1
|
Zhang L, Huang W, Ma T, Shi X, Chen J, Hu YL, Liu YX, Liu ZX, Lu CH. Targeting CFTR restoring aggrephagy to suppress HSC activation and alleviate liver fibrosis. Int Immunopharmacol 2025; 145:113754. [PMID: 39667045 DOI: 10.1016/j.intimp.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND AND AIMS Multiple studies have shown that hepatic fibrosis, a progressive condition that represents the endpoint of various chronic liver diseases, is primarily marked by the extensive activation of hepatic stellate cells (HSCs). However, the exact impact of cystic fibrosis transmembrane conductance regulator (CFTR) on HSCs during the development of hepatic fibrosis remains unclear. METHODS In our study, we measured CFTR levels in tissue samples and in HSCs activated by TGF-β stimulation. We established mouse models of liver fibrosis using carbon tetrachloride (CCl4) and bile duct ligation (BDL). In vitro, we investigated the specific mechanisms of CFTR action in HSCs by exploring aggrephagy. We employed co-immunoprecipitation (co-IP) experiments to identify potential downstream targets of CFTR. Finally, through rescue experiments, we examined the impact of GTPase-activating protein - binding protein 1 (G3BP1) on CFTR-mediated activation of hepatic stellate cells. RESULT In activated HSCs induced by TGF-β, the reduction of CFTR, various liver fibrosis models, and fibrotic tissue samples were identified. In vitro functional experiments confirmed that CFTR promoted the expression of fibrosis-related markers and aggrephagy in HSCs. Mechanistically, we found that CFTR directly interacts with G3BP1, thereby further promoting the TGF-β/Smad2/3 pathway. The inhibition of G3BP1 caused by CFTR knockdown reduced extracellular matrix deposition, contributing to alleviating liver fibrosis. CONCLUSION We emphasize that CFTR activates aggrephagy and promotes HSC activation and hepatic fibrosis by targeting G3BP1, participating in the TGF-β/Smad2/3 signaling pathway. Overall, CFTR has been identified as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Wei Huang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Tao Ma
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Xiang Shi
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Jing Chen
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yong-Xia Liu
- Department of Gastroenterology, Tongzhou District Traditional Chinese Medicine Hospital, Nantong, China
| | - Zhao-Xiu Liu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| | - Cui-Hua Lu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| |
Collapse
|
2
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
3
|
Quintero Bernabeu J, Juamperez Goñi J, Mercadal Hally M, Padrós Fornieles C, Ortega López J, Larrarte King M, Molino Gahete JA, Salcedo Allende MT, Hidalgo Llompart E, Bilbao Aguirre I, Charco Torra R. Sirolimus to treat chronic and steroid-resistant allograft rejection-related fibrosis in pediatric liver transplantation. J Pediatr Gastroenterol Nutr 2024; 79:962-968. [PMID: 38973300 DOI: 10.1002/jpn3.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 07/09/2024]
Abstract
This study aimed to report our experience with the use of Sirolimus (SRL) in pediatric liver transplant patients with chronic rejection or steroid-resistant rejection with hepatic fibrosis, focusing on their histological evolution. All pediatric liver transplant recipients who received off-label treatment with SRL for chronic ductopenic rejection or cortico-resistant rejection between July 2003 and July 2022 were included in the study. All nine patients included in the study showed improvement in liver enzymes and cholestasis parameters as soon as 1-month after post-SRL introduction. A decrease in fibrosis stage was observed in 7/9 (77.7%) patients at 36 months. All but one patient experienced an improvement in the Rejection Activity Index and ductopenia at 12 months. A single patient had to discontinue SRL treatment owing to nephrotic proteinuria. In conclusion, SRL may be a safe and effective treatment for chronic and steroid-resistant rejection and may improve allograft rejection-related fibrosis and ductal damage.
Collapse
Affiliation(s)
- Jesús Quintero Bernabeu
- Pediatric Hepatology and Liver Transplant Department, ERN Rare Liver - ERN TrasplantChild, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Javier Juamperez Goñi
- Pediatric Hepatology and Liver Transplant Department, ERN Rare Liver - ERN TrasplantChild, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Maria Mercadal Hally
- Pediatric Hepatology and Liver Transplant Department, ERN Rare Liver - ERN TrasplantChild, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Padrós Fornieles
- Pediatric Hepatology and Liver Transplant Department, ERN Rare Liver - ERN TrasplantChild, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Juan Ortega López
- Pediatric Intensive Care Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mauricio Larrarte King
- Pediatric Hepatology and Liver Transplant Department, ERN Rare Liver - ERN TrasplantChild, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José A Molino Gahete
- Pediatric Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | - Ramon Charco Torra
- HPB Surgery and Transplants, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
4
|
Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab 2024; 36:1439-1455. [PMID: 38823393 DOI: 10.1016/j.cmet.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), harmful use of alcohol, or viral hepatitis, may result in liver fibrosis, cirrhosis, and cancer. Hepatic fibrogenesis is a complex process with interactions between different resident and non-resident heterogeneous liver cell populations, ultimately leading to deposition of extracellular matrix and organ failure. Shifts in cell phenotypes and functions involve pronounced transcriptional and protein synthesis changes that require metabolic adaptations in cellular substrate metabolism, including glucose and lipid metabolism, resembling changes associated with the Warburg effect in cancer cells. Cell activation and metabolic changes are regulated by metabolic stress responses, including the unfolded protein response, endoplasmic reticulum stress, autophagy, ferroptosis, and nuclear receptor signaling. These metabolic adaptations are crucial for inflammatory and fibrogenic activation of macrophages, lymphoid cells, and hepatic stellate cells. Modulation of these pathways, therefore, offers opportunities for novel therapeutic approaches to halt or even reverse liver fibrosis progression.
Collapse
Affiliation(s)
- Paul Horn
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
5
|
Jeng KS, Chang CF, Tsang YM, Sheen IS, Jeng CJ. Reappraisal of the Roles of the Sonic Hedgehog Signaling Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1739. [PMID: 38730691 PMCID: PMC11083695 DOI: 10.3390/cancers16091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HCC remains one of the leading causes of cancer-related death globally. The main challenges in treatments of hepatocellular carcinoma (HCC) primarily arise from high rates of postoperative recurrence and the limited efficacy in treating advanced-stage patients. Various signaling pathways involved in HCC have been reported. Among them, the Sonic hedgehog (SHH) signaling pathway is crucial. The presence of SHH ligands is identified in approximately 60% of HCC tumor tissues, including tumor nests. PTCH-1 and GLI-1 are detected in more than half of HCC tissues, while GLI-2 is found in over 84% of HCC tissues. The SHH signaling pathway (including canonical and non-canonical) is involved in different aspects of HCC, including hepatocarcinogenesis, tumor growth, tumor invasiveness, progression, and migration. The SHH signaling pathway also contributes to recurrence, metastasis, modulation of the cancer microenvironment, and sustaining cancer stem cells. It also affects the resistance of HCC cells to chemotherapy, target therapy, and radiotherapy. Reappraisal of the roles of the SHH signaling pathway in HCC may trigger some novel therapies for HCC.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chiung-Fang Chang
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Yuk-Ming Tsang
- Department of Imaging Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - I-Shyan Sheen
- Department of Gastroenterology & Hepatology, Linkou Chang Memorial Hospital, Chang Gung Medical Foundation, Taoyuan City 333, Taiwan;
| | - Chi-Juei Jeng
- Graduate Institude of Clinical Medicine, National Taiwan University, College of Medicine, Taipei City 10617, Taiwan;
| |
Collapse
|
6
|
Ding J, Yang YY, Li PT, Ma Y, Zhang L, Zhou Y, Jin C, Li HY, Zhu YF, Liu XP, Liu ZJ, Jia HL, Liu PG, Wu J. TGF-β1/SMAD3-driven GLI2 isoform expression contributes to aggressive phenotypes of hepatocellular carcinoma. Cancer Lett 2024; 588:216768. [PMID: 38453045 DOI: 10.1016/j.canlet.2024.216768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-β1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-β1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-β/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, 200040, China.
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Peng-Tao Li
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui-Yan Li
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan-Fei Zhu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xiu-Ping Liu
- Department of Pathology and Laboratory Medicine, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zheng-Jin Liu
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200041, China
| | - Ping-Guo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
7
|
Kang HG, Park H, Myong GE, Kim WJ, Mun CE, Kim CR, You CY, Kim SK, Park MS, Park SI. Beneficial Effect of Rapamycin on Liver Fibrosis in a Mouse Model (C57bl/6 Mouse). Transplant Proc 2024; 56:701-704. [PMID: 38548510 DOI: 10.1016/j.transproceed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Liver fibrosis is a chronic inflammatory disease that progresses and has a high mortality rate. This study was performed to investigate the protective effect of rapamycin on experimentally induced chronic liver injury in mice models using both biochemical parameters of liver function enzymes. METHODS Twenty-four mice were divided randomly into 4 equal groups: [1] the normal group, n = 6; [2] the liver fibrosis (LF) group, n = 6; [3] the LF with the treatment of rapamycin group, n = 6; [4] the LF with the treatment of silimaryn, n = 6. RESULTS In the group receiving oral administration of rapamycin, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine were found to significantly decrease compared to the liver fibrosis group. Rapamycin, in the orally administered group, demonstrated a statistically significant decrease in the expression of interleukin (IL) 10, IL-1B, inducible nitric oxide synthase, and tumor necrosis factor alpha compared to the liver fibrosis group. CONCLUSIONS In this study, we explored the potential therapeutic effects of rapamycin on liver fibrosis in an animal model.
