladder motor function not only can contribute to gallstone disease, but also subserve protective functions in multiple pathological settings through the sequestration of bile acids and changes in the bile acid composition. Cholecystectomy increases the enterohepatic recirculation rates of bile acids leading to metabolic effects and an increased risk of nonalcoholic fatty liver disease, cirrhosis, and small-intestine carcinoid, independently of cholelithiasis. Among subjects with gallstones, cholecystectomy remains a priority in those at risk of gallbladder cancer, while others could benefit from gallbladder-preserving strategies. © 2016 American Physiological Society. Compr Physiol 6:1549-1577, 2016.
Collapse
Affiliation(s)
- Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares (CMR) des Maladies Inflammatoires des Voies Biliaires (MIVB), Service d'Hépatologie, Paris, France
| | - Yues Chrétien
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares (CMR) des Maladies Inflammatoires des Voies Biliaires (MIVB), Service d'Hépatologie, Paris, France
| | - Dominique Debray
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Medical-Surgical Center, Hepatology and Transplantation, Paris, France
| | - Nicolas Chignard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
13
|
Chen Y, Kong J, Wu S. Cholesterol gallstone disease: focusing on the role of gallbladder. J Transl Med 2015; 95:124-31. [PMID: 25502177 DOI: 10.1038/labinvest.2014.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Gallstone disease (GSD) is one of the most common biliary tract diseases worldwide in which both genetic and environmental factors have roles in its pathogenesis. Biliary cholesterol supersaturation from metabolic defects in the liver is traditionally seen as the main pathogenic factor. Recently, there have been renewed investigative interests in the downstream events that occur in gallbladder lithogenesis. This article focuses on the role of the gallbladder in the pathogenesis of cholesterol GSD (CGD). Various conditions affecting the crystallization process are discussed, such as gallbladder motility, concentrating function, lipid transport, and an imbalance between pro-nucleating and nucleation inhibiting proteins.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Sharma KL, Agarwal A, Misra S, Kumar A, Kumar V, Mittal B. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility. Tumour Biol 2014; 35:5431-9. [DOI: 10.1007/s13277-014-1708-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/29/2014] [Indexed: 02/07/2023] Open
|
15
|
Byun HW, Hong EM, Park SH, Koh DH, Choi MH, Jang HJ, Kae SH, Lee J. Pravastatin activates the expression of farnesoid X receptor and liver X receptor alpha in Hep3B cells. Hepatobiliary Pancreat Dis Int 2014; 13:65-73. [PMID: 24463082 DOI: 10.1016/s1499-3872(14)60009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Statins are suggested to preserve gallbladder function by suppressing pro-inflammatory cytokines and preventing cholesterol accumulation in gallbladder epithelial cells. They also affect cross-talk among the nuclear hormone receptors that regulate cholesterol-bile acid metabolism in the nuclei of hepatocytes. However, there is controversy over whether or how statins change the expression of peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, liver X receptor alpha (LXRalpha), farnesoid X receptor (FXR), ABCG5, ABCG8, and 7alpha-hydroxylase (CYP7A1) which are directly involved in the cholesterol saturation index in bile. METHODS Human Hep3B cells were cultured on dishes. MTT assays were performed to determine the appropriate concentrations of reagents to be used. The protein expression of PPARalpha and PPARgamma was measured by Western blotting analysis, and the mRNA expression of LXRalpha, FXR, ABCG5, ABCG8 and CYP7A1 was estimated by RT-PCR. RESULTS In cultured Hep3B cells, pravastatin activated PPARalpha and PPARgamma protein expression, induced stronger expression of PPARgamma than that of PPARalpha, increased LXRalpha mRNA expression, activated ABCG5 and ABCG8 mRNA expression mediated by FXR as well as LXRalpha, enhanced FXR mRNA expression, and increased CYP7A1 mRNA expression mediated by the PPARgamma and LXRalpha pathways, together or independently. CONCLUSION Our data suggested that pravastatin prevents cholesterol gallstone diseases via the increase of FXR, LXRalpha and CYP7A1 in human hepatocytes.
Collapse
Affiliation(s)
- Hyun Woo Byun
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, 40 Seokwoo-dong, Hwasung, Kyungki-Do 445-170, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sharma KL, Misra S, Kumar A, Mittal B. Association of liver X receptors (LXRs) genetic variants to gallbladder cancer susceptibility. Tumour Biol 2013; 34:3959-66. [PMID: 23838803 DOI: 10.1007/s13277-013-0984-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022] Open
Abstract
Liver X receptors (LXRs) α and β are ligand-activated transcription factors belonging to the family of nuclear receptors. LXRs play role in control of lipid homeostasis, glucose metabolism, inflammation, and proliferation. LXRs are expressed in gallbladder cholangiocytes and recent studies have shown that LXR-β (-/-) Mice exhibit an estrogen-dependent gallbladder carcinogenesis. However, there are no studies reported in humans. Therefore, using case-control design in the present study, we have evaluated the associations of LXR-α (rs7120118) and LXR-β (rs35463555 and rs2695121) genetic variants with gallbladder cancer (GBC) susceptibility in 400 cases and 200 controls. Genotypes were determined by TaqMan probes. Statistical analysis was done by SPSS and SNPstats. In silico analysis was performed using Bioinformatics tools (F-SNP, FAST-SNP). LXR-β genotypes (rs35463555) [GA + AA] and (rs2695121) [TC + CC] were associated with risk of GBC [OR = 1.46, p = 0.03; OR = 1.52, p = 0.01, respectively] as compared to healthy controls whereas LXR-α (rs7120118) was not associated with GBC risk. LXR-β haplotype [Ars35463555-Crs2695121] showed statistical significant association with GBC [OR = 5.0, p = 0.03]. On stratification based on gender, LXR-β [GA + AA] and [TC + CC] genotypes were found to be significantly associated in females GBC patients [OR = 1.5, p = 0.04; OR = 1.7, p = 0.005, respectively]. The LXR-β [TC + CC] associated with GBC patients with gallstones [OR; 1.8, p = 0.002]. The genetic risk by LXR-β was not modulated by tobacco consumption or age of onset. In silico analysis using FAST-SNP showed "Low-medium risk" by LXR-β (rs2695121) T > C variation. Our results suggest that LXR-β polymorphisms influence gallbladder cancer susceptibility through estrogen and gallstone-dependent pathways.
