1
|
Weber JJ, Geisbrecht BV, Kanost MR, Gorman MJ. A conserved asparagine residue stabilizes iron binding in Manduca sexta transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104109. [PMID: 38494145 PMCID: PMC11018507 DOI: 10.1016/j.ibmb.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Transferrin 1 (Tsf1) is an insect-specific iron-binding protein that is abundant in hemolymph and other extracellular fluids. It binds iron tightly at neutral pH and releases iron under acidic conditions. Tsf1 influences the distribution of iron in the body and protects against infection. Elucidating the mechanisms by which Tsf1 achieves these functions will require an understanding of how Tsf1 binds and releases iron. Previously, crystallized Tsf1 from Manduca sexta was shown to have a novel type of iron coordination that involves four iron-binding ligands: two tyrosine residues (Tyr90 and Tyr204), a buried carbonate anion, and a solvent-exposed carbonate anion. The solvent-exposed carbonate anion was bound by a single amino acid residue, a highly conserved asparagine at position 121 (Asn121); thus, we predicted that Asn121 would be essential for high-affinity iron binding. To test this hypothesis, we analyzed the iron-binding and -release properties of five forms of recombinant Tsf1: wild-type, a Y90F/Y204F double mutant (negative control), and three Asn121 mutants (N121A, N121D and N121S). Each of the Asn121 mutants exhibited altered spectral properties, confirming that Asn121 contributes to iron coordination. The N121D and N121S mutations resulted in slightly lower affinity for iron, especially at acidic pH, while iron binding and release by the N121A mutant was indistinguishable from that of the wild-type protein. The surprisingly minor consequences of mutating Asn121, despite its high degree of conservation in diverse insect species, suggest that Asn121 may play a role that is essential in vivo but non-essential for high affinity iron binding in vitro.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Sakajiri T, Nakatsuji M, Teraoka Y, Furuta K, Ikuta K, Shibusa K, Sugano E, Tomita H, Inui T, Yamamura T. Zinc mediates the interaction between ceruloplasmin and apo-transferrin for the efficient transfer of Fe(III) ions. Metallomics 2021; 13:6427378. [PMID: 34791391 DOI: 10.1093/mtomcs/mfab065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Fe(II) exported from cells is oxidized to Fe(III), possibly by a multi-copper ferroxidase (MCF) such as ceruloplasmin (CP), to efficiently bind with the plasma iron transport protein transferrin (TF). As unbound Fe(III) is highly insoluble and reactive, its release into the blood during the transfer from MCF to TF must be prevented. A likely mechanism for preventing the release of unbound Fe(III) is via direct interaction between MCF and TF; however, the occurrence of this phenomenon remains controversial. This study aimed to reveal the interaction between these proteins, possibly mediated by zinc. Using spectrophotometric, isothermal titration calorimetric, and surface plasmon resonance methods, we found that Zn(II)-bound CP bound to iron-free TF (apo-TF) with a Kd of 4.2 μM and a stoichiometry CP:TF of ∼2:1. Computational modeling of the complex between CP and apo-TF predicted that each of the three Zn(II) ions that bind to CP further binds to acidic amino acid residues of apo-TF to play a role as a cross-linker connecting both proteins. Domain 4 of one CP molecule and domain 6 of the other CP molecule fit tightly into the clefts in the N- and C-lobes of apo-TF, respectively. Upon the binding of two Fe(III) ions to apo-TF, the resulting diferric TF [Fe(III)2TF] dissociated from CP by conformational changes in TF. In human blood plasma, zinc deficiency reduced the production of Fe(III)2TF and concomitantly increased the production of non-TF-bound iron. Our findings suggest that zinc may be involved in the transfer of iron between CP and TF.
Collapse
Affiliation(s)
- Tetsuya Sakajiri
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Faculty of Nutritional Sciences, the University of Morioka, 808 Sunakomi, Takizawa, Iwate 020-0694, Japan.,Qualtec Co. Ltd., 4-230 Sambo-cho, Sakai, Osaka 590-0906, Japan.,Department of Nutrition, Kyushu Nutrition Welfare University, 5-1-1 Shimoitozu, Kitakyushu Kokurakita-ku, Fukuoka 803-0846, Japan
| | - Masatoshi Nakatsuji
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiaki Teraoka
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kosuke Furuta
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.,Japanese Red Cross Hokkaido Blood Center, 2-1 Nijuyonken, Nishi-ku, Sapporo, Hokkaido 063-0802, Japan
| | - Kotoe Shibusa
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.,Hokkaido System Science Co., Ltd., 2-1 Shinkawa Nishi, Kita-ku, Sapporo, Hokkaido 001-0932, Japan
| | - Eriko Sugano
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takaki Yamamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,Faculty of Nutritional Sciences, the University of Morioka, 808 Sunakomi, Takizawa, Iwate 020-0694, Japan
| |
Collapse
|
3
|
Weber JJ, Kanost MR, Gorman MJ. Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: Implications for insect iron homeostasis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103438. [PMID: 32735914 PMCID: PMC7501197 DOI: 10.1016/j.ibmb.2020.103438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 05/20/2023]
Abstract
Transferrins belong to an ancient family of extracellular proteins. The best-characterized transferrins are mammalian proteins that function in iron sequestration or iron transport; they accomplish these functions by having a high-affinity iron-binding site in each of their two homologous lobes. Insect hemolymph transferrins (Tsf1s) also function in iron sequestration and transport; however, sequence-based predictions of their iron-binding residues have suggested that most Tsf1s have a single, lower-affinity iron-binding site. To reconcile the apparent contradiction between the known physiological functions and predicted biochemical properties of Tsf1s, we purified and characterized the iron-binding properties of Drosophila melanogaster Tsf1 (DmTsf1), Manduca sexta Tsf1 (MsTsf1), and the amino-lobe of DmTsf1 (DmTsf1N). Using UV-Vis spectroscopy, we found that these proteins bind iron, but they exhibit shifts in their spectra compared to mammalian transferrins. Through equilibrium dialysis experiments, we determined that DmTsf1 and MsTsf1 bind only one ferric ion; their affinity for iron is high (log K' = 18), but less than that of the well-characterized mammalian transferrins (log K' ~ 20); and they release iron under moderately acidic conditions (pH50 = 5.5). Iron release analysis of DmTsf1N suggested that iron binding in the amino-lobe is stabilized by the carboxyl-lobe. These findings will be critical for elucidating the mechanisms of Tsf1 function in iron sequestration and transport in insects.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Khoo TC, Tubbesing K, Rudkouskaya A, Rajoria S, Sharikova A, Barroso M, Khmaladze A. Quantitative label-free imaging of iron-bound transferrin in breast cancer cells and tumors. Redox Biol 2020; 36:101617. [PMID: 32863219 PMCID: PMC7327243 DOI: 10.1016/j.redox.2020.101617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Transferrin (Tf) is an essential serum protein which delivers iron throughout the body via transferrin-receptor (TfR)-mediated uptake and iron release in early endosomes. Currently, there is no robust method to assay the population of iron-bound Tf in intact cells and tissues. Raman hyperspectral imaging detected spectral peaks that correlated with iron-bound Tf in intact cells and tumor xenografts sections (~1270-1300 cm-1). Iron-bound (holo) and iron-free (apo) human Tf forms were endocytosed by MDAMB231 and T47D human breast cancer cells. The Raman iron-bound Tf peak was identified in cells treated with holo-Tf, but not in cells incubated with apo-Tf. A reduction in the Raman peak intensity between 5 and 30 min of Tf internalization was observed in T47D, but not in MDAMB231, suggesting that T47D can release iron from Tf more efficiently than MDAMB231. MDAMB231 may display a disrupted iron homeostasis due to iron release delays caused by alterations in the pH or ionic milieu of the early endosomes. In summary, we have demonstrated that Raman hyperspectral imaging can be used to identify iron-bound Tf in cell cultures and tumor xenografts and detect iron release behavior of Tf in breast cancer cells.
