1
|
Schwarz EM, Noon JB, Chicca JD, Garceau C, Li H, Antoshechkin I, Ilík V, Pafčo B, Weeks AM, Homan EJ, Ostroff GR, Aroian RV. Hookworm genes encoding intestinal excreted-secreted proteins are transcriptionally upregulated in response to the host's immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636063. [PMID: 39975173 PMCID: PMC11838427 DOI: 10.1101/2025.02.01.636063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hookworms are intestinal parasitic nematodes that chronically infect ~500 million people, with reinfection common even after clearance by drugs. How infecting hookworms successfully overcome host protective mechanisms is unclear, but it may involve hookworm proteins that digest host tissues, or counteract the host's immune system, or both. To find such proteins in the zoonotic hookworm Ancylostoma ceylanicum, we identified hookworm genes encoding excreted-secreted (ES) proteins, hookworm genes preferentially expressed in the hookworm intestine, and hookworm genes whose transcription is stimulated by the host immune system. We collected ES proteins from adult hookworms harvested from hamsters; mass spectrometry identified 565 A. ceylanicum genes encoding ES proteins. We also used RNA-seq to identify A. ceylanicum genes expressed both in young adults (12 days post-infection) and in intestinal and non-intestinal tissues dissected from mature adults (19 days post-infection), with hamster hosts that either had normal immune systems or were immunosuppressed by dexamethasone. In adult A. ceylanicum, we observed 1,670 and 1,196 genes with intestine- and non-intestine-biased expression, respectively. Comparing hookworm gene activity in normal versus immunosuppressed hosts, we observed almost no changes of gene activity in 12-day young adults or non-intestinal 19-day adult tissues. However, in intestinal 19-day adult tissues, we observed 1,951 positively immunoregulated genes (upregulated at least two-fold in normal hosts versus immunosuppressed hosts), and 137 genes that were negatively immunoregulated. Thus, immunoregulation was observed primarily in mature adult hookworm intestine directly exposed to host blood; it may include hookworm genes activated in response to the host immune system in order to neutralize the host immune system. We observed 153 ES genes showing positive immunoregulation in 19-day adult intestine; of these genes, 69 had ES gene homologs in the closely related hookworm Ancylostoma caninum, 24 in the human hookworm Necator americanus, and 24 in the more distantly related strongylid parasite Haemonchus contortus. Such a mixture of rapidly evolving and conserved genes could comprise virulence factors enabling infection, provide new targets for drugs or vaccines against hookworm, and aid in developing therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey D. Chicca
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, 413 Bock Labs, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Carli Garceau
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Leveragen Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - E. Jane Homan
- ioGenetics LLC, 301 South Bedford Street, Ste.1, Madison, WI, 53703, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
2
|
Song BPC, Lai JY, Choong YS, Khanbabaei N, Latz A, Lim TS. Isolation of anti-Ancylostoma-secreted protein 5 (ASP5) antibody from a naïve antibody phage library. J Immunol Methods 2024; 535:113776. [PMID: 39551437 DOI: 10.1016/j.jim.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlights its potential for diagnostic applications for hookworm infections.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Andreas Latz
- Gold Standard Diagnostics Frankfurt GmbH, Dietzenbach, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Price DRG, Steele P, Frew D, McLean K, Androscuk D, Geldhof P, Borloo J, Albaladejo JP, Nisbet AJ, McNeilly TN. Characterisation of protective vaccine antigens from the thiol-containing components of excretory/secretory material of Ostertagia ostertagi. Vet Parasitol 2024; 328:110154. [PMID: 38490160 DOI: 10.1016/j.vetpar.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Previous vaccination trials have demonstrated that thiol proteins affinity purified from Ostertagia ostertagi excretory-secretory products (O. ostertagi ES-thiol) are protective against homologous challenge. Here we have shown that protection induced by this vaccine was consistent across four independent vaccine-challenge experiments. Protection is associated with reduced cumulative faecal egg counts across the duration of the trials, relative to control animals. To better understand the diversity of antigens in O. ostertagi ES-thiol we used high-resolution shotgun proteomics to identify 490 unique proteins in the vaccine preparation. The most numerous ES-thiol proteins, with 91 proteins identified, belong to the sperm-coating protein/Tpx/antigen 5/pathogenesis-related protein 1 (SCP/TAPS) family. This family includes previously identified O. ostertagi vaccine antigens O. ostertagi ASP-1 and ASP-2. The ES-thiol fraction also has numerous proteinases, representing three distinct classes, including: metallo-; aspartyl- and cysteine proteinases. In terms of number of family members, the M12 astacin-like metalloproteinases, with 33 proteins, are the most abundant proteinase family in O. ostertagi ES-thiol. The O. ostertagi ES-thiol proteome provides a comprehensive database of proteins present in this vaccine preparation and will guide future vaccine antigen discovery projects.
Collapse
Affiliation(s)
- Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK.
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - David Frew
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Dorota Androscuk
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Sciences, Ghent University, Belgium
| | - Javier Palarea Albaladejo
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, Scotland, UK; Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| |
Collapse
|
4
|
Liu H, Tao Z, Wang Y, Liu X, Wang C, Liu L, Hu M. A member of the CAP protein superfamily, Hc-CAP-15, is important for the parasitic-stage development of Haemonchus contortus. Parasit Vectors 2023; 16:290. [PMID: 37592312 PMCID: PMC10433639 DOI: 10.1186/s13071-023-05907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The CAP superfamily proteins are distributed widely in eukaryotes and play crucial roles in various biological processes. However, very little is known about their functions in parasitic nematodes, including Haemonchus contortus, a socioeconomically important parasitic nematode. We have therefore studied a member of the CAP protein family of H. contortus, named Hc-CAP-15, with the aim to explore its roles in regulating the parasitic developmental process. METHODS The conservation and phylogenetic relationships, spatial expression and temporal transcription profiles of Hc-CAP/cap-15, as well its biological function during parasite development were investigated using bioinformatics, immunofluorescence, real-time PCR and RNA interference (RNAi). RESULTS Hc-CAP-15 was found to be a single-domain CAP protein consisting of four conserved motifs that is localized in the cuticle, intestine and oocyte of adult worms. Hc-cap-15 was transcribed at all developmental stages of H. contortus, with the highest transcription level in parasitic fourth-stage larvae (L4s). Silencing of Hc-cap-15 resulted in a significant increase in the body length of L4s. CONCLUSIONS The results suggested that Hc-CAP-15 is important for the development of H. contortus. Our findings provide a basis for further study of the functions of the CAP family proteins in H. contortus and related parasitic nematodes.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuolin Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Evaluation of a commercial coproantigen immunoassay for the detection of Toxocara cati and Ancylostoma tubaeforme in cats and Uncinaria stenocephala in dogs. Parasitol Res 2023; 122:185-194. [PMID: 36385307 PMCID: PMC9816269 DOI: 10.1007/s00436-022-07715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Coproantigen immunoassays (IDEXX Fecal Dx® antigen tests) were evaluated for their ability to identify Toxocara cati and Ancylostoma tubaeforme infections in cats and Uncinaria stenocephala infection in dogs. Five cats were experimentally infected with 500 embryonated eggs of T. cati, eight cats with 500 third-stage larvae (L3) of A. tubaeforme and seven dogs with 500 L3 of U. stenocephala. In addition to the three coproantigen tests, the course of infection was monitored by a combined sedimentation-flotation method with ZnSO4 as flotation medium (specific gravity: 1.28-1.30) and a modified McMaster method in case of copromicroscopically positive samples. Eggs of T. cati were first observed between 28 and 54 days post infection (dpi) in four of the five infected cats. In these four cats, positive roundworm coproantigen signals were obtained between 16 and 44 dpi. Positive coproantigen signal always preceded egg observations, but the interval varied between 6 and 30 days. Hookworm-specific positive coproantigen signals were detected in seven of the eight A. tubaeforme infected cats between 10 and 52 dpi, while consecutive egg excretion was observed in three cats between day 26 and 54 pi. Of these three, coproantigen signal preceded egg observation by 12 to 24 days. Four cats had positive coproantigen results in the absence of egg excretion, and one cat never achieved a positive result for egg or coproantigen. In six of seven U. stenocephala infected dogs, infection was confirmed by copromicroscopy between 16 and 24 dpi as well as for hookworm coproantigen between 10 and 14 dpi. Coproantigen signal was detected prior to egg observation by 2 to 14 days. No cross-reactions between the roundworm, hookworm und whipworm tests occurred in study animals. The results of this study demonstrate the ability of the coproantigen tests to detect the common roundworm and hookworm infections in cats and U. stenocephala infections in dogs as well as the ability to detect the prepatent stage of infection.
