1
|
Ringler E, Dellefont K, Peignier M, Canoine V. Water-borne testosterone levels predict exploratory tendency in male poison frogs. Gen Comp Endocrinol 2024; 346:114416. [PMID: 38000762 DOI: 10.1016/j.ygcen.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Hormones play a fundamental role in mediating social behaviors of animals. However, it is less well understood to what extent behavioral variation between individuals can be attributed to variation in underlying hormonal profiles. The goal of the present study was to infer if individual androgen levels, and/or the modulation thereof, can explain among-individual variation in aggressiveness, boldness and exploration. We used as a model the dart-poison frog Allobates femoralis and took repeated non-invasive water-borne hormonal samples of individual males before (baseline) and after (experimental) a series of behavioral tests for assessing aggression, boldness, and exploratory tendency. Our results show that androgen levels in A. femoralis are quite stable across the reproductive season. Repeatability in wbT baseline levels was high, while time of day, age of the frog, and trial order did not show any significant impact on measured wbT levels. In general, experimental wbT levels after behavioral tests were lower compared to the respective baseline levels. However, we identified two different patterns with regard to androgen modulation in response to behavioral testing: individuals with low baseline wbT tended to have increased wbT levels after the behavioral testing, while individuals with comparatively high baseline wbT levels rather showed a decrease in hormonal levels after testing. Our results also suggest that baseline wbT levels are linked to the personality trait exploration, and that androgen modulation is linked to boldness in A. femoralis males. These results show that differences in hormonal profiles and/or hormonal modulation in response to social challenges can indeed explain among-individual differences in behavioral traits.
Collapse
Affiliation(s)
- Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria.
| | - Katharina Dellefont
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Virginie Canoine
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Sinclair ECC, Martin PR, Bonier F. Among-species variation in hormone concentrations is associated with urban tolerance in birds. Proc Biol Sci 2022; 289:20221600. [PMID: 36448281 PMCID: PMC9709560 DOI: 10.1098/rspb.2022.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
As cities expand across the globe, understanding factors that underlie variation in urban tolerance is vital for predicting changes in patterns of biodiversity. Endocrine traits, like circulating hormone concentrations and regulation of endocrine responses, might contribute to variation in species' ability to cope with urban challenges. For example, variation in glucocorticoid and androgen concentrations has been linked to life-history and behavioural traits that are associated with urban tolerance. However, we lack an understanding of the degree to which evolved differences in endocrine traits predict variation in urban tolerance across species. We analysed 1391 estimates of circulating baseline corticosterone, stress-induced corticosterone, and testosterone concentrations paired with citizen-science-derived urban occurrence scores in a broad comparative analysis of endocrine phenotypes across 71 bird species that differ in their occurrence in urban habitats. Our results reveal context-dependent links between baseline corticosterone and urban tolerance, as well as testosterone and urban tolerance. Stress-induced corticosterone was not related to urban tolerance. These findings suggest that some endocrine phenotypes contribute to a species' tolerance of urban habitats, but also indicate that other aspects of the endocrine phenotype, such as the ability to appropriately attenuate responses to urban challenges, might be important for success in cities.
Collapse
Affiliation(s)
- Emma C. C. Sinclair
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Paul R. Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
3
|
Prabakar G, Gopi M, Kolluri G, Rokade JJ, Pavulraj S, Pearlin BV, Sudamrao Khillare G, Madhupriya V, Singh Tyagi J, Mohan J. Seasonal variations on semen quality attributes in turkey and egg type chicken male breeders. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1547-1560. [PMID: 35567622 DOI: 10.1007/s00484-022-02299-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
A biological experiment was carried out in twenty-four adult healthy breeder males each in turkey (Beltsville small white) and egg type chicken (White Leghorn Babcock) in order to assess the seasonal influence on semen production and quality. The birds were maintained in individual cages under uniform husbandry conditions throughout the year. The birds were fed with breeder ration and water ad libitum was offered with a constant photoperiod of 14 h/day. Physical and biochemical characteristics of semen, serum hormones (testosterone and thyroxine), and antioxidant activity (catalase and lipid peroxidation) were evaluated throughout the year (January-December). Based on the THI calculations, the observations were classified under three different seasons, namely, winter (November-February), spring (March, April, and October), and summer (May-September). Semen physical parameters, sperm concentration, motility, live sperm percentage, and sperm plasma membrane integrity were superior during the winter season. In seminal plasma, biochemical parameters (phosphorus, ALT, ALP, AST, and uric acid) had a significant (P < 0.05) difference between seasons. There was a significant difference (P < 0.05) among serum hormones (testosterone and thyroxine) that were higher during the winter season. Significant variation was observed in catalase and lipid peroxidation antioxidant enzyme activities (seminal and blood plasma) in winter than in the other two seasons. Both the turkey and egg type chicken breeders exhibited superior seminal characteristics, sex hormone profile, and antioxidant enzyme activity during winter seasons.
Collapse
Affiliation(s)
- Govinthasamy Prabakar
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
- Department of Livestock Farm Complex, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Marappan Gopi
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India.
- Division of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.
| | - Gautham Kolluri
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Jaydip Jaywant Rokade
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Selvaraj Pavulraj
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, USA
| | - Beulah V Pearlin
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Gautham Sudamrao Khillare
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Velusamy Madhupriya
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Jagbir Singh Tyagi
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| | - Jag Mohan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Bareilly, India
| |
Collapse
|
4
|
Valdez DJ. An updated look at the mating system, parental care and androgen seasonal variations in ratites. Gen Comp Endocrinol 2022; 323-324:114034. [PMID: 35367461 DOI: 10.1016/j.ygcen.2022.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Androgens modulate multiple key aspects of male reproduction, from morphology to mating behavior. Across animals the seasonal patterns of androgens are tightly linked to many of the species' life-history traits and their evolution. One popular framework to address this issue has been the Challenge Hypothesis, which proposed a testosterone-mediated trade-off between mating and parental care in males. Given the lack of empirical support, especially in birds, this hypothesis has been recently revisited (Challenge Hypothesis 2.0), integrating aspects such as male-female interactions and the diversity of reproductive systems in birds. Ratites constitute the most basal avian group (Palaeognathae: ratites together with Tinamiformes) and have certain characteristics that make them unique. They are flightless and generally have promiscuous mating systems with communal nests and male-only parental care (nest building, incubation and chick rearing). Furthermore, male testosterone concentrations remain high during the entire parental care period. Here we review the reproductive biology of ratites, integrating information on seasonal variations in parental care, social interactions and androgen levels across the group, in light of the Challenge Hypotheses and the Challenge Hypothesis 2.0 (there are no seasonal hormonal data for Tinamiformes, therefore they are not included in this review). We also discuss the constraints that could explain the lack of experimental approaches in behavioral endocrinology across ratites. I hope this review will motivate further research on this basal group of birds and further our understanding of the evolution of the mechanisms in the endocrine system that underly reproductive behavior across birds.
Collapse
Affiliation(s)
- Diego J Valdez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada. Rondeau 798, CP X5000AVP, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina.
| |
Collapse
|
5
|
Petric R, Kalcounis-Rueppell MC, Marler CA. Testosterone pulses paired with a location induce a place preference to the nest of a monogamous mouse under field conditions. eLife 2022; 11:65820. [PMID: 35352677 PMCID: PMC9023057 DOI: 10.7554/elife.65820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Changing social environments such as the birth of young or aggressive encounters present a need to adjust behavior. Previous research examined how long-term changes in steroid hormones mediate these adjustments. We tested the novel concept that the rewarding effects of transient testosterone pulses (T-pulses) in males after social encounters alters their spatial distribution on a territory. In free-living monogamous California mice (Peromyscus californicus), males administered three T-injections at the nest spent more time at the nest than males treated with placebo injections. This mimics T-induced place preferences in the laboratory. Female mates of T-treated males spent less time at the nest but the pair produced more vocalizations and call types than controls. Traditionally, transient T-changes were thought to have transient behavioral effects. Our work demonstrates that in the wild, when T-pulses occur in a salient context such as a territory, the behavioral effects last days after T-levels return to baseline.