Collapse
Affiliation(s)
- Ting Chean Khoo
- Physics Department, SUNY University at Albany, 1400, Washington Avenue, Albany, NY, USA
| | - Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Shilpi Rajoria
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Anna Sharikova
- Physics Department, SUNY University at Albany, 1400, Washington Avenue, Albany, NY, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Alexander Khmaladze
- Physics Department, SUNY University at Albany, 1400, Washington Avenue, Albany, NY, USA.
| |
Collapse
|
5
|
Semak I, Budzevich A, Maliushkova E, Kuzniatsova V, Popkov N, Zalutsky I, Ivashkevich O. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res 2019; 28:465-478. [PMID: 31396786 DOI: 10.1007/s11248-019-00165-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
The primary male-goats Lac-1 (human lactoferrin gene construct hLF5) and Lac-2 (human lactoferrin gene construct hLF3) with genome containing human lactoferrin gene were bred and the sperm bank of primary male-goats and their male descendents (F1-F7) was created. The herd of goats (200 transgenic females) that produced recombinant human lactoferrin (rhLF) in their milk at levels up to 16 g/L was obtained. The rhLF from milk of transgenic goats, natural human lactoferrin (hLF) from woman milk and natural goat lactoferrin (gLF) from milk of non-transgenic goats were purified using cation-exchange chromatography. It has been shown that rhLF is a glycoprotein and its physicochemical characteristics of rhLF are similar to hLf as revealed by different analytical methods including electron paramagnetic resonance, spectrophotometry, differential scanning calorimetry, mass spectrometry and peptide mapping. The high expression level of rhLF achieved in milk of transgenic goats provides a solid basis for developing an efficient and cost-effective downstream processing. The rhLF exhibited a prominent biological activity suggesting it as a promising biopharmaceutical and food supplements.
Collapse
Affiliation(s)
- I Semak
- Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus.
| | - A Budzevich
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160, Zhodino, Belarus
| | - E Maliushkova
- Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus
| | - V Kuzniatsova
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160, Zhodino, Belarus
| | - N Popkov
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160, Zhodino, Belarus
| | - I Zalutsky
- Institute of Physiology of the National Academy of Sciences of Belarus, 28 Academicheskaya Str., 220072, Minsk, Belarus
| | - O Ivashkevich
- Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus
| |
Collapse
|
6
|
Brummett LM, Kanost MR, Gorman MJ. The immune properties of Manduca sexta transferrin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:1-9. [PMID: 27986638 PMCID: PMC5292288 DOI: 10.1016/j.ibmb.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.
Collapse
Affiliation(s)
- Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
7
|
Ghachtouli SE, Guillot R, Aukauloo A, Dorlet P, Anxolabéhère-Mallart E, Costentin C. Hydroxide Ion versus Chloride and Methoxide as an Exogenous Ligand Reveals the Influence of Hydrogen Bonding with Second-Sphere Coordination Water Molecules in the Electron Transfer Kinetics of Mn Complexes. Inorg Chem 2012; 51:3603-12. [DOI: 10.1021/ic202480h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sanae El Ghachtouli
- Laboratoire d’Electrochimie
Moléculaire, Univ Paris Diderot, Sorbonne Paris Cité,
Unité Mixte de Recherche Université−CNRS No.
7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205
Paris Cedex 13, France
- ICMMO−UMR 8182−Bât.
420, Université Paris−Sud 11, 15 rue Georges Clemenceau,
91405 Orsay Cedex, France
| | - Régis Guillot
- ICMMO−UMR 8182−Bât.
420, Université Paris−Sud 11, 15 rue Georges Clemenceau,
91405 Orsay Cedex, France
| | - Ally Aukauloo
- ICMMO−UMR 8182−Bât.
420, Université Paris−Sud 11, 15 rue Georges Clemenceau,
91405 Orsay Cedex, France
- CEA, iBiTec-S, SB2SM, F-91191 Gif-sur-Yvette, France
| | - Pierre Dorlet
- Laboratoire Stress Oxydant et
Détoxication, CNRS, UMR 8221, F-91191 Gif-sur-Yvette, France
- CEA, iBiTec-S, SB2SM, F-91191 Gif-sur-Yvette, France
| | - Elodie Anxolabéhère-Mallart
- Laboratoire d’Electrochimie
Moléculaire, Univ Paris Diderot, Sorbonne Paris Cité,
Unité Mixte de Recherche Université−CNRS No.
7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205
Paris Cedex 13, France
| | - Cyrille Costentin
- Laboratoire d’Electrochimie
Moléculaire, Univ Paris Diderot, Sorbonne Paris Cité,
Unité Mixte de Recherche Université−CNRS No.
7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205
Paris Cedex 13, France
| |
Collapse
|
8
|
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:161-87. [PMID: 21856378 PMCID: PMC3258305 DOI: 10.1016/j.bbagen.2011.08.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not long after the Big Bang, iron began to play a central role in the Universe and soon became mired in the tangle of biochemistry that is the prima essentia of life. Since life's addiction to iron transcends the oxygenation of the Earth's atmosphere, living things must be protected from the potentially dangerous mix of iron and oxygen. The human being possesses grams of this potentially toxic transition metal, which is shuttling through his oxygen-rich humor. Since long before the birth of modern medicine, the blood-vibrant red from a massive abundance of hemoglobin iron-has been a focus for health experts. SCOPE OF REVIEW We describe the current understanding of iron metabolism, highlight the many important discoveries that accreted this knowledge, and describe the perils of dysfunctional iron handling. GENERAL SIGNIFICANCE Isaac Newton famously penned, "If I have seen further than others, it is by standing upon the shoulders of giants". We hope that this review will inspire future scientists to develop intellectual pursuits by understanding the research and ideas from many remarkable thinkers of the past. MAJOR CONCLUSIONS The history of iron research is a long, rich story with early beginnings, and is far from being finished. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Alex D. Sheftel
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Anne B. Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste.-Catherine Rd., Montréal, QC H3T 1E2, and Departments of Physiology and Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Abstract
Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe(3+). Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe(3+) from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF.