Collapse
Affiliation(s)
- Hyun Goo Kang
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Heesun Park
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Ga Eun Myong
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Woo Jeong Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chae Eun Mun
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chae Rin Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chae Yeon You
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Min Su Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Sang-Il Park
- Department of Optometry, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
8
|
Cojocaru E, Cojocaru T, Pînzariu GM, Vasiliu I, Armașu I, Cojocaru C. Perspectives on Post-COVID-19 Pulmonary Fibrosis Treatment. J Pers Med 2023; 14:51. [PMID: 38248752 PMCID: PMC10817460 DOI: 10.3390/jpm14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Pulmonary fibrosis, a critical outcome of chronic inflammatory diseases, has gained prominence in the context of post-coronavirus (post-COVID-19) complications. This review delves into the multifaceted landscape of post-COVID-19 pulmonary fibrosis, elucidating the intricate molecular mechanisms underlying its pathogenesis and highlighting promising therapeutic avenues. Examining the aftermath of severe acute respiratory syndrome-2 (SARS-CoV-2) infection, the review reveals key signaling pathways implicated in the fibrotic cascade. Drawing parallels with previous coronavirus outbreaks enhances our understanding of the distinctive features of post-COVID-19 fibrosis. Antifibrotic drugs, like pirfenidone and nintedanib, take center stage; their mechanisms of action and potential applications in post-COVID-19 cases are thoroughly explored. Beyond the established treatments, this review investigates emerging therapeutic modalities, including anti-interleukin agents, immunosuppressants, and experimental compounds, like buloxybutide, saracatinib, sirolimus, and resveratrol. Emphasizing the critical importance of early intervention, this review highlights the dynamic nature of post-COVID-19 pulmonary fibrosis research. In conclusion, the synthesis of current knowledge offers a foundation for advancing our approaches to the prevention and treatment of these consequential sequelae of COVID-19.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (E.C.); (I.V.)
| | - Tudor Cojocaru
- Faculty of Medicine, University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (G.M.P.); (I.A.)
| | - Giulia Mihaela Pînzariu
- Faculty of Medicine, University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (G.M.P.); (I.A.)
| | - Ioana Vasiliu
- Morpho-Functional Sciences II Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (E.C.); (I.V.)
| | - Ioana Armașu
- Faculty of Medicine, University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (G.M.P.); (I.A.)
| | - Cristian Cojocaru
- Medical III Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
9
|
Winans T, Oaks Z, Choudhary G, Patel A, Huang N, Faludi T, Krakko D, Nolan J, Lewis J, Blair S, Lai Z, Landas SK, Middleton F, Asara JM, Chung SK, Wyman B, Azadi P, Banki K, Perl A. mTOR-dependent loss of PON1 secretion and antiphospholipid autoantibody production underlie autoimmunity-mediated cirrhosis in transaldolase deficiency. J Autoimmun 2023; 140:103112. [PMID: 37742509 PMCID: PMC10957505 DOI: 10.1016/j.jaut.2023.103112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Transaldolase deficiency predisposes to chronic liver disease progressing from cirrhosis to hepatocellular carcinoma (HCC). Transition from cirrhosis to hepatocarcinogenesis depends on mitochondrial oxidative stress, as controlled by cytosolic aldose metabolism through the pentose phosphate pathway (PPP). Progression to HCC is critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Although AR inactivation blocked susceptibility to hepatocarcinogenesis, it enhanced growth restriction, carbon trapping in the non-oxidative branch of the PPP and failed to reverse the depletion of glucose 6-phosphate (G6P) and liver cirrhosis. Here, we show that inactivation of the TAL-AR axis results in metabolic stress characterized by reduced mitophagy, enhanced overall autophagy, activation of the mechanistic target of rapamycin (mTOR), diminished glycosylation and secretion of paraoxonase 1 (PON1), production of antiphospholipid autoantibodies (aPL), loss of CD161+ NK cells, and expansion of CD38+ Ito cells, which are responsive to treatment with rapamycin in vivo. The present study thus identifies glycosylation and secretion of PON1 and aPL production as mTOR-dependent regulatory checkpoints of autoimmunity underlying liver cirrhosis in TAL deficiency.
Collapse
Affiliation(s)
- T Winans
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - Z Oaks
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - G Choudhary
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - A Patel
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - N Huang
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - T Faludi
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - D Krakko
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - J Nolan
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - J Lewis
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - Sarah Blair
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - Z Lai
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - S K Landas
- Departments of Pathology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - F Middleton
- Departments of Neuroscience, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - J M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S K Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - B Wyman
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - P Azadi
- University of Georgia, Athens, GA 30602, USA
| | - K Banki
- Departments of Pathology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - A Perl
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Microbiology and Immunology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
Arora M, Pavlíková Z, Kučera T, Kozlík P, Šopin T, Vacík T, Ľupták M, Duda M, Slanař O, Kutinová Canová N. Pharmacological effects of mTORC1/C2 inhibitor in a preclinical model of NASH progression. Biomed Pharmacother 2023; 167:115447. [PMID: 37683589 DOI: 10.1016/j.biopha.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Knowledge of the benefits of mTOR inhibition concerning adipogenesis and inflammation has recently encouraged the investigation of a new generation of mTOR inhibitors for non-alcoholic steatohepatitis (NASH). We investigated whether treatment with a specific mTORC1/C2 inhibitor (Ku-0063794; KU) exerted any beneficial impacts on experimentally-induced NASH in vitro and in vivo. The results indicated that KU decreases palmitic acid-induced lipotoxicity in cultivated primary hepatocytes, thus emerging as a successful candidate for testing in an in vivo NASH dietary model, which adopted the intraperitoneal KU dosing route rather than oral application due to its significantly greater bioavailability in mice. The pharmacodynamics experiments commenced with the feeding of male C57BL/6 mice with a high-fat atherogenic western-type diet (WD) for differing intervals over several weeks aimed at inducing various phases of NASH. In addition to the WD, the mice were treated with KU for 3 weeks or 4 months. Acute and chronic KU treatments were observed to be safe at the given concentrations with no toxicity indications in the mice. KU was found to alleviate NASH-related hepatotoxicity, mitochondrial and oxidative stress, and decrease the liver triglyceride content and TNF-α mRNA in at least one set of in vivo experiments. The KU modulated liver expression of selected metabolic and oxidative stress-related genes depended upon the length and severity of the disease. Although KU failed to completely reverse the histological progression of NASH in the mice, we demonstrated the complexity of mTORC1/C2 signaling regulation and suggest a stratified therapeutic management approach throughout the disease course.
Collapse
Affiliation(s)
- Mahak Arora
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zuzana Pavlíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tijana Šopin
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matthias Duda
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Nikolina Kutinová Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
11
|
Cheng S, Zou Y, Zhang M, Bai S, Tao K, Wu J, Shi Y, Wu Y, Lu Y, He K, Sun P, Su X, Hou S, Han B. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm (Beijing) 2023; 4:e378. [PMID: 37724132 PMCID: PMC10505372 DOI: 10.1002/mco2.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Uncontrolled and excessive progression of liver fibrosis is thought to be the prevalent pathophysiological cause of liver cirrhosis and hepatocellular cancer, and there are currently no effective antifibrotic therapeutic options available. Intercellular communication and cellular heterogeneity in the liver are involved in the progression of liver fibrosis, but the exact nature of the cellular phenotypic changes and patterns of interregulatory remain unclear. Here, we performed single-cell RNA sequencing on nonparenchymal cells (NPCs) isolated from normal and fibrotic mouse livers. We identified eight main types of cells, including endothelial cells, hepatocytes, dendritic cells, B cells, natural killer/T (NK/T) cells, hepatic stellate cells (HSCs), cholangiocytes and macrophages, and revealed that macrophages and HSCs exhibit the most variance in transcriptional profile. Further analyses of HSCs and macrophage subpopulations and ligand-receptor interaction revealed a high heterogeneity characterization and tightly interregulated network of these two groups of cells in liver fibrosis. Finally, we uncovered a profibrotic Thbs1+ macrophage subcluster, which expands in mouse and human fibrotic livers, activating HSCs via PI3K/AKT/mTOR signaling pathway. Our findings decode unanticipated insights into the heterogeneity of HSCs and macrophages and their intercellular crosstalk at a single-cell level, and may provide potential therapeutic strategies in liver fibrosis.