Collapse
Affiliation(s)
- Radmila Petric
- Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | | | | |
Collapse
|
6
|
Goretskaia MY, Beme IR. Influence of Testosterone on Different Aspects of Bird Behavior and Physiology. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021080094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Lipshutz SE, Rosvall KA. Nesting strategy shapes territorial aggression but not testosterone: A comparative approach in female and male birds. Horm Behav 2021; 133:104995. [PMID: 34000663 DOI: 10.1016/j.yhbeh.2021.104995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Our understanding of the proximate and ultimate mechanisms shaping competitive reproductive phenotypes primarily stems from research on male-male competition for mates, even though competition is widespread in both sexes. We evaluate the hypothesis that the restricted nature of a resource required for reproduction, i.e. nest site, is a key variable driving territorial competition and testosterone secretion in female and male birds. Obligate secondary cavity-nesting has evolved repeatedly across avian lineages, providing a useful comparative context to explore how competition over limited nest cavities shapes aggression and its underlying mechanisms across species. Although evidence from one or another cavity-nesting species suggests that territorial aggression is adaptive in both females and males, this has not yet been tested in a comparative framework. We predicted that cavity-nesting generates more robust territorial aggression, in comparison to close relatives with less restrictive nesting strategies. Our focal species were two obligate secondary cavity-nesting species and two related species with more flexible nesting strategies in the same avian family: tree swallow (Tachycineta bicolor) vs. barn swallow (Hirundo rustica); Eastern bluebird (Sialia sialis) vs. American robin (Turdus migratorius). We assayed conspecific aggression using simulated territorial intrusion and found that cavity-nesting species displayed greater territorial aggression than their close relatives. This pattern held for both females and males. Because territorial aggression is often associated with elevated testosterone, we also hypothesized that cavity-nesting species would exhibit higher testosterone levels in circulation. However, cavity-nesting species did not have higher testosterone in circulation for either sex, despite some correlative evidence that testosterone is associated with higher rates of physical attack in female tree swallows. Our focus on a context that is relevant to both sexes - competition over essential breeding resources - provides a useful framework for co-consideration of proximate and ultimate drivers of reproductive competition in females and males.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Félix AS, Roleira A, Oliveira RF. Rising to the challenge? Inter-individual variation of the androgen response to social interactions in cichlid fish. Horm Behav 2020; 124:104755. [PMID: 32380085 DOI: 10.1016/j.yhbeh.2020.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022]
Abstract
The Challenge Hypothesis (Wingfield et al. Am. Nat. 136, 829-846) aims to explain the complex relationship between androgens and social interactions. Despite its well acceptance in the behavioral endocrinology literature, several studies have failed to found an androgen response to staged social interactions. Possible reasons for these inconsistencies are the use of single sampling points that may miss the response peak, and the occurrence of inter-individual variability in the androgen response to social interactions. In this study we addressed these two possible confounding factors by characterizing the temporal pattern of the androgen response to social interactions in the African cichlid, Oreochromis mossambicus, and relating it to inter-individual variation in terms of the individual scope for androgen response (i.e. the difference between baseline and maximum physiological levels for each fish) and behavioral types. We found that the androgen response to territorial intrusions varies between individuals and is related to their scope for response. Individuals that have a lower scope for androgen response did not increase androgens after a territorial intrusion but were more aggressive and exploratory. In contrast males with a higher scope for response had fewer aggressive and exploratory behaviors and exhibited two peaks of KT, an early response 2-15 min after the interaction and a late response at 60-90 min post-interaction. Given that the pharmacological challenge of the Hypothalamic-Pituitary-Gonad axis only elicits the late response, we suggest that these two peaks may be regulated by different physiological mechanisms, with the early response being mediated by direct brain-gonad neural pathways. In summary, we suggest that determining the temporal pattern of the androgen response to social interactions and considering inter-individual variation may be the key to understanding the contradictory results of the Challenge Hypothesis.
Collapse
Affiliation(s)
- Ana S Félix
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - António Roleira
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| | - Rui F Oliveira
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal.
| |
Collapse
|
9
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
10
|
Moore IT, Hernandez J, Goymann W. Who rises to the challenge? Testing the Challenge Hypothesis in fish, amphibians, reptiles, and mammals. Horm Behav 2020; 123:104537. [PMID: 31181193 DOI: 10.1016/j.yhbeh.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/20/2023]
Abstract
According to the Challenge Hypothesis, social interactions, particularly among males, have a strong influence on circulating androgen levels. Specifically, males should respond to social challenges from conspecific males with a rapid increase in plasma androgen levels which support and stimulate further aggression. This basic tenet of the Challenge Hypothesis, an androgen increase in response to a social challenge from another male, has been tested in all vertebrate classes. While early studies generally supported the Challenge Hypothesis, more recent work has noted numerous exceptions, particularly in birds. Here, we conduct a meta-analysis of studies in fish, amphibians, non-avian reptiles, and mammals that test the prediction that circulating androgen levels of males should increase in response to an experimental challenge from another male. We found that teleost fish often increase androgens during such challenges, but other vertebrate groups show more mixed results. Why should fish be different from the other taxa? In fish with paternal care of young, the potential conflict between mating, being aggressive towards other males, and taking care of offspring is alleviated, because females typically choose males based on their defense of an already existing nest. Hence, rather than regulating the trade-off between mating, aggression, and parenting, androgens may have been co-opted to promote all three behaviors. For other taxa, increasing androgen levels only makes sense when the increase directly enhances reproductive success. Thus, the increase in androgen levels is a response to mating opportunities rather than a response to challenge from another male. To further our understanding of the role of a change in androgen levels in mediating behavioral decision-making between mating, aggression, and parenting, we need studies that address the behavioral consequences of an increase in androgens after male-male encounters and studies that test the androgen responsiveness of species that differ in the degree of paternal care.
Collapse
Affiliation(s)
- Ignacio T Moore
- 2119 Derring Hall, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA.
| | - Jessica Hernandez
- 2119 Derring Hall, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA
| | - Wolfgang Goymann
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Str. 6a, D-82319 Seewiesen, Germany
| |
Collapse
|
11
|
Rosvall KA, Bentz AB, George EM. How research on female vertebrates contributes to an expanded challenge hypothesis. Horm Behav 2020; 123:104565. [PMID: 31419407 PMCID: PMC7061077 DOI: 10.1016/j.yhbeh.2019.104565] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
The bi-directional links between hormones and behavior have been a rich area of research for decades. Theory on the evolution of testosterone (T) was greatly advanced by the challenge hypothesis, which presented a framework for understanding interspecific, seasonal, and social variation in T levels in males, and how they are shaped by the competing demands of parental care and male-male competition. Female competition is also widespread in nature, although it is less clear whether or how the challenge hypothesis applies to females. Here, we evaluate this issue in four parts: (1) We summarize and update prior analyses of seasonal plasticity and interspecific variation in T in females. (2) We evaluate experimental links between T and female aggression on shorter timescales, asking how T manipulations affect aggression and conversely, how social manipulations affect T levels in female mammals, birds, lizards, and fishes. (3) We examine alternative mechanisms that may link aggression to the social environment independently of T levels in circulation. (4) We present a case study, including new data analyses, in an aggressive female bird (the tree swallow, Tachycineta bicolor) to explore how variation in tissue-level processing of T may bridge the gap between circulating T and variation in behavior that is visible to natural selection. We close by connecting these multivariate levels of sex steroid signaling systems alongside different temporal scales (social, seasonal, and evolutionary) to generate broadly applicable insights into how animals respond to their social environment, regardless of whether they are male or female.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Wingfield JC, Ramenofsky M, Hegner RE, Ball GF. Whither the challenge hypothesis? Horm Behav 2020; 123:104588. [PMID: 31525343 DOI: 10.1016/j.yhbeh.2019.104588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Almost fifty years ago the advent of assay methods to measure circulating levels of hormones revolutionized endocrinology in relation to investigations of free-living and captive animals. This new field "environmental endocrinology" revealed that endocrine profiles in animals in their natural habitat were not only different from captive animals, but often deviated from predictions. It quickly became apparent that the organization and analysis of data from the field should be sorted by life history stages such as for reproductive processes, migration, molt etc. and spaced in time according to natural duration of those processes. Presentation of data by calendar date alone gives much simpler, even misleading, patterns. Stage-organized analyses revealed species-specific patterns of hormone secretion and dramatic inter-individual differences. The "Challenge Hypothesis" sparked exploration of these results, which diverged from expectations of hormone-behavior interactions. The hypothesis led to specific predictions about how the hypothalamo-pituitary-gonad axis, and particularly circulating patterns of testosterone, might respond to social challenges such as simulated territorial intrusions. Initially, a group of studies on free-living and captive birds played a key role in the formulation of the hypothesis. Over the decades since, the effects of social challenge and environmental context on hormonal responses have been tested in all vertebrate taxa, including humans, as well as in insects. Although it is now clear that the Challenge Hypothesis in its original form is simplistic, field and laboratory tests of the hypothesis have led to other concepts that have become seminal to the development of environmental endocrinology as a field. In this special issue these developments are addressed and examples from many different taxa enrich the emerging concepts, paving the way for investigations using recent technologies for genetic and transcriptome analyses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA.