Collapse
Affiliation(s)
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, VT, USA
| |
Collapse
|
10
|
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111:5610-37. [PMID: 21688848 DOI: 10.1021/cr100440g] [Citation(s) in RCA: 989] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Steere AN, Byrne SL, Chasteen ND, Mason AB. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochim Biophys Acta Gen Subj 2011; 1820:326-33. [PMID: 21699959 DOI: 10.1016/j.bbagen.2011.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human serum transferrin (hTF) is a bilobal glycoprotein that reversibly binds Fe(3+) and delivers it to cells by the process of receptor-mediated endocytosis. Despite decades of research, the precise events resulting in iron release from each lobe of hTF within the endosome have not been fully delineated. SCOPE OF REVIEW We provide an overview of the kinetics of iron release from hTF±the transferrin receptor (TFR) at endosomal pH (5.6). A critical evaluation of the array of biophysical techniques used to determine accurate rate constants is provided. GENERAL SIGNIFICANCE Delivery of Fe(3+)to actively dividing cells by hTF is essential; too much or too little Fe(3+) directly impacts the well-being of an individual. Because the interaction of hTF with the TFR controls iron distribution in the body, an understanding of this process at the molecular level is essential. MAJOR CONCLUSIONS Not only does TFR direct the delivery of iron to the cell through the binding of hTF, kinetic data demonstrate that it also modulates iron release from the N- and C-lobes of hTF. Specifically, the TFR balances the rate of iron release from each lobe, resulting in efficient Fe(3+) release within a physiologically relevant time frame. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Ashley N Steere
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
12
|
Lassalle-Kaiser B, Hureau C, Pantazis DA, Pushkar Y, Guillot R, Yachandra VK, Yano J, Neese F, Anxolabéhère-Mallart E. Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation. ENERGY & ENVIRONMENTAL SCIENCE 2010; 3:924-938. [PMID: 24772190 PMCID: PMC3997265 DOI: 10.1039/b926990h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activation of a water molecule by the electrochemical oxidation of a Mn-aquo complex accompanied by the loss of protons is reported. The sequential (2 × 1 electron/1 proton) and direct (2 electron/2 proton) proton-coupled electrochemical oxidation of a non-porphyrinic six-coordinated Mn(II)OH2 complex into a mononuclear Mn(O) complex is described. The intermediate Mn(III)OH2 and Mn(III)OH complexes are electrochemically prepared and analysed. Complete deprotonation of the coordinated water molecule in the Mn(O) complex is confirmed by electrochemical data while the analysis of EXAFS data reveals a gradual shortening of an Mn-O bond upon oxidation from Mn(II)OH2 to Mn(III)OH and Mn(O). Reactivity experiments, DFT calculations and XANES pre-edge features provide strong evidence that the bonding in Mn(O) is best characterized by a Mn(III)-oxyl description. Such oxyl species could play a crucial role in natural and artificial water splitting reactions. We provide here a synthetic example for such species, obtained by electrochemical activation of a water ligand.
Collapse
Affiliation(s)
- Benedikt Lassalle-Kaiser
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR–CNRS 8182, Univ Paris Sud 11, F-91405 Orsay, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, 31077 Toulouse, France, Université de Toulouse, UPS, INPT, LCC, 31077 Toulouse, France. ; Fax: +33(0)5 61 33 30 03; Tel: +33(0)5 61 33 31 20
| | - Dimitrios A. Pantazis
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, Max-Planck Institute for Bioinorganic Chemistry, Stiftstr.32-34, D-45470 Mulheim an der Ruhr, Germany
| | - Yulia Pushkar
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR–CNRS 8182, Univ Paris Sud 11, F-91405 Orsay, France. ; Fax: +33 5(0)169 15 47 54; Tel: + 33(0)1 69 15 47 52
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Frank Neese
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, Max-Planck Institute for Bioinorganic Chemistry, Stiftstr.32-34, D-45470 Mulheim an der Ruhr, Germany
| | - Elodie Anxolabéhère-Mallart
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR–CNRS 8182, Univ Paris Sud 11, F-91405 Orsay, France
| |
Collapse
|
13
|
James NG, Byrne SL, Steere AN, Smith VC, MacGillivray RTA, Mason AB. Inequivalent contribution of the five tryptophan residues in the C-lobe of human serum transferrin to the fluorescence increase when iron is released. Biochemistry 2009; 48:2858-67. [PMID: 19281173 DOI: 10.1021/bi8022834] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (hTF), with two Fe3+ binding lobes, transports iron into cells. Diferric hTF preferentially binds to a specific receptor (TFR) on the surface of cells, and the complex undergoes clathrin dependent receptor-mediated endocytosis. The clathrin-coated vesicle fuses with an endosome where the pH is lowered, facilitating iron release from hTF. On a biologically relevant time scale (2-3 min), the factors critical to iron release include pH, anions, a chelator, and the interaction of hTF with the TFR. Previous work, in which the increase in the intrinsic fluorescence signal was used to monitor iron release from the hTF/TFR complex, established that the TFR significantly enhances the rate of iron release from the C-lobe of hTF. In the current study, the role of the five C-lobe Trp residues in reporting the fluorescence change has been evaluated (+/-sTFR). Only four of the five recombinant Trp --> Phe mutants produced well. A single slow rate constant for iron release is found for the monoferric C-lobe (FeC hTF) and the four Trp mutants in the FeC hTF background. The three Trp residues equivalent to those in the N-lobe differed from the N-lobe and each other in their contributions to the fluorescent signal. Two rate constants are observed for the FeC hTF control and the four Trp mutants in complex with the TFR: k(obsC1) reports conformational changes in the C-lobe initiated by the TFR, and k(obsC2) is ascribed to iron release. Excitation at 295 nm (Trp only) and at 280 nm (Trp and Tyr) reveals interesting and significant differences in the rate constants for the complex.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington 05405, Vermont, USA
| | | | | | | | | | | |
Collapse
|
14
|
Racine R, Moisy P, Paquet F, Métivier H, Madic C. In vitro study of the interaction between neptunium ions and aposerumtransferrin by absorption spectrophotometry and ultrafiltration: the case of Np(V). RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.91.2.115.19987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The interaction between Np(V) and human aposerumtransferrin (apoTf) was studied in vitro under physiological conditions (37°C, pH 7.4, [NaCl]=0.15 M, [HEPES]=5×10-2 M) by UV-visible and near-IR absorption spectrophotometry and by ultrafiltration. It was found that Np(V) was bound in small fraction (<12%) to apoTf, and that the role of carbonate and citrate anions in binding is more competitive than synergistic. The complexes NpO2CO3
- and NpO2Cit2- tend to form rather than the Np(V)-apoTf complex. Np(V) binding on apoTf appears to be pH-dependent and reversible. Displacement experiments with FeIIINTA showed non-specific binding, suggesting a weak interaction between Np(V) and apoTf different from the reactions involving transferrin-specific sites with other metallic ions, such as Fe(III). The low overall charge, the size and the geometry of the linear di-oxocation NpO2
+ could account for the weak interaction between Np(V) and human transferrin.