Collapse
Affiliation(s)
- Sheng Cheng
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunhan Zou
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shihao Bai
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Tao
- Department of PathologyTongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Jiaoxiang Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersBio‐X InstitutesShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Yuelan Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinzhong Lu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Sun
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Shangwei Hou
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Han
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Tao H, Liu Q, Zeng A, Song L. Unlocking the potential of Mesenchymal stem cells in liver Fibrosis: Insights into the impact of autophagy and aging. Int Immunopharmacol 2023; 121:110497. [PMID: 37329808 DOI: 10.1016/j.intimp.2023.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Liver fibrosis is a chronic liver disease characterized by extracellular matrix protein accumulation, potentially leading to cirrhosis or hepatocellular carcinoma. Liver cell damage, inflammatory responses, and apoptosis due to various reasons induce liver fibrosis. Although several treatments, such as antiviral drugs and immunosuppressive therapies, are available for liver fibrosis, they only provide limited efficacy. Mesenchymal stem cells (MSCs) have become a promising therapeutic option for liver fibrosis, because they can modulate the immune response, promote liver regeneration, and inhibit the activation of hepatic stellate cells that contribute to disease development. Recent studies have suggested that the mechanisms through which MSCs gain their antifibrotic properties involve autophagy and senescence. Autophagy, a vital cellular self-degradation process, is critical for maintaining homeostasis and protecting against nutritional, metabolic, and infection-mediated stress. The therapeutic effects of MSCs depend on appropriate autophagy levels, which can improve the fibrotic process. Nonetheless, aging-related autophagic damage is associated with a decline in MSC number and function, which play a crucial role in liver fibrosis development. This review summarizes the recent advancements in the understanding of autophagy and senescence in MSC-based liver fibrosis treatment, presenting the key findings from relevant studies.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Qianglin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
13
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
14
|
Wu KK. Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Front Pharmacol 2021; 12:759199. [PMID: 34858185 PMCID: PMC8632247 DOI: 10.3389/fphar.2021.759199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue fibrosis causes debilitating human diseases such as liver cirrhosis, heart failure, chronic kidney disease and pulmonary insufficiency. It is a dynamic process orchestrated by specific subsets of monocyte-macrophages, fibroblasts, pericytes and hepatic stellate cells. Fibrosis is linked to tissue inflammation. Pro-inflammatory macrophages promote fibrosis by driving myofibroblast differentiation and macrophage myofibroblast transition. Myofibroblasts express α-smooth muscle cell actin (α-SMA) and secrete extracellular matrix (ECM) proteins notably collagen I and III. Deposition of ECM proteins at injury sites and interstitial tissues distorts normal structure and impairs vital functions. Despite advances in the mechanisms of fibrosis at cellular, molecular and genetic levels, prevention and treatment of fibrotic diseases remain poorly developed. Recent reports suggest that 5-methoxytryptophan (5-MTP) is effective in attenuating injury-induced liver, kidney, cardiac and pulmonary fibrosis. It inhibits macrophage activation and blocks fibroblast differentiation to myofibroblasts. Furthermore, it inhibits hepatic stellate cell differentiation into myofibroblasts. As 5-MTP is an endogenous molecule derived from tryptophan catabolism via tryptophan hydroxylase pathway, it is well-suited as a lead compound for developing new anti-fibrotic drugs. This article provides an overview of 5-MTP synthesis, and a critical review of its anti-fibrotic activities. Its mechanisms of actions and potential therapeutic value will be discussed.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
15
|
Involvement of Autophagy in Ageing and Chronic Cholestatic Diseases. Cells 2021; 10:cells10102772. [PMID: 34685751 PMCID: PMC8534511 DOI: 10.3390/cells10102772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a “housekeeping” lysosomal degradation process involved in numerous physiological and pathological processes in all eukaryotic cells. The dysregulation of hepatic autophagy has been described in several conditions, from obesity to diabetes and cholestatic disease. We review the role of autophagy, focusing on age-related cholestatic diseases, and discuss its therapeutic potential and the molecular targets identified to date. The accumulation of toxic BAs is the main cause of cell damage in cholestasis patients. BAs and their receptor, FXR, have been implicated in the regulation of hepatic autophagy. The mechanisms by which cholestasis induces liver damage include mitochondrial dysfunction, oxidative stress and ER stress, which lead to cell death and ultimately to liver fibrosis as a compensatory mechanism to reduce the damage. The stimulation of autophagy seems to ameliorate the liver damage. Autophagic activity decreases with age in several species, whereas its basic extends lifespan in animals, suggesting that it is one of the convergent mechanisms of several longevity pathways. No strategies aimed at inducing autophagy have yet been tested in cholestasis patients. However, its stimulation can be viewed as a novel therapeutic strategy that may reduce ageing-dependent liver deterioration and also mitigate hepatic steatosis.
Collapse
|
16
|
Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol 2021; 74:1442-1454. [PMID: 33631228 DOI: 10.1016/j.jhep.2021.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
In recent years, there have been major advances in our understanding of the mechanisms underlying fibrosis progression and regression, and how coordinated interactions between parenchymal and non-parenchymal cells impact on the fibrogenic process. Recent studies have highlighted that metabolic reprogramming of parenchymal cells, immune cells (immunometabolism) and hepatic stellate cells is required to support the energetic and anabolic demands of phenotypic changes and effector functions. In this review, we summarise how targeting cell-intrinsic metabolic modifications of the main fibrogenic cell actors may impact on fibrosis progression and we discuss the antifibrogenic potential of metabolically targeted interventions.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Ariane Mallat
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Richard Moreau
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France
| | - Sophie Lotersztajn
- Université de Paris, INSERM, U1149, CNRS, ERL 8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018 Paris, France.
| |
Collapse
|
17
|
Lucantoni F, Martínez-Cerezuela A, Gruevska A, Moragrega ÁB, Víctor VM, Esplugues JV, Blas-García A, Apostolova N. Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol 2021; 254:216-228. [PMID: 33834482 DOI: 10.1002/path.5678] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Liver fibrosis (LF) occurs as a result of persistent liver injury and can be defined as a pathologic, chronic, wound-healing process in which functional parenchyma is progressively replaced by fibrotic tissue. As a phenomenon involved in the majority of chronic liver diseases, and therefore prevalent, it exerts a significant impact on public health. This impact becomes even more patent given the lack of a specific pharmacological therapy, with LF only being ameliorated or prevented through the use of agents that alleviate the underlying causes. Hepatic stellate cells (HSCs) are fundamental mediators of LF, which, activated in response to pro-fibrotic stimuli, transdifferentiate from a quiescent phenotype into myofibroblasts that deposit large amounts of fibrotic tissue and mediate pro-inflammatory effects. In recent years, much effort has been devoted to understanding the mechanisms through which HSCs are activated or inactivated. Using cell culture and/or different animal models, numerous studies have shown that autophagy is enhanced during the fibrogenic process and have provided specific evidence to pinpoint the fundamental role of autophagy in HSC activation. This effect involves - though may not be limited to - the autophagic degradation of lipid droplets. Several hepatoprotective agents have been shown to reverse the autophagic alteration present in LF, but clinical confirmation of these effects is pending. On the other hand, there is evidence that implicates autophagy in several anti-fibrotic mechanisms in HSCs that stimulate HSC cell cycle arrest and cell death or prevent the generation of pro-fibrotic mediators, including excess collagen accumulation. The objective of this review is to offer a comprehensive analysis of published evidence of the role of autophagy in HSC activation and to provide hints for possible therapeutic targets for the treatment and/or prevention of LF related to autophagy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Federico Lucantoni
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | | | - Aleksandra Gruevska
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | - Ángela B Moragrega
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| | - Ana Blas-García
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- FISABIO - Hospital Universitario Doctor Peset, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| |
Collapse
|
18
|
Xu F, Tautenhahn HM, Dirsch O, Dahmen U. Modulation of Autophagy: A Novel "Rejuvenation" Strategy for the Aging Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6611126. [PMID: 33628363 PMCID: PMC7889356 DOI: 10.1155/2021/6611126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
Abstract
Aging is a natural life process which leads to a gradual decline of essential physiological processes. For the liver, it leads to alterations in histomorphology (steatosis and fibrosis) and function (protein synthesis and energy generation) and affects central hepatocellular processes (autophagy, mitochondrial respiration, and hepatocyte proliferation). These alterations do not only impair the metabolic capacity of the liver but also represent important factors in the pathogenesis of malignant liver disease. Autophagy is a recycling process for eukaryotic cells to degrade dysfunctional intracellular components and to reuse the basic substances. It plays a crucial role in maintaining cell homeostasis and in resisting environmental stress. Emerging evidence shows that modulating autophagy seems to be effective in improving the age-related alterations of the liver. However, autophagy is a double-edged sword for the aged liver. Upregulating autophagy alleviates hepatic steatosis and ROS-induced cellular stress and promotes hepatocyte proliferation but may aggravate hepatic fibrosis. Therefore, a well-balanced autophagy modulation strategy might be suitable to alleviate age-related liver dysfunction. Conclusion. Modulation of autophagy is a promising strategy for "rejuvenation" of the aged liver. Detailed knowledge regarding the most devastating processes in the individual patient is needed to effectively counteract aging of the liver without causing obvious harm.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, Chemnitz 09111, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
19
|
Erfan OS, Sonpol HMA, Abd El-Kader M. Protective effect of rapamycin against acrylamide-induced hepatotoxicity: The associations between autophagy, apoptosis, and necroptosis. Anat Rec (Hoboken) 2021; 304:1984-1998. [PMID: 33480149 DOI: 10.1002/ar.24587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022]
Abstract
Acrylamide (ACRL) was demonstrated to induce hepatotoxicity and programmed cell death (PCD). Rapamycin (RAPA)-induced autophagy had been reported to limit the progression of hepatocellular injury in experimental models. This research was designed to study two death pathways involved in ACRL-induced hepatotoxicity and the modulating effect of RAPA on the resulting hepatic injury. Thirty-six adult male rats were divided into three groups: control group, ACRL-treated group (20 mg kg/day), and the last group co-treated with ACRL plus RAPA (0.5 mg kg/day). Drugs were administered for 21 days via oral gavage. Blood samples were collected to assess alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Livers were dissected; parts were used for detection of superoxide dismutase (SOD) and malondialdehyde (MDA) tissue levels. Other parts were processed for hematoxylin and eosin, Masson's trichrome staining, immunostaining for microtubule-associated proteins 1A/1B light chain 3B (LC3), ubiquitin-binding protein (p62), caspase-3, and receptor-interacting protein kinase 1 (RIPK1). ACRL induced a significant elevation in ALT, AST, MDA levels, and reduction in the SOD level. ACRL also induced hepatocellular injury, fibrosis, and defective autophagy indicated by elevation of LC3 and p62 and increased p62/LC3 ratio. Moreover, it increased the apoptotic (caspase-3) and necroptotic (RIPK1) markers expression. RAPA significantly reduced liver enzymes, oxidative stress, fibrosis, and improved liver histology. Moreover, RAPA decreased p62/LC3 ratio indicated enhanced autophagy, and significantly reduced caspase-3 and RIPK1 expression. In conclusion, RAPA maintained autophagic activity which may save the hepatocytes from PCD and enhance cell viability.
