1
|
Kim SW, Yoon JS, Lee M, Cho Y. Toward a complete cure for chronic hepatitis B: Novel therapeutic targets for hepatitis B virus. Clin Mol Hepatol 2022; 28:17-30. [PMID: 34281294 PMCID: PMC8755466 DOI: 10.3350/cmh.2021.0093] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 11/09/2022] Open
Abstract
Hepatitis B virus (HBV) affects approximately 250 million patients worldwide, resulting in the progression to cirrhosis and hepatocellular carcinoma, which are serious public health problems. Although universal vaccination programs exist, they are only prophylactic and not curative. In the HBV life cycle, HBV forms covalently closed circular DNA (cccDNA), which is the viral minichromosome, in the nuclei of human hepatocytes and makes it difficult to achieve a complete cure with the current nucleos(t)ide analogs and interferon therapies. Current antiviral therapies rarely eliminate cccDNA; therefore, lifelong antiviral treatment is necessary. Recent trials for antiviral treatment of chronic hepatitis B have been focused on establishing a functional cure, defined by either the loss of hepatitis B surface antigen, undetectable serum HBV DNA levels, and/or seroconversion to hepatitis B surface antibody. Novel therapeutic targets and molecules are in the pipeline for early clinical trials aiming to cure HBV infection. The ideal strategy for achieving a long-lasting functional or complete cure might be using combination therapies targeting different steps of the HBV life cycle and immunomodulators. This review summarizes the current knowledge about novel treatments and combination treatments for a complete HBV cure.
Collapse
Affiliation(s)
- Sun Woong Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Jun Sik Yoon
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
2
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Hong B, Wen Y, Ying T. Recent Progress on Neutralizing Antibodies against Hepatitis B Virus and its Implications. Infect Disord Drug Targets 2020; 19:213-223. [PMID: 29952267 DOI: 10.2174/1871526518666180628122400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/13/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection remains a global health problem. As "cure" for chronic hepatitis B is of current priority, hepatitis B immunoglobulin (HBIG) has been utilized for several decades to provide post-exposure prophylaxis. In recent years, a number of monoclonal antibodies (mAbs) targeting HBV have been developed and demonstrated with high affinity, specificity, and neutralizing potency. OBJECTIVE HBV neutralizing antibodies may play a potentially significant role in the search for an HBV cure. In this review, we will summarize the recent progress in developing HBV-neutralizing antibodies, describing their characteristics and potential clinical applications. RESULTS AND CONCLUSION HBV neutralizing antibodies could be a promising alternative in the prevention and treatment of HBV infection. More importantly, global collaboration and coordinated approaches are thus needed to facilitate the development of novel therapies for HBV infection.
Collapse
Affiliation(s)
- Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Developments in Cell-Penetrating Peptides as Antiviral Agents and as Vehicles for Delivery of Peptide Nucleic Acid Targeting Hepadnaviral Replication Pathway. Biomolecules 2018; 8:biom8030055. [PMID: 30013006 PMCID: PMC6165058 DOI: 10.3390/biom8030055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Alternative therapeutic approaches against chronic hepatitis B virus (HBV) infection need to be urgently developed because current therapies are only virostatic. In this context, cell penetration peptides (CPPs) and their Peptide Nucleic Acids (PNAs) cargoes appear as a promising novel class of biologically active compounds. In this review we summarize different in vitro and in vivo studies, exploring the potential of CPPs as vehicles for intracellular delivery of PNAs targeting hepadnaviral replication. Thus, studies conducted in the duck HBV (DHBV) infection model showed that conjugation of (D-Arg)8 CPP to PNA targeting viral epsilon (ε) were able to efficiently inhibit viral replication in vivo following intravenous administration to ducklings. Unexpectedly, some CPPs, (D-Arg)8 and Decanoyl-(D-Arg)8, alone displayed potent antiviral effect, altering late stages of DHBV and HBV morphogenesis. Such antiviral effects of CPPs may affect the sequence-specificity of CPP-PNA conjugates. By contrast, PNA conjugated to (D-Lys)4 inhibited hepadnaviral replication without compromising sequence specificity. Interestingly, Lactose-modified CPP mediated the delivery of anti-HBV PNA to human hepatoma cells HepaRG, thus improving its antiviral activity. In light of these promising data, we believe that future studies will open new perspectives for translation of CPPs and CPP-PNA based technology to therapy of chronic hepatitis B.
Collapse
|
5
|
Quinet J, Jamard C, Burtin M, Lemasson M, Guerret S, Sureau C, Vaillant A, Cova L. Nucleic acid polymer REP 2139 and nucleos(T)ide analogues act synergistically against chronic hepadnaviral infection in vivo in Pekin ducks. Hepatology 2018; 67:2127-2140. [PMID: 29251788 PMCID: PMC6001552 DOI: 10.1002/hep.29737] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid polymer (NAP) REP 2139 treatment was shown to block the release of viral surface antigen in duck HBV (DHBV)-infected ducks and in patients with chronic HBV or HBV/hepatitis D virus infection. In this preclinical study, a combination therapy consisting of REP 2139 with tenofovir disoproxil fumarate (TDF) and entecavir (ETV) was evaluated in vivo in the chronic DHBV infection model. DHBV-infected duck groups were treated as follows: normal saline (control); REP 2139 TDF; REP 2139 + TDF; and REP 2139 + TDF + ETV. After 4 weeks of treatment, all animals were followed for 8 weeks. Serum DHBsAg and anti-DHBsAg antibodies were monitored by enzyme-linked immunosorbent assay and viremia by qPCR. Total viral DNA and covalently closed circular DNA (cccDNA) were quantified in autopsy liver samples by qPCR. Intrahepatic DHBsAg was assessed at the end of follow-up by immunohistochemistry. On-treatment reduction of serum DHBsAg and viremia was more rapid when REP 2139 was combined with TDF or TDF and ETV, and, in contrast to TDF monotherapy, no viral rebound was observed after treatment cessation. Importantly, combination therapy resulted in a significant decrease in intrahepatic viral DNA (>3 log) and cccDNA (>2 log), which were tightly correlated with the clearance of DHBsAg in the liver. CONCLUSION Synergistic antiviral effects were observed when REP 2139 was combined with TDF or TDF + ETV leading to control of infection in blood and liver, associated with intrahepatic viral surface antigen elimination that persisted after treatment withdrawal. Our findings suggest the potential of developing such combination therapy for treatment of chronically infected patients in the absence of pegylated interferon. (Hepatology 2018;67:2127-2140).
Collapse
Affiliation(s)
- Jonathan Quinet
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | - Catherine Jamard
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | - Madeleine Burtin
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| | | | | | - Camille Sureau
- Institut National de la Transfusion Sanguine (INTS)ParisFrance
| | | | - Lucyna Cova
- Institut National de Santé et Recherche Médicale (INSERM) U1052LyonFrance
| |
Collapse
|
6
|
Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:162-169. [PMID: 29246295 PMCID: PMC5633256 DOI: 10.1016/j.omtn.2017.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (ε). This anti-ε PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates.
Collapse
|
7
|
Kosinska AD, Bauer T, Protzer U. Therapeutic vaccination for chronic hepatitis B. Curr Opin Virol 2017; 23:75-81. [PMID: 28453967 DOI: 10.1016/j.coviro.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
A therapeutic vaccine is meant to activate the patient's immune system to fight and finally control or ideally eliminate an already established infectious pathogen. Whereas the success of prophylactic vaccination is based on rapid antibody-mediated neutralization of an invading pathogen, control and elimination of persistent viruses such as hepatitis, herpes or papilloma viruses requires multi-specific and polyfunctional effector T cell responses. These are ideally directed against continuously expressed viral antigens to keep the pathogen in check. Activation of a humoral immune response in order to lower viral antigen load and to limit virus spread, however, confers an additional benefit. Therapeutic vaccines are under development for a number of chronic infections and require an intelligent vaccine design. Hepatitis B virus (HBV) infection may serve as a prime example since a spontaneous, immune-mediated recovery of chronic hepatitis B and an elimination of the virus is possible even if it is observed only in very rare cases. In this review, we summarize the current knowledge and potential improvements of therapeutic vaccines for chronic hepatitis B.
