1
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Abstract
Glucocorticoids (GCs) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical checkpoints in the hormonal control of energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, aberrant GC action has been linked to a variety of severe metabolic diseases, including type 2 diabetes and obesity. As a member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are in many cases associated with lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic lipid homeostasis. Thus, this chapter focuses on the current knowledge of GC/GR function in lipid handling and its implications for systemic metabolic dysfunction.
Collapse
|
3
|
Ayaori M, Sawada S, Yonemura A, Iwamoto N, Ogura M, Tanaka N, Nakaya K, Kusuhara M, Nakamura H, Ohsuzu F. Glucocorticoid receptor regulates ATP-binding cassette transporter-A1 expression and apolipoprotein-mediated cholesterol efflux from macrophages. Arterioscler Thromb Vasc Biol 2005; 26:163-8. [PMID: 16254209 DOI: 10.1161/01.atv.0000193513.29074.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The ATP-binding cassette transporter-A1 (ABCA1) regulates cholesterol efflux from cells and is involved in high-density lipoprotein metabolism and atherogenesis. The objective of this study was to investigate the effect of dexamethasone (Dex) and other glucocorticoid receptor (GR) ligands on apolipoprotein AI-mediated cholesterol efflux from macrophages and ABCA1 expression in them. METHODS AND RESULTS Dex, a GR agonist, decreased ABCA1 mRNA levels in a dose- and time-dependent fashion, and RU486, a GR antagonist, reversed the inhibitory effect of Dex. The effects of Dex and RU486 on ABCA1 protein levels and apolipoprotein AI-mediated cholesterol efflux from the macrophages were consistent with these changes in mRNA levels. Transfected RAW264.7, together with a human ABCA1 promoter-luciferase construct, inhibited transcriptional activity by Dex and overexpression of human GR. Transrepression by GR was not mediated by liver X receptor (LXR), because there were no differences in the effects of the GR ligands on promoter activity between a reporter construct with mutations at the LXR binding site and one without the mutations, and no changes were brought about in ABCG1 and ABCG4 expression by GR ligands. CONCLUSIONS Our results showed that GR ligands affected ABCA1 expression and cholesterol efflux from macrophages, which are regulated by GR through a LXR-independent mechanism.
Collapse
Affiliation(s)
- Makoto Ayaori
- First Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Stein Y, Stein O, Dabach Y, Halperin G, Ben-Naim M. LXR activation and cholesterol efflux from a lipoprotein depot in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1686:24-9. [PMID: 15522819 DOI: 10.1016/j.bbalip.2004.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/20/2004] [Accepted: 08/03/2004] [Indexed: 12/19/2022]
Abstract
Activation of LXR in cultured cells results in enhancement of cholesterol efflux to apo Al. To study cholesterol efflux, in vivo cationized LDL was injected into the rectus femoris muscle of mice to create a lipoprotein depot. LXR ligand TO901317, 10 mg/kg, was given by gavage for 8 days, starting 4 days after injection of the lipoprotein. The rate of cholesterol efflux from the depot was compared in treated and control mice. Administration of the ligand resulted in a 70% increase in plasma cholesterol and 40% in phospholipids, but HDL-cholesterol and HDL-phospholipids increased by 43% and 24% only. Efflux of the injected cholesterol from the lipoprotein depot of treated mice was not enhanced but even somewhat delayed. This impairment was unexpected and its cause could be multifactorial. A plausible explanation seems that induced hypercholesterolemia, and a decrease in HDL-cholesterol to total cholesterol ratio, delayed the clearance.