Collapse
|
6
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
7
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Abstract
Fatty acid–and retinol-binding proteins (FARs) belong to a unique family of excreted/secreted proteins (ESPs) found exclusively in nematodes. Much of our understanding of these proteins, however, is limited to their in vitro binding characteristics toward various fatty acids and retinol and has provided little insight into their in vivo functions or mechanisms. Recent research, however, has shown that FARs elicit an immunomodulatory role in plant and animal model systems, likely by sequestering lipids involved in immune signaling. This alludes to the intricate relationship between parasitic nematode effectors and their hosts.
Collapse
|
9
|
Vasconcelos AA, José J, Tokimatu PM, Camargo AP, Teixeira PJPL, Thomazella DPT, do Prado PFV, Fiorin GL, Costa JL, Figueira A, Carazzolle MF, Pereira GAG, Baroni RM. Adaptive evolution of Moniliophthora PR-1 proteins towards its pathogenic lifestyle. BMC Ecol Evol 2021; 21:84. [PMID: 33990179 PMCID: PMC8120714 DOI: 10.1186/s12862-021-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.
Collapse
Affiliation(s)
- Adrielle A Vasconcelos
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana José
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo M Tokimatu
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Antonio P Camargo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo J P L Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Daniela P T Thomazella
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paula F V do Prado
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gabriel L Fiorin
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcelo F Carazzolle
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gonçalo A G Pereira
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Renata M Baroni
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
10
|
Mohd-Shaharuddin N, Lim YAL, Ngui R, Nathan S. Expression of Ascaris lumbricoides putative virulence-associated genes when infecting a human host. Parasit Vectors 2021; 14:176. [PMID: 33757548 PMCID: PMC7985925 DOI: 10.1186/s13071-021-04680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ascaris lumbricoides is the most common causative agent of soil-transmitted helminth infections worldwide, with an estimated 450 million people infected with this nematode globally. It is suggested that helminths are capable of evading and manipulating the host immune system through the release of a spectrum of worm proteins which underpins their long-term survival in the host. We hypothesise that the worm overexpresses these proteins when infecting adults compared to children to cirvumvent the more robust defence mechanisms of adults. However, little is known about the parasite's genes and encoded proteins involved during A. lumbricoides infection. Hence, this study was conducted to assess the expression profile of putative virulence-associated genes during an active infection of adults and children. METHODS In this study, quantitative PCR was performed to evaluate the expression profile of putative virulence-associated genes in A. lumbricoides isolated from infected children and adults. The study was initiated by collecting adult worms expelled from adults and children following anthelminthic treatment. High-quality RNA was successfully extracted from each of six adult worms expelled by three adults and three children, respectively. Eleven putative homologues of helminth virulence-associated genes reported in previous studies were selected, primers were designed and specific amplicons of A. lumbricoides genes were noted. The expression profiles of these putative virulence-associated genes in A. lumbricoides from infected adults were compared to those in A. lumbricoides from infected children. RESULTS The putative virulence-associated genes VENOM, CADHERIN and PEBP were significantly upregulated at 166-fold, 13-fold and fivefold, respectively, in adults compared to children. Conversely, the transcription of ABA-1 (fourfold), CATH-L (threefold) and INTEGRIN (twofold) was significantly suppressed in A. lumbricoides from infected adults. CONCLUSIONS On the basis of the expression profile of the putative virulence-associated genes, we propose that the encoded proteins have potential roles in evasion mechanisms, which could guide the development of therapeutic interventions.
Collapse
Affiliation(s)
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia.
| |
Collapse
|
11
|
El Atab O, Darwiche R, Truax NJ, Schneiter R, Hull KG, Romo D, Asojo OA. Necator americanus Ancylostoma Secreted Protein-2 ( Na-ASP-2) Binds an Ascaroside (ascr#3) in Its Fatty Acid Binding Site. Front Chem 2020; 8:608296. [PMID: 33392151 PMCID: PMC7773830 DOI: 10.3389/fchem.2020.608296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022] Open
Abstract
During their infective stages, hookworms release excretory-secretory (E-S) products, small molecules, and proteins to help evade and suppress the host's immune system. Small molecules found in E-S products of mammalian hookworms include nematode derived metabolites like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. The most abundant proteins found in hookworm E-S products are members of the protein family known as Ancylostoma secreted protein (ASP). In this study, two ascarosides and their fatty acid moieties were synthesized and tested for in vitro binding to Na-ASP-2 using both a ligand competition assay and microscale thermophoresis. The fatty acid moieties of both ascarosides tested and ascr#3, an ascaroside found in rat hookworm E-S products, bind to Na-ASP-2's palmitate binding cavity. These molecules were confirmed to bind to the palmitate but not the sterol binding sites. An ascaroside, oscr#10, which is not found in hookworm E-S products, does not bind to Na-ASP-2. More studies are required to determine the structural basis of ascarosides binding by Na-ASP-2 and to understand the physiological significance of these observations.
Collapse
Affiliation(s)
- Ola El Atab
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Nathanyal J. Truax
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kenneth G. Hull
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Oluwatoyin A. Asojo
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
13
|
Abuzeid AMI, Zhou X, Huang Y, Li G. Twenty-five-year research progress in hookworm excretory/secretory products. Parasit Vectors 2020; 13:136. [PMID: 32171305 PMCID: PMC7071665 DOI: 10.1186/s13071-020-04010-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Hookworm infection is a major public health problem that threatens about 500 million people throughout tropical areas of the world. Adult hookworms survive for many years in the host intestine, where they suck blood, causing iron deficiency anemia and malnutrition. Numerous molecules, named excretory/secretory (ES) products, are secreted by hookworm adults and/or larvae to aid in parasite survival and pathobiology. Although the molecular cloning and characterization of hookworm ES products began 25 years ago, the biological role and molecular nature of many of them are still unclear. Hookworm ES products, with distinct structures and functions, have been linked to many essential events in the disease pathogenesis. These events include host invasion and tissue migration, parasite nourishment and reproduction, and immune modulation. Several of these products represent promising vaccine targets for controlling hookworm disease and therapeutic targets for many inflammatory diseases. This review aims to summarize our present knowledge about hookworm ES products, including their role in parasite biology, host-parasite interactions, and as vaccine and pharmaceutical targets and to identify research gaps and future research directions in this field.![]()
Collapse
Affiliation(s)
- Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Zhou
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Huang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Huang Y, Abuzeid AMI, Liu Y, He L, Zhao Q, Yan X, Hang J, Ran R, Sun Y, Li X, Liu J, Li G. Identification and localization of hookworm platelet inhibitor in Ancylostoma ceylanicum. INFECTION GENETICS AND EVOLUTION 2019; 77:104102. [PMID: 31689543 DOI: 10.1016/j.meegid.2019.104102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Ancylostoma ceylanicum is a zoonotic hookworm, which mainly causes iron deficiency anemia (IDA) in humans and animals. Hookworm platelet inhibitor (HPI) has been isolated from adult Ancylostoma caninum and linked to the pathogenesis of hookworm associated intestinal hemorrhage and IDA. However, there is no available data about HPI from A. ceylanicum. To study the molecular characteristics of A. ceylanicum HPI (Ace-HPI), its corresponding cDNA was amplified from adult A. ceylanicum mRNA using the primers designed based on the Ac-HPI gene sequence, and its sequence homology and phylogenetic relationship were analyzed. The differential expression of Ace-hpi mRNA in the adult and third larval (L3) stages was compared using the quantitative real-time PCR. Ace-HPI reactivity and tissue localization were studied by Western blot and immunofluorescence, respectively. Platelet aggregation activity was monitored in a 96-well microplate reader. The results showed that the Ace-HPI encoding gene was 603 bp in length. Ace-HPI showed 91% homology to Ac-HPI, was closely related to Ac-ASP3, and belonged to the CAP superfamily. Ace-hpi transcripts were most abundant in the adult stage, followed by serum-stimulated infective larvae (ssL3), and finally in L3 stage, with a significant difference. Escherichia coli-expressed recombinant protein had good reactivity with the positive serum of A. ceylanicum-infected dogs. Immunolocalization indicated that Ace-HPI was located in the esophagus and cephalic glands of the adult. As well as, recombinant Ace-HPI inhibited the platelet aggregation in-vitro. HPI overexpression, anatomical location in adults, antigenicity and its in-vitro activity indicate its possible role in adult worm blood-feeding and as a valuable target for hookworm vaccine and drug development.