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; German Center for Infection research (DZIF), Munich Partner Site, Germany.
| |
Collapse
|
8
|
Affiliation(s)
- Lucyna Cova
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), University Lyon 1, Lyon, France
| |
Collapse
|
9
|
Haese N, Brocato RL, Henderson T, Nilles ML, Kwilas SA, Josleyn MD, Hammerbeck CD, Schiltz J, Royals M, Ballantyne J, Hooper JW, Bradley DS. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure. PLoS Negl Trop Dis 2015; 9:e0003803. [PMID: 26046641 PMCID: PMC4457835 DOI: 10.1371/journal.pntd.0003803] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/30/2015] [Indexed: 01/06/2023] Open
Abstract
Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product capable of preventing a lethal disease when administered post-exposure.
Collapse
Affiliation(s)
- Nicole Haese
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| | - Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Thomas Henderson
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| | - Matthew L. Nilles
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| | - Steve A. Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Matthew D. Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Christopher D. Hammerbeck
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - James Schiltz
- Avianax, LLC, Grand Forks, North Dakota, United States of America
| | - Michael Royals
- Cedar Industries, Pierce, Colorado, United States of America
| | | | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - David S. Bradley
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| |
Collapse
|
10
|
Li J, Ge J, Ren S, Zhou T, Sun Y, Sun H, Gu Y, Huang H, Xu Z, Chen X, Xu X, Zhuang X, Song C, Jia F, Xu A, Yin X, Du SX. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine 2015; 33:4247-54. [PMID: 25858855 DOI: 10.1016/j.vaccine.2015.03.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice.
Collapse
Affiliation(s)
- Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China.
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Tong Zhou
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Ying Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Honglin Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Yue Gu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Hongying Huang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Zhenxing Xu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Xiaoxiao Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Xiaowei Xu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqian Zhuang
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Cuiling Song
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Fangmiao Jia
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Aiguo Xu
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Xiaojin Yin
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Sean X Du
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| |
Collapse
|
11
|
Yao Q, Fischer KP, Tyrrell DL, Gutfreund KS. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis. Int J Immunogenet 2014; 42:111-20. [PMID: 25556810 DOI: 10.1111/iji.12175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022]
Abstract
Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined.
Collapse
Affiliation(s)
- Q Yao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
12
|
HBsAg, HBcAg, and combined HBsAg/HBcAg-based therapeutic vaccines in treating chronic hepatitis B virus infection. Hepatobiliary Pancreat Dis Int 2013; 12:363-9. [PMID: 23924493 DOI: 10.1016/s1499-3872(13)60057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND As the host immunity is diminished in patients with chronic hepatitis B (CHB), different approaches have been used to up-regulate their immune responses to produce therapeutic effects. But, cytokines, growth factors and polyclonal immune modulators could not exhibit sufficient therapeutic effects in these patients. Immune therapy with HBV-related antigens (vaccine therapy) has been used in CHB patients. But there is a paucity of information about the design of HBV antigen-based immune therapy in these patients. DATA SOURCE Preclinical and clinical studies on immune therapy with HBsAg-based vaccine, HBcAg and combination of HBsAg/HBcAg-based vaccines have been discussed. RESULTS HBsAg-based prophylactic vaccine was used as an immune therapeutic agent in CHB patients; however, monotherapy with HBsAg-based immune therapy could not lead to sustained control of HBV replication and/or liver damages. HBsAg-based vaccine was used as a combination therapy with cytokines, growth factors, and antiviral drugs. HBsAg-based vaccine was also used for cell-based therapy. However, satisfactory therapeutic effects of HBsAg-based vaccine could not be documented in CHB patients. In the mean time, evidences have supported that HBcAg-specific immunity is endowed with antiviral and liver protecting capacities in CHB patients. Recent data concentrate on the clinical use of combined HBsAg- and HBcAg-based vaccines in CHB patients. CONCLUSION Antigen-based immune therapy with HBV-related antigens may be an alternative method for the treatment of CHB patients but proper designs of antigens, types of adjuvants, dose of vaccinations, and routes of administration need further analyses for the development of an effective regimen of immune therapy against HBV.
Collapse
|
13
|
Saade F, Buronfosse T, Guerret S, Pradat P, Chevallier M, Zoulim F, Jamard C, Cova L. In vivo infectivity of liver extracts after resolution of hepadnaviral infection following therapy associating DNA vaccine and cytokine genes. J Viral Hepat 2013; 20:e56-65. [PMID: 23490390 DOI: 10.1111/jvh.12023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/24/2012] [Indexed: 12/19/2022]
Abstract
DNA-based vaccination appears of promise for chronic hepatitis B immunotherapy, although there is an urgent need to increase its efficacy. In this preclinical study, we evaluated the therapeutic benefit of cytokine (IL-2, IFN-γ) genes co-delivery with DNA vaccine targeting hepadnaviral proteins in the chronic duck hepatitis B virus (DHBV) infection model. Then, we investigated the persistence of replication-competent virus in the livers of apparently resolved animals. DHBV carriers received four injections of plasmids encoding DHBV envelope and core alone or co-delivered with duck IL-2 (DuIL-2) or duck IFN-γ (DuIFN-γ) plasmids. After long-term (8 months) follow-up, viral covalently closed circular (ccc) DNA was analysed in duck necropsy liver samples. Liver homogenates were also tested for in vivo infectivity in neonatal ducklings. Co-delivery of DuIFN-γ resulted in significantly lower mean viremia starting from week 21. Viral cccDNA was undetectable by conventional methods in the livers of 25% and 57% of animals co-immunized with DuIL-2 and DuIFN-γ, respectively. Interestingly, inoculation of liver homogenates from 7 such apparently resolved animals, exhibiting cccDNA undetectable in Southern blotting and DHBV expression undetectable or restricted to few hepatocytes, revealed that three liver homogenates transmitted high-titre viremia (3-5×10(10) vge/mL) to naïve animals. In conclusion, our results indicate that IFN-γ gene co-delivery considerably enhances immunotherapeutic efficacy of DNA vaccine targeting hepadnaviral proteins. Importantly, we also showed that livers exhibiting only minute amounts of hepadnaviral cccDNA could induce extremely high-titre infection, highlighting the caution that should be taken in occult hepatitis B patients to prevent HBV transmission in liver transplantation context.
Collapse
Affiliation(s)
- F Saade
- Université de Lyon, Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abdul F, Ndeboko B, Buronfosse T, Zoulim F, Kann M, Nielsen PE, Cova L. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide. PLoS One 2012; 7:e48721. [PMID: 23173037 PMCID: PMC3500254 DOI: 10.1371/journal.pone.0048721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022] Open
Abstract
Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of Duck Hepatitis B Virus (DHBV), a reference model for human HBV. Amongst twelve CatLip peptides we identified Deca-(Arg)8 having a particularly potent antiviral activity, leading to a drastic inhibition of viral particle secretion without detectable toxicity. Inhibition of virion secretion was correlated with a dose-dependent increase in intracellular viral DNA. Deca-(Arg)8 peptide did neither interfere with DHBV entry, nor with formation of mature nucleocapsids nor with their travelling to the nucleus. Instead, Deca-(Arg)8 caused envelope protein accumulation in large clusters as revealed by confocal laser scanning microscopy indicating severe structural changes of preS/S. Sucrose gradient analysis of supernatants from Deca-(Arg)8-treated cells showed unaffected naked viral nucleocapsids release, which was concomitant with a complete arrest of virion and surface protein-containing subviral particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has been so far described for other enveloped viruses.