Collapse
Affiliation(s)
- Kiran Lata Sharma
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, Uttar Pradesh, India,
| | | | | | | |
Collapse
|
17
|
Turumin JL, Shanturov VA, Turumina HE. The role of the gallbladder in humans. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2013; 78:177-87. [PMID: 23683886 DOI: 10.1016/j.rgmx.2013.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/28/2013] [Accepted: 02/18/2013] [Indexed: 12/30/2022]
Abstract
The basic function of the gallbladder in humans is one of protection. The accumulation of the primary bile acids (cholic acid and chenodeoxycholic acid) in the gallbladder reduces the formation of the secondary bile acids (deoxycholic acid and lithocholic acid), thus diminishing their concentration in the so-called gallbladder-independent enterohepatic circulation and protecting the liver, the stomach mucosa, the gallbladder, and the colon from their toxic hydrophobic effects. The presence or absence of the gallbladder in mammals is a determining factor in the synthesis of hydrophobic or hydrophilic bile acids. Because the gallbladder contracts 5-20 min after food is in the stomach and the "gastric chyme" moves from the stomach to the duodenum 1-3 h later, the function of the gallbladder bile in digestion may be insignificant. The aim of this article was to provide a detailed review of the role of the gallbladder and the mechanisms related to bile formation in humans.
Collapse
Affiliation(s)
- J L Turumin
- Department of Experimental Surgery, State Establishment Scientific Centre of Reconstructive and Restorative Surgery, Siberian Branch, Russian Academy of Medical Sciences, Irkutsk, Russia.
| | | | | |
Collapse
|
18
|
Physiology and Pathophysiology of the Biliary Tract: The Gallbladder and Sphincter of Oddi—A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/837630] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biliary tract collects, stores, concentrates, and delivers bile secreted by the liver. Its motility is controlled by neurohormonal mechanisms with the vagus and splanchnic nerves and the hormone cholecystokinin playing key roles. These neurohormonal mechanisms integrate the motility of the gallbladder and sphincter of Oddi (SO) with the gastrointestinal tract in the fasting and digestive phases. During fasting most of the hepatic bile is diverted toward the gallbladder by the resistance of the SO. The gallbladder allows the gradual entry of bile relaxing by passive and active mechanisms. During the digestive phase the gallbladder contracts, and the SO relaxes allowing bile to be released into the duodenum for the digestion and absorption of fats. Pathological processes manifested by recurrent episodes of upper abdominal pain affect both the gallbladder and SO. The gallbladder motility and cytoprotective functions are impaired by lithogenic hepatic bile with excess cholesterol allowing the hydrophobic bile salts to induce chronic cholecystitis. Laparoscopic cholecystectomy is the standard treatment. Three types of SO dyskinesia also cause biliary pain. Their pathophysiology is not completely known. The pain of types I and II usually respond to sphincterotomy, but the pain due to type III usually does not.
Collapse
|
19
|
Dikkers A, Tietge UJF. The neglected cousin of the hepatocyte: how gallbladder epithelial cells might contribute to cholesterol gallstone formation. Dig Dis Sci 2013; 58:296-8. [PMID: 23371007 DOI: 10.1007/s10620-012-2541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 12/09/2022]
|
20
|
Debray D, Rainteau D, Barbu V, Rouahi M, Mourabit HE, Lerondel S, Rey C, Humbert L, Wendum D, Cottart CH, Dawson P, Chignard N, Housset C. Defects in gallbladder emptying and bile Acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology 2012; 142:1581-91.e6. [PMID: 22370478 PMCID: PMC3579557 DOI: 10.1053/j.gastro.2012.02.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/06/2012] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Patients with cystic fibrosis (CF) have poorly defined defects in biliary function. We evaluated the effects of cystic fibrosis transmembrane conductance regulator (CFTR) deficiency on the enterohepatic disposition of bile acids (BAs). METHODS Bile secretion and BA homeostasis were investigated in Cftr(tm1Unc) (Cftr-/-) and CftrΔF508 (ΔF508) mice. RESULTS Cftr-/- and ΔF508 mice did not grow to normal size, but did not have liver abnormalities. The gallbladders of Cftr-/- mice were enlarged and had defects in emptying, based on (99m)technetium-mebrofenin scintigraphy or post-prandial variations in gallbladder volume; gallbladder contraction in response to cholecystokinin-8 was normal. Cftr-/- mice had abnormal gallbladder bile and duodenal acidity, and overexpressed the vasoactive intestinal peptide-a myorelaxant factor for the gallbladder. The BA pool was larger in Cftr-/- than wild-type mice, although there were no differences in fecal loss of BAs. Amounts of secondary BAs in portal blood, liver, and bile of Cftr-/- mice were much lower than normal. Expression of genes that are induced by BAs, including fibroblast growth factor-15 and BA transporters, was lower in the ileum but higher in the gallbladders of Cftr-/- mice, compared with wild-type mice, whereas enzymes that synthesize BA were down-regulated in livers of Cftr-/- mice. This indicates that BAs underwent a cholecystohepatic shunt, which was confirmed using cholyl-(Ne-NBD)-lysine as a tracer. In Cftr-/- mice, cholecystectomy reversed most changes in gene expression and partially restored circulating levels of secondary BAs. The ΔF508 mice overexpressed vasoactive intestinal peptide and had defects in gallbladder emptying and in levels of secondary BAs, but these features were less severe than in Cftr-/- mice. CONCLUSIONS Cftr-/- and CftrΔF508 mice have defects in gallbladder emptying that disrupt enterohepatic circulation of BAs. These defects create a shunt pathway that restricts the amount of toxic secondary BAs that enter the liver.