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA
| | - Robert E Hegner
- ICF Incorporated, 27 Tanglewood Road, Amherst, MA 01002, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Tibbetts EA, Laub EC, Mathiron AGE, Goubault M. The challenge hypothesis in insects. Horm Behav 2020; 123:104533. [PMID: 31185222 DOI: 10.1016/j.yhbeh.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022]
Abstract
The 'challenge hypothesis' provides a predictive framework for how the social environment influences within-species variation in hormone titers. High testosterone levels are beneficial during reproduction and competition, but they also impose costs because they may suppress traits like parental care and immunity. As a result, the challenge hypothesis predicts that individuals will change their testosterone levels to match the current social environment. Although the vast majority of work on the challenge hypothesis has focused on androgens in vertebrates, there is growing evidence that insect hormones, especially juvenile hormone (JH), may respond to social stimuli in ways that parallel androgens in vertebrates. Many insects rapidly upregulate JH titers during social competition with rivals. Some insects also modulate JH titers based on contest outcomes, with winners upregulating JH and losers downregulating JH. This review will integrate work on social modulation of hormone titers in vertebrates and insects. First, we provide background on insect hormones and describe the functional parallels between androgens and JH. Second, we review evidence that insects rapidly change JH titers in response to social competition. Finally, we highlight opportunities for future work on social modulation of hormones in insects. Overall, the challenge hypothesis provides a useful conceptual framework for hypothesis-driven research in insect endocrinology. Comparing vertebrates and insects provides insight into how selection has shaped patterns of hormone responsiveness as well as the generality of hypotheses originally developed for vertebrates.
Collapse
Affiliation(s)
- Elizabeth A Tibbetts
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Emily C Laub
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G E Mathiron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Parc Grandmont, 37200 Tours, France
| | - Marlene Goubault
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Parc Grandmont, 37200 Tours, France
| |
Collapse
|
14
|
Lipshutz SE, Rosvall KA. Testosterone secretion varies in a sex- and stage-specific manner: Insights on the regulation of competitive traits from a sex-role reversed species. Gen Comp Endocrinol 2020; 292:113444. [PMID: 32092297 DOI: 10.1016/j.ygcen.2020.113444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Testosterone (T) mediates a variety of traits that function in competition for mates, including territorial aggression, ornaments, armaments, and gametogenesis. The link between T and mating competition has been studied mainly in males, but females also face selection pressures to compete for mates. Sex-role reversed species, in which females are the more competitive sex, provide a unique perspective on the role of T in promoting competitive traits. Here, we examine patterns of T secretion in sex-role reversed northern jacanas (Jacana spinosa) during breeding, when females are fertile and males are either seeking copulations or conducting parental care. We measured baseline levels of T in circulation along with a suite of behavioral and morphological traits putatively involved in mating competition. We evaluated hypotheses that levels of T track gonadal sex and parental role, and we begin to investigate whether T and competitive traits co-vary in a sex- and stage- specific manner. Although females had higher expression of competitive traits than males at either breeding stage, we found that females and incubating males had similar levels of T secretion, which were lower than those observed in copulating males. T was correlated with wing spur length in females and testes mass in copulating males, but was otherwise uncorrelated with other competitive traits. These findings suggest that levels of T in circulation alone do not predict variation in competitive traits across levels of analysis, including gonadal sex and parental role. Instead, our findings coupled with prior research indicate that selection for female mating competition and male care may generate different physiological regulation of competitive traits.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Sousa MBCD, Pontes MC, Galvão ACDM, Silva HPAD, Galvão-Coelho NL. Social interactions and androgens levels in marmosets (Callithrix jacchus) in field and laboratory studies: A preliminary investigation of the Challenge Hypothesis. Gen Comp Endocrinol 2019; 273:192-201. [PMID: 30076805 DOI: 10.1016/j.ygcen.2018.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Bernardete Cordeiro de Sousa
- BrainInstitute, Federal Universityof Rio Grande do Norte, Natal, Brazil; PostgraduateProgram in Psychobiology, Federal Universityof Rio Grande do Norte, Natal, RN, Brazil; Laboratory of Hormones Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mariana Chiste Pontes
- PostgraduateProgram in Psychobiology, Federal Universityof Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Cecília de Menezes Galvão
- PostgraduateProgram in Psychobiology, Federal Universityof Rio Grande do Norte, Natal, RN, Brazil; Laboratory of Hormones Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Hélderes Peregrino Alves da Silva
- PostgraduateProgram in Psychobiology, Federal Universityof Rio Grande do Norte, Natal, RN, Brazil; Laboratory of Hormones Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nicole Leite Galvão-Coelho
- PostgraduateProgram in Psychobiology, Federal Universityof Rio Grande do Norte, Natal, RN, Brazil; Laboratory of Hormones Measurement, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; National Institute of Science and Technology in Translational Medicine, Natal, RN, Brazil
| |
Collapse
|
16
|
Moore IT, Vernasco BJ, Escallón C, Small TW, Ryder TB, Horton BM. Tales of testosterone: Advancing our understanding of environmental endocrinology through studies of neotropical birds. Gen Comp Endocrinol 2019; 273:184-191. [PMID: 29990493 DOI: 10.1016/j.ygcen.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 01/29/2023]
Abstract
Studies of birds have greatly advanced our understanding of how testosterone modulates complex phenotypes, specifically its role in mediating male reproductive and associated behaviors. Yet most of the foundational studies have been limited to northern latitude breeding species despite the fact that they represent only a small fraction of worldwide avian diversity. In contrast, phylogenetic, life-history, and mating system diversity all reach their apex in neotropical avifauna and yet these birds, along with more southern latitude species, remain very poorly understood from an endocrine perspective. Despite the relatively limited previous work on taxa breeding in Central and South America, empirical findings have had a disproportionately large impact on our understanding of testosterone's role in everything from geographic variation to behavioral roles and neuroplasticity. Here, we synthesize how studies of neotropical breeding avifauna have advanced our understanding of how testosterone's actions can and are associated with the broad patterns of phenotypic diversity that we see in birds. In addition, we outline how these studies can be used individually or in a comparative context to address fundamental questions about the environmental endocrinology of testosterone and to understand the diversity of roles that testosterone plays in mediating behavioral variation, reproductive strategies, and associated life-history trade-offs.
Collapse
Affiliation(s)
- I T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - B J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - C Escallón
- Departamento de Ciencias Básicas, Universidad de la Salle, Cra 2 No. 10-70, Bogotá, Colombia
| | - T W Small
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - T B Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012, MRC 5503, Washington DC 20013, USA
| | - B M Horton
- Department of Biology, Millersville University of Pennsylvania, Millersville, PA 17551, USA
| |
Collapse
|
17
|
Grebe NM, Sarafin RE, Strenth CR, Zilioli S. Pair-bonding, fatherhood, and the role of testosterone: A meta-analytic review. Neurosci Biobehav Rev 2019; 98:221-233. [DOI: 10.1016/j.neubiorev.2019.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
|
18
|
Fuxjager MJ, Schuppe ER. Androgenic signaling systems and their role in behavioral evolution. J Steroid Biochem Mol Biol 2018; 184:47-56. [PMID: 29883693 DOI: 10.1016/j.jsbmb.2018.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroids mediate the organization and activation of masculine reproductive phenotypes in diverse vertebrate taxa. However, the effects of sex steroid action in this context vary tremendously, in that steroid action influences reproductive physiology and behavior in markedly different ways (even among closely related species). This leads to the idea that the mechanisms underlying sex steroid action similarly differ across vertebrates in a manner that supports diversification of important sexual traits. Here, we highlight the Evolutionary Potential Hypothesis as a framework for understanding how androgen-dependent reproductive behavior evolves. This idea posits that the cellular mechanisms underlying androgenic action can independently evolve within a given target tissue to adjust the hormone's functional effects. The result is a seemingly endless number of permutations in androgenic signaling pathways that can be mapped onto the incredible diversity of reproductive phenotypes. One reason this hypothesis is important is because it shifts current thinking about the evolution of steroid-dependent traits away from an emphasis on circulating steroid levels and toward a focus on molecular mechanisms of hormone action. To this end, we also provide new empirical data suggesting that certain cellular modulators of androgen action-namely, the co-factors that dynamically adjust transcritpional effects of steroid action either up or down-are also substrates on which evolution can act. We then close the review with a detailed look at a case study in the golden-collared manakin (Manacus vitellinus). Work in this tropical bird shows how androgenic signaling systems are modified in specific parts of the skeletal muscle system to enhance motor performance necessary to produce acrobatic courtship displays. Altogether, this paper seeks to develop a platform to better understand how steroid action influences the evolution of complex animal behavior.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States.