Collapse
Affiliation(s)
- Yue Huang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Yunqiu Liu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Long He
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Qi Zhao
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xinxin Yan
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Jianxiong Hang
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Rongkun Ran
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Yongxiang Sun
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Xiu Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Jumei Liu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510542, China.
| |
Collapse
|
15
|
Maeda Y, Palomares-Rius JE, Hino A, Afrin T, Mondal SI, Nakatake A, Maruyama H, Kikuchi T. Secretome analysis of Strongyloides venezuelensis parasitic stages reveals that soluble and insoluble proteins are involved in its parasitism. Parasit Vectors 2019; 12:21. [PMID: 30626426 PMCID: PMC6327390 DOI: 10.1186/s13071-018-3266-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
Background Parasites excrete and secrete a wide range of molecules that act as the primary interface with their hosts and play critical roles in establishing parasitism during different stages of infection. Strongyloides venezuelensis is a gastrointestinal parasite of rats that is widely used as a laboratory model and is known to produce both soluble and insoluble (adhesive) secretions during its parasitic stages. However, little is known about the constituents of these secretions. Results Using mass spectrometry, we identified 436 proteins from the infective third-stage larvae (iL3s) and 196 proteins from the parasitic females of S. venezuelensis. The proteins that were secreted by the iL3s were enriched with peptidase activity, embryo development and the oxidation-reduction process, while those of the parasitic females were associated with glycolysis, DNA binding (histones) and other unknown functions. Trypsin inhibitor-like domain-containing proteins were identified as the main component of the adhesive secretion from parasitic females. An absence of secretion signals in many of the proteins indicated that they are secreted via non-classical secretion pathways. Conclusions We found that S. venezuelensis secretes a wide range of proteins to establish parasitism. This includes proteins that have previously been identified as being involved in parasitism in other helminths as well as proteins that are unique to this species. These findings provide insights into the molecular mechanisms underlying Strongyloides parasitism. Electronic supplementary material The online version of this article (10.1186/s13071-018-3266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Juan Emilio Palomares-Rius
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.,Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Akina Hino
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.,Department of Environmental Parasitology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tanzila Afrin
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Shakhinur Islam Mondal
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ayako Nakatake
- HTLV-1/ATL Research Facility, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Haruhiko Maruyama
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
16
|
Felce JH, Sezgin E, Wane M, Brouwer H, Dustin ML, Eggeling C, Davis SJ. CD45 exclusion- and cross-linking-based receptor signaling together broaden FcεRI reactivity. Sci Signal 2018; 11:11/561/eaat0756. [PMID: 30563863 DOI: 10.1126/scisignal.aat0756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Madina Wane
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Heather Brouwer
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathog 2018; 14:e1007300. [PMID: 30335852 PMCID: PMC6193718 DOI: 10.1371/journal.ppat.1007300] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite causing considerable damage to host tissue at the onset of parasitism, invasive helminths establish remarkably persistent infections in both animals and plants. Secretions released by these obligate parasites during host invasion are thought to be crucial for their persistence in infection. Helminth secretions are complex mixtures of molecules, most of which have unknown molecular targets and functions in host cells or tissues. Although the habitats of animal- and plant-parasitic helminths are very distinct, their secretions share the presence of a structurally conserved group of proteins called venom allergen-like proteins (VALs). Helminths abundantly secrete VALs during several stages of parasitism while inflicting extensive damage to host tissue. The tight association between the secretion of VALs and the onset of parasitism has triggered a particular interest in this group of proteins, as improved knowledge on their biological functions may assist in designing novel protection strategies against parasites in humans, livestock, and important food crops.
Collapse
|
18
|
Darwiche R, Lugo F, Drurey C, Varossieau K, Smant G, Wilbers RHP, Maizels RM, Schneiter R, Asojo OA. Crystal structure of Brugia malayi venom allergen-like protein-1 (BmVAL-1), a vaccine candidate for lymphatic filariasis. Int J Parasitol 2018; 48:371-378. [PMID: 29501266 PMCID: PMC5893361 DOI: 10.1016/j.ijpara.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
The vaccine candidate Brugia malayi venom allergen-like 1 protein (BmVAL-1) has three distinct binding cavities. The cavities are the central cavity; the sterol-binding caveolin-binding motif (CBM); and the palmitate-binding cavity. These cavities are connected by channels, which can accommodate water molecules, ions and small ligands. The channels explain how blocking divalent ions in the central cavity affects sterol binding in the distinct CBM cavity. BmVAL-1 has a glycosylated CBM, is an effective sterol transporter in vivo and binds cholesterol and palmitate in vitro.
Brugia malayi is a causative agent of lymphatic filariasis, a major tropical disease. The infective L3 parasite stage releases immunomodulatory proteins including the venom allergen-like proteins (VALs), which are members of the SCP/TAPS (Sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. BmVAL-1 is a major target of host immunity with >90% of infected B. malayi microfilaraemic cases being seropositive for antibodies to BmVAL-1. This study is part of ongoing efforts to characterize the structures and functions of important B. malayi proteins. Recombinant BmVAL-1 was produced using a plant expression system, crystallized and the structure was solved by molecular replacement and refined to 2.1 Å, revealing the characteristic alpha/beta/alpha sandwich topology of eukaryotic SCP/TAPS proteins. The protein has more than 45% loop regions and these flexible loops connect the helices and strands, which are longer than predicted based on other parasite SCP/TAPS protein structures. The large central cavity of BmVAL-1 is a prototypical CRISP cavity with two histidines required to bind divalent cations. The caveolin-binding motif (CBM) that mediates sterol binding in SCP/TAPS proteins is large and open in BmVAL-1 and is N-glycosylated. N-glycosylation of the CBM does not affect the ability of BmVAL-1 to bind sterol in vitro. BmVAL-1 complements the in vivo sterol export phenotype of yeast mutants lacking their endogenous SCP/TAPS proteins. The in vitro sterol-binding affinity of BmVAL-1 is comparable with Pry1, a yeast sterol transporting SCP/TAPS protein. Sterol binding of BmVAL-1 is dependent on divalent cations. BmVAL-1 also has a large open palmitate-binding cavity, which binds palmitate comparably to tablysin-15, a lipid-binding SCP/TAPS protein. The central cavity, CBM and palmitate-binding cavity of BmVAL-1 are interconnected within the monomer with channels that can serve as pathways for water molecules, cations and small molecules.
Collapse
Affiliation(s)
- Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Fernanda Lugo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claire Drurey
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Koen Varossieau
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Asojo OA, Darwiche R, Gebremedhin S, Smant G, Lozano-Torres JL, Drurey C, Pollet J, Maizels RM, Schneiter R, Wilbers RHP. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 2018; 48:359-369. [PMID: 29505764 PMCID: PMC5893428 DOI: 10.1016/j.ijpara.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) was produced in plants as a glycosylated protein. The crystal structure of HpVAL-4 was solved and reveals three distinct cavities. These cavities are the central cavity; the sterol-binding caveolin-binding motif (CBM); and the palmitate-binding cavity. The central cavity of Hp-VAL-4 lacks the characteristic histidines that coordinate divalent cations. Hp-VAL-4 binds sterol in vivo and in vitro.