Collapse
|
15
|
Kumar R, Mauk AG. Atypical Effects of Salts on the Stability and Iron Release Kinetics of Human Transferrin. J Phys Chem B 2009; 113:12400-9. [DOI: 10.1021/jp903257c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - A. Grant Mauk
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| |
Collapse
|
16
|
Feng Y, Wang C, Zhao Y, Li J, Liao D, Yan S, Wang Q. Out-of-plane dimeric MnIII quadridentate Schiff-base complexes: Synthesis, structure and magnetic properties. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
James NG, Byrne SL, Mason AB. Incorporation of 5-hydroxytryptophan into transferrin and its receptor allows assignment of the pH induced changes in intrinsic fluorescence when iron is released. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:532-40. [PMID: 19103311 DOI: 10.1016/j.bbapap.2008.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/11/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
Human serum transferrin (hTF) is a bilobal glycoprotein that transports iron to cells. At neutral pH, diferric hTF binds with nM affinity to the transferrin receptor (TFR) on the cell surface. The complex is taken into the cell where, at the acidic pH of the endosome ( approximately pH 5.6), iron is released. Since iron coordination strongly quenches the intrinsic tryptophan fluorescence of hTF, the increase in the fluorescent signal reports the rate constant(s) of iron release. At pH 5.6, the TFR considerably enhances iron release from the C-lobe (with little effect on iron release from the N-lobe). The recombinant soluble TFR is a dimer with 11 tryptophan residues per monomer. In the hTF/TFR complex these residues could contribute to and compromise the readout ascribed to iron release from hTF. We report that compared to Fe(C) hTF alone, the increase in the fluorescent signal from the preformed complex of Fe(C) hTF and the TFR at pH 5.6 is significantly quenched (75%). To dissect the contributions of hTF and the TFR to the change in fluorescence, 5-hydroxytryptophan was incorporated into each using our mammalian expression system. Selective excitation of the samples at 280 or 315 nm shows that the TFR contributes little or nothing to the increase in fluorescence when ferric iron is released from Fe(C) hTF. Quantum yield determinations of TFR, Fe(C) hTF and the Fe(C) hTF/TFR complex strongly support our interpretation of the kinetic data.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
18
|
Mason AB, Judson GL, Bravo MC, Edelstein A, Byrne SL, James NG, Roush ED, Fierke CA, Bobst CE, Kaltashov IA, Daughtery MA. Evolution reversed: the ability to bind iron restored to the N-lobe of the murine inhibitor of carbonic anhydrase by strategic mutagenesis. Biochemistry 2008; 47:9847-55. [PMID: 18712936 DOI: 10.1021/bi801133d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The murine inhibitor of carbonic anhydrase (mICA) is a member of the superfamily related to the bilobal iron transport protein transferrin (TF), which binds a ferric ion within a cleft in each lobe. Although the gene encoding ICA in humans is classified as a pseudogene, an apparently functional ICA gene has been annotated in mice, rats, cows, pigs, and dogs. All ICAs lack one (or more) of the amino acid ligands in each lobe essential for high-affinity coordination of iron and the requisite synergistic anion, carbonate. The reason why ICA family members have lost the ability to bind iron is potentially related to acquiring a new function(s), one of which is inhibition of certain carbonic anhydrase (CA) isoforms. A recombinant mutant of the mICA (W124R/S188Y) was created with the goal of restoring the ligands required for both anion (Arg124) and iron (Tyr188) binding in the N-lobe. Absorption and fluorescence spectra definitively show that the mutant binds ferric iron in the N-lobe. Electrospray ionization mass spectrometry confirms the presence of both ferric iron and carbonate. At the putative endosomal pH of 5.6, iron is released by two slow processes indicative of high-affinity coordination. Induction of specific iron binding implies that (1) the structure of mICA resembles those of other TF family members and (2) the N-lobe can adopt a conformation in which the cleft closes when iron binds. Because the conformational change in the N-lobe indicated by metal binding does not impact the inhibitory activity of mICA, inhibition of CA was tentatively assigned to the C-lobe. Proof of this assignment is provided by limited trypsin proteolysis of porcine ICA.
Collapse
Affiliation(s)
- Anne B Mason
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Farnaud S, Amini M, Rapisarda C, Cammack R, Bui T, Drake A, Evans RW, Suryo Rahmanto Y, Richardson DR. Biochemical and spectroscopic studies of human melanotransferrin (MTf): electron-paramagnetic resonance evidence for a difference between the iron-binding site of MTf and other transferrins. Int J Biochem Cell Biol 2008; 40:2739-45. [PMID: 18691669 DOI: 10.1016/j.biocel.2008.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 11/27/2022]
Abstract
Melanotransferrin (MTf) is a member of the transferrin (Tf) family of iron (Fe)-binding proteins that was first identified as a cell-surface marker of melanoma. Although MTf has a high-affinity Fe-binding site that is practically identical to that of serum Tf, the protein does not play an essential role in Fe homeostasis and its precise molecular function remains unclear. A Zn(II)-binding motif, distinct from the Fe-binding site, has been proposed in human MTf based on computer modelling studies. However, little is known concerning the interaction of its proposed binding site(s) with metals and the consequences in terms of MTf conformation. For the first time, biochemical and spectroscopic techniques have been used in this study to characterise metal ion-binding to recombinant MTf. Initially, the binding of Fe to MTf was examined using 6M urea gel electrophoresis. Although four different iron-loaded forms were observed with serum Tf, only two forms were found with MTf, the apo-form and the N-monoferric holo-protein, suggesting a single high-affinity site. The presence of a single Fe(III)-binding site was also supported by EPR results which indicated that the Fe(III)-binding characteristics of MTf were unique, but somewhat comparable to the N-lobes of human serum Tf and chicken ovo-Tf. Circular dichroism (CD) analysis indicated that, as for Tf, no changes in secondary structure could be observed upon Fe(III)-binding. The ability of MTf to bind Zn(II) was also investigated using CD which demonstrated that the single high-affinity Fe-binding site was distinct from a potential Zn(II)-binding site.