| | - Eric R Schuppe
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States
| |
Collapse
|
19
|
Evolution of the androgen-induced male phenotype. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:81-92. [DOI: 10.1007/s00359-017-1215-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
|
20
|
Fanson KV, Németh Z, Ramenofsky M, Wingfield JC, Buchanan KL. Inter‐laboratory variation in corticosterone measurement: Implications for comparative ecological and evolutionary studies. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kerry V. Fanson
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
| | - Zoltán Németh
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis CA USA
- Department of Evolutionary Zoology MTA‐DE “Lendület” Behavioural Ecology Research Group University of Debrecen Debrecen Hungary
| | - Marilyn Ramenofsky
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis CA USA
| | - John C. Wingfield
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
- Department of Neurobiology, Physiology and Behavior University of California Davis Davis CA USA
| | - Katherine L. Buchanan
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Geelong Australia
| |
Collapse
|
21
|
Wingfield JC. The challenge hypothesis: Where it began and relevance to humans. Horm Behav 2017; 92:9-12. [PMID: 27856292 DOI: 10.1016/j.yhbeh.2016.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 01/25/2023]
Abstract
A contribution to a special issue on Hormones and Human Competition. Over 40years ago assay methods that allowed the accurate measurement of circulating levels of hormones were developed for the first time enabling us to sample free-living as well as captive animals. This led to a new concept called "field endocrinology". It quickly became apparent that endocrine profiles of animals under natural conditions were very different from congeners in captivity. Furthermore, hormone data could be organized by functional units (e.g. reproductive states) spaced in time according to natural duration of those states rather than simply by date alone. This approach changed how we interpret data and revealed species-specific patterns of hormone secretion. The "challenge hypothesis", stating that the temporal patterns of testosterone in blood were determined by a trade-off between the degree of male-male competition that increased testosterone, and the expression of paternal care that required a decrease in testosterone, grew out of a combination of field endocrine investigations that then informed laboratory experimentation. A strong argument can now be made that the challenge hypothesis is highly relevant for understanding social interactions in humans and non-human primates. Investigations on human subjects provide some of the best models for the challenge hypothesis. However, the central mechanisms by which aggressive and other social interactions regulate the hypothalamo-pituitary-gonad axis will depend upon work on not only primates, but also other vertebrates in very different ecological contexts. Research on the challenge hypothesis in humans will play a critical role as new insight on the interrelationships of testosterone and male-male competition comes from new technologies.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Muller MN. Testosterone and reproductive effort in male primates. Horm Behav 2017; 91:36-51. [PMID: 27616559 PMCID: PMC5342957 DOI: 10.1016/j.yhbeh.2016.09.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Considerable evidence suggests that the steroid hormone testosterone mediates major life-history trade-offs in vertebrates, promoting mating effort at the expense of parenting effort or survival. Observations from a range of wild primates support the "Challenge Hypothesis," which posits that variation in male testosterone is more closely associated with aggressive mating competition than with reproductive physiology. In both seasonally and non-seasonally breeding species, males increase testosterone production primarily when competing for fecund females. In species where males compete to maintain long-term access to females, testosterone increases when males are threatened with losing access to females, rather than during mating periods. And when male status is linked to mating success, and dependent on aggression, high-ranking males normally maintain higher testosterone levels than subordinates, particularly when dominance hierarchies are unstable. Trade-offs between parenting effort and mating effort appear to be weak in most primates, because direct investment in the form of infant transport and provisioning is rare. Instead, infant protection is the primary form of paternal investment in the order. Testosterone does not inhibit this form of investment, which relies on male aggression. Testosterone has a wide range of effects in primates that plausibly function to support male competitive behavior. These include psychological effects related to dominance striving, analgesic effects, and effects on the development and maintenance of the armaments and adornments that males employ in mating competition.
Collapse
Affiliation(s)
- Martin N Muller
- Department of Anthropology, University of New Mexico, United States.
| |
Collapse
|
23
|
Davies S, Gao S, Valle S, Bittner S, Hutton P, Meddle SL, Deviche P. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation. ACTA ACUST UNITED AC 2016; 218:2685-93. [PMID: 26333925 PMCID: PMC4582157 DOI: 10.1242/jeb.123042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity.
Collapse
Affiliation(s)
- Scott Davies
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Stephanie Bittner
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
24
|
Kamkrathok B, Sartsoongnoen N, Prakobsaeng N, Rozenboim I, Porter TE, Chaiseha Y. Distribution of hypothalamic vasoactive intestinal peptide immunoreactive neurons in the male native Thai chicken. Anim Reprod Sci 2016; 171:27-35. [PMID: 27269881 DOI: 10.1016/j.anireprosci.2016.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Avian prolactin (PRL) secretion is under stimulatory control by the PRL-releasing factor (PRF), vasoactive intestinal peptide (VIP). The neuroendocrine regulation of the avian reproductive system has been extensively studied in females. However, there are limited data in males. The aim of this study was to elucidate the VIPergic system and its relationship to PRL and testosterone (T) in the male native Thai chicken. The distributions of VIP-immunoreactive (-ir) neurons and fibers were determined by immunohistochemistry. Changes in VIP-ir neurons within the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) areas were compared across the reproductive stages. Plasma levels of PRL and T were determined by enzyme-linked immunosorbent assay and then compared across the reproductive stages. The results revealed that the highest accumulations of VIP-ir neurons were concentrated only within the IH-IN, and VIP-ir neurons were not detected within other hypothalamic nuclei. Within the IH-IN, VIP-ir neurons were low in premature and aging males and markedly increased in mature males. Changes in VIP-ir neurons within the IH-IN were directly mirrored with changes in PRL and T levels across the reproductive stages. These results suggested that VIP neurons in the IH-IN play a regulatory role in year-round reproductive activity in males. The present study also provides additional evidence that VIP is the PRF in non-seasonal, continuously breeding equatorial species.
Collapse
Affiliation(s)
- Boonyarit Kamkrathok
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Natagarn Sartsoongnoen
- Program of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Nattiya Prakobsaeng
- Program in Animal Science, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham, Thailand
| | - Israel Rozenboim
- Department of Animal Science, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Yupaporn Chaiseha
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
25
|
Redmond LJ, Murphy MT, Cooper NW, O'Reilly KM. Testosterone secretion in a socially monogamous but sexually promiscuous migratory passerine. Gen Comp Endocrinol 2016; 228:24-32. [PMID: 26808965 DOI: 10.1016/j.ygcen.2016.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
The steroid hormone testosterone (T) influences a multitude of traits critical to reproduction in vertebrates. In birds, high male T supports territory establishment and mate attraction, but is thought to interfere with parental care. Interspecific comparisons indicate that migratory species with short, synchronous breeding seasons have the highest peak T, and that the seasonal profile of T exhibits a rapid decline with the onset of incubation by females. We describe the T profile of the migratory, socially monogamous, and biparental Eastern Kingbird (Tyrannus tyrannus) from the high desert of eastern Oregon, USA, where breeding occurs within a short 2-3 month period. Eastern Kingbirds are socially monogamous but exhibit high rates of extra-pair paternity as ∼60% of broods contain extra-pair young. We therefore evaluate whether Eastern Kingbirds exhibit the "typical" T profile expected for a synchronously breeding migratory species, or whether T is maintained at a more constant level as would be predicted for a species with opportunities for mating that extend over a majority of the breeding season. Our samples were divided into six periods of the reproductive cycle from territory establishment to the feeding of fledglings. T did not change across stages of the nest cycle. Instead, T declined with sampling date and nest density, and increased with the number of fertile females in the population. Male kingbirds advertise their presence through song for most of the breeding season, and we suggest that T is maintained throughout most of the breeding season because male fitness is equally dependent on within- and extra-pair reproductive success.