Heligmosomoides polygyrus bakeri is a model parasitic hookworm used to study animal and human helminth diseases. During infection, the parasite releases excretory/secretory products that modulate the immune system of the host. The most abundant protein family in excretory/secretory products comprises the venom allergen-like proteins (VALs), which are members of the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. There are >30 secreted Heligmosomoides polygyrus VAL proteins (HpVALs) and these proteins are characterised by having either one or two 15 kDa CAP (cysteine-rich secretory protein (CRISP)/antigen 5/pathogenesis related-1) domains. The first known HpVAL structure, HpVAL-4, refined to 1.9 Å is reported. HpVAL-4 was produced as a homogeneously glycosylated protein in leaves of Nicotiana benthamiana infiltrated with recombinant plasmids, making this plant expression platform amenable for the production of biological products. The overall topology of HpVAL-4 is a three layered αβα sandwich between a short N-terminal loop and a C-terminal cysteine rich extension. The C-terminal cysteine rich extension has two strands stabilized by two disulfide bonds and superposes well with the previously reported extension from the human hookworm Necator americanus Ancylostoma secreted protein-2 (Na-ASP-2). The N-terminal loop is connected to alpha helix 2 via a disulfide bond previously observed in Na-ASP-2. HpVAL-4 has a central cavity that is more similar to the N-terminal CAP domain of the two CAP Na-ASP-1 from Necator americanus. Unlike Na-ASP-2, mammalian CRISP, and the C-terminal CAP domain of Na-ASP-1, the large central cavity of HpVAL-4 lacks the two histidines required to coordinate divalent cations. HpVAL-4 has both palmitate-binding and sterol-binding cavities and is able to complement the in vivo sterol export phenotype of yeast mutants lacking their endogenous CAP proteins. More studies are required to determine endogenous binding partners of HpVAL-4 and unravel the possible impact of sterol binding on immune-modulatory functions.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Selam Gebremedhin
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Claire Drurey
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jeroen Pollet
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Ruud H P Wilbers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
20
|
Gadahi JA, Li B, Ehsan M, Wang S, Zhang Z, Wang Y, Hasan MW, Yan R, Song X, Xu L, Li X. Recombinant Haemonchus contortus 24 kDa excretory/secretory protein (rHcES-24) modulate the immune functions of goat PBMCs in vitro. Oncotarget 2018; 7:83926-83937. [PMID: 27893414 PMCID: PMC5356635 DOI: 10.18632/oncotarget.13487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
A 24 kDa protein is one of the important components in Haemonchus contortus (barber pole worm) excretory/secretory products (HcESPs), which was shown to have important antigenic function. However, little is known about the immunomodulatory effects of this proteinon host cell. In the present study gene encoding 24kDa excretory/secretory protein (HcES-24) was cloned. The recombinant protein of HcES-24 (rHcES-24) was expressed in a histidine-tagged fusion protein soluble form in Escherichia coli. Binding activity of rHcES-24 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effect on cytokine secretion, cell proliferation, cell migration and nitric oxide production were observed by co-incubation of rHcES-24. IFA results revealed that rHcES-24 could bind to the PBMCs. The interaction of rHcES-24 increased the production of IL4, IL10, IL17 and cell migration in dose dependent manner. However, rHcES-24 treatment significantly suppressed the production of IFNγ, proliferation of the PBMC and Nitric oxide (NO) production. Our findings showed that the rHcES-24 played important regulatory effects on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.,Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Pakistan
| | - Baojie Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | | | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
21
|
Abstract
Nematodes are highly abundant animals, and many species have a parasitic lifestyle. Nematode parasites are important pathogens of humans and other animals, and there is considerable interest in understanding their molecular and genomic adaptations to nematode parasitism. This has been approached in three main ways: comparing the genomes of closely related parasitic and free-living taxa, comparing the gene expression of parasitic and free-living life cycle stages of parasitic nematode species, and analysing the molecules that parasitic nematodes excrete and secrete. To date, these studies show that many species of parasitic nematodes have genomes that have large gene families coding for proteases/peptidases, protease inhibitors, SCP/TAPS proteins and acetylcholinesterases, and in many cases there is evidence that these appear to be used by parasitic stages inside hosts, and are often secreted. Many parasitic nematodes have taxa-restricted gene families that also appear to be involved in parasitism, emphasizing that there is still much to be discovered about what it takes to be a parasitic nematode.
Collapse
Affiliation(s)
- Mark Viney
- Corresponding author: Mark Viney, School of Biological Sciences, University of Bristol, Bristol, UK. Tel.: 0117 394 1203; E-mail:
| |
Collapse
|
22
|
Baroni RM, Luo Z, Darwiche R, Hudspeth EM, Schneiter R, Pereira GAG, Mondego JMC, Asojo OA. Crystal Structure of MpPR-1i, a SCP/TAPS protein from Moniliophthora perniciosa, the fungus that causes Witches' Broom Disease of Cacao. Sci Rep 2017; 7:7818. [PMID: 28798297 PMCID: PMC5552782 DOI: 10.1038/s41598-017-07887-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/30/2017] [Indexed: 11/30/2022] Open
Abstract
The pathogenic fungi Moniliophthora perniciosa causes Witches’ Broom Disease (WBD) of cacao. The structure of MpPR-1i, a protein expressed by M. perniciosa when it infects cacao, are presented. This is the first reported de novo structure determined by single-wavelength anomalous dispersion phasing upon soaking with selenourea. Each monomer has flexible loop regions linking the core alpha-beta-alpha sandwich topology that comprise ~50% of the structure, making it difficult to generate an accurate homology model of the protein. MpPR-1i is monomeric in solution but is packed as a high ~70% solvent content, crystallographic heptamer. The greatest conformational flexibility between monomers is found in loops exposed to the solvent channel that connect the two longest strands. MpPR-1i lacks the conserved CAP tetrad and is incapable of binding divalent cations. MpPR-1i has the ability to bind lipids, which may have roles in its infection of cacao. These lipids likely bind in the palmitate binding cavity as observed in tablysin-15, since MpPR-1i binds palmitate with comparable affinity as tablysin-15. Further studies are required to clarify the possible roles and underlying mechanisms of neutral lipid binding, as well as their effects on the pathogenesis of M. perniciosa so as to develop new interventions for WBD.
Collapse
Affiliation(s)
- Renata M Baroni
- Genomics and Expression Laboratory (LGE), Institute of Biology, CP 6109, 13083-862 UNICAMP, Campinas, Brazil.,Agronomic Institute (IAC), CP 28, CEP 13012-970, Campinas, Brazil
| | - Zhipu Luo
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, Illinois, 60439, USA
| | - Rabih Darwiche
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Elissa M Hudspeth
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Gonçalo A G Pereira
- Genomics and Expression Laboratory (LGE), Institute of Biology, CP 6109, 13083-862 UNICAMP, Campinas, Brazil
| | | | - Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Niche-specific gene expression in a parasitic nematode; increased expression of immunomodulators in Teladorsagia circumcincta larvae derived from host mucosa. Sci Rep 2017; 7:7214. [PMID: 28775251 PMCID: PMC5543109 DOI: 10.1038/s41598-017-07092-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022] Open
Abstract
Metazoan parasites have to survive in many different niches in order to complete their life-cycles. In the absence of reliable methods to manipulate parasite genomes and/or proteomes, identification of the molecules critical for parasite survival within these niches has largely depended on comparative transcriptomic and proteomic analyses of different developmental stages of the parasite; however, changes may reflect differences associated with transition between developmental stages rather than specific adaptations to a particular niche. In this study, we compared the transcriptome of two fourth-stage larval populations of the nematode parasite, Teladorsagia circumcincta, which were of the same developmental stage but differed in their location within the abomasum, being either mucosal-dwelling (MD) or lumen-dwelling (LD). Using RNAseq, we identified 57 transcripts which were significantly differentially expressed between MD and LD larvae. Of these transcripts, the majority (54/57) were up-regulated in MD larvae, one of which encoded for an ShKT-domain containing protein, Tck6, capable of modulating ovine T cell cytokine responses. Other differentially expressed transcripts included homologues of ASP-like proteins, proteases, or excretory-secretory proteins of unknown function. Our study demonstrates the utility of niche- rather than stage-specific analysis of parasite transcriptomes to identify parasite molecules of potential importance for survival within the host.
Collapse
|
24
|
Elsemore DA, Geng J, Cote J, Hanna R, Lucio-Forster A, Bowman DD. Enzyme-linked immunosorbent assays for coproantigen detection of Ancylostoma caninum and Toxocara canis in dogs and Toxocara cati in cats. J Vet Diagn Invest 2017; 29:645-653. [DOI: 10.1177/1040638717706098] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report the development and field validation of 2 ELISAs for the detection of Ancylostoma caninum or Toxocara canis coproantigens in the feces of dogs with experimental and natural infections, and evidence of cross-reactivity with respective feline counterparts. A. caninum–specific coproantigens were detected in feces of experimentally infected dogs starting at 9 d post-infection (dpi), whereas eggs were not seen until 23 dpi. T. canis–specific coproantigens were detected in 3 of 5 experimentally infected dogs by 31 dpi, and 4 of the 5 animals by 38 dpi. T. canis eggs were seen in feces of 4 of the 5 animals by 38 dpi. One dog had delayed coproantigen detection and low egg output. Additionally, 817 canine and 183 feline fecal samples from naturally infected animals tested by flotation were subjected to coproantigen ELISA testing. Of these 1,000 canine and feline samples, 13 and 23 samples, respectively, were positive for “hookworm” or “roundworm” eggs; 19 and 26 samples were ELISA positive, respectively. The T. canis ELISA detected T. cati coproantigen in cat fecal samples. Discrepant ELISA and flotation results were obtained for 16 hookworm- and 13 roundworm-positive samples. Re-examination of the egg-positive, ELISA-negative samples indicated several instances of possible misidentification or coprophagy, whereas detection of antigen in samples without egg observations is likely a reflection of true infection status with egg shedding below detection levels. There is good indication, based on accumulated field data, that these antigen tests also detect other hookworm and ascarid species.