Collapse
Affiliation(s)
- Dominique Debray
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Necker-Enfants Malades, Hépato-Gastroentérologie Pédiatrique, Paris, France
| | - Dominique Rainteau
- UPMC Univ Paris 06 and INSERM, ERL U1057/UMR 7203, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| | - Véronique Barbu
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| | - Myriam Rouahi
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France
| | | | | | - Colette Rey
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France
| | - Lydie Humbert
- UPMC Univ Paris 06 and INSERM, ERL U1057/UMR 7203, Paris, France
| | - Dominique Wendum
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| | - Charles-Henry Cottart
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,Université Paris Descartes, EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Paul Dawson
- Section on Gastroenterology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Nicolas Chignard
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France
| | - Chantal Housset
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| |
Collapse
|
21
|
Van Erpecum KJ. Pathogenesis of cholesterol and pigment gallstones: an update. Clin Res Hepatol Gastroenterol 2011; 35:281-7. [PMID: 21353662 DOI: 10.1016/j.clinre.2011.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 02/04/2023]
Abstract
Phase separation of cholesterol crystals from supersaturated bile is still considered the key event in cholesterol gallstone formation. In this review, we will first provide a basal framework of the interactions between the sterol, bile salts and phospholipids in aqueous solutions and then summarize new developments. The hepatocytic apical membrane harbours specific transport proteins for these lipids. Polymorphisms in the gene encoding the cholesterol transporter ABCG5-G8 have been found to increase overall gallstone risk, whereas functional mutations in the gene encoding the phospholipid floppase ABCB4 lead to the rare clinical syndrome of low phospholipid associated cholelithiasis. Expression of bile salt and phospholipid transport proteins is regulated bij the bile salt nuclear receptor Farnesoid X receptor (FXR), while the Liver X Receptor (LXR) α regulates ABCG5-G8. Although data from murine experiments suggest a critical role of FXR in gallstone formation, its role in human lithogenesis remains controversial. Variants of the gene encoding UGT1A1 (uridine 5'-diphosphate (UDP)-glucuronosyltransferase 1A1) responsible for bilirubin conjugation were recently associated with risk of gallstones as well as stone bilirubin content, suggesting common factors in cholesterol and pigment gallstone pathogenesis.
Collapse
Affiliation(s)
- Karel Johannes Van Erpecum
- Dept of Gastroenterology and Hepatology, University Medical Center Utrecht, HP. F.02.618, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
22
|
Freudenberg F, Leonard MR, Liu SA, Glickman JN, Carey MC. Pathophysiological preconditions promoting mixed "black" pigment plus cholesterol gallstones in a DeltaF508 mouse model of cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 2010; 299:G205-14. [PMID: 20430874 PMCID: PMC2904121 DOI: 10.1152/ajpgi.00341.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gallstones are frequent in patients with cystic fibrosis (CF). These stones are generally "black" pigment (i.e., Ca bilirubinate) with an appreciable cholesterol admixture. The pathophysiology and molecular mechanisms for this "mixed" gallstone in CF are unknown. Here we investigate in a CF mouse model with no overt liver or gallbladder disease whether pathophysiological changes in the physical chemistry of gallbladder bile might predict the occurrence of "mixed" cholelithiasis. Employing a DeltaF508 mouse model with documented increased fecal bile acid loss and induced enterohepatic cycling of bilirubin (Am J Physiol Gastrointest Liver Physiol 294: G1411-G1420, 2008), we assessed gallbladder bile chemistry, morphology, and microscopy in CF and wild-type mice, with focus on the concentrations and compositions of the common biliary lipids, bilirubins, Ca(2+), and pH. Our results demonstrate that gallbladder bile of CF mice contains significantly higher levels of all bilirubin conjugates and unconjugated bilirubin with lower gallbladder bile pH values. Significant elevations in Ca bilirubinate ion products in bile of CF mice increase the likelihood of supersaturating bile and forming black pigment gallstones. The risk of potential pigment cholelithogenesis is coupled with higher cholesterol saturations and bile salt hydrophobicity indexes, consistent with a proclivity to cholesterol phase separation during pigment gallstone formation. This is an initial step toward unraveling the molecular basis of CF gallstone disease and constitutes a framework for investigating animal models of CF with more severe biliary disease, as well as the human disease.
Collapse
Affiliation(s)
- Folke Freudenberg
- 1Department of Medicine, Harvard Medical School and Harvard Digestive Diseases Center; ,2Department of Medicine, Gastroenterology Division, Brigham and Women's Hospital, and
| | - Monika R. Leonard
- 2Department of Medicine, Gastroenterology Division, Brigham and Women's Hospital, and
| | - Shou-An Liu
- 2Department of Medicine, Gastroenterology Division, Brigham and Women's Hospital, and
| | - Jonathan N. Glickman
- 3Pathology Department, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Martin C. Carey
- 1Department of Medicine, Harvard Medical School and Harvard Digestive Diseases Center; ,2Department of Medicine, Gastroenterology Division, Brigham and Women's Hospital, and
| |
Collapse
|
23
|
Abstract
Cholesterol gallstone formation is a complex process and involves phase separation of cholesterol crystals from supersaturated bile. In most cases, cholesterol hypersecretion is considered the primary event in gallstone formation. The sterol is transported through the hepatocytic canalicular membrane by ABCG5-G8. Expression of this transport protein is regulated by transcription factor Liver X Receptor-alpha, which may be responsible for biliary hypersecretion. Hydrophobic bile salt pool, bile concentration, excess pronucleating mucin, and impaired gallbladder and intestinal motility are secondary phenomena in most cases but nevertheless may contribute to gallstone formation.