Collapse
Affiliation(s)
- Lucas J Redmond
- Department of Biology, PO Box 751, Portland State University, Portland, OR 97201, USA.
| | - Michael T Murphy
- Department of Biology, PO Box 751, Portland State University, Portland, OR 97201, USA
| | - Nathan W Cooper
- Department of Biology, PO Box 751, Portland State University, Portland, OR 97201, USA
| | - Kathleen M O'Reilly
- Department of Biology, University of Portland, 5000 N. Willamette Blvd., Portland, OR 97203, USA
| |
Collapse
|
26
|
Frigerio D, Cibulski L, Ludwig SC, Campderrich I, Kotrschal K, Wascher CAF. Excretion patterns of coccidian oocysts and nematode eggs during the reproductive season in Northern Bald Ibis ( Geronticus eremita). JOURNAL OF ORNITHOLOGY 2016; 157:839-851. [PMID: 27570727 PMCID: PMC4986318 DOI: 10.1007/s10336-015-1317-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 06/06/2023]
Abstract
Individual reproductive success largely depends on the ability to optimize behaviour, immune function and the physiological stress response. We have investigated correlations between behaviour, faecal steroid metabolites, immune parameters, parasite excretion patterns and reproductive output in a critically endangered avian species, the Northern Bald Ibis (Geronticus eremita). In particular, we related haematocrit, heterophil/lymphocyte ratio, excreted immune-reactive corticosterone metabolites and social behaviour with parasite excretion and two individual fitness parameters, namely, number of eggs laid and number of fledglings. We found that the frequency of excretion of parasites' oocysts and eggs tended to increase with ambient temperature. Paired individuals excreted significantly more samples containing nematode eggs than unpaired ones. The excretion of nematode eggs was also significantly more frequent in females than in males. Individuals with a high proportion of droppings containing coccidian oocysts were more often preened by their partners than individuals with lower excretion rates. We observed that the more eggs an individual incubated and the fewer offspring fledged, the higher the rates of excreted samples containing coccidian oocysts. Our results confirm that social behaviour, physiology and parasite burden are linked in a complex and context-dependent manner. They also contribute background information supporting future conservation programmes dealing with this critically endangered species.
Collapse
Affiliation(s)
- Didone Frigerio
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau im Almtal, Austria
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Lara Cibulski
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau im Almtal, Austria
| | - Sonja C. Ludwig
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau im Almtal, Austria
- Game & Wildlife Conservation Trust, The Coach House, Eggleston Hall, Barnard Castle, DG12 0AG UK
| | - Irene Campderrich
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau im Almtal, Austria
- Department of Animal Production, Neiker-Tecnalia, Vitoria-Gasteiz, Spain
| | - Kurt Kotrschal
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau im Almtal, Austria
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Claudia A. F. Wascher
- Core Facility Konrad Lorenz Forschungsstelle for Behaviour and Cognition, University of Vienna, Fischerau 11, 4645 Grünau im Almtal, Austria
- Animal and Environment Research Group, Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
27
|
Teles MC, Oliveira RF. Androgen response to social competition in a shoaling fish. Horm Behav 2016; 78:8-12. [PMID: 26497408 DOI: 10.1016/j.yhbeh.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 01/21/2023]
Abstract
Androgens respond to social challenges and this response has been interpreted as a way for males to adjust androgen-dependent behavior to social context. However, the androgen responsiveness to social challenges varies across species and a conceptual framework has been developed to explain this variation according to differences in the mating system and parental care type, which determines the regimen of challenges males are exposed to, and concomitantly the scope (defined as the difference between the physiological maximum and the baseline levels) of response to a social challenge. However, this framework has been focused on territorial species and no clear predictions have been made to gregarious species (e.g. shoaling fish), which although tolerating same-sex individuals may also exhibit intra-sexual competition. In this paper we extend the scope of this conceptual framework to shoaling fish by studying the endocrine response of zebrafish (Danio rerio) to social challenges. Male zebrafish exposed to real opponent agonistic interactions exhibited an increase in androgen levels (11-ketotestosterone both in Winners and Losers and testosterone in Losers). This response was absent in Mirror-fighters, that expressed similar levels of aggressive behavior to those of winners, suggesting that this response is not a mere reflex of heightened aggressive motivation. Cortisol levels were also measured and indicated an activation of the hypothalamic-pituitary-interrenal axis in Winners of real opponent fighters, but not Losers or in Mirror-fighters. These results confirm that gregarious species also exhibit an endocrine response to an acute social challenge.
Collapse
Affiliation(s)
- Magda C Teles
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 27å80-156 Oeiras, Portugal; Champalimaud Neuroscience Program, Av. Brasília, Doca de Pedrouços, 1400-038 Lisboa, Portugal
| | - Rui F Oliveira
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 27å80-156 Oeiras, Portugal; Champalimaud Neuroscience Program, Av. Brasília, Doca de Pedrouços, 1400-038 Lisboa, Portugal.
| |
Collapse
|
28
|
Lynn SE. Endocrine and neuroendocrine regulation of fathering behavior in birds. Horm Behav 2016; 77:237-48. [PMID: 25896117 DOI: 10.1016/j.yhbeh.2015.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/20/2015] [Accepted: 04/10/2015] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Parental Care". Although paternal care is generally rare among vertebrates, care of eggs and young by male birds is extremely common and may take on a variety of forms across species. Thus, birds provide ample opportunities for investigating both the evolution of and the proximate mechanisms underpinning diverse aspects of fathering behavior. However, significant gaps remain in our understanding of the endocrine and neuroendocrine influences on paternal care in this vertebrate group. In this review, I focus on proximate mechanisms of paternal care in birds. I place an emphasis on specific hormones that vary predictably and/or unpredictably during the parental phase in both captive and wild birds: prolactin and progesterone are generally assumed to enhance paternal care, whereas testosterone and corticosterone are commonly-though not always correctly-assumed to inhibit paternal care. In addition, because endocrine secretions are not the sole mechanistic influence on paternal behavior, I also explore potential roles for certain neuropeptide systems (specifically the oxytocin-vasopressin nonapeptides and gonadotropin inhibitory hormone) and social and experiential factors in influencing paternal behavior in birds. Ultimately, mechanistic control of fathering behavior in birds is complex, and I suggest specific avenues for future research with the goal of narrowing gaps in our understanding of this complexity. Such avenues include (1) experimental studies that carefully consider not only endocrine and neuroendocrine mechanisms of paternal behavior, but also the ecology, phylogenetic history, and social context of focal species; (2) investigations that focus on individual variation in both hormonal and behavioral responses during the parental phase; (3) studies that investigate mechanisms of maternal and paternal care independently, rather than assuming that the mechanistic foundations of care are similar between the sexes; (4) expansion of work on interactions of the neuroendocrine system and fathering behavior to a wider array of paternal behaviors and taxa (e.g., currently, studies of the interactions of testosterone and paternal care largely focus on songbirds, whereas studies of the interactions of corticosterone, prolactin, and paternal care in times of stress focus primarily on seabirds); and (5) more deliberate study of exceptions to commonly held assumptions about hormone-paternal behavior interactions (such as the prevailing assumptions that elevations in androgens and glucocorticoids are universally disruptive to paternal care). Ultimately, investigations that take an intentionally integrative approach to understanding the social, evolutionary, and physiological influences on fathering behavior will make great strides toward refining our understanding of the complex nature by which paternal behavior in birds is regulated.
Collapse
Affiliation(s)
- Sharon E Lynn
- Department of Biology, The College of Wooster, 931 College Mall, Wooster, OH 44691, USA.
| |
Collapse
|
29
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
30
|
Birba A, Ramallo MR, Lo Nostro F, Guimarães Moreira R, Pandolfi M. Reproductive and parental care physiology of Cichlasoma dimerus males. Gen Comp Endocrinol 2015; 221:193-200. [PMID: 25688482 DOI: 10.1016/j.ygcen.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
Abstract
The South American cichlid fish Cichlasoma dimerus presents a high breeding frequency and biparental care of the eggs and larvae. The male parental care period was divided in four different phases according to the developmental degree of the offspring: pre-spawning activity (MP, day 0), guarding eggs (ME, one day after fertilization (1 DAF)), guarding hatched larvae (MHL, 3 DAF), and guarding swimming larvae (MSL, 8 DAF). The aim of this study was to characterize male reproductive physiology by measuring steroid hormone plasma levels and analyzing testes cellular composition. Males exhibiting pre-spawning activity showed 8.4 times higher 11-ketotestosterone and 5.63 times higher testosterone levels than MHL. No differences were observed in estradiol and cortisol levels among the different phases. The cellular composition of the testes varied during the reproductive and parental care periods. Testes of MP were composed of 50% of spermatozoa, whereas spermatogonia type B and spermatocytes were predominant in the subsequent parental phases. A morphometric analysis of Leydig cells nuclear area revealed that MP and ME's Leydig cells averaged 1.27 times larger than that those of MHL and MSL and was positively correlated with circulating 11-KT and T levels. Hence, C. dimerus males showed important changes in its hormonal profiles and testicular cellular composition throughout the reproductive and parental care period.