Collapse
Affiliation(s)
- Omnia S Erfan
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hany M A Sonpol
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Basic medical sciences department, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Marwa Abd El-Kader
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Almaça J, Caicedo A, Landsman L. Beta cell dysfunction in diabetes: the islet microenvironment as an unusual suspect. Diabetologia 2020; 63:2076-2085. [PMID: 32894318 PMCID: PMC7655222 DOI: 10.1007/s00125-020-05186-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Cells in different tissues, including endocrine cells in the pancreas, live in complex microenvironments that are rich in cellular and acellular components. Intricate interactions with their microenvironment dictate most cellular properties, such as their function, structure and size, and maintain tissue homeostasis. Pancreatic islets are populated by endocrine, vascular and immune cells that are immersed in the extracellular matrix. While the intrinsic properties of beta cells have been vastly investigated, our understanding of their interactions with their surroundings has only recently begun to unveil. Here, we review current research on the interplay between the islet cellular and acellular components, and the role these components play in beta cell physiology and pathophysiology. Although beta cell failure is a key pathomechanism in diabetes, its causes are far from being fully elucidated. We, thus, propose deleterious alterations of the islet niche as potential underlying mechanisms contributing to beta cell failure. In sum, this review emphasises that the function of the pancreatic islet depends on all of its components. Graphical abstract.
Collapse
Affiliation(s)
- Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th avenue, Miami, FL, 33136, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th avenue, Miami, FL, 33136, USA.
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
21
|
Zhang XW, Zhou JC, Peng D, Hua F, Li K, Yu JJ, Lv XX, Cui B, Liu SS, Yu JM, Wang F, Jin CC, Yang ZN, Zhao CX, Hou XY, Huang B, Hu ZW. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy 2020; 16:782-796. [PMID: 31286822 PMCID: PMC7144866 DOI: 10.1080/15548627.2019.1635383] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Impaired macroautophagy/autophagy is involved in the pathogenesis of hepatic fibrosis. However, how aberrant autophagy promotes fibrosis is far from understood. Here, we aimed to define a previously unrevealed pro-fibrotic mechanism for the stress protein TRIB3 (tribbles pseudokinase 3)-mediated autophagy dysfunction. Human fibrotic liver tissues were obtained from patients with cirrhosis who underwent an open surgical repair process. The functional implications of TRIB3 were evaluated in mouse models of hepatic fibrosis induced by bile duct ligation (BDL) or thioacetamide (TAA) injection. Human fibrotic liver tissues expressed higher levels of TRIB3 and selective autophagic receptor SQSTM1/p62 (sequestosome 1) than nonfibrotic tissues and the elevated expression of TRIB3 and SQSTM1 was positively correlated in the fibrotic tissues. Silencing Trib3 protected against experimentally induced hepatic fibrosis, accompanied by restored autophagy activity in fibrotic liver tissues. Furthermore, TRIB3 interacted with SQSTM1 and hindered its binding to MAP1LC3/LC3, which caused the accumulation of SQSTM1 aggregates and obstructed autophagic flux. The TRIB3-mediated autophagy impairment not only suppressed autophagic degradation of late endosomes but also promoted hepatocellular secretion of INHBA/Activin A-enriched exosomes which caused migration, proliferation and activation of hepatic stellate cells (HSCs), the effector cells of liver fibrosis. Disrupting the TRIB3-SQSTM1 interaction with a specific helical peptide exerted potent protective effects against hepatic fibrosis by restoring autophagic flux in hepatocytes and HSCs. Together, stress-elevated TRIB3 expression promotes hepatic fibrosis by interacting with SQSTM1 and interfering with its functions in liver-parenchymal cells and activating HSCs. Targeting this interaction is a promising strategy for treating fibroproliferative liver diseases.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; BDL: bile duct ligation; BECN1/Beclin 1: beclin 1, autophagy related; CHX: cycloheximide; CQ: chloroquine; Edu: 5-ethynyl-2-deoxyuridine; ESCRT: endosomal sorting complexes required for transport; HSC: hepatic stellate cell; ILV: intralumenal vesicle; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MVB: multivesicular body; PIK3C3: phosphatidylinositol 3-kinase, catalytic subunit type 3; PPI: protein-protein interaction; SQSTM1/p62: sequestosome 1; TAA: thioacetamide; TEM: transmission electron microscopy; TGFB1/TGFβ1: transforming growth factor, beta 1; TLR2: toll-like receptor 2; TRIB3: tribbles pseudokinase 3.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Ji-Chao Zhou
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Dian Peng
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jin-Mei Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Feng Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Cai-Cai Jin
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhao-Na Yang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Chen-Xi Zhao
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xue-Ying Hou
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Bo Huang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Liu XJ, Xie L, Du K, Liu C, Zhang NP, Gu CJ, Wang Y, Abdelmalek MF, Dong WY, Liu XP, Niu C, Yang C, Diehl AM, Wu J. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: Effects of DHA supplementation. Liver Int 2020; 40:830-843. [PMID: 31903720 PMCID: PMC9990138 DOI: 10.1111/liv.14370] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Treatment of non-alcoholic steatohepatitis (NASH) is challenging, because suppressing fibrotic progression has not been achieved consistently by drug candidates currently in clinical trials. The aim of this study was to investigate the molecular interplays underlying NASH-associated fibrosis in a mouse NASH model and human specimens. METHODS Mice were divided into 4 groups: Controls; NASH (high fat/Calorie diet plus high fructose and glucose in drinking water, HFCD-HF/G) for 16 weeks; HFCD-HF/G plus docosahexaenoic acid (DHA) for 16 or 8 weeks. RESULTS Along with NASH progression, fibrotic deposition was documented in HFCD-HF/G-fed mice. Liver succinate content was significantly increased along with decreased expression of succinate dehydrogenase-A (SDH-A) in these mice; whereas, GPR-91 receptor expression was much enhanced in histology compared to control mice, and co-localized histologically with hepatic stellate cells (HSCs). Succinate content was increased in fatty acid-overloaded primary hepatocytes with significant oxidant stress and lipotoxicity. Exposure to succinate led to up-regulation of GPR-91 receptor in primary and immortalized HSCs. In contrast, suppression of GPR-91 receptor expression abolished succinate stimulatory role in GPR-91 expression and extracellular matrix production in HSCs. All these changes were minimized or abrogated by DHA supplementation in vivo or in vitro. Moreover, GPR-91 receptor expression correlates with severity of fibrosis in human NASH biopsy specimens. CONCLUSION Succinate accumulation in steatotoic hepatocytes may result in HSC activation through GPR-91 receptor signalling in NASH progression, and the cross-talk between hepatocytes and HSC through GPR-91 signalling is most likely to be the molecular basis of fibrogenesis in NASH.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Xie
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Chang Liu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Ping Zhang
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen-Jian Gu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Wen-Yue Dong
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Science, Beijing, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Niu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biologic Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Department of Medical Microbiology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Geng N, Liu K, Lu J, Xu Y, Wang X, Wang R, Liu J, Liu Y, Han B. Autophagy of bovine mammary epithelial cell induced by intracellular Staphylococcus aureus. J Microbiol 2020; 58:320-329. [PMID: 32103442 DOI: 10.1007/s12275-020-9182-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/14/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Abstract
Bovine mastitis is a common disease in the dairy industry that causes great economic losses. As the primary pathogen of contagious mastitis, Staphylococcus aureus (S. aureus) can invade bovine mammary epithelial cells, thus evading immune defenses and resulting in persistent infection. Recently, autophagy has been considered an important mechanism for host cells to clear intracellular pathogens. In the current study, autophagy caused by S. aureus was detected, and the correlation between autophagy and intracellular S. aureus survival was assessed. First, a model of intracellular S. aureus infection was established. Then, the autophagy of MAC-T cells was evaluated by confocal microscopy and western blot. Moreover, the activation of the PI3K-Akt-mTOR and ERK1/2 signaling pathways was determined by western blot. Finally, the relationship between intracellular bacteria and autophagy was analyzed by using autophagy regulators (3-methyladenine [3-MA], rapamycin [Rapa] and chloroquine [CQ]). The results showed that S. aureus caused obvious induction of autophagosome formation, transformation of LC3I/II, and degradation of p62/SQSTM1 in MAC-T cells; furthermore, the PI3K-Akt-mTOR and ERK1/2 signaling pathways were activated. The number of intracellular S. aureus increased significantly with autophagy activation by rapamycin, whereas the number decreased when the autophagy flux was inhibited by chloroquine. Therefore, this study indicated that intracellular S. aureus can induce autophagy and utilize it to survive in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Kangping Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Jianwei Lu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Run Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
24
|
Ji Y, Chen S, Yang K, Xia C, Li L. Kaposiform hemangioendothelioma: current knowledge and future perspectives. Orphanet J Rare Dis 2020; 15:39. [PMID: 32014025 PMCID: PMC6998257 DOI: 10.1186/s13023-020-1320-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm with high morbidity and mortality. The initiating mechanism during the pathogenesis of KHE has yet to be discovered. The main pathological features of KHE are abnormal angiogenesis and lymphangiogenesis. KHEs are clinically heterogeneous and may develop into a life-threatening thrombocytopenia and consumptive coagulopathy, known as the Kasabach-Merritt phenomenon (KMP). The heterogeneity and the highly frequent occurrence of disease-related comorbidities make the management of KHE challenging. Currently, there are no medications approved by the FDA for the treatment of KHE. Multiple treatment regimens have been used with varying success, and new clinical trials are in progress. In severe patients, multiple agents with variable adjuvant therapies are given in sequence or in combination. Recent studies have demonstrated a satisfactory efficacy of sirolimus, an inhibitor of mammalian target of rapamycin, in the treatment of KHE. Novel targeted treatments based on a better understanding of the pathogenesis of KHE are needed to maximize patient outcomes and quality of life. This review summarizes the epidemiology, etiology, pathophysiology, clinical features, diagnosis and treatments of KHE. Recent new concepts and future perspectives for KHE will also be discussed.
Collapse
Affiliation(s)
- Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, China.