Collapse
Affiliation(s)
- David A. Elsemore
- IDEXX Laboratories, Westbrook, ME (Elsemore, Geng, Cote, Hanna)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Bowman, Lucio-Forster)
| | - Jinming Geng
- IDEXX Laboratories, Westbrook, ME (Elsemore, Geng, Cote, Hanna)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Bowman, Lucio-Forster)
| | - Jennifer Cote
- IDEXX Laboratories, Westbrook, ME (Elsemore, Geng, Cote, Hanna)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Bowman, Lucio-Forster)
| | - Rita Hanna
- IDEXX Laboratories, Westbrook, ME (Elsemore, Geng, Cote, Hanna)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Bowman, Lucio-Forster)
| | - Araceli Lucio-Forster
- IDEXX Laboratories, Westbrook, ME (Elsemore, Geng, Cote, Hanna)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Bowman, Lucio-Forster)
| | - Dwight D. Bowman
- IDEXX Laboratories, Westbrook, ME (Elsemore, Geng, Cote, Hanna)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Bowman, Lucio-Forster)
| |
Collapse
|
25
|
Wei J, Damania A, Gao X, Liu Z, Mejia R, Mitreva M, Strych U, Bottazzi ME, Hotez PJ, Zhan B. The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasit Vectors 2016; 9:518. [PMID: 27677574 PMCID: PMC5039805 DOI: 10.1186/s13071-016-1795-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/12/2016] [Indexed: 12/02/2022] Open
Abstract
Background The intestine of hookworms contains enzymes and proteins involved in the blood-feeding process of the parasite and is therefore a promising source of possible vaccine antigens. One such antigen, the hemoglobin-digesting intestinal aspartic protease known as Na-APR-1 from the human hookworm Necator americanus, is currently a lead candidate antigen in clinical trials, as is Na-GST-1 a heme-detoxifying glutathione S-transferase. Methods In order to discover additional hookworm vaccine antigens, messenger RNA was obtained from the intestine of male hookworms, Ancylostoma ceylanicum, maintained in hamsters. RNA-seq was performed using Illumina high-throughput sequencing technology. The genes expressed in the hookworm intestine were compared with those expressed in the whole worm and those genes overexpressed in the parasite intestine transcriptome were further analyzed. Results Among the lead transcripts identified were genes encoding for proteolytic enzymes including an A. ceylanicum APR-1, but the most common proteases were cysteine-, serine-, and metallo-proteases. Also in abundance were specific transporters of key breakdown metabolites, including amino acids, glucose, lipids, ions and water; detoxifying and heme-binding glutathione S-transferases; a family of cysteine-rich/antigen 5/pathogenesis-related 1 proteins (CAP) previously found in high abundance in parasitic nematodes; C-type lectins; and heat shock proteins. These candidates will be ranked for downstream antigen target selection based on key criteria including abundance, uniqueness in the parasite versus the vertebrate host, as well as solubility and yield of expression. Conclusion The intestinal transcriptome of A. ceylanicum provides useful information for the identification of proteins involved in the blood-feeding process, representing a first step towards a reverse vaccinology approach to a human hookworm vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1795-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junfei Wei
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ashish Damania
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin Gao
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Zhuyun Liu
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rojelio Mejia
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Ulrich Strych
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Wiśniewski M, Łapiński M, Daniłowicz-Luebert E, Jaros S, Długosz E, Wędrychowicz H. Vaccination with a cocktail of Ancylostoma ceylanicum recombinant antigens leads to worm burden reduction in hamsters. Acta Parasitol 2016; 61:556-61. [PMID: 27447220 DOI: 10.1515/ap-2016-0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/23/2016] [Indexed: 11/15/2022]
Abstract
Hookworms, a group to which Ancylostoma ceylanicum belongs, are gastrointestinal nematodes that infect more than 700 million people around the world. They are a leading cause of anemia in developing countries. In order to effectively prevent hookworm infections research is conducted to develop an effective vaccine using recombinant antigens of the parasite. The aim of this study was to examine the influence of the hosts' on protection against ancylostomiasis and the shaping of the humoral immune response among Syrian hamsters after immunization with a cocktail of five A. ceylanicum recombinant antigens. Ace-ASP-3, Ace-ASP-4, Ace-APR-1, Ace-MEP-6 and Ace-MEP-7 were obtained in the pET expression system. Immunization with a vaccine cocktail resulted in a 33.5% worm burden reduction. The immunogenicity of the recombinant proteins were determined using ELISA. Statistical analysis showed that vaccinated hamsters developed stronger humoral responses to four of five recombinant antigens (the exception being Ace-ASP-3) compared to hamsters from the control group.
Collapse
|
27
|
Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein. Sci Rep 2016; 6:28838. [PMID: 27344972 PMCID: PMC4921858 DOI: 10.1038/srep28838] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.
Collapse
|
28
|
Stroehlein AJ, Young ND, Hall RS, Korhonen PK, Hofmann A, Sternberg PW, Jabbar A, Gasser RB. CAP protein superfamily members in Toxocara canis. Parasit Vectors 2016; 9:360. [PMID: 27342979 PMCID: PMC4921028 DOI: 10.1186/s13071-016-1642-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Proteins of the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are recognized or proposed to play roles in parasite development and reproduction, and in modulating host immune attack and infection processes. However, little is known about these proteins for most parasites. RESULTS In the present study, we explored CAP proteins of Toxocara canis, a socioeconomically important zoonotic roundworm. To do this, we mined and curated transcriptomic and genomic data, predicted and curated full-length protein sequences (n = 28), conducted analyses of these data and studied the transcription of respective genes in different developmental stages of T. canis. In addition, based on information available for Caenorhabditis elegans, we inferred that selected genes (including lon-1, vap-1, vap-2, scl-1, scl-8 and scl-11 orthologs) of T. canis and their interaction partners likely play central roles in this parasite's development and/or reproduction via TGF-beta and/or insulin-like signaling pathways, or via host interactions. CONCLUSION In conclusion, this study could provide a foundation to guide future studies of CAP proteins of T. canis and related parasites, and might assist in finding new interventions against diseases caused by these parasites.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Paul W Sternberg
- HHMI and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Cantacessi C, Hofmann A, Campbell BE, Gasser RB. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Methods Mol Biol 2015; 1247:437-474. [PMID: 25399114 DOI: 10.1007/978-1-4939-2004-4_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput molecular and computer technologies have become instrumental for systems biological explorations of pathogens, including parasites. For instance, investigations of the transcriptomes of different developmental stages of parasitic nematodes give insights into gene expression, regulation and function in a parasite, which is a significant step to understanding their biology, as well as interactions with their host(s) and disease. This chapter (1) gives a background on some key parasitic nematodes of socioeconomic importance, (2) describes sequencing and bioinformatic technologies for large-scale studies of the transcriptomes and genomes of these parasites, (3) provides some recent examples of applications and (4) emphasizes the prospects of fundamental biological explorations of parasites using these technologies for the development of new interventions to combat parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | |
Collapse
|
30
|
Kelleher A, Darwiche R, Rezende WC, Farias LP, Leite LCC, Schneiter R, Asojo OA. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2186-96. [PMID: 25084337 PMCID: PMC4118828 DOI: 10.1107/s1399004714013315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn(2+) in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.