Collapse
Affiliation(s)
- Agustina Birba
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EHA), Buenos Aires, Argentina
| | - Martín Roberto Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EHA), Buenos Aires, Argentina; IBBEA-CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Fabiana Lo Nostro
- IBBEA-CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina; Laboratorio de Ecotoxicología Acuática, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EHA), Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Traversa 14, 321, São Paulo 05508-090, SP, Brazil
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EHA), Buenos Aires, Argentina; IBBEA-CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina.
| |
Collapse
|
31
|
Wingfield JC. Coping with change: a framework for environmental signals and how neuroendocrine pathways might respond. Front Neuroendocrinol 2015; 37:89-96. [PMID: 25511258 DOI: 10.1016/j.yfrne.2014.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
Abstract
The Earth has always been a changeable place but now warming trends shift seasons and storms occur with greater frequency, intensity and duration. This has prompted reference to the modern era as the Anthropocene caused by human activity. This era poses great challenges for all life on earth and important questions include why and how some organisms can cope and others cannot? It is of heuristic value to consider a framework for types of environmental signals and how they might act. This is especially important as predictable changes of the environment (seasonality) are shifting rapidly as well as unpredictable changes (perturbations) in novel ways. What we need to know is how organisms perceive their environment, transduce that information into neuroendocrine signals that orchestrate morphological, physiological and behavioral responses. Given these goals we can begin to address the questions: do neuroendocrine systems have sufficient flexibility to acclimate to significant change in phenology, are genetic changes leading to adaptation necessary, or both?
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Hofmann HA, Beery AK, Blumstein DT, Couzin ID, Earley RL, Hayes LD, Hurd PL, Lacey EA, Phelps SM, Solomon NG, Taborsky M, Young LJ, Rubenstein DR. An evolutionary framework for studying mechanisms of social behavior. Trends Ecol Evol 2014; 29:581-9. [DOI: 10.1016/j.tree.2014.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
|
33
|
Gonçalves-de-Freitas E, Carvalho TB, Oliveira RF. Photoperiod modulation of aggressive behavior is independent of androgens in a tropical cichlid fish. Gen Comp Endocrinol 2014; 207:41-9. [PMID: 25101841 DOI: 10.1016/j.ygcen.2014.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
Abstract
Photoperiod is a major environmental cue that signals breeding conditions in animals living in temperate climates. Therefore, the activity of the reproductive (i.e. hypothalamic-pituitary-gonadal, HPG) axis and of the expression of reproductive behaviors, including territoriality, is responsive to changes in day length. However, at low latitudes the seasonal variation in day length decreases dramatically and photoperiod becomes less reliable as a breeding entraining cue in tropical species. In spite of this, some tropical mammals and birds have been found to still respond to small amplitude changes in photoperiod (e.g. 17min). Here we tested the effect of 2 photoperiod regimes, referred to as long-day (LD: 16L:08D) and short-day (SD: 08L:16D), on the activity of the HPG axis, on aggressive behavior and in the androgen response to social challenges in males of the tropical cichlid fish Tilapia rendalli. For each treatment, fish were transferred from a pre-treatment photoperiod of 12L:12D to their treatment photoperiod (either LD or SD) in which they were kept for 20days on stock tanks. Afterwards, males were isolated for 4days in glass aquaria in order to establish territories and initial androgen levels (testosterone, T; 11-ketotestosterone, KT) were assessed. On the 4th day, territorial intrusions were promoted such that 1/3 of the isolated males acted as residents and another 1/3 as intruders. Territorial intrusions lasted for 1h to test the effects of a social challenge under different photoperiod regimes. Photoperiod treatment (either SD or LD) failed to induce significant changes in the HPG activity, as measured by androgen levels and gonadosomatic index. However, SD increased the intensity of aggressive behaviors and shortened the time to settle a dominance hierarchy in an androgen-independent manner. The androgen responsiveness to the simulated territorial intrusion was only present in KT but not for T. The percent change in KT levels in response to the social challenge was different between treatments (SD>LD) and between male types (resident>intruder). The higher androgen response to a social challenge in residents under SD may be explained by the time course of the androgen response that due to the long time it takes to fight resolution under LD, might have been delayed. This result illustrates the importance of incorporating time response data in social endocrinology studies.
Collapse
Affiliation(s)
- Eliane Gonçalves-de-Freitas
- Universidade Estadual Paulista e Centro de Aquicultura da UNESP, R. Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| | - Thaís Billalba Carvalho
- Universidade Federal do Amazonas, Av. Gal. Rodrigo Octávio Jordão Ramos 3000, Manaus, AM, Brazil.
| | - Rui F Oliveira
- ISPA - Instituto Universitário, R. Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
34
|
Pappano DJ, Beehner JC. Harem-holding males do not rise to the challenge: androgens respond to social but not to seasonal challenges in wild geladas. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140081. [PMID: 26064526 PMCID: PMC4448764 DOI: 10.1098/rsos.140081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/12/2014] [Indexed: 06/04/2023]
Abstract
The challenge hypothesis has been enormously successful in predicting interspecific androgen profiles for vertebrate males. Nevertheless, in the absence of another theoretical framework, many researchers 'retrofit' the challenge hypothesis, so that its predictions also apply to intraspecific androgen comparisons. We use a wild primate, geladas (Theropithecus gelada), to illustrate several considerations for androgen research surrounding male contests that do not necessarily fit within the challenge hypothesis framework. Gelada society comprises harem-holding males (that can mate with females) and bachelor males (that cannot mate with females until they take over a harem). Using 6 years of data from known males, we measured androgens (i.e. faecal testosterone (fT) metabolites) both seasonally and across specific male contests. Seasonal androgen variation exhibited a very different pattern than variation resulting from male contests. Although harem-holding males had higher testosterone levels than bachelors across the year, bachelors had higher testosterone during the annual 'takeover season'. Thus, harem-holding males did not 'rise to the challenge' exactly when needed most. Yet, androgen profiles across male contests indicated that both sets of males exhibit the expected fT rise in response to challenges. Results from male geladas also support the idea that the context before (e.g. male condition) and after (e.g. contest outcome) a contest are critical variables for predicting hormones and behaviour.
Collapse
Affiliation(s)
- David J. Pappano
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacinta C. Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Deviche P, Beouche-Helias B, Davies S, Gao S, Lane S, Valle S. Regulation of plasma testosterone, corticosterone, and metabolites in response to stress, reproductive stage, and social challenges in a desert male songbird. Gen Comp Endocrinol 2014; 203:120-31. [PMID: 24518569 DOI: 10.1016/j.ygcen.2014.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
In many male vertebrates, the secretion of reproductive (gonadal androgens) and adrenocortical (glucocorticoids) hormones varies seasonally and in response to environmental stimuli, and these hormones exert numerous behavioral and metabolic effects. We performed two field studies on adult male Rufous-winged Sparrows, Peucaea carpalis, a Sonoran Desert rain-dependent sedentary species, to (a) determine seasonal changes in initial (baseline) and acute stress-induced plasma testosterone (T), corticosterone (CORT), and two metabolites (uric acid and glucose) and (b) compare the effects of two types of social challenge (song playback or simulated territorial intrusion consisting of song playback plus exposure to a live decoy bird) on plasma T, CORT, these metabolites, and territorial behavior. Initial plasma T was higher during the summer breeding period than during post-breeding molt. Acute stress resulting from capture and restraint for 30 min decreased plasma T in breeding condition birds but not in the fall, revealing that this decrease is seasonally regulated. Initial plasma CORT did not change seasonally, but plasma CORT increased in response to acute stress. This increase was likewise seasonally regulated, being relatively smaller during autumnal molt than in the summer. We found no evidence that acute stress levels of CORT are functionally related to stress-depressed plasma T and, therefore, that plasma T decreases during stress as a result of elevated plasma CORT. Thirty minutes of exposure to simulated territorial intrusion resulted in different behavior than 30 min of exposure to song playback, with increased time spent near the decoy and decreased number of overhead flights. Neither type of social challenge influenced plasma T, thus offering no support for the hypothesis that plasma T either responds to or mediates the behavioral effects of social challenge. Exposure to both social challenges elevated plasma CORT, but simulated territorial intrusion was more effective in this respect than song playback. Plasma uric acid and glucose decreased during acute stress, but only plasma uric acid decreased during social challenge. Thus, an elevation in plasma CORT was consistently associated with a decrease in plasma uric acid, but not with a change in glycemia. These results enhance our understanding of the short-term relationships between T, CORT, and avian territorial behavior. They provide novel information on the endocrine effects of acute stress, in particular on plasma T, in free-ranging birds, and are among the first in these birds to link these effects to metabolic changes.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Benjamin Beouche-Helias
- Universite de Poitiers, Faculte des Sciences Fondamentales et Appliquees, Poitiers F-86022, France
| | - Scott Davies
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Samuel Lane
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
36
|
Almeida O, Gonçalves-de-Freitas E, Lopes JS, Oliveira RF. Social instability promotes hormone-behavior associated patterns in a cichlid fish. Horm Behav 2014; 66:369-82. [PMID: 24973663 DOI: 10.1016/j.yhbeh.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/13/2014] [Accepted: 05/25/2014] [Indexed: 11/21/2022]
Abstract
Androgens are known to respond to social challenges and to control the expression of social behavior and reproductive traits, such as gonadal maturation and sperm production, expression of secondary sex characters and reproductive behaviors. According to the challenge hypothesis variation in androgen levels above a breeding baseline should be explained by the regime of social challenges faced by the individual considering the trade-offs of androgens with other traits (e.g. parental care). One prediction that can be derived from the challenge hypothesis is that androgen levels should increase in response to social instability. Moreover, considering that a tighter association of relevant traits is expected in periods of environmental instability, we also predict that in unstable environments the degree of correlations among different behaviors should increase and hormones and behavior should be associated. These predictions were tested in a polygamous cichlid fish (Mozambique tilapia, Oreochromis mossambicus) with exclusive maternal care. Social instability was produced by swapping dominant males among groups. Stable treatment consisted in removing and placing back dominant males in the same group, in order to control for handling stress. Cortisol levels were also measured to monitor stress levels involved in the procedure and their relation to the androgen patterns and behavior. As predicted androgen levels increased in males in response to the establishment of a social hierarchy and presence of receptive females. However, there were no further differential increases in androgen levels over the social manipulation phase between social stable and social unstable groups. As predicted behaviors were significantly more correlated among themselves in the unstable than in the stable treatment and an associated hormone-behavior pattern was only observed in the unstable treatment.