Collapse
Affiliation(s)
- Niels Gerard Venneman
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Jayalakshmi K, Sonkar K, Behari A, Kapoor VK, Sinha N. Solid state (13)C NMR analysis of human gallstones from cancer and benign gall bladder diseases. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:60-65. [PMID: 19577439 DOI: 10.1016/j.ssnmr.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/09/2009] [Indexed: 05/28/2023]
Abstract
Natural abundance (13)C cross polarized (CP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) analysis of human gall bladder stones collected from patients suffering from malignant and benign gall bladder disease was carried out which revealed different polymorphs of cholesterol in these stones. All gall bladder stones in present study had cholesterol as their main constituent. (13)C CP-MAS NMR analysis revealed three forms of cholesterol molecules in these stones, which are anhydrous form, monohydrate crystalline with amorphous form and monohydrate crystalline form. Our study revealed that stones collected from patients associated with chronic cholecystitis (CC) disease have mostly different polymorph of cholesterol than stones collected from patients associated with gall bladder cancer (GBC). Such study will be helpful in understanding the mechanism of formation of gallstones which are associated with different gall bladder diseases. This is the first study by solid state NMR revealing different crystal polymorphism of cholesterol in human gallstones, extending the applicability of (13)C CP-MAS NMR technique for the routine study of gallstones.
Collapse
Affiliation(s)
- K Jayalakshmi
- Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibarelli Road, Lucknow 226014, India
| | | | | | | | | |
Collapse
|
25
|
Recent understanding of cholesterol gallstone pathogenesis: implication to non-surgical therapeutic strategy. Clin J Gastroenterol 2008; 1:87-92. [DOI: 10.1007/s12328-008-0031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
26
|
Koppisetti S, Jenigiri B, Terron MP, Tengattini S, Tamura H, Flores LJ, Tan DX, Reiter RJ. Reactive oxygen species and the hypomotility of the gall bladder as targets for the treatment of gallstones with melatonin: a review. Dig Dis Sci 2008; 53:2592-603. [PMID: 18338264 DOI: 10.1007/s10620-007-0195-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/21/2007] [Indexed: 12/17/2022]
Abstract
Free radical-mediated damage of the gall bladder epithelium predisposes to the development of both gall bladder inflammation and gallstone formation, which often coexist. Melatonin, a pineal and gut secretory product, due to its antioxidant activity along with its effect on the aging gall bladder myocytes, inhibits gallstone formation. Melatonin reduces the biliary levels of cholesterol by inhibiting cholesterol absorption across the intestinal epithelium and by increasing the conversion of cholesterol to bile acids. The incidence of gallstones is increasing and is expected to rise dramatically with the increase in the longevity and the risk factors such as obesity. The change in the prevalence of cholelithiasis is associated with a proportionate rise in the incidence of cholangiocarcinoma. In an attempt to improve the quality of life of the rapidly increasing aging population, this article reviews up-to-date information on the pathophysiology of the gall bladder function and discusses the development of new therapies with potential good patient compliance and lower cost than the current treatments.
Collapse
Affiliation(s)
- Sreedevi Koppisetti
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zúñiga S, Molina H, Azocar L, Amigo L, Nervi F, Pimentel F, Jarufe N, Arrese M, Lammert F, Miquel JF. Ezetimibe prevents cholesterol gallstone formation in mice. Liver Int 2008; 28:935-47. [PMID: 18783541 DOI: 10.1111/j.1478-3231.2008.01808.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Intestinal cholesterol absorption may influence gallstone formation and its modulation could be a useful therapeutic strategy for gallstone disease (GSD). Ezetimibe (EZET) is a cholesterol-lowering agent that specifically inhibits intestinal cholesterol absorption. AIMS To test whether EZET can prevent gallstone formation in mice. METHODS/RESULTS Gallstone-susceptible C57BL/6 inbred mice were fed control and lithogenic diets with or without simultaneous EZET administration. Lithogenic diet increased biliary cholesterol content and secretion, and induced sludge or gallstone formation in 100% of the animals. EZET administration reduced intestinal cholesterol absorption by 90% in control animals and by 35% in mice receiving the lithogenic diet. EZET prevented the appearance of cholesterol crystals and gallstones. In addition, mice fed the lithogenic diet plus EZET exhibited a 60% reduction in biliary cholesterol saturation index. Of note, EZET treatment caused a significant increase in bile flow (+50%, P<0.01) as well as bile salt, phospholipid and glutathione secretion rates (+60%, +44% and +100%, respectively, P<0.01), which was associated with a moderately increased expression of hepatic bile salt transporters. In addition, relative expression levels of Nieman-Pick C1 like 1 (NPC1L1) in the enterohepatic axis in humans were assessed. Expression levels of NPC1L1 were 15- to 30-fold higher in the duodenum compared with the liver at transcript and protein levels, respectively, suggesting preferential action of EZET on intestinal cholesterol absorption in humans. CONCLUSIONS In a murine model of GSD, EZET prevented gallstone formation by reducing intestinal cholesterol absorption and increasing bile salt-dependent and -independent bile flow. EZET could be useful in preventing GSD disease in susceptible patients.
Collapse
Affiliation(s)
- Silvia Zúñiga
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Portincasa P, Di Ciaula A, Wang HH, Palasciano G, van Erpecum KJ, Moschetta A, Wang DQH. Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology 2008; 47:2112-26. [PMID: 18506897 DOI: 10.1002/hep.22204] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gallstones are one of the most common digestive diseases with an estimated prevalence of 10%-15% in adults living in the western world, where cholesterol-enriched gallstones represent 75%-80% of all gallstones. In cholesterol gallstone disease, the gallbladder becomes the target organ of a complex metabolic disease. Indeed, a fine coordinated hepatobiliary and gastrointestinal function, including gallbladder motility in the fasting and postprandial state, is of crucial importance to prevent crystallization and precipitation of excess cholesterol in gallbladder bile. Also, gallbladder itself plays a physiopathological role in biliary lipid absorption. Here, we present a comprehensive view on the regulation of gallbladder motor function by focusing on recent discoveries in animal and human studies, and we discuss the role of the gallbladder in the pathogenesis of gallstone formation.