Collapse
Affiliation(s)
- Sebastien Farnaud
- School of Biosciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Two-dimensional grid structure based on dimeric manganese(III) tetradentate Schiff-base: Synthesis, structure and magnetic properties. INORG CHEM COMMUN 2008. [DOI: 10.1016/j.inoche.2008.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
James NG, Mason AB. Protocol to determine accurate absorption coefficients for iron-containing transferrins. Anal Biochem 2008; 378:202-7. [PMID: 18471984 DOI: 10.1016/j.ab.2008.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/19/2022]
Abstract
An accurate protein concentration is an essential component of most biochemical experiments. The simplest method to determine a protein concentration is by measuring the A(280) using an absorption coefficient (epsilon) and applying the Beer-Lambert law. For some metalloproteins (including all transferrin family members), difficulties arise because metal binding contributes to the A(280) in a nonlinear manner. The Edelhoch method is based on the assumption that the epsilon of a denatured protein in 6 M guanidine-HCl can be calculated from the number of the tryptophan, tyrosine, and cystine residues. We extend this method to derive epsilon values for both apo- and iron-bound transferrins. The absorbance of an identical amount of iron-containing protein is measured in (i) 6 M guanidine-HCl (denatured, no iron), (ii) pH 7.4 buffer (nondenatured with iron), and (iii) pH 5.6 (or lower) buffer with a chelator (nondenatured without iron). Because the iron-free apoprotein has an identical A(280) under nondenaturing conditions, the difference between the reading at pH 7.4 and the lower pH directly reports the contribution of the iron. The method is fast and consumes approximately 1mg of sample. The ability to determine accurate epsilon values for transferrin mutants that bind iron with a wide range of affinities has proven to be very useful; furthermore, a similar approach could easily be followed to determine epsilon values for other metalloproteins in which metal binding contributes to the A(280).
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
22
|
James NG, Berger CL, Byrne SL, Smith VC, MacGillivray RTA, Mason AB. Intrinsic Fluorescence Reports a Global Conformational Change in the N-Lobe of Human Serum Transferrin following Iron Release†. Biochemistry 2007; 46:10603-11. [PMID: 17711300 DOI: 10.1021/bi602425c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transferrins have been extensively studied in order to understand how they reversibly bind and release iron. Human serum transferrin (hTF) is a single polypeptide chain that folds into two lobes (N- and C-lobe); each lobe binds a single ferric ion. Iron release induces a large conformational change in each lobe. At the putative endosomal pH of 5.6, measurement of the increase in intrinsic fluorescence upon iron release from the recombinant N-lobe yields two rate constants: 8.9 min-1 and 1.3 min-1. Direct monitoring of iron release from the N-lobe at pH 5.6 (by the decrease in absorbance at 470 nm) gives a single rate constant of 9.1 min-1, definitively establishing that the faster rate constant in the fluorescent studies is due to iron release. To further elucidate the molecular basis of the intrinsic fluorescence change (and the source of the slower rate constant), we examined the contributions of the three individual tryptophan residues in the N-lobe (Trp8, Trp128, and Trp264). Three double mutants, each containing the single remaining tryptophan residue, were produced. In the iron-bound N-lobe, Trp128 and Trp264 are quenched by iron and account for almost the entire fluorescent signal when iron is released. As for the wild-type N-lobe, the fluorescence increase for each of these mutants is best fit by a double-exponential function indicating two processes. Trp8 is severely quenched under all conditions, making virtually no contribution to the signal. Additionally, a mutant lacking all three Trp residues allows assignment of the fluorescent signal completely to the three tryptophan residues and observation of the presence of one (or more) tyrosinates in the N-lobe that have physiological significance in the uptake of iron.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wang F, Lothrop A, James N, Griffiths T, Lambert L, Leverence R, Kaltashov I, Andrews N, MacGillivray R, Mason A. A novel murine protein with no effect on iron homoeostasis is homologous with transferrin and is the putative inhibitor of carbonic anhydrase. Biochem J 2007; 406:85-95. [PMID: 17511619 PMCID: PMC1948979 DOI: 10.1042/bj20070384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a search for genes that modify iron homoeostasis, a gene (1300017J02Rik) was located immediately upstream of the murine TF (transferrin) gene. However, expression of the 1300017J02Rik gene product was not responsive to a number of modulators of iron metabolism. Specifically, expression was not altered in mouse models of iron disorders including mice with deficiencies in the haemochromatosis protein Hfe, the recombination-activating protein, Rag, beta2-microglobulin, TF, ceruloplasmin or Hb, or in mice with microcytic anaemia. Additionally, neither lipopolysaccharide nor hypoxia treatment resulted in any significant changes in the 1300017J02Rik expression level. The genomic DNA sequence suggested that the 1300017J02Rik gene product might be a protein equivalent to the pICA {porcine ICA [inhibitor of CA (carbonic anhydrase)]}. The coding region for the murine 1300017J02Rik gene was placed into the pNUT expression vector. Transformed BHK cells (baby-hamster kidney cells) were transfected with this plasmid, resulting in secretion of recombinant mICA (murine ICA) into the tissue culture medium. Following purification to homogeneity, the yield of mICA from the BHK cells was found to be considerably greater (at least 4-fold) than the yield of pICA from a previously reported Pichia pastoris (yeast) expression system. MS showed that the recombinant mICA was a glycoprotein that associated with CA in a 1:1 stoichiometry. Despite its high sequence similarity to TF, titration experiments showed that mICA was unable to bind iron specifically. Although enzymatic assays revealed that mICA was able to inhibit CA, it is unclear if this is its sole or even its major function since, to date, humans and other primates appear to lack functional ICA. Lastly, we note that this member of the TF superfamily is a relatively recent addition resulting from a tandem duplication event.
Collapse
Affiliation(s)
- Fudi Wang
- *Division of Hematology/Oncology, Children's Hospital Boston, and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Adam P. Lothrop
- †Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, U.S.A
| | - Nicholas G. James
- †Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, U.S.A
| | - Tanya A. M. Griffiths
- ‡Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Lisa A. Lambert
- §Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, U.S.A
| | - Rachael Leverence
- ∥Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, U.S.A
| | - Igor A. Kaltashov
- ∥Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, U.S.A
| | - Nancy C. Andrews
- *Division of Hematology/Oncology, Children's Hospital Boston, and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Ross T. A. MacGillivray
- ‡Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Anne B. Mason
- †Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Tom-Yew SAL, Cui DT, Bekker EG, Murphy MEP. Anion-independent Iron Coordination by the Campylobacter jejuni Ferric Binding Protein. J Biol Chem 2005; 280:9283-90. [PMID: 15613474 DOI: 10.1074/jbc.m412479200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni, the leading cause of human gastroenteritis, expresses a ferric binding protein (cFbpA) that in many pathogenic bacteria functions to acquire iron as part of their virulence repertoire. Recombinant cFbpA is isolated with ferric iron bound from Escherichia coli. The crystal structure of cFbpA reveals unprecedented iron coordination by only five protein ligands. The histidine and one tyrosine are derived from the N-terminal domain, whereas the three remaining tyrosine ligands are from the C-terminal domain. Surprisingly, a synergistic anion present in all other characterized ferric transport proteins is not observed in the cFbpA iron-binding site, suggesting a novel role for this protein in iron uptake. Furthermore, cFbpA is shown to bind iron with high affinity similar to Neisserial FbpA and exhibits an unusual preference for ferrous iron (oxidized subsequently to the ferric form) or ferric iron chelated by oxalate. Sequence and structure analyses reveal that cFbpA is a member of a new class of ferric binding proteins that includes homologs from invasive and intracellular bacteria as well as cyanobacteria. Overall, six classes are defined based on clustering within the tree and by their putative iron coordination. The absence of a synergistic anion in the iron coordination sphere of cFbpA also suggests an alternative model of evolution for FbpA homologs involving an early iron-binding ancestor instead of a requirement for a preexisting anion-binding ancestor.