Collapse
Affiliation(s)
- Olinda Almeida
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal
| | - Eliane Gonçalves-de-Freitas
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, and Aquaculture Center of UNESP (CAUNESP)., Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - João S Lopes
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal; Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Rui F Oliveira
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal; Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
37
|
Tibbetts EA. The evolution of honest communication: integrating social and physiological costs of ornamentation. Integr Comp Biol 2014; 54:578-90. [PMID: 24944118 DOI: 10.1093/icb/icu083] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Much research on animal communication has addressed how costs such as social costs or physiological costs favor the accuracy of signals. Previous work has largely considered these costs separately, but we may be missing essential connections by studying costs in isolation. After all, social interactions produce rapid changes in hormone titers which can then affect individual behavior and physiology. As a result, social costs are likely to have widespread physiological consequences. Here, I present a new perspective on the factors that maintain honest signals by describing how the interplay between social costs and physiological costs may maintain an accurate link between an animal's abilities and ornament elaboration. I outline three specific mechanisms by which the interaction between social behavior and hormones could favor honest signals and present specific predictions for each of the three models. Then, I review how ornaments alter agonistic behavior, agonistic behavior influences hormones, and how these hormonal effects influence fitness. I also describe the few previous studies that have directly tested how ornaments influence hormones. Finally, opportunities for future work are discussed. Considering the interaction between social behavior and physiology may address some challenges associated with both social and physiological models of costs. Understanding the dynamic feedbacks between physiology and social costs has potential to transform our understanding of the stability of animals' communication systems.
Collapse
|
38
|
Tibbetts EA, Crocker KC. The challenge hypothesis across taxa: social modulation of hormone titres in vertebrates and insects. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Valdez DJ, Vera Cortez M, Della Costa NS, Lèche A, Hansen C, Navarro JL, Martella MB. Seasonal changes in plasma levels of sex hormones in the greater Rhea (Rhea americana), a South American Ratite with a complex mating system. PLoS One 2014; 9:e97334. [PMID: 24837464 PMCID: PMC4023989 DOI: 10.1371/journal.pone.0097334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/17/2014] [Indexed: 11/18/2022] Open
Abstract
Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the "Challenge Hypothesis". In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period.
Collapse
Affiliation(s)
- Diego J. Valdez
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- * E-mail: E-mail:
| | - Marilina Vera Cortez
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Natalia S. Della Costa
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Alvina Lèche
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cristian Hansen
- Laboratorio de Análisis Clínicos Especializados (LACE), Córdoba, Argentina
| | - Joaquín L. Navarro
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Mónica B. Martella
- Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Centro de Zoología Aplicada, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
40
|
Rosvall KA, Peterson MP, Reichard DG, Ketterson ED. Highly context-specific activation of the HPG axis in the dark-eyed junco and implications for the challenge hypothesis. Gen Comp Endocrinol 2014; 201:65-73. [PMID: 24698788 PMCID: PMC4097032 DOI: 10.1016/j.ygcen.2014.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/21/2014] [Indexed: 01/14/2023]
Abstract
One of the best studied hormone-behavior interactions is the transient rise in testosterone (T) associated with male-male aggression. However, recent research on songbirds has demonstrated numerous exceptions to this pattern.One species previously thought to elevate T in response to a simulated territorial intrusion is the dark-eyed junco (Junco hyemalis). Here, we show that under most circumstances male juncos do not elevate circulating T or CORT levels in response to social stimuli, despite being physiologically capable of elevating T as indicated by their response to GnRH. The lack of hormonal response was found regardless of the sex of the social stimulus (singing male vs. soliciting female), its sensory modality (song only, song + live lure, song + taxidermic mount), or the timecourse of sampling. Notably, males did elevate T levels when exposed to a simulated territorial intrusion in the days following simulated predation of their chicks. Whether the high T seen in these narrow circumstances represents stage-dependent social modulation of T or re-activation of male reproductive physiology in preparation for re-nesting (i.e. socially independent T modulation) remains to be determined. It is clear, however, that activation of the HPG axis is highly context-specific for male juncos. These results highlight important and unresolved issues regarding the socially mediated component of the challenge hypothesis and how it relates to the evolution of hormone-mediated traits.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA.
| | - Mark P Peterson
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Dustin G Reichard
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Ellen D Ketterson
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
41
|
Goymann W, Wingfield JC. Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us? Behav Ecol 2014. [DOI: 10.1093/beheco/aru019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Addis EA, Clark AD, Vasquez RA, Wingfield JC. Seasonal modulation of testosterone during breeding of the rufous-collared sparrow (Zonotrichia capensis australis) in Southern Patagonia. Physiol Biochem Zool 2013; 86:782-90. [PMID: 24241074 DOI: 10.1086/673868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The roles of testosterone (T) during reproduction are often complex and vary among and within vertebrate taxa and locations, making general hypotheses relating T to breeding behavior and success difficult to integrate. In birds, T is thought to influence degrees of territoriality and associated aggression in males to maximize breeding success. Importantly, most work supporting these ideas has been conducted in the Northern Hemisphere. However, accumulating work on tropical species has shown divergent patterns of T in association with breeding behavior. The compilation of work from northern temperate and tropical species suggests that the function of T in relation to breeding behavior varies across latitude and environmental conditions. We investigate the patterns of T in relation to breeding behavior in a subspecies of the rufous-collared sparrow Zonotrichia capensis australis breeding at high latitude in the Southern Hemisphere (55°S). We then compare the T profiles and breeding behaviors of male Z. c. australis to conspecifics breeding in the tropics and congeners in North America to test the hypothesis that environments with breeding seasons of similar lengths will drive similar patterns of T in relation to breeding behavior. We found that Z. c. australis have high levels of T during the early-breeding periods when territories are being established and low levels of T during the parental phase of breeding, similar to temperate and Arctic birds in the Northern Hemisphere but unlike tropical Zonotrichia capensis costaricensis. In contrast, we found that Z. c. australis also exhibit similar aggressive behaviors in early breeding and midbreeding, unlike many birds in the Northern Hemisphere.