Collapse
Affiliation(s)
- Fabien Abdul
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Bénédicte Ndeboko
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Thierry Buronfosse
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- VetAgro-Sup, Marcy l'Etoile, France
| | - Fabien Zoulim
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Michael Kann
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Lucyna Cova
- Université de Lyon 1, Lyon, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
- CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
15
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|
16
|
Enhanced magnitude and breadth of neutralizing humoral response to a DNA vaccine targeting the DHBV envelope protein delivered by in vivo electroporation. Virology 2012; 425:61-9. [DOI: 10.1016/j.virol.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
|
17
|
Abstract
Chronic HBV infection remains a leading cause of serious liver disease and hepatocellular carcinoma in spite of the existence of an effective preventive vaccine. Although the actual antiviral treatments have greatly improved, they only rarely clear viral infection. In this regard, therapeutic DNA vaccination appears to have great promise to stimulate and restore the impaired immune responses in chronic HBV carriers. This review examines preclinical studies of preventive and therapeutic DNA vaccines in different animal models (mouse, woodchuck and duck) and the first clinical studies in chronically infected patients. We also focused on different approaches aimed at enhancing the effectiveness of DNA vaccines such as combination therapy with antiviral drugs and in vivo DNA electroporation.
Collapse
Affiliation(s)
- Lucyna Cova
- Université Claude Bernard Lyon 1, Inserm U1052, CRCL team 15, 151 cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
18
|
Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: perspectives and challenges. J Hepatol 2011; 54:1286-96. [PMID: 21238516 DOI: 10.1016/j.jhep.2010.12.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 11/23/2010] [Accepted: 12/20/2010] [Indexed: 12/24/2022]
Abstract
The treatment of chronic hepatitis B virus (HBV) infection has greatly improved over the last 10 years, but alternative treatments are still needed. Therapeutic vaccination is a promising new strategy for controlling chronic infection. However, this approach has not been as successful as initially anticipated for chronic hepatitis B. General impairment of the immune responses generated during persistent HBV infection, with exhausted T cells not responding correctly to therapeutic vaccination, is probably responsible for the poor clinical responses observed to date. Intensive research efforts are now focusing on increasing the efficacy of therapeutic vaccination without causing liver disease. Here we describe new approaches to use with therapeutic vaccination, in order to overcome the inhibitory mechanisms impairing immune responses. We also describe innovative strategies for generating functional immune responses and inducing sustained control of this persistent infection.
Collapse
|
19
|
Feng F, Teoh CQ, Qiao Q, Boyle D, Jilbert AR. The development of persistent duck hepatitis B virus infection can be prevented using antiviral therapy combined with DNA or recombinant fowlpoxvirus vaccines. Vaccine 2010; 28:7436-43. [PMID: 20833122 DOI: 10.1016/j.vaccine.2010.08.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
We recently reported the development of a successful post-exposure combination antiviral and "prime-boost" vaccination strategy using the duck hepatitis B virus (DHBV) model of human hepatitis B virus infection. The current study aimed to simplify the vaccination strategy and to test the post-exposure efficacy of combination therapy with the Bristol-Myers Squibb antiviral drug, entecavir (ETV) and either a single dose of DHBV DNA vaccines on day 0 post-infection (p.i.) or a single dose of recombinant fowlpoxvirus (rFPV-DHBV) vaccines on day 7 p.i. Whilst untreated control ducks infected with an equal dose of DHBV all developed persistent and wide spread DHBV infection of the liver, ducks treated with ETV combined with either the DHBV DNA vaccines on day 0 p.i. or the rFPV-DHBV vaccines on day 7 p.i. had no detectable DHBV-infected hepatocytes by day 14 p.i. and were protected from the development of persistent DHBV infection.
Collapse
Affiliation(s)
- Feng Feng
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
20
|
Nikbakht Brujeni G, Jalali SAH, Koohi MK. Development of DNA-designed avian IgY antibodies for quantitative determination of bovine interferon-gamma. Appl Biochem Biotechnol 2010; 163:338-45. [PMID: 20652441 DOI: 10.1007/s12010-010-9042-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/12/2010] [Indexed: 02/08/2023]
Abstract
Interferon-gamma (IFN-γ), a cytokine produced by sensitized T lymphocytes, is one of the key elements in defining T helper 1 lymphocyte immune responses. Quantitative evaluation of IFN-γ expression could provide an important analytical tool for measurement of cell-mediated immunity and investigating immune responses to infectious diseases. Method of DNA-designed avian IgY antibodies was used for production of monospecific polyclonal antibodies that allows quantification of the recombinant bovine IFN-γ protein. IFN-γ cDNA was subcloned and expressed in mammalian expression plasmid (pcDNA3.1(+)) under the control of the human cytomegalovirus promoter. Chickens were immunized by plasmid DNA, and egg yolk antibodies extracted from eggs were collected after immunization. IgY-specific antibodies were evaluated by an antigen capture enzyme-linked immunosorbent assay (ELISA) using recombinant IFN-γ. Based on the results, developed bovine IFN-γ capture ELISA could detect up to 1 ng/ml of IFN-γ by 64-fold diluted IgY. Monospecific anti-bovine IFN-γ antibodies generated in chickens are useful for quantifying different concentrations of recombinant bovine IFN-γ, which is expressed in cell culture.
Collapse
Affiliation(s)
- Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | | | | |
Collapse
|
21
|
Bertoletti A, Gehring A. Therapeutic vaccination and novel strategies to treat chronic HBV infection. Expert Rev Gastroenterol Hepatol 2009; 3:561-9. [PMID: 19817676 DOI: 10.1586/egh.09.48] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Therapeutic vaccination for the treatment of chronic hepatitis B has so far shown limited clinical efficacy. In this review, we argue that the principal cause of this failure is the profound defect of virus-specific T cells present in chronic hepatitis B patients and we discuss potential new ways to achieve an efficient restoration of virus-specific immunity in patients with chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Viral Hepatitis Laboratory, Singapore Institute for Clinical Science, Agency of Science Technology and Research, and Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore.
| | | |
Collapse
|
22
|
Heterologous replacement of the supposed host determining region of avihepadnaviruses: high in vivo infectivity despite low infectivity for hepatocytes. PLoS Pathog 2008; 4:e1000230. [PMID: 19057662 PMCID: PMC2585059 DOI: 10.1371/journal.ppat.1000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 11/05/2008] [Indexed: 12/12/2022] Open
Abstract
Hepadnaviruses, including hepatitis B virus (HBV), a highly relevant human pathogen, are small enveloped DNA viruses that replicate via reverse transcription. All hepadnaviruses display a narrow tissue and host tropism. For HBV, this restricts efficient experimental in vivo infection to chimpanzees. While the cellular factors mediating infection are largely unknown, the large viral envelope protein (L) plays a pivotal role for infectivity. Furthermore, certain segments of the PreS domain of L from duck HBV (DHBV) enhanced infectivity for cultured duck hepatocytes of pseudotyped heron HBV (HHBV), a virus unable to infect ducks in vivo. This implied a crucial role for the PreS sequence from amino acid 22 to 90 in the duck tropism of DHBV. Reasoning that reciprocal replacements would reduce infectivity for ducks, we generated spreading-competent chimeric DHBVs with L proteins in which segments 22–90 (Du-He4) or its subsegments 22–37 and 37–90 (Du-He2, Du-He3) are derived from HHBV. Infectivity for duck hepatocytes of Du-He4 and Du-He3, though not Du-He2, was indeed clearly reduced compared to wild-type DHBV. Surprisingly, however, in ducks even Du-He4 caused high-titered, persistent, horizontally and vertically transmissable infections, with kinetics of viral spread similar to those of DHBV when inoculated at doses of 108 viral genome equivalents (vge) per animal. Low-dose infections down to 300 vge per duck did not reveal a significant reduction in specific infectivity of the chimera. Hence, sequence alterations in PreS that limited infectivity in vitro did not do so in vivo. These data reveal a much more complex correlation between PreS sequence and host specificity than might have been anticipated; more generally, they question the value of cultured hepatocytes for reliably predicting in vivo infectivity of avian and, by inference, mammalian hepadnaviruses, with potential implications for the risk assessment of vaccine and drug resistant HBV variants. Hepatitis B virus (HBV) associated liver disease is a leading cause of death worldwide. Host range restrictions limit experimental HBV infections largely to chimpanzees or isolated human hepatocytes. A narrow host range is shared by the animal hepadnaviruses, e.g. from ducks (DHBV) and herons (HHBV); HHBV does not infect ducks though it can establish a low-level infection in cultured duck hepatocytes. Host tropism is thought to be mediated by the PreS domain of the large viral envelope protein, because certain duck virus PreS segments introduced into the envelope of spreading-incompetent HHBV pseudotypes enhanced infectivity for duck hepatocytes. Expecting that reciprocal exchanges in DHBV would negatively impact duck tropism, we generated chimeric DHBVs in which the PreS regions in question are derived from HHBV and which are autonomously spreading-competent; this allowed us to directly compare their infectivity for duck hepatocytes and ducks. Surprisingly, even the chimera with the largest portion of HHBV sequence was as infectious for ducks as authentic DHBV; in vitro infectivity, however, was substantially reduced. These unexpected differences question the value of cultured hepatocytes to reliably predict in vivo infectivity of avihepadnaviruses and, by inference, also that of vaccine escape and therapy resistant HBV variants.