Collapse
Affiliation(s)
- Piero Portincasa
- Department of Internal Medicine and Public Medicine, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lee J, Hong EM, Byun HW, Choi MH, Jang HJ, Eun CS, Kae SH, Choi HS. The effect of PPARalpha and PPARgamma ligands on inflammation and ABCA1 expression in cultured gallbladder epithelial cells. Dig Dis Sci 2008; 53:1707-15. [PMID: 17932758 DOI: 10.1007/s10620-007-0029-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 09/19/2007] [Indexed: 12/09/2022]
Abstract
The preservation of gallbladder function by control of inflammation and elimination of cholesterol accumulation in gallbladder epithelial cells (GBEC) could contribute to the prevention of gallstone formation and cholecystitis. Peroxisome proliferator-activated receptors (PPARs) modulate inflammation and lipid metabolism in various cells and GBEC efflux of excessive amounts of absorbed cholesterol through the ATP-binding cassette transporter A1 (ABCA1)-mediated pathway. The aim of this study was to determine whether ligands of PPARalpha and PPARgamma modulate inflammation and have an effect on ABCA1 expression in GBEC. Canine GBEC were cultured on dishes coated with collagen matrix. We performed Western blot analysis for the expression of specific protein and/or RT-PCR for the expression of specific mRNA. PPARalpha and PPARgamma expression was observed and increased in GBEC treated with WY-14643 (PPARalpha ligand), troglitazone (PPARgamma ligand), and lipopolysaccharide (LPS) compared to the no-treatment control and PPARalpha( antagonist (GW-9662) treatment group. WY-14643, troglitazone, and LPS also induced an increase in the expression of ABCA1 protein and mRNA in cultured GBEC. LPS-induced TNFalpha mRNA expression was suppressed by pretreatment with WY-14643 and troglitazone preceding LPS treatment in GBEC. PPAR ligands, especially PPARgamma, may preserve gallbladder function by suppression of inflammatory reaction and prevention of cholesterol accumulation in GBEC, contributing to the prevention of gallstone formation and progression to cholecystitis.
Collapse
Affiliation(s)
- Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Hangang Sacred Heart Hospital, 94-200, Youngdungpo-Dong, Youngdungpo-Gu, Seoul 150-030, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liguori F, Domingo N, Tebala G, Ripani C, De Marco R, Siciliano M, Attili AF, Lairon D, Lafont H, de la Porte PL, Ginanni Corradini S. The anionic peptide fraction is present on the gallbladder apical epithelium and favours biliary cholesterol absorption. Dig Liver Dis 2007; 39:646-53. [PMID: 17531554 DOI: 10.1016/j.dld.2007.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/10/2007] [Accepted: 04/20/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS We investigated (a) in vitro and in vivo the changes of biliary mass of the anionic peptide fraction, apolipoproteinA-I, immunoglobulin-A, albumin and cholesterol over time in the excluded gallbladder and (b) in vivo the localization in the gallbladder epithelium of the anionic peptide fraction and cholesterol absorbed from bile. METHODS Native bile was substituted with pig bile containing radiolabeled cholesterol in the in vitro isolated intra-arterially perfused pig gallbladder (n=9) and in vivo in anestethized pigs with excluded gallbladders (n=6). The amount of cholesterol (scintillation counting) and proteins (enzyme-linked immunosorbent assay) in gallbladder bile were measured over time. The localization of the anionic peptide fraction and cholesterol absorbed from bile in the gallbladder epithelium was studied in vivo by immunohistochemistry and fluoro-phospho-imager analysis. RESULTS The rate of biliary cholesterol disappeared from bile was a function of the initial concentration and of the biliary mass changes over time of the anionic peptide fraction, but not of that of the other biliary proteins. The anionic peptide fraction colocalized with biliary cholesterol absorbed by the gallbladder on the apical side of gallbladder epithelial cells. CONCLUSIONS These data indirectly suggest that biliary anionic peptide fraction could favour biliary cholesterol absorption by the gallbladder epithelium.
Collapse
Affiliation(s)
- F Liguori
- Division of Gastroenterology, Department of Clinical Medicine, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cholelithiasis is the most common form of benign gallbladder disease that results in major heath expenditure. Female sex hormones are causally related to cholesterol gallstone disease, which are more common in women than in men. The risk of development of cholelithiasis is further enhanced by the use of exogenous female sex hormones and by pregnancy. Oestrogens are used in oral contraceptives and in hormone replacement therapy (HRT). Oral contraceptives do not pose a greater risk for gallbladder disease. The findings from two randomised, controlled trials, the Heart and Oestrogen/Progestin Replacement Study and the Women's Health Initiative postmenopausal hormone trial, unequivocally confirm that oral oestrogen use in postmenopausal women is causally associated with gallbladder disease, and the magnitude of the effect is not influenced greatly by the presence or absence of progestins. A cautious approach should be observed when prescribing HRT. Women must be informed about the effect of oestrogen use on increased risk of benign gallbladder disease. HRT should be used in the lowest possible dose for the shortest possible time. Women harbouring asymptomatic gallstones should not receive oestrogens because of the possibility of developing cholecystitis.
Collapse
Affiliation(s)
- Radha K Dhiman
- Postgraduate Institute of Medical Education and Research, Department of Hepatology, Chandigarh 160012, India.