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li Li
- Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
25
|
Ling L, Li G, Wang G, Meng D, Li Z, Zhang C. Carvedilol improves liver cirrhosis in rats by inhibiting hepatic stellate cell activation, proliferation, invasion and collagen synthesis. Mol Med Rep 2019; 20:1605-1612. [PMID: 31257490 PMCID: PMC6625452 DOI: 10.3892/mmr.2019.10401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension (PHT) is one of the most severe consequences of liver cirrhosis. Carvedilol is a first-line pharmacological treatment of PHT. However, the antifibrogenic effects of carvedilol on liver cirrhosis and the intrinsic mechanisms underlying these effects have not been thoroughly investigated. The present study aimed to investigate the antifibrogenic effects of carvedilol on liver cirrhosis in vivo and in vitro. Liver cirrhosis was induced in rats by carbon tetrachloride (CCl4) administration for 9 weeks; carvedilol was administered simultaneously in the experimental group. Blood samples were collected for serum biochemistry. Liver tissues were used for fibrosis evaluation, histological examination, immunohistochemistry and western blot analysis. The human hepatic stellate cell (HSC) line LX-2 was used for in vitro studies. The effects of carvedilol on LX-2 cell proliferation and invasion were evaluated by Cell Counting Kit-8 assay and Transwell invasion assays, respectively. The effect of carvedilol on transforming growth factor β1 (TGFβ1)-induced collagen synthesis in LX-2 cells and the molecular mechanisms were examined by western blot analysis. The results demonstrated that carvedilol improved CCl4-induced structural distortion and fibrosis in the liver. Carvedilol inhibited HSC activation, proliferation and invasion. Carvedilol inhibited HSC collagen synthesis through the TGFβ1/SMAD pathway. In conclusion, carvedilol may alleviate liver cirrhosis in rats by inhibiting HSC activation, proliferation, invasion and collagen synthesis. Carvedilol may be a potential treatment of early-stage liver cirrhosis.
Collapse
Affiliation(s)
- Liping Ling
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guangqi Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256603, P.R. China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongxiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
26
|
Abstract
Autophagy is a self-eating catabolic pathway that contributes to liver homeostasis through its role in energy balance and in the quality control of the cytoplasm, by removing misfolded proteins, damaged organelles and lipid droplets. Autophagy not only regulates hepatocyte functions but also impacts on non-parenchymal cells, such as endothelial cells, macrophages and hepatic stellate cells. Deregulation of autophagy has been linked to many liver diseases and its modulation is now recognized as a potential new therapeutic strategy. Indeed, enhancing autophagy may prevent the progression of a number of liver diseases, including storage disorders (alpha-1 antitrypsin deficiency, Wilson's disease), acute liver injury, non-alcoholic steatohepatitis and chronic alcohol-related liver disease. Nevertheless, in some situations such as fibrosis, targeting specific liver cells must be considered, as autophagy displays opposing functions depending on the cell type. In addition, an optimal therapeutic time-window should be identified, since autophagy might be beneficial in the initial stages of disease, but detrimental at more advanced stages, as in the case of hepatocellular carcinoma. Finally, identifying biomarkers of autophagy and methods to monitor autophagic flux in vivo are important steps for the future development of personalized autophagy-targeting strategies. In this review, we provide an update on the regulatory role of autophagy in various aspects of liver pathophysiology, describing the different strategies to manipulate autophagy and discussing the potential to modulate autophagy as a therapeutic strategy in the context of liver diseases.
Collapse
|
27
|
Abstract
The evidence base concerning use of mammalian target of rapamycin (mTOR) inhibitor therapy after liver transplantation is evolving rapidly, clarifying their benefits and disadvantages in different clinical scenarios. The H2304 trial showed that starting everolimus at 1 month posttransplant, with reduced tacrolimus, achieves a sustained improvement in renal function versus standard tacrolimus-based therapy, with at least equivalent immunosuppressive efficacy. Randomized studies evaluating early discontinuation of calcineurin inhibitor (CNI) therapy after introduction of an mTOR inhibitor consistently demonstrated a substantial improvement in renal function versus standard CNI therapy. However, concomitant mycophenolic acid is advisable to avoid an increase in mild biopsy-proven acute rejection, and induction with an interleukin-2 receptor antagonist may also be helpful. High-quality robust data regarding prevention of posttransplant malignancies under mTOR inhibitors is lacking in liver transplantation, although there are some indications of benefit. In maintenance patients, robust data are limited regarding mTOR inhibitor initiation in response to deteriorating renal function or other indications but late conversion (>1 year) appears ineffective. Rates of mTOR inhibitor discontinuation due to adverse events are high, affecting at least a quarter of patients. In conclusion, the evidence base for use of mTOR inhibitors early posttransplant to support CNI reduction now convincingly demonstrates a renal advantage, but adequate adjunctive immunosuppression is essential to preserve efficacy.
Collapse
|
28
|
Ji Y, Yang K, Chen S, Peng S, Lu G, Liu X. Musculoskeletal complication in kaposiform hemangioendothelioma without Kasabach-Merritt phenomenon: clinical characteristics and management. Cancer Manag Res 2018; 10:3325-3331. [PMID: 30233248 PMCID: PMC6135070 DOI: 10.2147/cmar.s171223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Musculoskeletal complications have been associated with kaposiform hemangioendothelioma (KHE) and can lead to disability and reduced quality of life. We aimed to determine the clinical characteristics of musculoskeletal complication in patients with KHE without Kasabach-Merritt phenomenon (KMP) in order to identify features that may aid clinicians in KHE treatment. Patients and methods We conducted a cohort study of KHE without KMP associated with musculoskeletal complication between January 2006 and February 2017 at three tertiary medical centers in China. The study included 29 nonthrombocytopenic patients with KHE and musculoskeletal complication. Results The mean age at diagnosis of KHE was 4.5 years (range, 0.3-50.0 years). The mean follow-up was 4.1 years (range, 0.5-9.0 years). In most cases (72.4%), decreased range of motion (ROM) appeared within 2 years of KHE onset. Associated chronic pain was reported in 12 patients. Bone-joint changes were common in patients with decreased ROM (75.9%). All the patients received at least one medical therapy including corticosteroids, vincristine, propranolol, and sirolimus. Sirolimus demonstrated the highest efficacy rate, with 94.7% of patients showing improvements in ROM and chronic pain. Conclusion Musculoskeletal complication can occur early in the disease course of KHE without KMP. Although no uniformly effective treatment modality was found, sirolimus demonstrated the best response in patients with KHE with decreased ROM and chronic pain.
Collapse
Affiliation(s)
- Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China,
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China,
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China,
| | - Suhua Peng
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China,
| | - Guoyan Lu
- Department of Pediatrics, Pediatric Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xingtao Liu
- Department of Vascular and Interventional Radiology, Chengdu Women and Children's Central Hospital, Chengdu, China
| |
Collapse
|
29
|
Liu XJ, Duan NN, Liu C, Niu C, Liu XP, Wu J. Characterization of a murine nonalcoholic steatohepatitis model induced by high fat high calorie diet plus fructose and glucose in drinking water. J Transl Med 2018; 98:1184-1199. [PMID: 29959418 DOI: 10.1038/s41374-018-0074-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
There are varieties of murine models of nonalcoholic steatohepatitis (NASH) with different pathophysiologic characteristics. For preclinical assessment, a standardized model would allow comparisons of various pharmacotherapeutic candidates in efficacy, pharmacokinetics, pharmaco-metabolism, and adverse effects under a same system. The present study aims to characterize murine NASH models by comparing end-points of major abnormalities. NASH was induced by feeding high fructose/glucose in drinking water (HF/G), high-fat/calorie diet (HFCD), and in combination (HFCD-HF/G) in mice for 8 or 16 weeks. HF/G feeding caused a minimal fat accumulation and increase in free fatty acids (FFA). In contrast, HFCD-HF/G feeding resulted in a remarkable increase in body weight, subcutaneous and visceral adipose tissue, macrosteatosis with a nearly seven-fold increase in triglyceride and FFA content, accompanied with marked hepatocellular injury, inflammatory responses, fibrosis, and insulin resistance, and represented as typical NASH in histopathology, metabolic, and adipokine profiles in a progressive manner. Meanwhile, mice fed HFCD displayed significant steatosis, necroptosis, fibrosis, insulin resistance, metabolic, and adipokine profiles, and the extent is less than those fed HFCD-HF/G. Significant MCP-1, CCR-2, and NLRP-1/3 activation were found in mice fed HFCD and HFCD-HF/G for 16 weeks, whereas gene expression of CPT-1 and ACOX-1 was down-regulated in these two groups in comparison to the controls. Nuclear receptors, such as SREBP-1c, FXR, LXR-α, PPAR-α, and PPAR-γ, were strikingly elevated in the HFCD-HF/G group. In conclusion, feeding HFCD-HF/G resulted in a reliable NASH model in mice with remarkable necroptosis, steatosis, fibrosis, and insulin resistance as well as a disordered profile of lipid metabolism and adipokine, and HFCD caused significant NASH features in histopathology and metabolic profiles only at a late stage. Whereas HF/G feeding barely led to minimal fat accumulation, some changes at molecular levels and metabolic disturbance in mice.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Na-Na Duan
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Stomatological Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, 215005, China
| | - Chang Liu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Niu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
30
|
Eberhardt W, Nasrullah U, Pfeilschifter J. Activation of renal profibrotic TGFβ controlled signaling cascades by calcineurin and mTOR inhibitors. Cell Signal 2018; 52:1-11. [PMID: 30145216 DOI: 10.1016/j.cellsig.2018.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The calcineurin inhibitors (CNI) cyclosporine A (CsA) and tacrolimus represent potent immunosuppressive agents frequently used for solid organ transplantation and treatment of autoimmune disorders. Despite of their immense therapeutic benefits, residual fibrosis mainly in the kidney represents a common side effect of long-term therapy with CNI. Regardless of the immunosuppressive action, an increasing body of evidence implicates that a drug-induced increase in TGFβ and subsequent activation of TGFβ-initiated signaling pathways is closely associated with the development and progression of CNI-induced nephropathy. Mechanistically, an increase in reactive oxygen species (ROS) generation due to drug-induced changes in the intracellular redox homeostasis functions as an important trigger of the profibrotic signaling cascades activated under therapy with CNI. Although, inhibitors of the mechanistic target of rapamycin (mTOR) kinase have firmly been established as alternative compounds with a lower nephrotoxic potential, an activation of fibrogenic signaling cascades has been reported for these drugs as well. This review will comprehensively summarize recent advances in the understanding of profibrotic signaling events modulated by these widely used compounds with a specific focus put on mechanisms occurring independent of their respective immunosuppressive action. Herein, the impact of redox modulation, the activation of canonical TGFβ and non-Smad pathways and modulation of autophagy by both classes of immunosuppressive drugs will be highlighted and discussed in a broader perspective. The comprehensive knowledge of profibrotic signaling events specifically accompanying the immunomodulatory activity of these widely used drugs is needed for a reliable benefit-risk assessment under therapeutic regimens.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany.