Collapse
|
23
|
Saade F, Buronfosse T, Pradat P, Abdul F, Cova L. Enhancement of neutralizing humoral response of DNA vaccine against duck hepatitis B virus envelope protein by co-delivery of cytokine genes. Vaccine 2008; 26:5159-64. [DOI: 10.1016/j.vaccine.2008.03.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Xin XM, Li GQ, Jin YY, Zhuang M, Li D. Combination of small interfering RNAs mediates greater suppression on hepatitis B virus cccDNA in HepG2.2.15 cells. World J Gastroenterol 2008; 14:3849-54. [PMID: 18609708 PMCID: PMC2721441 DOI: 10.3748/wjg.14.3849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the inhibition of hepatitis B virus (HBV) replication and expression in HepG2.2.15 cells by combination of small interfering RNAs (siRNAs).
METHODS: Recombinant plasmid psil-HBV was constructed and transfected into HepG2.2.15 cells. At 48 h, 72 h and 96 h after transfection, culture media were collected and cells were harvested for HBV replication assay. HBsAg and HBeAg in the cell culture medium were detected by enzyme-linked immunoadsorbent assay (ELISA). Intracellular viral DNA and covalently closed circular DNA (cccDNA) were quantified by real-time polymerase chain reaction (PCR). HBV viral mRNA was reverse transcribed and quantified by reverse-transcript PCR (RT-PCR).
RESULTS: siRNAs showed marked anti-HBV effects. siRNAs could specifically inhibit the expression of HBsAg and the replication of HBV DNA in a dose-dependent manner. Furthermore, combination of siRNAs, compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication. More importantly, combination of siRNAs significantly suppressed HBV cccDNA amplification.
CONCLUSION: Combination of siRNAs mediates a stronger inhibition on viral replication and antigen expression in HepG2.2.15 cells, especially on cccDNA amplification.
Collapse
|
25
|
Thermet A, Buronfosse T, Werle-Lapostolle B, Chevallier M, Pradat P, Trepo C, Zoulim F, Cova L. DNA vaccination in combination or not with lamivudine treatment breaks humoral immune tolerance and enhances cccDNA clearance in the duck model of chronic hepatitis B virus infection. J Gen Virol 2008; 89:1192-1201. [PMID: 18420797 DOI: 10.1099/vir.0.83583-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study used a duck hepatitis B virus (DHBV) model to evaluate whether a novel DNA vaccination protocol alone or associated with antiviral (lamivudine) treatment was able to clear the intrahepatic covalently closed, circular viral DNA (cccDNA) pool responsible for persistence of infection. DHBV carriers received DNA vaccine (on weeks 6, 10, 13, 14, 28 and 35) targeting the large envelope and/or core proteins alone or combined with lamivudine treatment (on weeks 1-8) or lamivudine monotherapy. After 10 months of follow-up, a dramatic decrease in viraemia and liver DHBV cccDNA (below 0.08 cccDNA copies per cell) was observed in 9/30 ducks (30 %) receiving DNA mono- or combination therapy, compared with 0/12 (0 %) from lamivudine monotherapy or the control groups, suggesting a significant antiviral effect of DNA immunization. However, association with the drug did not significantly improve DHBV DNA vaccine efficacy (33 % cccDNA clearance for the combination vs 27 % for DNA monotherapy), probably due to the low antiviral potency of lamivudine in the duck model. Seroconversion to anti-preS was observed in 6/9 (67 %) ducks showing cccDNA clearance, compared with 1/28 (3.6 %) without clearance, suggesting a significant correlation (P<0.001) between humoral response restoration and cccDNA elimination. Importantly, an early (weeks 10-12) drop in viraemia was observed in seroconverted animals, and virus replication did not rebound following the cessation of immunotherapy, indicating a sustained effect. This study provides the first evidence that therapeutic DNA vaccination is able to enhance hepadnaviral cccDNA clearance, which is tightly associated with a break in humoral immune tolerance. These results also highlight the importance of antiviral drug potency and an effective DNA immunization protocol for the design of therapeutic vaccines against chronic hepatitis B.
Collapse
Affiliation(s)
- Alexandre Thermet
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | | | | | - Pierre Pradat
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France
| | - Christian Trepo
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Fabien Zoulim
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Lucyna Cova
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| |
Collapse
|
26
|
Lu M, Yao X, Xu Y, Lorenz H, Dahmen U, Chi H, Dirsch O, Kemper T, He L, Glebe D, Gerlich WH, Wen Y, Roggendorf M. Combination of an antiviral drug and immunomodulation against hepadnaviral infection in the woodchuck model. J Virol 2008; 82:2598-603. [PMID: 18160442 PMCID: PMC2258919 DOI: 10.1128/jvi.01613-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/14/2007] [Indexed: 12/29/2022] Open
Abstract
The essential role of multispecific immune responses for the control of hepatitis B virus (HBV) infection implies the need of multimodal therapeutic strategies for chronic HBV infection, including antiviral chemotherapy and immunomodulation. This hypothesis was tested in the woodchuck model by a combination of lamivudine pretreatment and subsequent immunizations of woodchucks chronically infected with woodchuck hepatitis virus. The immunizations were performed with DNA vaccines or antigen-antibody immune complexes (IC)/DNA vaccines. Immunizations with IC/DNA vaccines led to an anti-woodchuck hepatitis virus surface antibody response and significant reductions of viral load and antigenemia, suggesting that such a strategy may be effective against chronic HBV infection.
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Desmond CP, Bartholomeusz A, Gaudieri S, Revill PA, Lewin SR. A Systematic Review of T-cell Epitopes in Hepatitis B Virus: Identification, Genotypic Variation and Relevance to Antiviral Therapeutics. Antivir Ther 2008. [DOI: 10.1177/135965350801300218] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The immune response to hepatitis B virus (HBV) is important for both viral control and disease pathogenesis. A detailed understanding of the HBV-specific T-cell responses may potentially lead to novel therapeutic strategies for HBV. Methods All English language journal articles (including articles in press) up to October 2007 were retrieved using searches of MEDLINE, EMBASE and the Cochrane Controlled Trial Registry. An extensive database of HBV sequences (SeqHepB) and GenBank were used to assess the degree of sequence variation in each epitope. The new standardized nomenclature for HBV amino acid position number was applied to all previously defined epitopes. Results Forty-four HBV-specific human leukocyte antigen (HLA) class I restricted and 32 HBV-specific HLA class II restricted epitopes have been defined and have been identified in all HBV genes. The majority of HLA class I restricted epitopes have been defined in HLA-A2-positive individuals in the setting of acute HBV infection. There is significant sequence variation of these epitopes within and between HBV genotypes. Newer HBV immunotherapeutics appear promising but are still in early phases of development. Conclusions Identification of HBV-specific epitopes in non-HLA-A2-positive individuals and recognition of genotypic variation across epitopes are important for the future development of novel immunotherapeutic strategies for the management of chronic HBV infection.