Collapse
Affiliation(s)
- Alan Kelleher
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Wanderson C. Rezende
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Oluwatoyin A. Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
31
|
Chehayeb JF, Robertson AP, Martin RJ, Geary TG. Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis 2014; 8:e2939. [PMID: 24901219 PMCID: PMC4046973 DOI: 10.1371/journal.pntd.0002939] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/29/2014] [Indexed: 01/10/2023] Open
Abstract
Background Strategies employed by parasites to establish infections are poorly understood. The host-parasite interface is maintained through a molecular dialog that, among other roles, protects parasites from host immune responses. Parasite excretory/secretory products (ESP) play major roles in this process. Understanding the biology of protein secretion by parasites and their associated functional processes will enhance our understanding of the roles of ESP in host-parasite interactions. Methodology/Principal Findings ESP was collected after culturing 10 adult female Ascaris suum. Perienteric fluid (PE) and uterine fluid (UF) were collected directly from adult females by dissection. Using SDS-PAGE coupled with LC-MS/MS, we identified 175, 308 and 274 proteins in ESP, PE and UF, respectively. Although many proteins were shared among the samples, the protein composition of ESP was distinct from PE and UF, whereas PE and UF were highly similar. The distribution of gene ontology (GO) terms for proteins in ESP, PE and UF supports this claim. Comparison of ESP composition in A. suum, Brugia malayi and Heligmosoides polygyrus showed that proteins found in UF were also secreted by males and by larval stages of other species, suggesting that multiple routes of secretion may be used for homologous proteins. ESP composition of nematodes is both phylogeny- and niche-dependent. Conclusions/Significance Analysis of the protein composition of A. suum ESP and UF leads to the conclusion that the excretory-secretory apparatus and uterus are separate routes for protein release. Proteins detected in ESP have distinct patterns of biological functions compared to those in UF. PE is likely to serve as the source of the majority of proteins in UF. This analysis expands our knowledge of the biology of protein secretion from nematodes and will inform new studies on the function of secreted proteins in the orchestration of host-parasite interactions. Ascaris lumbricoides, the most prevalent metazoan parasite of humans, is a public health concern in resource-limited countries. Survival of this parasite in its host is mediated at least in part by parasite materials secreted into the host. Little is known about the composition of these secretions; defining their contents and functions will illuminate host-parasite interactions that lead to parasite establishment. Ascaris suum, a parasite of pigs, was used as a model organism because its genome has been sequenced and it is very closely related to A. lumbricoides. Excretory/secretory products (ESP), uterine fluid (UF) and perienteric fluid (PE) were collected from adult A. suum. Proteins were subjected to LC-MS/MS. ESP proteins (the ‘secretome’) included many also present in UF. Proteins in ESP but not in UF had considerably different characteristics than those in PE or UF, which were similar to each other. We conclude that proteins released from the secretory apparatus have distinct patterns of biological function and that UF proteins are likely derived from PE. Comparing the protein composition of A. suum ESP to ESP from B. malayi and H. polygyrus suggests that the secretome is conserved at the level of both phylogeny and host predilection site.
Collapse
Affiliation(s)
- James F. Chehayeb
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Timothy G. Geary
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|
32
|
Mangiola S, Young ND, Sternberg PW, Strube C, Korhonen PK, Mitreva M, Scheerlinck JP, Hofmann A, Jex AR, Gasser RB. Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions. Int J Parasitol 2014; 44:251-61. [PMID: 24487001 DOI: 10.1016/j.ijpara.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 01/09/2023]
Abstract
Parasitic nematodes cause diseases of major economic importance in animals. Key representatives are species of Dictyocaulus (=lungworms), which cause bronchitis (=dictyocaulosis, commonly known as "husk") and have a major adverse impact on the health of livestock. In spite of their economic importance, very little is known about the immunomolecular biology of these parasites. Here, we conducted a comprehensive investigation of the adult transcriptome of Dictyocaulus filaria of small ruminants and compared it with that of Dictyocaulus viviparus of bovids. We then identified a subset of highly transcribed molecules inferred to be linked to host-parasite interactions, including cathepsin B peptidases, fatty-acid and/or retinol-binding proteins, β-galactoside-binding galectins, secreted protein 6 precursors, macrophage migration inhibitory factors, glutathione peroxidases, a transthyretin-like protein and a type 2-like cystatin. We then studied homologues of D. filaria type 2-like cystatin encoded in D. viviparus and 24 other nematodes representing seven distinct taxonomic orders, with a particular focus on their proposed role in immunomodulation and/or metabolism. Taken together, the present study provides new insights into nematode-host interactions. The findings lay the foundation for future experimental studies and could have implications for designing new interventions against lungworms and other parasitic nematodes. The future characterisation of the genomes of Dictyocaulus spp. should underpin these endeavours.
Collapse
Affiliation(s)
- Stefano Mangiola
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - Neil D Young
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia.
| | - Paul W Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Andreas Hofmann
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia; Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Aaron R Jex
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia; Institute of Parasitology and Tropical Veterinary Medicine, Berlin, Germany.
| |
Collapse
|
33
|
Gasser RB, Cantacessi C, Campbell BE. Improved molecular diagnostic tools for human hookworms. Expert Rev Mol Diagn 2014; 9:17-21. [DOI: 10.1586/14737159.9.1.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Marker genes for activation of the RNA interference (RNAi) pathway in the free-living nematode Caenorhabditis elegans and RNAi development in the ovine nematode Teladorsagia circumcincta. J Helminthol 2013; 89:208-16. [PMID: 24345514 DOI: 10.1017/s0022149x13000801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nematode Teladorsagia circumcincta is a major cause of parasitic gastroenteritis in sheep in temperate regions. The development of resistance to the major anthelmintic classes used for its control is a threat to small ruminant farming sustainability. Vaccination is a potential alternative control method for this nematode. Gene datasets can be exploited to identify potential vaccine candidates and these validated further by methods such as RNA interference (RNAi) prior to vaccine trials. Previous reports indicate that RNAi in parasitic nematodes is inconsistent and, to date, there are no internal controls that indicate activation of the RNAi pathway in response to double-stranded RNA (dsRNA). The present aims were to determine whether or not the transcription levels of potential marker genes in the RNAi pathway could indicate activation of the pathway in Caenorhabditis elegans and to develop an RNAi platform in T. circumcincta. In C. elegans, transcript levels of three candidate marker genes, Ce-dcr-1 (Dicer), Ce-ego-1 (Enhancer of Glp-One family member) and Ce-rsd-3 (RNAi Spreading Defective), were analysed and results indicated that activation of the pathway had no effect on transcript levels of these genes. In T. circumcincta, two vaccine candidate genes from the Activation-associated Secreted Protein (ASP) family were targets for knockdown. RNAi experiments showed successful silencing of both targets, although inconsistencies in efficacy were observed. After testing a number of parameters that might affect variability, it was found that the length of the storage period of the larvae plays an important role in the consistency of the RNAi results.
Collapse
|
35
|
Menon R, Gasser RB, Mitreva M, Ranganathan S. An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications. BMC Genomics 2012; 13 Suppl 7:S10. [PMID: 23282110 PMCID: PMC3521389 DOI: 10.1186/1471-2164-13-s7-s10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Teladorsagia circumcincta (order Strongylida) is an economically important parasitic nematode of small ruminants (including sheep and goats) in temperate climatic regions of the world. Improved insights into the molecular biology of this parasite could underpin alternative methods required to control this and related parasites, in order to circumvent major problems associated with anthelmintic resistance. The aims of the present study were to define the transcriptome of the adult stage of T. circumcincta and to infer the main pathways linked to molecules known to be expressed in this nematode. Since sheep develop acquired immunity against T. circumcincta, there is some potential for the development of a vaccine against this parasite. Hence, we infer excretory/secretory molecules for T. circumcincta as possible immunogens and vaccine candidates. RESULTS A total of 407,357 ESTs were assembled yielding 39,852 putative gene sequences. Conceptual translation predicted 24,013 proteins, which were then subjected to detailed annotation which included pathway mapping of predicted proteins (including 112 excreted/secreted [ES] and 226 transmembrane peptides), domain analysis and GO annotation was carried out using InterProScan along with BLAST2GO. Further analysis was carried out for secretory signal peptides using SignalP and non-classical sec pathway using SecretomeP tools. For ES proteins, key pathways, including Fc epsilon RI, T cell receptor, and chemokine signalling as well as leukocyte transendothelial migration were inferred to be linked to immune responses, along with other pathways related to neurodegenerative diseases and infectious diseases, which warrant detailed future studies. KAAS could identify new and updated pathways like phagosome and protein processing in endoplasmic reticulum. Domain analysis for the assembled dataset revealed families of serine, cysteine and proteinase inhibitors which might represent targets for parasite intervention. InterProScan could identify GO terms pertaining to the extracellular region. Some of the important domain families identified included the SCP-like extracellular proteins which belong to the pathogenesis-related proteins (PRPs) superfamily along with C-type lectin, saposin-like proteins. The 'extracellular region' that corresponds to allergen V5/Tpx-1 related, considered important in parasite-host interactions, was also identified. Six cysteine motif (SXC1) proteins, transthyretin proteins, C-type lectins, activation-associated secreted proteins (ASPs), which could represent potential candidates for developing novel anthelmintics or vaccines were few other important findings. Of these, SXC1, protein kinase domain-containing protein, trypsin family protein, trypsin-like protease family member (TRY-1), putative major allergen and putative lipid binding protein were identified which have not been reported in the published T. circumcincta proteomics analysis. Detailed analysis of 6,058 raw EST sequences from dbEST revealed 315 putatively secreted proteins. Amongst them, C-type single domain activation associated secreted protein ASP3 precursor, activation-associated secreted proteins (ASP-like protein), cathepsin B-like cysteine protease, cathepsin L cysteine protease, cysteine protease, TransThyretin-Related and Venom-Allergen-like proteins were the key findings. CONCLUSIONS We have annotated a large dataset ESTs of T. circumcincta and undertaken detailed comparative bioinformatics analyses. The results provide a comprehensive insight into the molecular biology of this parasite and disease manifestation which provides potential focal point for future research. We identified a number of pathways responsible for immune response. This type of large-scale computational scanning could be coupled with proteomic and metabolomic studies of this parasite leading to novel therapeutic intervention and disease control strategies. We have also successfully affirmed the use of bioinformatics tools, for the study of ESTs, which could now serve as a benchmark for the development of new computational EST analysis pipelines.