| | - Usman Nasrullah
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Wu Y, Wang W, Peng XM, He Y, Xiong YX, Liang HF, Chu L, Zhang BX, Ding ZY, Chen XP. Rapamycin Upregulates Connective Tissue Growth Factor Expression in Hepatic Progenitor Cells Through TGF-β-Smad2 Dependent Signaling. Front Pharmacol 2018; 9:877. [PMID: 30135653 PMCID: PMC6092675 DOI: 10.3389/fphar.2018.00877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rapamycin (sirolimus) is a mTOR kinase inhibitor and is widely used as an immunosuppressive drug to prevent graft rejection in organ transplantation currently. However, some recent investigations have reported that it had profibrotic effect in the progression of organ fibrosis, and its precise role in the liver fibrosis is still poorly understood. Here we showed that rapamycin upregulated connective tissue growth factor (CTGF) expression at the transcriptional level in hepatic progenitor cells (HPCs). Using lentivirus-mediated small hairpin RNA (shRNA) we demonstrated that knockdown of mTOR, Raptor, or Rictor mimicked the effect of rapamycin treatment. Mechanistically, inhibition of mTOR activity with rapamycin resulted in a hyperactive PI3K-Akt pathway, whereas this activation inhibited the expression of CTGF in HPCs. Besides, rapamycin activated the TGF-β-Smad signaling, and TGF-β receptor type I (TGFβRI) serine/threonine kinase inhibitors completely blocked the effects of rapamycin on HPCs. Moreover, Smad2 was involved in the induction of CTGF through rapamycin-activated TGF-β-Smad signaling as knockdown completely blocked CTGF induction, while knockdown of Smad4 expression partially inhibited induction, whereas Smad3 knockdown had no effect. Rapamycin also induced ROS generation and latent TGF-β activation which contributed to TGF-β-Smad signaling. In conclusion, this study demonstrates that rapamycin upregulates CTGF in HPCs and suggests that rapamycin has potential fibrotic effect in liver.
Collapse
Affiliation(s)
- Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Mei Peng
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Jin Z, Chen S, Wu H, Wang J, Wang L, Gao W. Inhibition of autophagy after perforator flap surgery increases flap survival and angiogenesis. J Surg Res 2018; 231:83-93. [PMID: 30278973 DOI: 10.1016/j.jss.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 04/02/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The survival ratio of multiterritory perforator flap is variable. Therefore, surviving mechanisms are increasingly explored to identify novel therapeutics. The condition of the choke zone is essential for perforator flap survival. In this study, we investigated autophagy in the choke zone after flap surgery. MATERIALS AND METHODS The flap model involved a perforator flap with three territories that was located on the right dorsal side of a rat. A total of 36 rats were divided into six groups, including the control, 0 d postoperative (PO), 1, 3, 5, and 7 d PO groups. In addition, 72 rats were divided into three groups, including a control group, a 3-methyladenine (3-MA) group, and a rapamycin group. Skin tissue of rats was used for measuring autophagy proteins, vascular endothelial growth factor (VEGF) expression, and histological examination. On day 7 after surgery, the survival ratio of each flap was determined. RESULTS The expression of autophagy and VEGF in the second choke zone (choke II) was increased after flap surgery. Among the three groups, the survival ratio of flaps in the 3-MA group was the highest. Furthermore, the angiogenesis level in the 3-MA group in choke II was the highest among the three groups. CONCLUSIONS Autophagy was initiated by surgery in choke II, and VEGF expression in choke II was increased after flap surgery. Inhibiting autophagy after perforator flap surgery is beneficial for flap survival and for promoting angiogenesis in choke II.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jieke Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
33
|
Effects of the Mammalian Target of Rapamycin Inhibitor Everolimus on Hepatitis C Virus Replication In Vitro and In Vivo. Transplant Proc 2018; 49:1947-1955. [PMID: 28923653 DOI: 10.1016/j.transproceed.2017.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The influence of immunosuppressants on hepatitis C virus (HCV) re-infection after liver transplantation, particularly mammalian target of rapamycin inhibitors, remains unclear. The aim of our study was to analyze the influence of everolimus (EVR) on HCV replication activity in the context of underlying molecular mechanisms, with focus on the pro-myelocytic leukemia protein (PML). METHODS HCV viral load was recorded in 40 patients with post-transplant HCV re-infection before and 8 weeks after introduction of EVR. An HCV cell culture replicon system for genotype (GT) 1b, GT2b, and GT3a was used to compare the influence of EVR on HCV replication for the respective genotypes in vitro. Fluorescence-activated cell-sorting analysis was used to test for effects on cell proliferation. PML expression was silenced with the use of small hairpin RNA constructs, and PML expression was quantified by means of quantitative real-time polymerase chain reaction. RESULTS In patients with HCV, the viral load of GT1a and GT1b was hardly affected by EVR, whereas the viral load was reduced in patients with GT2a (P ≤ .0001) or GT3 infection (P ≤ .05). In vitro EVR impairs HCV replication activity of GT2a and GT3a up to 60% (P ≤ .0005), whereas in GT1b cells, HCV replication activity is increased by 50% (P ≤ .005). Replicon cell viability was not impaired. HCV replication activity is impaired in the absence of PML, which can be reversed by overexpression of PML isoforms. Furthermore, in the absence of PML, the effect of EVR on HCV replication activity is nearly abrogated. CONCLUSIONS The mammalian target of rapamycin inhibitor EVR influences HCV replication via PML. The herein presented results suggest a genotype-dependent benefit for an EVR-based immunosuppressive regimen in patients with GT2a or GT3 re-infection after liver transplantation.
Collapse
|
34
|
Yang M, Zhuang YY, Wang WW, Zhu HP, Zhang YJ, Zheng SL, Yang YR, Chen BC, Xia P, Zhang Y. Role of Sirolimus in renal tubular apoptosis in response to unilateral ureteral obstruction. Int J Med Sci 2018; 15:1433-1442. [PMID: 30443162 PMCID: PMC6216060 DOI: 10.7150/ijms.26954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
Renal tubule cell apoptosis plays a pivotal role in the progression of chronic renal diseases. The previous study indicates that Sirolimus is effective on unilateral ureteral obstruction (UUO)-induced renal fibrosis. However, the role of Sirolimus in renal tubular apoptosis induced by UUO has not yet been addressed. The aim of this study was to determine the role of Sirolimus in renal tubular apoptosis induced by UUO. Male Sprague-Dawley rats were divided into three groups, sham-operated rats, and after which unilateral ureteral obstruction (UUO) was performed: non-treated and sirolimus-treated (1mg/kg). After 4, 7 and 14 d, animals were sacrificed and blood, kidney tissue samples were collected for analyses. Histologic changes and interstitial collagen were determined microscopically following HE and Masson's trichrome staining. The expression of PCNA was investigated using immunohistochemistry and the expression of Bcl-2, Bax, caspase-9, and caspase-3 were investigated using Western blot in each group. Tubular apoptotic cell deaths were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Sirolimus administration resulted in a significant reduction in tubulointerstitial fibrosis scores. After UUO, there was an increase in tubular and interstitial apoptosis in untreated controls as compared to Sirolimus treatment rats (P<0.05). In addition, the expression of PCNA, Bcl-2, Bax, caspase-9, and caspase-3 in obstructed kidney was characterized by immunohistochemistry and Western blot analyses demonstrating that sirolimus treatment significantly reduced PCNA, Bax, caspase-9 and cleaved caspase-3 expression compared to those observed in controls (P<0.05), whereas, Bcl-2 in the obstructed kidney were decreased in untreated controls compared to Sirolimus treatment rats subjected to the same time course of obstruction (P<0.05). We demonstrated a marked renoprotective effect of sirolimus by inhibition of UUO-induced renal tubular apoptosis in vivo.