Collapse
Affiliation(s)
- Christopher P Desmond
- Department of Gastroenterology, Alfred Hospital, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | | | - Silvana Gaudieri
- Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Perth, Australia
- Centre of Forensic Science and School of Anatomy and Human Biology, University of Western Australia, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
| | - Sharon R Lewin
- Department of Medicine, Monash University, Melbourne, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
28
|
Miller DS, Boyle D, Feng F, Reaiche GY, Kotlarski I, Colonno R, Jilbert AR. Antiviral therapy with entecavir combined with post-exposure "prime-boost" vaccination eliminates duck hepatitis B virus-infected hepatocytes and prevents the development of persistent infection. Virology 2008; 373:329-41. [PMID: 18206204 DOI: 10.1016/j.virol.2007.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/26/2007] [Accepted: 11/27/2007] [Indexed: 12/21/2022]
Abstract
Short-term antiviral therapy with the nucleoside analogue entecavir (ETV), given at an early stage of duck hepatitis B virus (DHBV) infection, restricts virus spread and leads to clearance of DHBV-infected hepatocytes in approximately 50% of ETV-treated ducks, whereas widespread and persistent DHBV infection develops in 100% of untreated ducks. To increase the treatment response rate, ETV treatment was combined in the current study with a post-exposure "prime-boost" vaccination protocol. Four groups of 14-day-old ducks were inoculated intravenously with a dose of DHBV previously shown to induce persistent DHBV infection. One hour post-infection (p.i.), ducks were primed with DNA vaccines that expressed DHBV core (DHBc) and surface (pre-S/S and S) antigens (Groups A, B) or the DNA vector alone (Groups C, D). ETV (Groups A, C) or water (Groups B, D) was simultaneously administered by gavage and continued for 14 days. Ducks were boosted 7 days p.i. with recombinant fowlpoxvirus (rFPV) strains also expressing DHBc and pre-S/S antigens (Groups A, B) or the FPV-M3 vector (Groups C, D). DHBV-infected hepatocytes were observed in the liver of all ducks at day 4 p.i. with reduced numbers in the ETV-treated ducks. Ducks treated with ETV plus the control vectors showed restricted spread of DHBV infection during ETV treatment, but in 60% of cases, infection became widespread after ETV was stopped. In contrast, at 14 and 67 days p.i., 100% of ducks treated with ETV and "prime-boost" vaccination had no detectable DHBV-infected hepatocytes and had cleared the DHBV infection. These findings suggest that ETV treatment combined with post-exposure "prime-boost" vaccination induced immune responses that eliminated DHBV-infected hepatocytes and prevented the development of persistent DHBV infection.
Collapse
Affiliation(s)
- D S Miller
- School of Molecular and Biomedical Science, University of Adelaide, SA 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Pardo M, Bartolomé J, Carreño V. Current therapy of chronic hepatitis B. Arch Med Res 2007; 38:661-77. [PMID: 17613358 DOI: 10.1016/j.arcmed.2006.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/04/2006] [Indexed: 12/24/2022]
Affiliation(s)
- Margarita Pardo
- Fundación para el Estudio de las Hepatitis Virales, Madrid, Spain
| | | | | |
Collapse
|
30
|
Affiliation(s)
- Lucyna Cova
- Physiopathologie moléculaire et nouveaux traitements des hépatites virales INSERM : U871 IFR62 Université Claude Bernard - Lyon I FR
| |
Collapse
|
31
|
Abstract
Chronic hepatitis B remains a treatment challenge despite the availability of new nucleoside analogs. This is due to the persistence of viral infection during therapy, which exposes the patient to the risk of developing antiviral drug resistance. Therefore, new polymerase inhibitors are needed to manage resistance to existing drugs and new trials of combination therapy are required to delay drug resistance. In the future, antiviral agents targeting other steps of the viral life cycle will be needed to achieve antiviral synergy and prevent antiviral drug resistance. Immune modulators are also expected to enhance antiviral response and to achieve sustained response. Discovery of new antiviral drugs and design of new treatment strategies are, therefore, needed to manage this disease, which is still the main cause of cirrhosis and hepatocellular carcinoma worldwide.
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM, U871, 151 cours Albert Thomas, 69424 Lyon cedex 03, France.
| |
Collapse
|
32
|
Lu M, Menne S, Yang D, Xu Y, Roggendorf M. Immunomodulation as an option for the treatment of chronic hepatitis B virus infection: preclinical studies in the woodchuck model. Expert Opin Investig Drugs 2007; 16:787-801. [PMID: 17501692 DOI: 10.1517/13543784.16.6.787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic hepatitis B virus infection based on immunomodulation are now under investigation. The woodchuck model for hepatitis B virus infection has emerged as a useful animal model for the evaluation of such approaches, after developing necessary assays and reagents for immunologic studies in this model. Conventional and novel vaccines such as DNA vaccines were tested in woodchucks for their ability to induce protective immune responses against challenge infection with the woodchuck hepatitis virus (WHV). Furthermore, immunotherapeutic approaches for the control of chronic hepadnaviral infection were evaluated in woodchucks. Immunizations with WHV proteins and DNA vaccines led to the development of antibodies to the WHV surface antigen and to a significant decrease of viral load in chronically WHV-infected woodchucks. Viral vector-mediated gene transfer was explored for the delivery of antiviral cytokines IFN-alpha in woodchucks and resulted in the decrease of viral replication. It is now generally accepted that a combination of antiviral treatment and immunization will be necessary to achieve successful immunomodulation with a long-term control of chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Despite effective prophylactic vaccines against hepatitis B virus existing for over 20 years, more than 2.5 billion people worldwide have been exposed to the disease and approximately 370 million people are chronically infected with it. Chronic infection in more than two thirds of infected patients results in chronic liver disease, which may lead to cirrhosis, exposure to noncarcinomatous complications and hepatocellular carcinoma. Currently available therapies fail to allow complete control of viral replication in most patients. Viral persistence has been associated with a defect in the development of hepatitis B virus-specific cellular immunity. Immunomodulatory strategies to boost or to broaden the weak virus-specific T-cell response have been proposed to bypass the chronic hepatitis B infection, including hepatitis B virus envelope- and nucleocapsid-based vaccines, and new formulations for recombinant and DNA-based vaccines, which are currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Stanislas Pol
- Unité d'Hépatologie, Liver Unit, Hôpital Cochin, Université Paris V-René Descartes and Inserm U-567, 27 Rue du Faubourg Saitn Antoine, 75014 Paris, France.
| | | |
Collapse
|
34
|
Gares SL, Fischer KP, Congly SE, Lacoste S, Addison WR, Tyrrell DL, Gutfreund KS. Immunotargeting with CD154 (CD40 ligand) enhances DNA vaccine responses in ducks. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:958-65. [PMID: 16893998 PMCID: PMC1539120 DOI: 10.1128/cvi.00080-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of CD154 on activated T cells with CD40 on antigen-presenting cells (APCs) potentiates adaptive immune responses in mammals. Soluble multimeric forms of CD154 have been used as an adjuvant or in immunotargeting strategies to enhance vaccine responses. The objective of our study was to examine the ability of duck CD154 (DuCD154) to enhance DNA vaccine responses in the duck hepatitis B model. Constructs were generated to express the functional domain of DuCD154 (tCD154), truncated duck hepatitis B virus (DHBV) core antigen (tcore) and chimera of tcore fused to tCD154 (tcore-tCD154). Expression in LMH cells demonstrated that all proteins were secreted and that tCD154 and tcore-tCD154 formed multimers. Ducks immunized with the plasmid ptcore-tCD154 developed accelerated and enhanced core-specific antibody responses compared to ducks immunized with ptcore or ptcore plus ptCD154. Antibody responses were better sustained in both ptcore-tCD154- and ptcore plus ptCD154-immunized ducks. Core-specific proliferative responses of duck peripheral blood mononuclear cells were enhanced in ducks immunized with ptcore-tCD154 or ptcore alone. This study suggests that the role of CD154 in the regulation of adaptive immune responses had already evolved before the divergence of birds and mammals. Thus, targeting of antigens to APCs with CD154 is an effective strategy to enhance DNA vaccine responses not only in mammalian species but also in avian species.