Collapse
Affiliation(s)
- Ranjeeta Menon
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | |
Collapse
|
36
|
Pearson MS, Tribolet L, Cantacessi C, Periago MV, Valero MA, Valerio MA, Jariwala AR, Hotez P, Diemert D, Loukas A, Bethony J. Molecular mechanisms of hookworm disease: stealth, virulence, and vaccines. J Allergy Clin Immunol 2012; 130:13-21. [PMID: 22742835 DOI: 10.1016/j.jaci.2012.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/31/2022]
Abstract
Hookworms produce a vast repertoire of structurally and functionally diverse molecules that mediate their long-term survival and pathogenesis within a human host. Many of these molecules are secreted by the parasite, after which they interact with critical components of host biology, including processes that are key to host survival. The most important of these interactions is the hookworm's interruption of nutrient acquisition by the host through its ingestion and digestion of host blood. This results in iron deficiency and eventually the microcytic hypochromic anemia or iron deficiency anemia that is the clinical hallmark of hookworm infection. Other molecular mechanisms of hookworm infection cause a systematic suppression of the host immune response to both the parasite and to bystander antigens (eg, vaccines or allergens). This is achieved by a series of molecules that assist the parasite in the stealthy evasion of the host immune response. This review will summarize the current knowledge of the molecular mechanisms used by hookworms to survive for extended periods in the human host (up to 7 years or longer) and examine the pivotal contributions of these molecular mechanisms to chronic hookworm parasitism and host clinical outcomes.
Collapse
Affiliation(s)
- Mark S Pearson
- Center for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Cairns, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
ZHAN B, SANTIAGO H, KEEGAN B, GILLESPIE P, XUE J, BETHONY J, De OLIVEIRA LM, JIANG D, DIEMERT D, XIAO SH, JONES K, FENG X, HOTEZ PJ, BOTTAZZI ME. Fusion of Na-ASP-2 with human immunoglobulin Fcγ abrogates histamine release from basophils sensitized with anti-Na-ASP-2 IgE. Parasite Immunol 2012; 34:404-11. [DOI: 10.1111/j.1365-3024.2012.01371.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Yan X, Cheng XY, Wang YS, Luo J, Mao ZC, Ferris VR, Xie BY. Comparative transcriptomics of two pathogenic pinewood nematodes yields insights into parasitic adaptation to life on pine hosts. Gene 2012; 505:81-90. [PMID: 22705985 DOI: 10.1016/j.gene.2012.05.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/03/2012] [Accepted: 05/18/2012] [Indexed: 02/07/2023]
Abstract
Bursaphelenchus xylophilus and Bursaphelenchus mucronatus are migratory endoparasitic nematodes that live in pine trees. To gain insight into their molecular similarities and differences, transcriptomes of the two nematodes were analysed. A total of 23,765 and 21,782 contigs (>300 bp) were obtained from B. xylophilus and B. mucronatus, respectively. More than 80% of the contigs could map to each other's transcriptome reciprocally. A total of 23,467 and 21,370 Open Reading Frames were predicted, respectively. Besides those known parasitism-related proteins, six new venom allergen-like proteins (VAPs) were found, which were not homologous to known VAPs. Enzymes involved in xenobiotic biodegradation were abundant in the two transcriptomes based on KEGG functional annotation. Metabolism of xenobiotics by cytochrome P450 comprised the main detoxification pathways. The mRNA expression levels of detoxification genes in nematodes living in the host were higher than those in nematodes feeding on fungus. However, there were fewer enzymes involved in the α-pinene degradation. Our results indicate that the two pinewood nematodes have evolved similar molecular mechanisms to adapt to life on pine hosts.
Collapse
Affiliation(s)
- Xia Yan
- College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Cantacessi C, Campbell BE, Gasser RB. Key strongylid nematodes of animals — Impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnol Adv 2012; 30:469-88. [DOI: 10.1016/j.biotechadv.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
40
|
CANTACESSI C, CAMPBELL BE, JEX AR, YOUNG ND, HALL RS, RANGANATHAN S, GASSER RB. Bioinformatics meets parasitology. Parasite Immunol 2012; 34:265-75. [DOI: 10.1111/j.1365-3024.2011.01304.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Cantacessi C, Hofmann A, Young ND, Broder U, Hall RS, Loukas A, Gasser RB. Insights into SCP/TAPS proteins of liver flukes based on large-scale bioinformatic analyses of sequence datasets. PLoS One 2012; 7:e31164. [PMID: 22384000 PMCID: PMC3284463 DOI: 10.1371/journal.pone.0031164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/03/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND SCP/TAPS proteins of parasitic helminths have been proposed to play key roles in fundamental biological processes linked to the invasion of and establishment in their mammalian host animals, such as the transition from free-living to parasitic stages and the modulation of host immune responses. Despite the evidence that SCP/TAPS proteins of parasitic nematodes are involved in host-parasite interactions, there is a paucity of information on this protein family for parasitic trematodes of socio-economic importance. METHODOLOGY/PRINCIPAL FINDINGS We conducted the first large-scale study of SCP/TAPS proteins of a range of parasitic trematodes of both human and veterinary importance (including the liver flukes Clonorchis sinensis, Opisthorchis viverrini, Fasciola hepatica and F. gigantica as well as the blood flukes Schistosoma mansoni, S. japonicum and S. haematobium). We mined all current transcriptomic and/or genomic sequence datasets from public databases, predicted secondary structures of full-length protein sequences, undertook systematic phylogenetic analyses and investigated the differential transcription of SCP/TAPS genes in O. viverrini and F. hepatica, with an emphasis on those that are up-regulated in the developmental stages infecting the mammalian host. CONCLUSIONS This work, which sheds new light on SCP/TAPS proteins, guides future structural and functional explorations of key SCP/TAPS molecules associated with diseases caused by flatworms. Future fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new approaches for the control of parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ursula Broder
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Smithfield, Queensland, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Osman A, Wang CK, Winter A, Loukas A, Tribolet L, Gasser RB, Hofmann A. Hookworm SCP/TAPS protein structure--A key to understanding host-parasite interactions and developing new interventions. Biotechnol Adv 2011; 30:652-7. [PMID: 22120067 DOI: 10.1016/j.biotechadv.2011.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 11/25/2022]
Abstract
SCP/TAPS proteins are a diverse family of molecules in eukaryotes, including parasites. Despite their abundant occurrence in parasite secretomes, very little is known about their functions in parasitic nematodes, including blood-feeding hookworms. Current information indicates that SCP/TAPS proteins (called Ancylostoma-secreted proteins, ASPs) of the canine hookworm, Ancylostoma caninum, represent at least three distinct groups of proteins. This information, combined with comparative modelling, indicates that all known ASPs have an equatorial groove that binds extended structures, such as peptides or glycans. To elucidate structure-function relationships, we explored the three-dimensional crystal structure of an ASP (called Ac-ASP-7), which is highly up-regulated in expression in the transition of A. caninum larvae from a free-living to a parasitic stage. The topology of the N-terminal domain is consistent with pathogenesis-related proteins, and the C-terminal extension that resembles the fold of the Hinge domain. By anomalous diffraction, we identified a new metal binding site in the C-terminal extension of the protein. Ac-ASP-7 is in a monomer-dimer equilibrium, and crystal-packing analysis identified a dimeric structure which might resemble the homo-dimer in solution. The dimer interaction interface includes a novel binding site for divalent metal ions, and is proposed to serve as a binding site for proteins involved in the parasite-host interplay at the molecular level. Understanding this interplay and the integration of structural and functional data could lead to the design of new approaches for the control of parasitic diseases, with biotechnological outcomes.