Collapse
Affiliation(s)
- Mei Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yang-Yang Zhuang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Wei-Wei Wang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Hai-Ping Zhu
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yan-Jie Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Sao-Ling Zheng
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yi-Rrong Yang
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Bi-Cheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325015, China
| | - Peng Xia
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| | - Yan Zhang
- Transplantation centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China 325015
| |
Collapse
|
35
|
Thiyagarajan V, Lee KW, Leong MK, Weng CF. Potential natural mTOR inhibitors screened by in silico approach and suppress hepatic stellate cells activation. J Biomol Struct Dyn 2017; 36:4220-4234. [DOI: 10.1080/07391102.2017.1411295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Varadharajan Thiyagarajan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Kuan-Wei Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Max K. Leong
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| |
Collapse
|
36
|
Inhibition of hemangioma growth using polymer–lipid hybrid nanoparticles for delivery of rapamycin. Biomed Pharmacother 2017; 95:875-884. [DOI: 10.1016/j.biopha.2017.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 11/27/2022] Open
|
37
|
Palmitic acid elicits hepatic stellate cell activation through inflammasomes and hedgehog signaling. Life Sci 2017; 176:42-53. [PMID: 28322865 DOI: 10.1016/j.lfs.2017.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
|
38
|
Activation of Insulin-PI3K/Akt-p70S6K Pathway in Hepatic Stellate Cells Contributes to Fibrosis in Nonalcoholic Steatohepatitis. Dig Dis Sci 2017; 62:968-978. [PMID: 28194671 DOI: 10.1007/s10620-017-4470-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Hyperinsulinemia and insulin resistance are hallmark features of nonalcoholic fatty liver disease and steatohepatitis (NASH). It remains unclear whether and how insulin contributes to the development of fibrosis in NASH. In this study, we explored insulin signaling in the regulation of hepatic stellate cell (HSC) activation and the progression of NASH-fibrosis. METHODS Phosphorylation of Akt and p70S6K were examined in primary HSC and in a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet for 24 weeks. HSC activation was analyzed for the changes in cell morphology, intracellular lipid droplets, expression of α-SMA and cell proliferation. The serum markers and histology for NASH-fibrosis were also characterized in animals. RESULTS Insulin enhanced the expression of smooth muscle actin-α in quiescent but not in activated HSC in culture. Insulin-mediated activation of the PI3K/Akt-p70S6K pathway was involved in the regulation of profibrogenic effects of insulin. Although insulin did not stimulate HSC proliferation directly, the insulin-PI3K/Akt-p70S6K pathway was necessary for serum-enhanced cell proliferation during initial HSC activation. In a rat model of NASH-fibrosis induced by high-fat and high-cholesterol diet, hyperinsulinemia is associated with the activation of p70S6K and enhanced fibrosis. CONCLUSION The insulin-PI3K/Akt-p70S6K pathway plays an important role in the early activation of HSC. The profibrogenic effect of insulin is dependent on the activation stage of HSC. Dysregulation of the insulin pathway likely correlates with the development of fibrosis in NASH, suggesting a potentially novel antifibrotic target of inhibiting insulin signaling in HSC.
Collapse
|
39
|
Abstract
BACKGROUND Keloid and hypertrophic scars represent an aberrant response to the wound healing process. These scars are characterized by dysregulated growth with excessive collagen formation, and can be cosmetically and functionally disruptive to patients. OBJECTIVE Objectives are to describe the pathophysiology of keloid and hypertrophic scar, and to compare differences with the normal wound healing process. The classification of keloids and hypertrophic scars are then discussed. Finally, various treatment options including prevention, conventional therapies, surgical therapies, and adjuvant therapies are described in detail. MATERIALS AND METHODS Literature review was performed identifying relevant publications pertaining to the pathophysiology, classification, and treatment of keloid and hypertrophic scars. RESULTS Though the pathophysiology of keloid and hypertrophic scars is not completely known, various cytokines have been implicated, including interleukin (IL)-6, IL-8, and IL-10, as well as various growth factors including transforming growth factor-beta and platelet-derived growth factor. Numerous treatments have been studied for keloid and hypertrophic scars,which include conventional therapies such as occlusive dressings, compression therapy, and steroids; surgical therapies such as excision and cryosurgery; and adjuvant and emerging therapies including radiation therapy, interferon, 5-fluorouracil, imiquimod, tacrolimus, sirolimus, bleomycin, doxorubicin, transforming growth factor-beta, epidermal growth factor, verapamil, retinoic acid, tamoxifen, botulinum toxin A, onion extract, silicone-based camouflage, hydrogel scaffold, and skin tension offloading device. CONCLUSION Keloid and hypertrophic scars remain a challenging condition, with potential cosmetic and functional consequences to patients. Several therapies exist which function through different mechanisms. Better understanding into the pathogenesis will allow for development of newer and more targeted therapies in the future.
Collapse
|
40
|
Zhang Y, Stefanovic B. mTORC1 phosphorylates LARP6 to stimulate type I collagen expression. Sci Rep 2017; 7:41173. [PMID: 28112218 PMCID: PMC5255556 DOI: 10.1038/srep41173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
Excessive deposition of type I collagen causes fibrotic diseases. Binding of La ribonucleoprotein domain family, member 6 (LARP6) to collagen mRNAs regulates their translation and is necessary for high type I collagen expression. Here we show that mTORC1 phosphorylates LARP6 on S348 and S409. The S348A/S409A mutant of LARP6 acts as a dominant negative protein in collagen biosynthesis, which retards secretion of type I collagen and causes excessive posttranslational modifications. Similar effects are seen using mTORC1 inhibitor rapamycin or by knocking down raptor. The S348A/S409A mutant weakly interacts with the accessory protein STRAP, needed for coordinated translation of collagen mRNAs. The interaction of wt LARP6 and STRAP is also attenuated by rapamycin and by raptor knockdown. Additionally, in the absence of S348/S409 phosphorylation LARP6 is sequestered in increasing amounts at the ER membrane. We postulate that phosphorylation of S348/S409 by mTORC1 stimulates the interaction of LARP6 and STRAP to coordinate translation of collagen mRNAs and to release LARP6 from the ER for new round of translation. These mechanisms contribute to high level of collagen expression in fibrosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
41
|
Sun K, Xu L, Jing Y, Han Z, Chen X, Cai C, Zhao P, Zhao X, Yang L, Wei L. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis. Cancer Lett 2016; 388:198-207. [PMID: 28011320 DOI: 10.1016/j.canlet.2016.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/17/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
As a cellular degradation mechanism, autophagy exerts crucial and complicated effects on HCC development. Liver non-parenchymal cells, including hepatic resident macrophage Kupffer cells, also play important roles in this process. However, most associated studies have focused on the influence of the autophagy level in hepatic cells and HCC cells, but not liver non-parenchymal cells. Based on our previous study, we confirmed that Atg5 silence in the liver during the preneoplastic stage facilitated liver fibrosis, inflammation and, ultimately, tumorigenesis. We further found that autophagy deficiency promotes the production of inflammatory and fibrogenic factors in macrophages. Moreover, Kupffer cell depletion rescued the tumor-promoting effect of autophagy deficiency during the preneoplastic stage. In autophagy-deficient macrophages, mitochondrial ROS mediated inflammation- and fibrosis-promoting effects by increasing IL1α/β production via enhancing NF-κB-associated pathways. Both blocking of mitochondrial ROS and blocking the IL1 receptor stopped the promotion of fibrosis, inflammation and tumorigenesis resulting from Atg5 knockdown during the preneoplastic stage. In conclusion, autophagy-deficient Kupffer cells promote liver fibrosis, inflammation and, finally, hepatocarcinogenesis during the preneoplastic stage by enhancing mitochondrial ROS- NF-κB-IL1α/β pathways.
Collapse
Affiliation(s)
- Kai Sun
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyun Xu
- Department of Pediatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaojing Chen
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenlei Cai
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peipei Zhao
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Zhao
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
42
|
Agarwal S, Cholok D, Loder S, Li J, Breuler C, Chung MT, Sung HH, Ranganathan K, Habbouche J, Drake J, Peterson J, Priest C, Li S, Mishina Y, Levi B. mTOR inhibition and BMP signaling act synergistically to reduce muscle fibrosis and improve myofiber regeneration. JCI Insight 2016; 1:e89805. [PMID: 27942591 DOI: 10.1172/jci.insight.89805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Muscle trauma is highly morbid due to intramuscular scarring, or fibrosis, and muscle atrophy. Studies have shown that bone morphogenetic proteins (BMPs) reduce muscle atrophy. However, increased BMP signaling at muscle injury sites causes heterotopic ossification, as seen in patients with fibrodysplasia ossificans progressiva (FOP), or patients with surgically placed BMP implants for bone healing. We use a genetic mouse model of hyperactive BMP signaling to show the development of intramuscular fibrosis surrounding areas of ectopic bone following muscle injury. Rapamycin, which we have previously shown to eliminate ectopic ossification in this model, also eliminates fibrosis without reducing osteogenic differentiation, suggesting clinical value for patients with FOP and with BMP implants. Finally, we use reporter mice to show that BMP signaling is positively associated with myofiber cross-sectional area. These findings underscore an approach in which 2 therapeutics (rapamycin and BMP ligand) can offset each other, leading to an improved outcome.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - David Cholok
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Shawn Loder
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - John Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christopher Breuler
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michael T Chung
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Hsiao Hsin Sung
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Kavitha Ranganathan
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Joe Habbouche
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - James Drake
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Joshua Peterson
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Caitlin Priest
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Shuli Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Yuji Mishina
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Goyal A, Linskey KR, Kay J, Duncan LM, Nazarian RM. Differential Expression of Hedgehog and Snail in Cutaneous Fibrosing Disorders: Implications for Targeted Inhibition. Am J Clin Pathol 2016; 146:709-717. [PMID: 28077400 DOI: 10.1093/ajcp/aqw192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To examine Hedgehog signaling in cutaneous fibrosing disorders for which effective approved therapies are lacking, expand our knowledge of pathophysiology, and explore the rationale for targeted inhibition. METHODS Stain intensity and percentage of cells staining for Sonic hedgehog (Shh), Indian hedgehog (Ihh), Patched (Ptch), glycogen synthase kinase 3 β (GSK3-β), β-catenin, and Snail were evaluated in human skin biopsy specimens of keloid, hypertrophic scar (Hscar), scleroderma, nephrogenic systemic fibrosis (NSF), scar, and normal skin using a tissue microarray. RESULTS Ihh, but not Shh, was detected in a significantly larger proportion of cells for all case types. Ptch, GSK3-β, and β-catenin showed a gradient of expression: highest in NSF and keloid; moderate in normal skin, scar, and Hscar; and lowest in scleroderma. Snail expression was binary: low in normal skin but high in all fibrosing conditions studied. CONCLUSIONS Differential overexpression of Hedgehog and Snail in cutaneous fibrosing disorders demonstrates a role for targeted inhibition. Ptch, GSK3-β, and β-catenin can help differentiate scleroderma from NSF in histologically subtle cases. Differences in expression between keloid and hypertrophic scar support the concept that they are pathophysiologically distinct disorders. Our findings implicate Snail as a target for the prevention of fibrogenesis or fibrosis progression and may offer a means to assess response to therapy.