Collapse
Affiliation(s)
- Yechezkiel Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91 120, Israel.
| | | | | | | | | |
Collapse
|
5
|
Yang L, Yang JB, Chen J, Yu GY, Zhou P, Lei L, Wang ZZ, Cy Chang C, Yang XY, Chang TY, Li BL. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Res 2004; 14:315-23. [PMID: 15353128 DOI: 10.1038/sj.cr.7290231] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study, with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP-1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-1-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP-1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner. Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1 gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex, which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stein O, Dabach Y, Ben-Naim M, Halperin G, Charo IF, Stein Y. In CCR2-/- mice monocyte recruitment and egress of LDL cholesterol in vivo is impaired. Biochem Biophys Res Commun 2003; 300:477-81. [PMID: 12504109 DOI: 10.1016/s0006-291x(02)02862-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recruitment of macrophages plays an important role in initiation of atheroma, but their involvement in cholesterol clearance during regression is unknown. We developed a mouse model to quantitate cholesterol clearance from a depot of cationized LDL injected into a leg muscle, which evokes a sterile inflammatory reaction. In the CCR2(-/-) mice, cholesterol clearance was significantly slower than in C57BL controls because of decrease in cholesteryl ester (CE) hydrolysis, which is mandatory prior to cholesterol efflux. In CCR2(-/-) mice, macrophage recruitment to the injected site, identified by immunohistochemistry, was markedly delayed. CE hydrolysis was also significantly reduced in thioglycollate elicited peritoneal exudate cells of CCR2(-/-) mice, related to paucity of macrophages in the cell differential. The present study provides definite evidence that recruitment of macrophages is required for LDL cholesterol clearance, which plays a prominent role in regression of an atheroma.
Collapse
Affiliation(s)
- Olga Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Stein O, Dabach Y, Hollander G, Ben-Naim M, Halperin G, Stein Y. Reverse cholesterol transport in mice expressing simian cholesteryl ester transfer protein. Atherosclerosis 2002; 164:73-8. [PMID: 12119195 DOI: 10.1016/s0021-9150(02)00061-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of cholesteryl ester transfer protein (CETP) in atherogenesis remains ambiguous, as both pro and antiatherogenic effects have been described. Expression of CETP increases HDL-cholesteryl ester turnover, but there is no direct evidence whether CETP mobilizes cholesterol in vivo. The rate of cholesterol removal injected into a leg muscle as cationized low density lipoprotein (cat-LDL) was compared in CETP transgenic and control mice. Four days after injection the exogenous cholesterol mass retained in muscle was 65% in CETP transgenic and 70% of injected dose in controls; it decreased to 52-54% by day 8 and negligible amounts remained on day 28. The cat-LDL was labeled with either 3H-cholesterol oleate (3H-CE) or 3H-cholesteryl oleoyl ether (3H-COE), a nonhydrolyzable analog of 3H-CE. After injection of 3H-CE cat-LDL, clearance of 3H-cholesterol had a t(1/2) of 4 days between day 4 and 8 but there was little loss of 3H-COE between day 4 and 51. Liver radioactivity on day 4 was 1.7% in controls and 3.4% in CETP transgenics; it was 2.8 and 4.6%, respectively, on day 8. 3H-COE in liver accounted for 60% of label in CETP transgenics. In conclusion, high levels of plasma CETP in mice do not enhance reverse cholesterol transport in vivo but may act on extracellularly located cholesteryl ester.
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
8
|
Stein O, Dabach Y, Hollander G, Ben-Naim M, Halperin G, Stein Y. Effect of atherogenic diet on reverse cholesterol transport in vivo in atherosclerosis susceptible (C57BL/6) and resistant (C3H) mice. Atherosclerosis 2001; 156:307-13. [PMID: 11395026 DOI: 10.1016/s0021-9150(00)00667-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mice susceptible (C57BL/6) or resistant (C3H) to atherosclerosis induced by a high cholesterol-cholate containing diet (A-diet) were used to study reverse cholesterol transport (RCT) in vivo as measured by loss of cholesterol from a depot created by injection of cationized LDL into the rectus femoris muscle. Plasma total and HDL-cholesterol (HDL-C), total and HDL phospholipid (HDL-PL) levels in chow fed C3H male and female mice were higher than in C57BL/6 mice. After one month on A-diet, plasma cholesterol more than doubled in both strains and genders. The decrease in HDL-C and HDL-PL was twice as great in C57BL/6 as in C3H female mice, while in male C3H mice there was no decrease. The loss of exogenous cholesterol mass (ECM) after injection of cationized LDL was more rapid in C3H than in C57BL/6 mice. In chow fed mice, ECM retained in muscle on day 12 was 37% in C57BL/6 and 20% in C3H females; in males it was 39% and 18% in C57BL/6 and C3H, respectively. On A-diet, 76% were retained in C57BL/6 and 28% in C3H females; these values were 59% and 28% in C57BL/6 and C3H males. Thus, the slow clearance of ECM (which represents RCT) in C57BL/6 mice on A-diet, that could be related to a marked decrease of HDL-PL, might contribute towards their susceptibility to atherosclerosis.