Collapse
Affiliation(s)
- Stacey A L Tom-Yew
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
25
|
Navati MS, Samuni U, Aisen P, Friedman JM. Binding and release of iron by gel-encapsulated human transferrin: evidence for a conformational search. Proc Natl Acad Sci U S A 2003; 100:3832-7. [PMID: 12486226 PMCID: PMC153007 DOI: 10.1073/pnas.262526399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human transferrin is a single-chain bilobal protein with each of the two similar but not identical lobes in turn composed of two domains. Each lobe may assume one of two stable structural conformations, open or closed, determined by a rigid rotation of the domains with respect to each other. In solution, the transformation of a lobe between open and closed conformations is associated with the release or binding of an Fe(III) ion. The results of the present study indicate that encapsulation of transferrin within a porous sol-gel matrix allows for a dramatic expansion, to days or weeks, of this interconversion time period, thus providing an opportunity to probe heretofore inaccessible transient intermediates. Sol-gel-encapsulated iron-free transferrin samples are prepared by using two protocols. In the first protocol, the equilibrium form of apotransferrin is encapsulated in the sol-gel matrix, whereas in the second protocol holotransferrin is first encapsulated and then iron is removed from the protein. Results of kinetic and spectroscopic studies allow for distinguishing between two models for iron binding. In the first, iron is assumed to bind to amino acid ligands of one domain, inducing a rigid rotation of the second domain to effect closure of the interdomain cleft. In the second, iron undertakes a conformational search among the thermally accessible states of the lobe, "choosing" the state which most nearly approximates the stable closed state when iron is bound. Our experimental results support the second mechanism.
Collapse
Affiliation(s)
- Mahantesh S Navati
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
26
|
Adams TE, Mason AB, He QY, Halbrooks PJ, Briggs SK, Smith VC, MacGillivray RTA, Everse SJ. The position of arginine 124 controls the rate of iron release from the N-lobe of human serum transferrin. A structural study. J Biol Chem 2003; 278:6027-33. [PMID: 12458193 DOI: 10.1074/jbc.m210349200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human serum transferrin (hTF) is a bilobal iron-binding and transport protein that carries iron in the blood stream for delivery to cells by a pH-dependent mechanism. Two iron atoms are held tightly in two deep clefts by coordination to four amino acid residues in each cleft (two tyrosines, a histidine, and an aspartic acid) and two oxygen atoms from the "synergistic" carbonate anion. Other residues in the binding pocket, not directly coordinated to iron, also play critical roles in iron uptake and release through hydrogen bonding to the liganding residues. The original crystal structures of the iron-loaded N-lobe of hTF (pH 5.75 and 6.2) revealed that the synergistic carbonate is stabilized by interaction with Arg-124 and that both the arginine and the carbonate adopt two conformations (MacGillivray, R. T. A., Moore, S. A., Chen, J., Anderson, B. F., Baker, H., Luo, Y. G., Bewley, M., Smith, C. A., Murphy, M. E., Wang, Y., Mason, A. B., Woodworth, R. C., Brayer, G. D., and Baker, E. N. (1998) Biochemistry 37, 7919-7928). In the present study, we show that the two conformations are also found for a structure at pH 7.7, indicating that this finding was not strictly a function of pH. We also provide structures for two single point mutants (Y45E and L66W) designed to force Arg-124 to adopt each of the previously observed conformations. The structures of each mutant show that this goal was accomplished, and functional studies confirm the hypothesis that access to the synergistic anion dictates the rate of iron release. These studies highlight the importance of the arginine/carbonate movement in the mechanism of iron release in the N-lobe of hTF. Access to the carbonate via a water channel allows entry of protons and anions, enabling the attack on the iron.
Collapse
Affiliation(s)
- Ty E Adams
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Guo M, Harvey I, Yang W, Coghill L, Campopiano DJ, Parkinson JA, MacGillivray RTA, Harris WR, Sadler PJ. Synergistic anion and metal binding to the ferric ion-binding protein from Neisseria gonorrhoeae. J Biol Chem 2003; 278:2490-502. [PMID: 12372824 DOI: 10.1074/jbc.m208776200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 34-kDa periplasmic iron-transport protein (FBP) from Neisseria gonorrhoeae (nFBP) contains Fe(III) and (hydrogen)phosphate (synergistic anion). It has a characteristic ligand-to-metal charge-transfer absorption band at 481 nm. Phosphate can be displaced by (bi)carbonate to give Fe.CO(3).nFBP (lambda(max) 459 nm). The local structures of native Fe-PO(4)-nFBP and Fe.CO(3).nFBP were determined by EXAFS at the FeK edge using full multiple scattering analysis. The EXAFS analysis reveals that both phosphate and carbonate ligands bind to FBP in monodentate mode in contrast to transferrins, which bind carbonate in bidentate mode. The EXAFS analysis also suggests an alternative to the crystallographically determined position of the Glu ligand, and this in turn suggests that an H-bonding network may help to stabilize monodentate binding of the synergistic anion. The anions oxalate, pyrophosphate, and nitrilotriacetate also appear to serve as synergistic anions but not sulfate or perchlorate. The oxidation of Fe(II) in the presence of nFBP led to a weak Fe(III).nFBP complex (lambda(max) 471 nm). Iron and phosphate can be removed from FBP at low pH (pH 4.5) in the presence of a large excess of citrate. Apo-FBP is less soluble and less stable than Fe.nFBP and binds relatively weakly to Ga(III) and Bi(III) but not to Co(III) ions, all of which bind strongly to apo-human serum transferrin.