Collapse
Affiliation(s)
- Asiah Osman
- Structural Chemistry Program, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Cantacessi C, Gasser RB. SCP/TAPS proteins in helminths--where to from now? Mol Cell Probes 2011; 26:54-9. [PMID: 22005034 DOI: 10.1016/j.mcp.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
A diverse array of proteins belonging to the SCP/TAPS 'family' has been described for various eukaryotic organisms, including parasites. Although SCP/TAPS proteins have been hypothesized to play key roles in various fundamental biological processes, such as host-pathogen interactions and defence mechanisms, there is still a limited understanding of the precise roles of these proteins. Here, we review current knowledge of key SCP/TAPS proteins of helminths and their proposed roles in parasite-host interactions. Molecular investigations of these molecules in parasites and the integration of structural and functional data could lead to new and innovative approaches for the treatment and control of parasitic diseases, with important biotechnological outcomes.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
44
|
Asojo OA, Koski RA, Bonafé N. Structural studies of human glioma pathogenesis-related protein 1. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:847-55. [PMID: 21931216 PMCID: PMC3176621 DOI: 10.1107/s0907444911028198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 11/10/2022]
Abstract
Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- Department of Pathology and Microbiology, College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | | | | |
Collapse
|
45
|
Hewitson JP, Filbey KJ, Grainger JR, Dowle AA, Pearson M, Murray J, Harcus Y, Maizels RM. Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes. THE JOURNAL OF IMMUNOLOGY 2011; 187:4764-77. [PMID: 21964031 DOI: 10.4049/jimmunol.1004140] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heligmosomoides polygyrus is a widely used gastrointestinal helminth model of long-term chronic infection in mice, which has not been well-characterized at the antigenic level. We now identify the major targets of the murine primary Ab response as a subset of the secreted products in H. polygyrus excretory-secretory (HES) Ag. An immunodominant epitope is an O-linked glycan (named glycan A) carried on three highly expressed HES glycoproteins (venom allergen Ancylostoma-secreted protein-like [VAL]-1, -2, and -5), which stimulates only IgM Abs, is exposed on the adult worm surface, and is poorly represented in somatic parasite extracts. A second carbohydrate epitope (glycan B), present on both a non-protein high molecular mass component and a 65-kDa molecule, is widely distributed in adult somatic tissues. Whereas the high molecular mass component and 65-kDa molecules bear phosphorylcholine, the glycan B epitope itself is not phosphorylcholine. Class-switched IgG1 Abs are found to glycan B, but the dominant primary IgG1 response is to the polypeptides of VAL proteins, including also VAL-3 and VAL-4. Secondary Ab responses include the same specificities while also recognizing VAL-7. Although vaccination with HES conferred complete protection against challenge H. polygyrus infection, mAbs raised against each of the glycan epitopes and against VAL-1, VAL-2, and VAL-4 proteins were unable to do so, even though these specificities (with the exception of VAL-2) are also secreted by tissue-phase L4 larvae. The primary immune response in susceptible mice is, therefore, dominated by nonprotective Abs against a small subset of antigenic epitopes, raising the possibility that these act as decoy specificities that generate ineffective humoral immunity.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR, Bridgett S, Blaxter ML, Ashton PD, Ashford DA, Curwen RS, Wilson RA, Dowle AA, Maizels RM. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics 2011; 74:1573-94. [PMID: 21722761 DOI: 10.1016/j.jprot.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/20/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Asojo OA. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:455-62. [PMID: 21543848 DOI: 10.1107/s0907444911008560] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/06/2011] [Indexed: 11/11/2022]
Abstract
Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- Pathology and Microbiology Department, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
48
|
Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. Biotechnol Adv 2010; 29:261-71. [PMID: 21182926 DOI: 10.1016/j.biotechadv.2010.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022]
Abstract
The lungworm, Dictyocaulus viviparus, causes parasitic bronchitis in cattle, and is responsible for substantial economic losses in temperate regions of the world. Here, we undertake the first large-scale exploration of available transcriptomic data for this lungworm, examine differences in transcription between different stages/both genders and identify and prioritize essential molecules linked to fundamental metabolic pathways, which could represent novel drug targets. Approximately 3 million expressed sequence tags (ESTs), generated by 454 sequencing from third-stage larvae (L3s) as well as adult females and males of D. viviparus, were assembled and annotated. The assembly of these sequences yielded ~61,000 contigs, of which relatively large proportions encoded collagens (4.3%), ubiquitins (2.1%) and serine/threonine protein kinases (1.9%). Subtractive analysis in silico identified 6928 nucleotide sequences as being uniquely transcribed in L3, and 5203 and 7889 transcripts as being exclusive to the adult female and male, respectively. Most peptides predicted from the conceptual translations were nucleoplasmins (L3), serine/threonine protein kinases (female) and major sperm proteins (male). Additional analyses allowed the prediction of three drug target candidates, whose Caenorhabditis elegans homologues were linked to a lethal RNA interference phenotype. This detailed exploration, combined with future transcriptomic sequencing of all developmental stages of D. viviparus, will facilitate future investigations of the molecular biology of this parasitic nematode as well as genomic sequencing. These advances will underpin the discovery of new drug and/or vaccine targets, focused on biotechnological outcomes.
Collapse
|
49
|
Cantacessi C, Jex AR, Hall RS, Young ND, Campbell BE, Joachim A, Nolan MJ, Abubucker S, Sternberg PW, Ranganathan S, Mitreva M, Gasser RB. A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. Nucleic Acids Res 2010; 38:e171. [PMID: 20682560 PMCID: PMC2943614 DOI: 10.1093/nar/gkq667] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/11/2010] [Accepted: 07/15/2010] [Indexed: 11/14/2022] Open
Abstract
Transcriptomics (at the level of single cells, tissues and/or whole organisms) underpins many fields of biomedical science, from understanding the basic cellular function in model organisms, to the elucidation of the biological events that govern the development and progression of human diseases, and the exploration of the mechanisms of survival, drug-resistance and virulence of pathogens. Next-generation sequencing (NGS) technologies are contributing to a massive expansion of transcriptomics in all fields and are reducing the cost, time and performance barriers presented by conventional approaches. However, bioinformatic tools for the analysis of the sequence data sets produced by these technologies can be daunting to researchers with limited or no expertise in bioinformatics. Here, we constructed a semi-automated, bioinformatic workflow system, and critically evaluated it for the analysis and annotation of large-scale sequence data sets generated by NGS. We demonstrated its utility for the exploration of differences in the transcriptomes among various stages and both sexes of an economically important parasitic worm (Oesophagostomum dentatum) as well as the prediction and prioritization of essential molecules (including GTPases, protein kinases and phosphatases) as novel drug target candidates. This workflow system provides a practical tool for the assembly, annotation and analysis of NGS data sets, also to researchers with a limited bioinformatic expertise. The custom-written Perl, Python and Unix shell computer scripts used can be readily modified or adapted to suit many different applications. This system is now utilized routinely for the analysis of data sets from pathogens of major socio-economic importance and can, in principle, be applied to transcriptomics data sets from any organism.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Aaron R. Jex
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bronwyn E. Campbell
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anja Joachim
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Matthew J. Nolan
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sahar Abubucker
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Paul W. Sternberg
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Shoba Ranganathan
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Makedonka Mitreva
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia, Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria, Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, MO 63108, Biology Division, California Institute of Technology, CA 91125, USA and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
50
|
Teladorsagia circumcincta: Activation-associated secreted proteins in excretory/secretory products of fourth stage larvae are targets of early IgA responses in infected sheep. Exp Parasitol 2010; 125:329-37. [DOI: 10.1016/j.exppara.2010.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
|