Collapse
Affiliation(s)
- Elizabeth A Addis
- Department of Biology, Gonzaga University, Spokane, Washington 99258; 2Department of Biology, University of Washington, Seattle, Washington 98195; 3Instituto de Ecologia y Biodiversidad, Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800024, Chile; 4Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | | | | | | |
Collapse
|
43
|
Villavicencio CP, Apfelbeck B, Goymann W. Experimental induction of social instability during early breeding does not alter testosterone levels in male black redstarts, a socially monogamous songbird. Horm Behav 2013; 64:461-7. [PMID: 23981955 DOI: 10.1016/j.yhbeh.2013.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 01/25/2023]
Abstract
Testosterone plays an important role in territorial behavior of many male vertebrates and the Challenge Hypothesis has been suggested to explain differences in testosterone concentrations between males. For socially monogamous birds, the challenge hypothesis predicts that testosterone should increase during male-male interactions. To test this, simulated territorial intrusion (STI) experiments have been conducted, but only about a third of all bird species investigated so far show the expected increase in testosterone. Previous studies have shown that male black redstarts (Phoenicurus ochruros) do not increase testosterone during STIs or short-term male-male challenges. The aim of this study was to evaluate whether black redstarts modulate testosterone in an experimentally induced longer-term unstable social situation. We created social instability by removing males from their territories and compared the behavior and testosterone concentrations of replacement males and neighbors with those of control areas. Testosterone levels did not differ among replacement males, neighbors and control males. Injections with GnRH resulted in elevation of testosterone in all groups, suggesting that all males were capable of increasing testosterone. We found no difference in the behavioral response to STIs between control and replacement males. Furthermore, there was no difference in testosterone levels between replacement males that had expanded their territory and new-coming males. In combination with prior work these data suggest that testosterone is not modulated by male-male interactions in black redstarts and that testosterone plays only a minor role in territorial behavior. We suggest that territorial behavior in species that are territorial throughout most of their annual life-cycle may be decoupled from testosterone.
Collapse
Affiliation(s)
- Camila P Villavicencio
- Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Str. 6a, D-82319 Seewiesen, Germany.
| | | | | |
Collapse
|
44
|
|
45
|
Lozano GA, Lank DB, Addison B. Immune and oxidative stress trade-offs in four classes of Ruffs (Philomachus pugnax) with different reproductive strategies. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Immunity and resistance to oxidative stress are two mechanistically related aspects of self-maintenance that are usually not studied together in connection to ecological or evolutionary relevant variables. Whereas many studies compare two sexes, here we use Ruffs (Philomachus pugnax (L., 1758)), a species in which males have three alternative reproductive morphs: independents, satellites, and faeders. Previous work suggested that immune function in Ruffs depends on energetic constraints or potential of injuries. Based on their behaviour and life history, the three male morphs and females can be placed on an ordinal scale with independents at one end and females at the other, and these two explanations predict opposite patterns along this continuum. Innate and cell-mediated immunity decreased along this axis from independents to females, supporting a risk-of-injury explanation over the energetic constrains hypothesis. No such pattern was evident for oxidative stress or resistance, and no relationship was detected between immunity and oxidative resistance or stress. Hence, during the breeding season immunity reflected the risk of injury, with faeders located in the immunological continuum between females and other male morphs. Species with alternative reproductive strategies provide particularly useful systems in which to address the evolution and ecology behind physiological mechanisms.
Collapse
Affiliation(s)
- George A. Lozano
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David B. Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Brianne Addison
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
46
|
van Breukelen NA. Androgen receptor antagonist impairs courtship but not aggressive behavior in the monogamous cichlid, Amatitlania nigrofasciata. Horm Behav 2013; 63:527-32. [PMID: 23380161 DOI: 10.1016/j.yhbeh.2013.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 11/16/2022]
Abstract
Androgens, specifically 11-ketotestosterone, are hypothesized to be important in the expression of pre-spawning behaviors such as courtship and aggression in many teleost species. This experiment attempted to elucidate the roles of androgens in the expression of pre-spawning courtship and aggression in male convict cichlids (Amatitlania nigrofasciata). In a laboratory experiment, males were treated with either the androgen receptor antagonist flutamide or blank control and subsequently exposed to social conditions to stimulate inter-sexual courtship or intra-sexual aggression. Males treated with flutamide expressed significantly fewer courtship behaviors than control males but did not differ from control males in pre-spawning intra-sexual aggression. In a field experiment, males treated with flutamide expressed significantly less courtship behavior than males given blank capsules or unmanipulated control males, but did not differ from either set of control males in aggression towards conspecifics or overall aggression to con- and heterospecifics. These data suggest that androgens mediate pre-spawning courtship behavior but not pre-spawning aggression in this species.
Collapse
Affiliation(s)
- Natalie April van Breukelen
- Mount Aloysius College, Dept. of Science and Mathematics, 7373 Admiral Peary Highway, Cresson, PA 16630, USA.
| |
Collapse
|
47
|
Apfelbeck B, Mortega KG, Kiefer S, Kipper S, Goymann W. Life-history and hormonal control of aggression in black redstarts: Blocking testosterone does not decrease territorial aggression, but changes the emphasis of vocal behaviours during simulated territorial intrusions. Front Zool 2013; 10:8. [PMID: 23433033 PMCID: PMC3636094 DOI: 10.1186/1742-9994-10-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/31/2013] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Many studies in behavioural endocrinology attempt to link territorial aggression with testosterone, but the exact relationship between testosterone and territorial behaviour is still unclear and may depend on the ecology of a species. The degree to which testosterone facilitates territorial behaviour is particularly little understood in species that defend territories during breeding and outside the breeding season, when plasma levels of testosterone are low. Here we suggest that species that defend territories in contexts other than reproduction may have lost the direct regulation of territorial behaviour by androgens even during the breeding season. In such species, only those components of breeding territoriality that function simultaneously as sexually selected signals may be under control of sex steroids. RESULTS We investigated black redstarts (Phoenicurus ochruros), a species that shows periods of territoriality within and outside of the breeding season. We treated territorial males with an anti-androgen and an aromatase inhibitor during the breeding season to block both the direct and indirect effects of testosterone. Three and ten days after the treatment, implanted males were challenged with a simulated territorial intrusion. The treatment did not reduce the overall territorial response, but it changed the emphasis of territoriality: experimental males invested more in behaviours addressed directly towards the intruder, whereas placebo-treated males put most effort into their vocal response, a component of territoriality that may be primarily directed towards their mating partner rather than the male opponent. CONCLUSIONS In combination with previous findings, these data suggest that overall territoriality may be decoupled from testosterone in male black redstarts. However, high levels of testosterone during breeding may facilitate-context dependent changes in song.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Str, 6a, Seewiesen, D-82319, Germany.
| | | | | | | | | |
Collapse
|
48
|
Higham JP, Heistermann M, Maestripieri D. The endocrinology of male rhesus macaque social and reproductive status: a test of the challenge and social stress hypotheses. Behav Ecol Sociobiol 2013; 67:19-30. [PMID: 24634561 PMCID: PMC3950204 DOI: 10.1007/s00265-012-1420-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Social status primarily determines male mammalian reproductive success, and hypotheses on the endocrinology of dominance have stimulated unprecedented investigation of its costs and benefits. Under the challenge hypothesis, male testosterone levels rise according to competitive need, while the social stress hypothesis predicts glucocorticoid (GC) rises in high ranking individuals during social unrest. Periods of social instability in group-living primates, primarily in baboons, provide evidence for both hypotheses, but data on social instability in seasonally-breeding species with marked social despotism but lower reproductive skew are lacking. We tested these hypotheses in seasonally-breeding rhesus macaques on Cayo Santiago, Puerto Rico. We documented male fecal GC and androgen levels over a 10 month period in relation to rank, age, natal status and group tenure length, including during a socially unstable period in which coalitions of lower-ranked males attacked higher-ranked males. Androgen but not GC levels rose during the mating season; older males had lower birth season levels but underwent a greater inter-season rise than younger males. Neither endocrine measure was related to rank except during social instability, when higher ranked individuals had higher and more variable levels of both. High ranking male targets had the highest GC levels of all males when targeted, and also had high and variable GC and androgen levels across the instability period. Our results provide evidence for both the challenge and social stress hypotheses.
Collapse
Affiliation(s)
- James P Higham
- Institute for Mind and Biology, University of Chicago, 940 East 57 Street, Chicago, IL 60637, USA ; Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Michael Heistermann
- Reproductive Biology Unit, German Primate Centre, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dario Maestripieri
- Institute for Mind and Biology, University of Chicago, 940 East 57 Street, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Fuxjager MJ, Barske J, Du S, Day LB, Schlinger BA. Androgens regulate gene expression in avian skeletal muscles. PLoS One 2012; 7:e51482. [PMID: 23284699 PMCID: PMC3524251 DOI: 10.1371/journal.pone.0051482] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/06/2012] [Indexed: 12/28/2022] Open
Abstract
Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird’s body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR) to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T) up-regulated expression of parvalbumin (PV) and insulin-like growth factor I (IGF-I), two genes whose products enhance cellular Ca2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Eikenaar C, Husak J, Escallón C, Moore IT. Variation in Testosterone and Corticosterone in Amphibians and Reptiles: Relationships with Latitude, Elevation, and Breeding Season Length. Am Nat 2012; 180:642-54. [DOI: 10.1086/667891] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|