Collapse
Affiliation(s)
- Maolin Guo
- School of Chemistry, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peterson NA, Arcus VL, Anderson BF, Tweedie JW, Jameson GB, Baker EN. "Dilysine trigger" in transferrins probed by mutagenesis of lactoferrin: crystal structures of the R210G, R210E, and R210L mutants of human lactoferrin. Biochemistry 2002; 41:14167-75. [PMID: 12450380 DOI: 10.1021/bi020443a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian iron-binding proteins lactoferrin (Lf) and transferrin (Tf) bind iron very tightly, but reversibly. Despite homologous structures and essentially identical iron binding sites, Tf begins to release iron at pH 6.0, whereas Lf retains iron to pH approximately 3.5. This difference in iron retention gives the two proteins different biological roles. Two lysine residues, Lys 206 and Lys 296, which form a hydrogen-bonded dilysine pair in human Tf, have been shown to strongly influence iron release from the N-lobe. The equivalent residues in human Lf are Arg 210 and Lys 301, and we have here mutated Arg 210 in the N-lobe half-molecule of human lactoferrin, Lf(N), to probe its role in iron release. The Lf(N) mutants R210G, R210E, and R210L were expressed, purified, and crystallized, and their crystal structures were determined and refined at resolutions of 1.95 A (R210G), 2.2 A (R210E), and 2.0 A (R210L). The overall structures are very similar to that of wild-type Lf(N), but with small differences in domain orientations. In each of the mutants, however, Lys 301 (equivalent to Lys 296 in Tf) changes its conformation to fill the space occupied by Arg 210 Neta2 in wild-type Lf(N), interacting with the two tyrosine ligands Tyr 92 and Tyr 192. By comparison with other Lf and Tf structures, we conclude that Lys 301 (or Lys 296 in Tf) only occupies this site when residue 210 (206 in Tf) is nonpositive (neutral as in R210G and R210L or negative as in R210E). Thus, Lys 206 in the Tf dilysine pair is identified as having a depressed pK(a). Three specific sites are variably occupied by polar groups in the Lf mutants and other Lf and Tf proteins, and when coupled with iron-release data, these give new insights into the factors that most influence iron retention at low pH.
Collapse
Affiliation(s)
- Neil A Peterson
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
29
|
Zak O, Ikuta K, Aisen P. The synergistic anion-binding sites of human transferrin: chemical and physiological effects of site-directed mutagenesis. Biochemistry 2002; 41:7416-23. [PMID: 12044175 DOI: 10.1021/bi0160258] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A defining feature of all transferrins is the absolute dependence of iron binding on the concomitant binding of a synergistic anion, normally but not necessarily carbonate. Acting as a bridging ligand between iron and protein, it completes the coordination requirements of iron to lock the essential metal in its binding site. To investigate the role of the synergistic anion in the iron-binding and iron-donating properties of human transferrin, a bilobal protein with an iron binding site in each lobe, we have selectively mutated the anion-binding threonine and arginine ligands that form an essential part of the electrostatic and hydrogen-bonding network holding the synergistic anion to the protein. Preservation of either ligand is sufficient to maintain anion binding, and therefore iron binding, in the mutated lobe. Arginine is a stronger ligand than threonine, and its loss weakens carbonate and therefore iron binding, but maintains the ability of nitrilotriacetate to serve as a carbonate surrogate. Replacement of both ligands abolishes anion binding and consequently iron binding in the affected lobe. Loss of anion binding in either lobe results in a monoferric protein binding iron in normal fashion only in the opposite lobe. Both monoferric proteins are capable of transferrin receptor-dependent binding and iron donation to K562 cells, but with diminished receptor occupancy by the protein bearing iron only in the N-lobe.
Collapse
Affiliation(s)
- Olga Zak
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
30
|
Bihari S, Smith PA, Parsons S, Sadler PJ. Stereoisomers of Mn(III) complexes of ethylenebis[(o-hydroxyphenyl)glycine]. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00690-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Zhang L, Szeto KY, Wong WB, Loh TT, Sadler PJ, Sun H. Interactions of bismuth with human lactoferrin and recognition of the Bi(III)-lactoferrin complex by intestinal cells. Biochemistry 2001; 40:13281-7. [PMID: 11683638 DOI: 10.1021/bi010579t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several bismuth compounds are currently used as antiulcer drugs, but the mechanism of action still remains unclear. The antimicrobial activity of Bi(III) complexes toward Gram-negative bacteria is reported to be dependent on the iron uptake system [Domenico, P., et al. (1996) J. Antimicrob. Chemother. 38, 1031-1040]. Electronic absorption and 13C NMR spectroscopic data show that Bi(III) binds to human lactoferrin at the specific Fe(III) sites along with either carbonate or oxalate as the synergistic anion. The uptake of Bi(III) by apo-hLF was rapid [minutes in 10 mM Hepes buffer and 5 mM bicarbonate (pH 7.4)], and almost equal in both lobes. The presence of ATP facilitates the release of Bi(III) from the Bi2-hLF complex when the pH is lowered. The Bi2-hLF complex blocked the uptake of the radiolabeled 59Fe-hLF complex into rat IEC-6 cells. Surprisingly, apo-hLF (but not apotransferrin) was almost as effective in blocking 59Fe uptake as bismuth-loaded lactoferrin. These results suggest that Bi(III)-loaded hLF might be recognized by the lactoferrin receptor and be taken up into cells.
Collapse
Affiliation(s)
- L Zhang
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, PRC
| | | | | | | | | | | |
Collapse
|
32
|
Higgs TC, Ji D, Czernuscewicz RS, Carrano CJ. Oxidation state dependent cis/trans isomerization in ML2 complexes of the heteroscorpionate ligand, (2-hydroxyphenyl)bis(pyrazolyl)methane and its derivatives with iron and cobalt. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(98)00385-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
He QY, Mason AB, Woodworth RC, Tam BM, MacGillivray RT, Grady JK, Chasteen ND. Mutations at nonliganding residues Tyr-85 and Glu-83 in the N-lobe of human serum transferrin. Functional second shell effects. J Biol Chem 1998; 273:17018-24. [PMID: 9642266 DOI: 10.1074/jbc.273.27.17018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray crystal structure of the N-lobe of human serum transferrin has shown that there is a hydrogen bond network, the so-called "second shell," around the transferrin iron binding site. Tyrosine at position 85 and glutamic acid at position 83 are two nonliganding residues in this network in the human serum transferrin N-lobe (hTF/2N). Mutation of each of these two amino acids has a profound effect on the metal binding properties of hTF/2N. When Tyr-85 is mutated to phenylalanine, iron release from the resulting mutant Y85F is much more facile than from the parent protein. Elimination of the hydrogen bond between Tyr-85 and Lys-296 appears to interfere with the "di-lysine (Lys-206-Lys-296) trigger," which affects the iron binding stability of the protein. Surprisingly, mutation of Glu-83 to alanine leads to the absence of one of the normal iron binding ligands; introduction of a monovalent anion is able to restore the normal first coordination sphere. The missing ligand appears to be His-249, as revealed by comparison of the metal binding behaviors of mutants H249Q and E83A and structural analysis. Glu-83 has a strong H bond linkage with His-249 in apo-hTF/2N, which helps to hold the His-249 in the proper position for iron binding. Disabling Glu-83 by mutation to an alanine seriously disturbs the H bond network, allowing His-249 to move away. A monovalent anion can help reestablish the normal network by providing a negative charge near the position of Glu-83 to reach charge balance, so that ligand His-249 is available again for iron binding.