Collapse
Affiliation(s)
- Sheryl L Gares
- Departments of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Gonzalez-Aseguinolaza G, Crettaz J, Ochoa L, Otano I, Aldabe R, Paneda A. Gene therapy for viral hepatitis. Expert Opin Biol Ther 2006; 6:1263-78. [PMID: 17223736 DOI: 10.1517/14712598.6.12.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B and C infections are two of the most prevalent viral diseases in the world. Existing therapies against chronic viral hepatitis are far from satisfactory due to low response rates, undesirable side effects and selection of resistant viral strains. Therefore, new therapeutic approaches are urgently needed. This review, after briefly summarising the in vitro and in vivo systems for the study of both diseases and the genetic vehicles commonly used for liver gene transfer, examines the existing status of gene therapy-based antiviral strategies that have been employed to prevent, eliminate or reduce viral infection. In particular, the authors focus on the results obtained in clinical trials and experimental clinically relevant animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Genetic Therapy/methods
- Genetic Therapy/trends
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/prevention & control
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/prevention & control
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/prevention & control
- Humans
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- University of Navarra, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Zampino R, Marrone A, Adinolfi LE, Ruggiero G. Treatment of chronic hepatitis B: efficacy of current drugs and prospects for the future. Expert Rev Clin Immunol 2006; 2:915-29. [PMID: 20476979 DOI: 10.1586/1744666x.2.6.915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic hepatitis B is an important clinical problem often leading to severe complications. In this review, the results obtained in the last few years with the use of current drugs, such as interferon and nucleo(t)side analogues, are summarized and the problems of obtaining a sustained remission, which is only achieved in a small number of patients, are discussed. The new approaches, such as the use of combinations of drugs, to optimize long-term tolerable treatment are also considered.
Collapse
Affiliation(s)
- Rosa Zampino
- Second University Naples, Internal Medicine and Hepatology C/O Ospedale Gesù e Maria, Via Cotugno, 1 80135 Napoli, Italy.
| | | | | | | |
Collapse
|
37
|
Wang J, Gujar SA, Cova L, Michalak TI. Bicistronic woodchuck hepatitis virus core and gamma interferon DNA vaccine can protect from hepatitis but does not elicit sterilizing antiviral immunity. J Virol 2006; 81:903-16. [PMID: 17079319 PMCID: PMC1797430 DOI: 10.1128/jvi.01537-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immunity elicited against nucleocapsid of hepatitis B virus (HBV) and closely related woodchuck hepatitis virus (WHV) has been shown to be important in resolution of hepatitis and protection from infection. Further, activity of gamma interferon (IFN-gamma), which may directly inhibit hepadnavirus replication, promotes antiviral defense and favors T helper cell type 1 (Th1) response, which is seemingly a prerequisite of HBV clearance. In this study, to enhance induction of protective immunity against hepadnavirus, healthy woodchucks were immunized with a bicistronic DNA vaccine carrying WHV core (WHc) and woodchuck IFN-gamma (wIFN-gamma) gene sequences. Three groups, each group containing three animals, were injected once or twice with 0.5 mg, 0.9 mg, or 1.5 mg per dose of this vaccine. In addition, four animals received two injections of 0.6 mg or 1 mg WHc DNA alone. All animals were challenged with WHV. The results showed that four of nine animals injected with the bicistronic vaccine and one of four immunized with WHc DNA became protected from serologically evident infection and hepatitis. This protection was not linked to induction of WHc antigen-specific antibodies or T-cell proliferative response and was not associated with enhanced transcription of Th1 cytokines or 2',5'-oligoadenylate synthetase. Strikingly, all animals protected from hepatitis became reactive for WHV DNA and carried low levels of replicating virus in hepatic and lymphoid tissues after challenge with WHV. This study shows that the bicistronic DNA vaccine encoding both hepadnavirus core antigen and IFN-gamma was more effective in preventing hepatitis than that encoding virus core alone, but neither of them could mount sterile immunity against the virus or prevent establishment of occult infection.
Collapse
Affiliation(s)
- Jinguo Wang
- Molecular Virology and Hepatology Research, Division of Basic Medical Science, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
38
|
Narayan R, Buronfosse T, Schultz U, Chevallier-Gueyron P, Guerret S, Chevallier M, Saade F, Ndeboko B, Trepo C, Zoulim F, Cova L. Rise in gamma interferon expression during resolution of duck hepatitis B virus infection. J Gen Virol 2006; 87:3225-3232. [PMID: 17030856 DOI: 10.1099/vir.0.82170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gamma interferon (IFN-γ) expression plays a crucial role in the control of mammalian hepatitis B virus (HBV) infection. However, the role of duck INF-γ (DuIFN-γ) in the outcome of duck HBV (DHBV) infection, a reference model for hepadnavirus replication studies, has not yet been investigated. This work explored the dynamics of DuIFN-γ expression in liver and peripheral blood mononuclear cells (PBMCs) during resolution of DHBV infection in adolescent ducks in relation to serum and liver markers of virus replication, histological changes and humoral response induction. DHBV infection of 3-week-old ducks resulted in transient expression of intrahepatic preS protein (days 3–14) and mild histological changes. Low-level viraemia was detected only during the first 10 days of infection and was accompanied by early anti-preS antibody response induction. Importantly, a strong increase in intrahepatic DuIFN-γ RNA was detected by real-time RT-PCR at days 6–14, which coincided with a sharp decrease in both viral DNA and preS protein in the liver. Interestingly, liver DuIFN-γ expression remained augmented to the end of the follow-up period (day 66) and correlated with portal lymphocyte infiltration and persistence of trace quantities of intrahepatic DHBV DNA in animals that had apparently completely resolved the infection. Moreover, in infected ducks, a moderate increase was detected in the levels of DuIFN-γ in PBMCs (days 12–14), which coincided with the peak in liver DuIFN-γ RNA levels. These data reveal that increased DuIFN-γ expression in liver and PBMCs is concomitant with viral clearance, characterizing the resolution of infection, and provide new insights into the host–virus interactions that control DHBV infection.
Collapse
MESH Headings
- Animals
- DNA, Viral/analysis
- DNA, Viral/genetics
- Ducks
- Hepadnaviridae Infections/blood
- Hepadnaviridae Infections/metabolism
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Antibodies/blood
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B Virus, Duck/isolation & purification
- Hepatitis, Viral, Animal/blood
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/virology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/metabolism
- Liver/metabolism
- Liver/virology
- Polymerase Chain Reaction
- RNA, Viral/analysis
- RNA, Viral/genetics
- Time Factors
- Viremia
Collapse
Affiliation(s)
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire, Marcy l'Etoile, France
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital, Freiburg, Germany
| | | | | | | | - Fadi Saade
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | | | - Christian Trepo
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Lucyna Cova
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
39
|
Preclinical primate studies of HIV-1-envelope-based vaccines: towards human clinical trials. Curr Opin HIV AIDS 2006; 1:336-43. [DOI: 10.1097/01.coh.0000232350.61650.f0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Michel ML, Mancini-Bourgine M. Therapeutic vaccination against chronic hepatitis B virus infection. J Clin Virol 2006; 34 Suppl 1:S108-14. [PMID: 16461209 DOI: 10.1016/s1386-6532(05)80019-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic liver disease and hepatocellular carcinoma due to chronic hepatitis B virus (HBV) infection pose a major public health problem in highly endemic regions. Effective vaccines against HBV exist but more than 370 million people remain chronically infected with HBV For these patients there is a high risk to develop cirrhosis and hepatocellular carcinoma. Currently available therapies fail to control viral replication in the long term in most patients. Viral persistence has been associated with a defect in the development of HBV specific cellular immunity. Strategies to boost or to broaden the weak virus-specific T-cell response of patients with chronic hepatitis B have been proposed as a means of curing this persistent infection. HBV envelope- and nucleocapsid-based vaccines, new formulations for recombinant vaccines and DNA-based vaccines are currently being assessed in clinical trials. Improvements are clearly required, but vaccination is likely to be the cheapest and potentially most beneficial treatment.