| | | |
Collapse
|
32
|
van Erpecum KJ, Wang DQH. The gallbladder: innocent bystander or major factor in cholesterol-gallstone formation? ACTA ACUST UNITED AC 2005; 146:202-4. [PMID: 16194680 DOI: 10.1016/j.lab.2005.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
|
33
|
Moschetta A, Xu F, Hagey LR, van Berge-Henegouwen GP, van Erpecum KJ, Brouwers JF, Cohen JC, Bierman M, Hobbs HH, Steinbach JH, Hofmann AF. A phylogenetic survey of biliary lipids in vertebrates ,. J Lipid Res 2005; 46:2221-32. [PMID: 16061950 DOI: 10.1194/jlr.m500178-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biliary lipids (bile salts, phospholipids, cholesterol, plant sterols) were determined in 89 vertebrate species (cartilaginous and bony fish, reptiles, birds, and mammals), and individual phospholipid classes were measured in 35 species. All samples contained conjugated bile salts (C(27) bile alcohol sulfates and/or N-acyl amidates of C(27) and/or C(24) bile acids). Phospholipids were generally absent in the bile of cartilaginous fish and reptiles and were present in low amounts relative to bile salts in bony fish and most birds. In mammals, the phospholipid-bile salt ratio varied widely. The bile from species with low biliary phospholipid-bile salt ratios often contained a high proportion of sphingomyelin, confirmed by HPLC-MS. In species with a high phospholipid-bile salt ratio, the predominant biliary phospholipid was phosphatidylcholine (PC). The phospholipid-bile salt ratio correlated weakly with the calculated weighted hydrophobic index value. Cholesterol was present in the bile of virtually all species, with plant sterols uniformly being present in only trace amounts. The cholesterol-bile salt ratio tended to be higher in mammals than in non-mammals, but bile of all species was unsaturated. Thus, most nonmammalian vertebrates have relatively low levels of biliary phospholipid and cholesterol, suggesting that cholesterol is eliminated predominantly as bile salts. Mammals have a higher phospholipid and cholesterol to bile salt ratio, with the dominant phospholipid being PC.
Collapse
Affiliation(s)
- Antonio Moschetta
- Department of Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang TS, Lo SK, Shyr HY, Fang JT, Lee WC, Tai DI, Sheen IS, Lin DY, Chu CM, Liaw YF. Hepatitis C virus infection facilitates gallstone formation. J Gastroenterol Hepatol 2005; 20:1416-21. [PMID: 16105130 DOI: 10.1111/j.1440-1746.2005.03915.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bile duct damage and hepatic steatosis are two characteristic histological findings in hepatitis C virus infection; and high prevalence of hepatitis C antibody is noted in patients with cholangiocarcinoma. The purpose of the present study was to examine the relationship between biliary diseases and hepatitis C virus infection. METHODS Persons who received a general checkup in Chang Gung Memorial Hospital between 2000 and 2002 were included. All of them had hemogram, serum biochemistry, hepatitis B surface antigen, hepatitis C antibody and ultrasonography studies. The prevalence of gallbladder stone, bile duct stone and gallbladder polyp/cholesterolosis were compared in different viral infection groups. RESULTS Of the 28 486 persons, 22 967 were negative for both hepatitis B surface antigen and hepatitis C antibody (group NBNC), 4152 were hepatitis B surface antigen carriers (broup B), 1195 were positive for hepatitis C antibody (group C), and 172 were positive for both markers. The 379 persons (1.3%) having had cholecystectomy were considered to have gallbladder stone at the time when cholecystectomy was done. Gallbladder stone was found in 6.0% persons of group NBNC, 5.4% in group B and 11.7% in group C. The prevalence of gallbladder stone in group C was found especially high for age groups 31-40 years and 61-70 years. The prevalence of bile duct stone was higher in group C (0.4%) than in group NBNC or B (both 0.1%). Stepwise logistic regression analysis showed that age, liver cirrhosis, body mass index, hepatitis C virus infection and gender were independent factors associated with gallbladder stone. CONCLUSIONS Hepatitis C virus infection facilitates gallstone formation.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Liver Research Unit, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Gilloteaux J, Miller D, Morrison RL. Intracellular liposomes and cholesterol deposits in chronic cholecystitis and biliary sludge. Ultrastruct Pathol 2004; 28:123-36. [PMID: 15471425 DOI: 10.1080/01913120490475888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ultrastructural study of a group of selected specimens of chronic cholecystitic gallbladders reveals cholecystocyte changes characterized by abraded and altered microvilli accompanied by mitochondrial damages in the apical regions as well as mucus accumulation with aggregated, angulated lysosomes and heterogeneous liposomes. These liposomes contain needle-like crystals, probably rich in cholesterol. Many fragments of cholecystocystes and damaged organelles or contents can be found in the biliary sludge. These data support previous reports suggesting that there is an association between cholecystitis and the presence of cholelithiasis, subsequent to the production of altered bile. The present data suggest that disintegrating, sloughed cholecystocyte contents also contribute to the bile sludge, a complex milieu enriched by lipids, cholesterol deposits, altered mucus due in part to changes in expression of apomucins. The instability of prolonged storage of such modified bile, caused and/or accompanied by other associated metabolic defects, including gallbladder sluggishness, would favor the nucleation and the enlargement of gallstones. Based on the aforementioned data, a comprehensive sequence for cholecystocyte ultrastructural alterations and pathologies is proposed, as a result of chronic cholecystitis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Departments of Pathology and Surgery, Summa Health System, Summa Research Foundation, Akron, Ohio, USA.
| | | | | |
Collapse
|
37
|
Erranz B, Miquel JF, Argraves WS, Barth JL, Pimentel F, Marzolo MP. Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids. J Lipid Res 2004; 45:2185-98. [PMID: 15375181 DOI: 10.1194/jlr.m400235-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cholesterol crystal formation in the gallbladder is a key step in gallstone pathogenesis. Gallbladder epithelial cells might prevent luminal gallstone formation through a poorly understood cholesterol absorption process. Genetic studies in mice have highlighted potential gallstone susceptibility alleles, Lith genes, which include the gene for megalin. Megalin, in conjunction with the large peripheral membrane protein cubilin, mediates the endocytosis of numerous ligands, including HDL/apolipoprotein A-I (apoA-I). Although the bile contains apoA-I and several cholesterol-binding megalin ligands, the expression of megalin and cubilin in the gallbladder has not been investigated. Here, we show that both proteins are expressed by human and mouse gallbladder epithelia. In vitro studies using a megalin-expressing cell line showed that lithocholic acid strongly inhibits and cholic and chenodeoxycholic acids increase megalin expression. The effects of bile acids (BAs) were also demonstrated in vivo, analyzing gallbladder levels of megalin and cubilin from mice fed with different BAs. The BA effects could be mediated by the farnesoid X receptor, expressed in the gallbladder. Megalin protein was also strongly increased after feeding a lithogenic diet. These results indicate a physiological role for megalin and cubilin in the gallbladder and provide support for a role for megalin in gallstone pathogenesis.