Collapse
Affiliation(s)
- Q Y He
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405.
| | | | | | | | | | | | | |
Collapse
|
34
|
Higgs TC, Ji D, Czernuszewicz RS, Matzanke BF, Schunemann V, Trautwein AX, Helliwell M, Ramirez W, Carrano CJ. The Fe(III), Co(III), and V(III) Complexes of the “Heteroscorpionate” Ligand (2-Thiophenyl)bis(pyrazolyl)methane. Inorg Chem 1998. [DOI: 10.1021/ic971151e] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy C. Higgs
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - David Ji
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Roman S. Czernuszewicz
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Berthold F. Matzanke
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Volker Schunemann
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Alfred X. Trautwein
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Madeleine Helliwell
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Wilfredo Ramirez
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| | - Carl J. Carrano
- Departments of Chemistry, Southwest Texas State University, San Marcos, Texas 78666, University of Houston, Houston, Texas, 77204, The University of Manchester, Oxford Road, Manchester, M13 9PL, England, and The Institute for Physics, Medical University of Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
35
|
He QY, Mason AB, Woodworth RC, Tam BM, MacGillivray RT, Grady JK, Chasteen ND. Inequivalence of the two tyrosine ligands in the N-lobe of human serum transferrin. Biochemistry 1997; 36:14853-60. [PMID: 9398207 DOI: 10.1021/bi9719556] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human serum transferrin N-lobe (hTF/2N) has four iron-binding ligands, including one histidine, one aspartate, and two tyrosines. The present report elucidates the inequivalence of the two tyrosine ligands (Tyr 95 and Tyr 188) on the metal-binding properties of hTF/2N by means of site-directed mutagenesis, metal release kinetics, and absorption and electron paramagnetic resonance (EPR) spectroscopies. When the liganding tyrosines were mutated individually to phenylalanine, the resulting mutant Y95F showed a weak binding affinity for iron and no affinity for copper, whereas, mutant Y188F completely lost the ability to bind iron but formed a stable complex with copper. Since other studies have demonstrated that mutations of the other two ligands, histidine and aspartate, did not completely abolish iron binding, the present findings suggest that the tyrosine ligand at position 188 is essential for binding of iron to occur. Replacement of Tyr 188 with phenylalanine created a favorable chemical environment for copper coordination but a fatal situation for iron binding. The positions of the two liganding tyrosines in the metal-binding cleft suggest a reason for the inequivalence.
Collapse
Affiliation(s)
- Q Y He
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
4-methoxyphenoxo complexes of monooxovanadium(V) and their reactions with cyanoanilines and cyanopyridines. Polyhedron 1997. [DOI: 10.1016/s0277-5387(97)00173-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
He QY, Mason AB, Woodworth RC, Tam BM, Wadsworth T, MacGillivray RT. Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin. Biochemistry 1997; 36:5522-8. [PMID: 9154935 DOI: 10.1021/bi963028p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations of the aspartic acid residue at position 63 of the N-lobe of human serum transferrin substantially alter the metal ion- and anion-binding properties of the protein. Substitution of serine, asparagine, glutamic acid, or alanine results in the loss of a key component of the interface in the interdomain cleft and the metal-binding ligand, aspartic acid, leading in all cases to an increased preference for NTA rather than carbonate as the "synergistic" anion relative to the wild-type protein. Excess bicarbonate is required to eliminate the NTA and obtain the "correct" visible spectrum. Carbonate replaces NTA via an intermediate. Blue shifts for the characteristic absorption band of each mutant show a range of effects on the Fe-O (Tyr) interaction. Titration with Co(III) yielded the molecular absorption coefficient for each mutant except D63A, where Co(III) appeared to oxidize the tyrosine residues and damage the ability of the mutant to bind metal. The chelator, Tiron, removes iron from hTF/2N with a simple saturation kinetic mode with respect to the ligand concentration. Chloride inhibits the release in an interesting manner: the effect is initially sharp and then levels off with a minimum k(obs) at [KCl] = 0.5 M. However, the reaction of the D63 mutants with Tiron results in the formation of the ternary complexes Fe-hTF/2N-Tiron. Significant red shifts for the characteristic absorption bands of these complexes suggest a different ligation of Tiron in the mutants from that in wild-type hTF/2N.
Collapse
Affiliation(s)
- Q Y He
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington 05405, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Li H, Sadler PJ, Sun H. Unexpectedly Strong Binding of a Large Metal Ion (Bi3+) to Human Serum Transferrin. J Biol Chem 1996. [DOI: 10.1074/jbc.271.16.9483] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Ross DC, Egan TJ, Purves LR. Periodate modification of human serum transferrin Fe(III)-binding sites. Inhibition of carbonate insertion into Fe(III)- and Cu(II)-chelator-transferrin ternary complexes. J Biol Chem 1995; 270:12404-10. [PMID: 7759481 DOI: 10.1074/jbc.270.21.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Periodate modification of human serum transferrin produces a species that binds Fe(III) weakly at pH 7.4 contrary to previous reports that Fe(III)-binding activity is completely lost. Ternary complexes of periodate-modified transferrin and either Fe(III) with nitrilotriacetate (NTA), oxalate, citrate, or EDTA, or of Cu(II) with oxalate could be formed. Peak wavelength maxima of these spectral bands are identical to those reported for native transferrin in the absence of bicarbonate. No carbonate ternary complexes of periodate-modified transferrin with Fe(III), Al(III), Cu(II), or Zn(II) could be formed. Conditional (Fe(NTA)) binding constants (log K) for C- and N-terminal modified sites are 7.33 and 7.54, respectively. The respective extinction coefficients at 470 nm are decreased 45% compared with the native protein. The electron paramagnetic resonance spectrum of the complex closely resembles that of the Fe(III)-NTA ternary complex formed with native transferrin in the absence of bicarbonate. Anions, including bicarbonate, at high concentrations destabilize formation of this Fe(III)-NTA ternary complex, while Fe(III) chelators readily remove the bound Fe(III). Bicarbonate, sulfate, and pyrophosphate still bind to the modified binding sites in the absence of metal although with slightly lower affinity and with lower molar difference absorptivities. Results are interpreted as an inhibition of a crucial protein conformational change by an intramolecular cross-link, preventing formation of the particularly stable metal-carbonate ternary complex from the less stable metal-chelate ternary complex. The method can be used to produce monosited transferrins.
Collapse
Affiliation(s)
- D C Ross
- Department of Chemical Pathology, University of Cape Town, Red Cross War Memorial Children's Hospital, Rondebosch, South Africa
| | | | | |
Collapse
|
40
|
|
41
|
Spartalian K, Carrano CJ. Mössbauer spectroscopy on high‐spin d5 iron complexes: Crystal field calculations. J Chem Phys 1983. [DOI: 10.1063/1.445415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Bertini I, Canti G, Luchinat C. Preparation and characterization of the vanadium(III) derivative of transferrin. Inorganica Chim Acta 1982. [DOI: 10.1016/s0020-1693(00)85020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|