Collapse
Affiliation(s)
- Amrita Goyal
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Katy R Linskey
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester
| | - Lyn M Duncan
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rosalynn M Nazarian
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
44
|
Li F, Yan H, Wang J, Li C, Wu J, Wu S, Rao S, Gao X, Jin Q. Non-invasively differentiating extent of liver fibrosis by visualizing hepatic integrin αvβ3 expression with an MRI modality in mice. Biomaterials 2016; 102:162-74. [DOI: 10.1016/j.biomaterials.2016.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
|
45
|
Granato M, Zompetta C, Vescarelli E, Rizzello C, Cardi A, Valia S, Antonelli G, Marchese C, Torrisi MR, Faggioni A, Cirone M. HCV derived from sera of HCV-infected patients induces pro-fibrotic effects in human primary fibroblasts by activating GLI2. Sci Rep 2016; 6:30649. [PMID: 27476557 PMCID: PMC4967919 DOI: 10.1038/srep30649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver fibrosis, especially in developing countries. The process is characterized by the excess accumulation of ECM that may lead, over time, to hepatic cirrhosis, liver failure and also to hepatocarcinoma. The direct role of HCV in promoting fibroblasts trans-differentiation into myofibroblasts, the major fibrogenic cells, has not been fully clarified. In this study, we found that HCV derived from HCV-infected patients infected and directly induced the trans-differentiation of human primary fibroblasts into myofibroblasts, promoting fibrogenesis. This effect correlated with the activation of GLI2, one of the targets of Hedgehog signaling pathway previously reported to be involved in myofibroblast generation. Moreover, GLI2 activation by HCV correlated with a reduction of autophagy in fibroblasts, that may further promoted fibrosis. GLI2 inhibition by Gant 61 counteracted the pro-fibrotic effects and autophagy inhibition mediated by HCV, suggesting that targeting HH/GLI2 pathway might represent a promising strategy to reduce the HCV-induced fibrosis.
Collapse
Affiliation(s)
- M Granato
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - C Zompetta
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - E Vescarelli
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - C Rizzello
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - A Cardi
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - S Valia
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - G Antonelli
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - C Marchese
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - M R Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dept. Clinical and Molecular Medicine, Sapienza University of Rome, Italy.,Azienda Ospedaliera Sant' Andrea, Rome, Italy
| | - A Faggioni
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - M Cirone
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| |
Collapse
|
46
|
Saeedi Saravi SS, Ghazi-Khansari M, Ejtemaei Mehr S, Nobakht M, Mousavi SE, Dehpour AR. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy. World J Gastroenterol 2016; 22:4685-94. [PMID: 27217700 PMCID: PMC4870075 DOI: 10.3748/wjg.v22.i19.4685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/27/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition.
METHODS: Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein.
RESULTS: Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment.
CONCLUSION: In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-mTOR expression and myocardial localization in cirrhotic rats.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Mahmoud Ghazi-Khansari
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Shahram Ejtemaei Mehr
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Maliheh Nobakht
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Seyyedeh Elaheh Mousavi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Ahmad Reza Dehpour
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| |
Collapse
|
47
|
Xiang S, Li M, Xie X, Xie Z, Zhou Q, Tian Y, Lin W, Zhang X, Jiang H, Shou Z, Chen J. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases. FEBS J 2016; 283:2309-25. [PMID: 27093550 DOI: 10.1111/febs.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Rapamycin has been previously shown to inhibit EMT of PMCs and prevent peritoneal fibrosis. In this study, we investigated the undefined molecular mechanisms by which rapamycin inhibits EMT of PMCs. To define the protective effect of rapamycin, we initially used a rat PD model which was daily infused with 20 mL of 4.25% high glucose (HG) dialysis solution for 6 weeks to induce fibrosis. The HG rats showed decreased ultrafiltration volume and obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1. Rapamycin significantly ameliorated those pathological changes. Next, we treated rat PMCs with HG to induce EMT and/or rapamycin for indicated time. Rapamycin significantly inhibited HG-induced EMT, which manifests as increased expression of α-SMA, fibronectin, and collagen I, decreased expression of E-cadherin, and increased mobility. HG increased the phosphorylation of PI3K, Akt, and mTOR. Importantly, rapamycin inhibits the RhoA, Rac1, and Cdc42 activated by HG. Moreover, rapamycin repaired the pattern of F-actin distribution induced by HG, reducing the formation of stress fiber, focal adhesion, lamellipodia, and filopodia. Thus, rapamycin shows an obvious protective effect on HG-induced EMT, by inhibiting the activation of Rho GTPases (RhoA, Rac1, and Cdc42).
Collapse
Affiliation(s)
- Shilong Xiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Li
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhoutao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshi Tian
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangfei Shou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Nephrology department, Zhejiang University International Hospital, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) has gained importance in recent decades due to drastic changes in diet, especially in Western countries. NAFLD occurs as a spectrum from simple hepatic steatosis, steatohepatitis to cirrhosis, and even hepatocellular carcinoma. Although the molecular mechanisms underlying the development of NAFLD have been intensively investigated, many issues remain to be resolved. Autophagy is a cell survival mechanism for disposing of excess or defective organelles, and has become a hot spot for research. Recent studies have revealed that autophagy is linked to the development of NAFLD and regulation of autophagy has therapeutic potential. Autophagy reduces intracellular lipid droplets by enclosing them and fusing with lysosomes for degradation. Furthermore, autophagy is involved in attenuating inflammation and liver injury. However, autophagy is regarded as a double-edged sword, as it may also affect adipogenesis and adipocyte differentiation. Moreover, it is unclear as to whether autophagy protects the body from injury or causes diseases and even death, and the association between autophagy and NAFLD remains controversial. This review is intended to discuss, comment, and outline the progress made in this field and establish the possible molecular mechanism involved.
Collapse
Affiliation(s)
- Yuqing Mao
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fujun Yu
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jianbo Wang
- Department of Gastroenterology and Hepatology, The Central Hospital of Lishui City, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology and Hepatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Fan
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Huang SL, Fu DL, Li HC, Zhang P, Chong T. The effect of rapamycin on TGFβ1 and MMP1 expression in a rabbit model of urethral stricture. Int Urol Nephrol 2016; 48:717-23. [PMID: 26837772 DOI: 10.1007/s11255-016-1227-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE To investigate the effect of rapamycin on TGFβ1 and MMP1 expression in a rabbit model of urethral stricture. METHODS Twenty-four adult New Zealand male rabbits underwent an electrocoagulation of the bulbar urethra with a 13Fr pediatric resectoscope. Then rabbits were randomly divided into three groups: (1) normal control group: normal saline (NS), (2) the vehicle control group: dimethyl sulfoxide (DMSO), and (3) the treatment group: effective-dose rapamycin in DMSO (Ra), with 12, 6, and 6 rabbits in each group, respectively. Drugs were given by urethral irrigation daily for 4 weeks. Urethral tissue was harvested for histological and molecular analyses. TGFβ1 and MMP1 expression levels were evaluated by real-time quantitative PCR and immunohistochemistry. RESULTS Ten, six, and six rabbits were evaluated finally in Ra, DMSO, and NS group, respectively. Histological examination revealed the distribution of fibrosis and the degree of collagen deposition in the Ra group were smaller and slighter than the two control groups. Collagen content was significantly less in the Ra group than in the DMSO group (P < 0.001) and the NS group (P < 0.001). qRT-PCR analysis showed a higher expression of MMP1 mRNA in the Ra group than in the DMSO group (P < 0.001) and the NS group (P < 0.001). Immunohistochemistry showed the protein levels of MMP1 in the Ra group were significantly increased when compared with the DMSO group (P < 0.01) and the NS group (P < 0.01). On the other hand, no statistical difference could be found between every two groups in both mRNA and protein levels of TGFβ1. CONCLUSIONS Rapamycin enhances the expression of MMP1 in a rabbit model of urethral stricture, but has no direct effect on the expression of TGFβ1.
Collapse
Affiliation(s)
- S L Huang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, 710004, Shaanxi Province, People's Republic of China
| | - D L Fu
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, 710004, Shaanxi Province, People's Republic of China
| | - H C Li
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, 710004, Shaanxi Province, People's Republic of China
| | - P Zhang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, 710004, Shaanxi Province, People's Republic of China
| | - T Chong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, 710004, Shaanxi Province, People's Republic of China.
| |
Collapse
|
50
|
Abstract
The importance of non-alcoholic fatty liver disease (NAFLD) has increased among human liver diseases with the change of diet structure in recent decades worldwide. NAFLD occurs as a spectrum from simple hepatic steatosis, steatohepatitis to cirrhosis, and even hepatocellular carcinoma. Although the molecular mechanisms of NAFLD have been intensively investigated, effective therapeutic methods are still lacking. Autophagy is a cell survival mechanism for self-digesting excess or defective organelles, which are used for materials and energy recycling. Recent studies have revealed that autophagy is closely linked to NAFLD. Autophagy reduces intracellular lipid droplets by enclosing them and fusing with lysosomes for degradation. Furthermore, autophagy is involved in attenuating inflammation and fibrosis, even hepatoma. However, autophagy is regarded as a double-edged sword, and the relationship between autophagy and NAFLD is controversial.
Collapse
|