Collapse
Affiliation(s)
- Marie Louise Michel
- Unité de Carcinogénèse Hépatique et Virologie Moléculaire, INSERM U370, Département de Médecine Moléculaire, Institut Pasteur, 75015 Paris, France.
| | | |
Collapse
|
41
|
Abstract
We have recently demonstrated, using the duck Hepatitis B virus (DHBV) model, closely related to human HBV, that following DNA immunization of breeding ducks with a plasmid encoding the targeted protein, specific and biologically active IgY (egg yolk immunoglobulines) are vertically transmitted from their serum into the egg yolk from which they can be extracted and purified. Thus an egg can be considered as a small "factory" for antibody production, since about 60-100 mg of purified IgY can be obtained from each egg yolk of a DNA-immunized duck. One of the major advantages of this new method of "DNA-designed" IgY antibodies is their production via immunization with a gene vector that expresses a corresponding antibody in situ in the cells of an avian host. Therefore this approach allows direct generation of antibodies from plasmid DNA and avoids the costly and tedious preparation of purified antigens required for conventional antibody production. In addition, duck IgY are of remarkable high affinity, avidity and are highly neutralizing. Moreover, the epitope pattern of IgY generated by DNA immunization of ducks is closely related to that observed in viral infection. Such duck IgY are also of particular value as immunodiagnostic tools, since they do not cross-react serologically with mammalian immunoglobulins and complement. Because IgY are resistant to the gastric barrier, the recently described DNA-designed IgY specific to H. pylori Urease B can be of particular interest for passive immunotherapy of gastrointestinal tract infections. Another interesting application is the recent generation in our laboratory of DNA-designed IgY antibodies specific to HBsAg mutants. These antibodies are currently being used to design new diagnostic assay for detection of HBV mutants that are undetectable by actual tests. Moreover, this approach allowing a quick and inexpensive production of a new generation of antibodies will provide pertinent tools to link the fields of genomics and protcomics.
Collapse
Affiliation(s)
- Lucyna Cova
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France.
| |
Collapse
|
42
|
Miller DS, Kotlarski I, Jilbert AR. DNA vaccines expressing the duck hepatitis B virus surface proteins lead to reduced numbers of infected hepatocytes and protect ducks against the development of chronic infection in a virus dose-dependent manner. Virology 2006; 351:159-69. [PMID: 16624364 DOI: 10.1016/j.virol.2006.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/01/2022]
Abstract
We tested the efficacy of DNA vaccines expressing the duck hepatitis B virus (DHBV) pre-surface (pre-S/S) and surface (S) proteins in modifying the outcome of infection in 14-day-old ducks. In two experiments, Pekin Aylesbury ducks were vaccinated on days 4 and 14 of age with plasmid DNA vaccines expressing either the DHBV pre-S/S or S proteins, or the control plasmid vector, pcDNA1.1Amp. All ducks were then challenged intravenously on day 14 of age with 5 x 10(7) or 5 x 10(8) DHBV genomes. Levels of initial DHBV infection were assessed using liver biopsy tissue collected at day 4 post-challenge (p.c.) followed and immunostained for DHBV surface antigen to determine the percentage of infected hepatocytes. All vector vaccinated ducks challenged with 5 x 10(7) and 5 x 10(8) DHBV genomes had an average of 3.21% and 20.1% of DHBV-positive hepatocytes respectively at day 4 p.c. and 16 out of 16 ducks developed chronic DHBV infection. In contrast, pre-S/S and S vaccinated ducks challenged with 5 x 10(7) DHBV genomes had reduced levels of initial infection with an average of 1.38% and 1.93% of DHBV-positive hepatocytes at day 4 p.c. respectively and 10 of 18 ducks were protected against chronic infection. The pre-S/S and the S DNA vaccinated ducks challenged with 5 x 10(8) DHBV genomes had an average of 31.5% and 9.2% of DHBV-positive hepatocytes on day 4 p.c. respectively and only 4 of the 18 vaccinated ducks were protected against chronic infection. There was no statistically significant difference in the efficacy of the DHBV pre-S/S or S DNA vaccines. In conclusion, vaccination of young ducks with DNA vaccines expressing the DHBV pre-S/S and S proteins induced rapid immune responses that reduced the extent of initial DHBV infection in the liver and prevented the development of chronic infection in a virus dose-dependent manner.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Ducks/immunology
- Ducks/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B, Chronic/prevention & control
- Hepatocytes/virology
- Humans
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Darren S Miller
- Hepatitis Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
43
|
Miller DS, Halpern M, Kotlarski I, Jilbert AR. Vaccination of ducks with a whole-cell vaccine expressing duck hepatitis B virus core antigen elicits antiviral immune responses that enable rapid resolution of de novo infection. Virology 2006; 348:297-308. [PMID: 16469347 DOI: 10.1016/j.virol.2005.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/12/2005] [Accepted: 12/22/2005] [Indexed: 01/12/2023]
Abstract
As a first step in developing immuno-therapeutic vaccines for patients with chronic hepatitis B virus infection, we examined the ability of a whole-cell vaccine, expressing the duck hepatitis B virus (DHBV) core antigen (DHBcAg), to target infected cells leading to the resolution of de novo DHBV infections. Three separate experiments were performed. In each experiment, ducks were vaccinated at 7 and 14 days of age with primary duck embryonic fibroblasts (PDEF) that had been transfected 48 h earlier with plasmid DNA expressing DHBcAg with and without the addition of anti-DHBcAg (anti-DHBc) antibodies. Control ducks were injected with either 0.7% NaCl or non-transfected PDEF. The ducks were then challenged at 18 days of age by intravenous inoculation with DHBV (5 x 10(8) viral genome equivalents). Liver biopsies obtained on day 4 post-challenge demonstrated that vaccination did not prevent infection of the liver as similar numbers of infected hepatocytes were detected in all vaccinated and control ducks. However, analysis of liver tissue obtained 9 or more days post-challenge revealed that 9 out of 11 of the PDEF-DHBcAg vaccinated ducks and 8 out of 11 ducks vaccinated with PDEF-DHBcAg plus anti-DHBc antibodies had rapidly resolved the DHBV infection with clearance of infected cells. In contrast, 10 out of 11 of the control unvaccinated ducks developed chronic DHBV infection. In conclusion, vaccination of ducks with a whole-cell PDEF vaccine expressing DHBcAg elicited immune responses that induced a rapid resolution of DHBV infection. The results establish that chronic infection can be prevented via the vaccine-mediated induction of a core-antigen-specific immune response.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Base Sequence
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Ducks/immunology
- Ducks/virology
- Fibroblasts/immunology
- Fibroblasts/virology
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Humans
- Plasmids/genetics
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Transfection
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Hepatitis Vaccines/genetics
- Viral Hepatitis Vaccines/immunology
Collapse
Affiliation(s)
- Darren S Miller
- School of Molecular and Biomedical Science, The University of Adelaide, Australia.
| | | | | | | |
Collapse
|
44
|
Abouzid K, Ndeboko B, Durantel S, Jamard C, Zoulim F, Buronfosse T, Cova L. Genetic vaccination for production of DNA-designed antibodies specific to Hepadnavirus envelope proteins. Vaccine 2005; 24:4615-7. [PMID: 16198457 DOI: 10.1016/j.vaccine.2005.08.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We propose a method of avian antibodies production based on DNA immunization of laying ducks with a plasmid encoding specified antigen, followed by egg collection and purification of egg yolk immunoglobulins (IgY). We have validated this approach in the Duck hepatitis B virus (DHBV) model. We report here that following immunization of female ducks with plasmids encoding DHBV envelope proteins, large amounts (at least 50 mg/egg) of specific antibodies can be obtained from eggs of these ducks. Interestingly, the comparison of different plasmid constructs showed the important differences in their efficacy of specific IgY antibodies induction in the sera and eggs of immunized ducks.
Collapse
Affiliation(s)
- Karima Abouzid
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Long JE, Huang LN, Qin ZQ, Wang WY, Qu D. IFN-γ increases efficiency of DNA vaccine in protecting ducks against infection. World J Gastroenterol 2005; 11:4967-73. [PMID: 16124047 PMCID: PMC4321911 DOI: 10.3748/wjg.v11.i32.4967] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the effects of DNA vaccines in combination with duck IFN-γ gene on the protection of ducks against duck hepatitis B virus (DHBV) infection.