Collapse
Affiliation(s)
- Benjamín Erranz
- Center for Cell Regulation and Pathology "Joaquin V. Luco", Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
38
|
Frincu MC, Fleming SD, Rohl AL, Swift JA. The Epitaxial Growth of Cholesterol Crystals from Bile Solutions on Calcite Substrates. J Am Chem Soc 2004; 126:7915-24. [PMID: 15212540 DOI: 10.1021/ja0488030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epitaxial relationships between the surfaces of inorganic and bioorganic crystals can be an important factor in crystal nucleation and growth processes in a variety of biological environments. Crystalline cholesterol monohydrate (ChM), a constituent of both gallstone and atherosclerotic plaques, is often found in association with assorted mineral phases. Using in situ atomic force microscopy (AFM) and well-characterized model bile solutions, the nucleation and epitaxial growth of ChM on calcite (104) surfaces in real-time is demonstrated. The growth rates of individual cholesterol islands formed on calcite substrates were determined at physiological temperatures. Evidence of Ostwald's ripening was also observed under these experimental conditions. The energetics of various (104) calcite/(001) ChM interfaces were calculated to determine the most stable interfacial structure. These simulations suggest that the interface is fully hydrated and that cholesterol hydroxyl groups are preferentially positioned above carbonate ions in the calcite surface. This combination of experimental and theoretical work provides a clearer picture of how preexisting mineral seeds might provide a viable growth template that can reduce the energetic barrier to cholesterol nucleation under some physiological conditions.
Collapse
Affiliation(s)
- M Crina Frincu
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, DC 20057-1227, USA
| | | | | | | |
Collapse
|
39
|
Portincasa P, Di Ciaula A, vanBerge-Henegouwen GP. Smooth muscle function and dysfunction in gallbladder disease. Curr Gastroenterol Rep 2004; 6:151-62. [PMID: 15191695 DOI: 10.1007/s11894-004-0043-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gallbladder epithelium and smooth muscle layer are exposed to concentrated biliary solutes, including cholesterol and potentially toxic hydrophobic bile salts, which are able to influence muscle contraction. Physiologically, gallbladder tone is regulated by spontaneous muscle activity, hormones, and neurotransmitters released into the muscle from intrinsic neurons and extrinsic sympathetic nerves. Methods to explore gallbladder smooth muscle function in vitro include cholecystokinin (CCK) receptor-binding studies and contractility studies. In human and animal models, studies have focused on cellular and molecular events in health and disease, and in vitro findings mirror in vivo events. The interplay between contraction and relaxation of the gallbladder muscularis leads in vivo to appropriate gallbladder emptying and refilling during fasting and postprandially. Defective smooth muscle contractility and/or relaxation are found in cholesterol stone-containing gallbladders, featuring a type of gallbladder leiomyopathy; defects of CCKA receptors and signal transduction may coexist with abnormal responses to oxidative stress and inflammatory mediators. Abnormal smooth musculature contractility, impaired gallbladder motility, and increased stasis are key factors in the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Piero Portincasa
- Gastrointestinal Research Unit, University of Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
40
|
Lee J, Tauscher A, Seo DW, Oram JF, Kuver R. Cultured gallbladder epithelial cells synthesize apolipoproteins A-I and E. Am J Physiol Gastrointest Liver Physiol 2003; 285:G630-41. [PMID: 12773300 DOI: 10.1152/ajpgi.00101.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gallbladder epithelial cells (GBEC) are exposed to high and fluctuating concentrations of biliary cholesterol on their apical (AP) surface. GBEC absorb and efflux cholesterol, but the mechanisms of cholesterol uptake, intracellular trafficking, and efflux in these cells are not known. We previously reported that ATP binding cassette (ABC)A1 mediates basolateral (BL) cholesterol efflux in cultured polarized GBEC. In addition, the nuclear hormone receptors liver X receptor (LXR)alpha and retinoid X receptor (RXR) mediate both AP and BL cholesterol efflux. An interesting finding from our previous study was that apolipoprotein (apo)A-I applied to the AP surfaces of cells elicited BL ABCA1-mediated cholesterol efflux. Because ABCA1-mediated cholesterol efflux requires the presence of a cholesterol acceptor, we hypothesized that GBEC synthesize and secrete endogenous apo into the BL compartment. Here, we demonstrate that cholesterol loading of cells with model bile and AP apoA-I treatment is associated with an increase in the synthesis of apoE mRNA and protein. Furthermore, apoE is secreted into the BL compartment. LXRalpha/RXR ligands stimulate the synthesis of endogenous apoA-I mRNA and protein, as well as apoE mRNA. BL secretion of apoA-I is elicited by LXRalpha/RXR ligands. Therefore, GBEC synthesize apoA-I and -E and efflux cholesterol using ABCA1- and non-ABCA1- mediated pathways. These processes may alter gallbladder biliary cholesterol concentrations and thereby influence gallstone formation.
Collapse
Affiliation(s)
- Jin Lee
- Division of Gastroenterology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
41
|
Tazuma S, Nishioka T, Ochi H, Hyogo H, Sunami Y, Nakai K, Tsuboi K, Asamoto Y, Sakomoto M, Numata Y, Kanno K, Yamaguchi A, Kobuke T, Komichi D, Nonaka Y, Chayama K. Impaired gallbladder mucosal function in aged gallstone patients suppresses gallstone recurrence after successful extracorporeal shockwave lithotripsy. J Gastroenterol Hepatol 2003; 18:157-61. [PMID: 12542599 DOI: 10.1046/j.1440-1746.2003.02915.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Absorption of water, as well as emptying of bile, are important functions of the gallbladder. We studied the changes of gallbladder function with age in gallstone patients and their influence on the outcome of extracorporeal shockwave lithotripsy (ESWL). METHODS (i) A total of 123 consecutive patients with complete stone clearance by ESWL were examined. Gallbladder emptying was assessed before treatment using intravenous cholecystography. After stone clearance, the recurrence of gallstones was monitored by using ultrasonography. Cox regression analysis was used to determine the risk factors associated with stone recurrence. (ii) Gallbladder bile was sampled from 59 gallstone patients during surgery. Biliary cholesterol, phospholipids, and total bile acids were simultaneously quantified by using gas-liquid chromatography. RESULTS Impaired gallbladder function, but not gallstone recurrence, was more frequently observed in older patients (>/=65 years old) than in younger patients (<65 years old). Cox regression analysis revealed that poor gallbladder emptying was an independent predictor of stone recurrence after ESWL in the total study population, but not in the older patients (>/=65 years old). Analysis of bile from surgically treated patients with cholesterol stones showed a significantly higher total lipid concentration and a shorter nucleation time in the younger group (<65 years old), but the cholesterol saturation index did not differ between the younger and older groups. CONCLUSIONS Our data suggest that the reduced concentrating function of the gallbladder in elderly gallstone patients helps to counteract stone recurrence despite their abnormal gallbladder motility. Therefore, aged gallstone patients may be preferentially treated by a non-surgical strategy.
Collapse
Affiliation(s)
- Susumu Tazuma
- First Department of Internal Medicine, Hiroshima University School of Medicine, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang DQH. Aging per se is an independent risk factor for cholesterol gallstone formation in gallstone susceptible mice. J Lipid Res 2002; 43:1950-9. [PMID: 12401894 DOI: 10.1194/jlr.m200078-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol gallstones occur rarely in childhood and adolescence and increase linearly with age in both genders. To explore whether aging per se increases cholesterol saturation of bile and gallstone prevalence, and to investigate age-related changes in hepatic and biliary lipid metabolism, we studied gallstone-susceptible C57L mice and resistant AKR mice of both genders fed 8 weeks with a lithogenic diet containing 1% cholesterol, 0.5% cholic acid, and 15% butter fat starting at (young adult) 8, (older adult) 36, and (aged) 50-weeks-of-age. After the 8-week feeding, gallstone prevalence, gallbladder size, biliary lipid secretion rate, and HMG-CoA reductase activity were significantly greater but cholesterol 7alpha-hydroxylase activity was lower in C57L mice of both genders compared with AKR mice. Increasing age augmented biliary secretion and intestinal absorption of cholesterol, reduced hepatic synthesis and biliary secretion of bile salts, and decreased gallbladder contractility, all of which increased susceptibility to cholesterol cholelithiasis in C57L mice. We conclude that aging per se is an independent risk factor for cholesterol gallstone formation. Because aging increases significantly biliary cholesterol hypersecretion and gallstone prevalence in C57L mice carrying Lith genes, it is highly like that Longevity (aging) genes can enhance lithogenesis of Lith (gallstone) genes.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Medicine, Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, MA, USA.
| |
Collapse
|
43
|
Johnson MSC, Svensson PA, Borén J, Billig H, Carlsson LMS, Carlsson B. Expression of scavenger receptor class B type I in gallbladder columnar epithelium. J Gastroenterol Hepatol 2002; 17:713-20. [PMID: 12100619 DOI: 10.1046/j.1440-1746.2002.02776.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The lipid content of bile may be modified by the gallbladder epithelium. Recent studies indicate that cholesterol can be absorbed from bile and that this can be enhanced by apolipoprotein (apo) A-I. SR-BI is a multifunctional receptor capable of binding a wide array of native or modified lipoproteins, phospholipid or bile acid micelles. As apo A-I is a ligand for scavenger receptor class B type I (SR-BI) we have characterized the expression of this receptor in murine gallbladder. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting and immunohistochemistry were used to study SR-BI expression in murine gallbladders. SR-BI expression was also used to examine gallbladders from high-fat-fed wild-type and apo B-100 transgenic mice. RESULTS SR-BI and SR-BII mRNA are expressed in gallbladder. SR-BI immunoreactivity was localized to the columnar epithelium of the gallbladder. Immunoreactive SR-BI in gallbladder had an estimated molecular weight of 57 kDa, in contrast to the expected 82 kDa. Deglycosylation experiments indicated that the size difference between the two forms of the receptor is due to post-translational modification. Fat feeding of apo B transgenic mice resulted in gallstone formation but had no effect on the abundance of SR-BI. CONCLUSIONS Gallbladder epithelial cells express SR-BI. This opens the possibility that SR-BI may influence the modification of bile in the gallbladder.
Collapse
Affiliation(s)
- Magnus S C Johnson
- Department of Internal Medicine Vita Stråket 12, Research Center for Endocrinology & Metabolism (RCEM), Pav. 8:3 Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cholesterol cholelithiasis is common in Western populations and represents a consequence of altered cholesterol homeostasis. Gallstones form because of a complex and incompletely understood series of metabolic and physicochemical events that promote cholesterol crystallization in bile. In the context of current paradigms, this article reviews recent progress in research on biliary lipid metabolism and the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Hideyuki Hyogo
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
45
|
Hepatic apolipoprotein A-I gene expression in patients with cholesterol gallstones treated with ursodeoxycholic acid. Ann Hepatol 2002. [PMID: 15115973 DOI: 10.1016/s1665-2681(19)32180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
|
46
|
Abstract
Gallstones are estimated to affect over 20 million people in the United States. Recent studies have clarified the role of various dietary components in gallstone disease. Also, insulin resistance has been demonstrated to be a risk factor for gallstones. Other research has focused on the pathophysiology of gallstones and on clarifying the underlying mechanisms of previously noted risk factors for gallstones. New techniques for the noninvasive diagnosis of bile duct stones continue to be developed and tested. These techniques include computed tomography and magnetic resonance cholangiography. The impact and appropriateness of laparoscopic cholecystectomy continue to debated, and studies point to both overuse and underuse of this operation in the management of the disease.
Collapse
Affiliation(s)
- S P Lee
- Division of Gastroenterology, Veterans' Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | |
Collapse
|