METHODS: DuIFN-γ cDNA was cloned and expressed in COS-7 cells, and the antiviral activity of DuIFN-γ was detected and neutralized by specific antibodies. Ducks were vaccinated with DHBpreS/S DNA alone or co-immunized with plasmid expressing DuIFN-γ. DuIFN-γ mRNA in peripheral blood mononuclear cells (PBMCs) from immunized ducks was detected by semi-quantitative competitive RT-PCR. Anti-DHBpreS was titrated by enzyme-linked immunosorbent assay (ELISA). DHBV DNA in sera and liver was detected by Southern blot hybridization, after ducks were challenged with high doses of DHBV.
RESULTS: DuIFN-γ expressed by COS-7 was able to protect duck fibroblasts against vesicular stomatitis virus (VSV) infection in a dose-dependent fashion, and anti-DuIFN-γ antibodies neutralized the antiviral effects. DuIFN-γ in the supernatant also inhibited the release of DHBV DNA from LMH-D2 cells. When ducks were co-immunized with DNA vaccine expressing DHBpreS/S and DuIFN-γ gene as an adjuvant, the level of DuIFN-γ mRNA in PBMCs was higher than that in ducks vaccinated with DHBpreS/S DNA alone. However, the titer of anti-DHBpreS elicited by DHBpreS/S DNA alone was higher than that co-immunized with DuIFN-γ gene and DHBpreS/S DNA. After being challenged with DHBV at high doses, the load of DHBV in sera dropped faster, and the amount of total DNA and cccDNA in the liver decreased more significantly in the group of ducks co-immunized with DuIFN-γ gene and DHBpreS/S DNA than in other groups.
CONCLUSION: DHBV preS/S DNA vaccine can protect ducks against DHBV infection, DuIFN-γ gene as an immune adjuvant enhances its efficacy.
Collapse
Affiliation(s)
- Jian-Er Long
- Department of Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
46
|
Zoulim F. Antiviral therapy of chronic hepatitis B: can we clear the virus and prevent drug resistance? Antivir Chem Chemother 2005; 15:299-305. [PMID: 15646643 DOI: 10.1177/095632020401500602] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antiviral therapy of chronic HBV infection remains a clinical challenge. Once this infection has been-established, the viral genome persists for life, either as an integrated genome or as episomal covalently closed circular DNA (cccDNA). The latter is the source of renewed viral replication in case of immune depression or after antiviral drug withdrawal. The mechanisms of clearance of infected cells involve CD8+ cell-mediated cytolytic and non-cytolytic pathways. Antiviral therapy, using nucleoside analogues that inhibit the viral polymerase, induces a slow depletion of intrahepatic cccDNA. The persistence of low-grade viral replication under antiviral therapy may then lead to the selection of drug-resistant mutants. New assays have been developed to study the functional consequences of these polymerase mutations in terms of replication capacity and drug susceptibility. Together with the development of new HBV polymerase inhibitors and novel immunostimulatory approaches, this should lead to the design and evaluation of rational treatment combinations for a better control of viral replication and prevention of drug resistance.
Collapse
|
47
|
Mancini-Bourgine M, Michel ML. Traitement des infections chroniques dues au virus de l’hépatite B par vaccination thérapeutique. Therapie 2005; 60:257-65. [PMID: 16128268 DOI: 10.2515/therapie:2005033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic liver disease and hepatocellular carcinoma associated with chronic hepatitis B virus (HBV) infection are among the most serious human health problems in highly endemic regions. Despite the existence for many years of effective vaccines against HBV, more than 370 million people remain persistently infected with HBV today. Currently available therapies fail to provide long-term control of viral replication in most patients. Viral persistence has been associated with a defect in the development of HBV-specific cell-mediated immunity. Strategies to boost or to broaden the weak virus-specific T-cell response of patients with chronic hepatitis B have been proposed as a means of terminating this persistent infection. The immunogenicity of HBV envelope- or capsid-based vaccines, new formulations for recombinant vaccines as well as DNA-based vaccines are currently under investigation in clinical trials. Although improvements are still required, vaccination would be the therapeutic procedure with the lowest cost and the potentially greatest benefit.
Collapse
|
48
|
Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res 2005; 63:1-70. [PMID: 15530560 DOI: 10.1016/s0065-3527(04)63001-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
49
|
Mancini-Bourgine M, Fontaine H, Scott-Algara D, Pol S, Bréchot C, Michel ML. Induction or expansion of T-cell responses by a hepatitis B DNA vaccine administered to chronic HBV carriers. Hepatology 2004; 40:874-82. [PMID: 15382173 DOI: 10.1002/hep.20408] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the availability of effective hepatitis B vaccines for many years, over 370 million people remain persistently infected with hepatitis B virus (HBV). Viral persistence is thought to be related to poor HBV-specific T-cell responses. A phase I clinical trial was performed in chronic HBV carriers to investigate whether HBV DNA vaccination could restore T-cell responsiveness. Ten patients with chronic active hepatitis B nonresponder to approved treatments for HBV infection were given 4 intramuscular injections of 1 mg of a DNA vaccine encoding HBV envelope proteins. HBV-specific T-cell responses were assessed by proliferation, ELISpot assays, and tetramer staining. Secondary end points included safety and the monitoring of HBV viraemia and serological markers. Proliferative responses to hepatitis B surface antigen were detected in two patients after DNA injections. Few HBV-specific interferon gamma-secreting T cells were detectable before immunization, but the frequency of such responses was significantly increased by 3 DNA injections. Immunization was well tolerated. Serum HBV DNA levels decreased in 5 patients after 3 vaccine injections, and complete clearance was observed in 1 patient. In conclusion, this study provides evidence that HBV DNA vaccination is safe and immunologically effective. We demonstrate that DNA vaccination can specifically but transiently activate T-cell responses in some chronic HBV carriers who do not respond to current antiviral therapies.
Collapse
Affiliation(s)
- Maryline Mancini-Bourgine
- Carcinogénèse Hépatique et Virologie Moléculaire/Institut National de la Santé et de la Recherche Médicale Unité 370, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
50
|
Thermet A, Robaczewska M, Rollier C, Hantz O, Trepo C, Deleage G, Cova L. Identification of antigenic regions of duck hepatitis B virus core protein with antibodies elicited by DNA immunization and chronic infection. J Virol 2004; 78:1945-53. [PMID: 14747559 PMCID: PMC369491 DOI: 10.1128/jvi.78.4.1945-1953.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The induction of humoral response in ducks by DNA-based immunization against duck hepatitis B virus (DHBV) core protein (DHBc) was investigated. In addition, the amino acid specificity of the induced response was compared by using peptide scanning to that elicited either by protein immunization or during chronic DHBV infection. Immunization of ducks with a plasmid expressing DHBc protein led to the induction of a long-lasting antibody response able to specifically recognize viral protein in chronically infected duck livers. Peptide scanning analysis of anti-DHBc response induced during chronic DHBV infection allowed us to identify six major antigenic regions (AR1 to AR6). The reactivity spectrum of duck sera elicited by protein immunization appeared narrower and was restricted to only four of these antigenic regions in spite of higher anti-DHBc antibody titers. Interestingly, anti-DHBc antibodies induced by DNA-based immunization recognized five of six antigenic regions, and the epitope pattern was broader and more closely related to that observed in chronic viral infections. To gain more insight into the location of antigenic regions, we built a three-dimensional (3-D) model of DHBc protein based on human and duck core sequence alignment data and the HBc 3-D crystal structure. The results suggest that two identified antigenic regions (AR2, amino acids [aa] (64)T-P(84), and AR5, aa (183)A-R(210)) are located at positions on the protein surface equivalent to those of the two HBc major epitopes. Moreover, we identified another antigenic region (AR3, aa (99)I-I(112)) that was recognized by all sera from chronically infected, DNA- or protein-immunized ducks within the large 45-aa insertion in DHBc protein, suggesting that this region, which lacks HBc, is externally exposed.
Collapse
Affiliation(s)
- A Thermet
- INSERM U271, 69424 Lyon Cedex 03, France
| | | | | | | | | | | | | |
Collapse
|