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Dansky HM, Charlton SA, Barlow CB, Tamminen M, Smith JD, Frank JS, Breslow JL. Apo A-I inhibits foam cell formation in Apo E-deficient mice after monocyte adherence to endothelium. J Clin Invest 1999; 104:31-9. [PMID: 10393696 PMCID: PMC408406 DOI: 10.1172/jci6577] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have previously shown that expression of the human apo A-I transgene on the apo E-deficient background increases HDL cholesterol and greatly diminishes fatty streak lesion formation. To examine the mechanism, prelesional events in atherosclerotic plaque development were examined in 6- to 8-week-old apo E-deficient and apo E-deficient/human apo A-I transgenic mice. A quantitative assessment of subendothelial lipid deposition by freeze-fracture and deep-etch electron microscopy indicated that elevated apo A-I did not affect the distribution or amount of aortic arch subendothelial lipid deposits. Immunohistochemical staining for VCAM-1 demonstrated similar expression on endothelial cells at prelesional aortic branch sites from both apo E-deficient and apo E-deficient/human apo A-I transgenic mice. Transmission electron microscopy revealed monocytes bound to the aortic arch in mice of both genotypes, and immunohistochemical staining demonstrated that the area occupied by bound mononuclear cells was unchanged. Serum paraoxonase and aryl esterase activity did not differ between apo E-deficient and apo E-deficient/human apo A-I transgenic mice. These data suggest that increases in apo A-I and HDL cholesterol inhibit foam cell formation in apo E-deficient/human apo A-I transgenic mice at a stage following lipid deposition, endothelial activation, and monocyte adherence, without increases in HDL-associated paraoxonase.
Collapse
Affiliation(s)
- H M Dansky
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Stein O, Dabach Y, Hollander G, Ben-Naim M, Halperin G, Stein Y. High levels of human apolipoprotein A-I and high density lipoproteins in transgenic mice do not enhance efflux of cholesterol from a depot of injected lipoproteins. Relevance to regression of atherosclerosis? Atherosclerosis 1999; 144:367-74. [PMID: 10407497 DOI: 10.1016/s0021-9150(99)00006-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of high density lipoprotein (HDL) and apolipoprotein A-I (apo A-I)in promoting cholesterol efflux from cultured cells and attenuation of development of atherosclerosis in transgenic (tg) animals has been well documented. The aim of the present study was to determine whether high levels of human (h) apo A-I will enhance cholesterol removal in vivo. h apo A-I in sera of tg mice was 429 +/- 18 and 308 +/- 10 mg/dl in male and female mice, the ratio of phospholipid (PL) to apo A-I was 0.94 in tg and 2.4 and 1.9 in male and female controls, taking mouse apo A-I as 100 mg/dl. The removal of lipoprotein cholesterol injected in the form of cationized low density lipoprotein (cat-LDL) into the rectus femoris muscle of h apo A-I tg is compared with control mice. After injection of cat-LDL labeled with [3H]cholesterol, the labeled cholesterol was cleared from the depot with a t 1/2 of about 4 days in both control and tg mice. The clearance of the exogenous cholesterol mass was initially much slower, it approached the t 1/2 of about 4 days between day 8 and 14 but there was no difference between tg and control mice. Cholesterol efflux from cultured macrophages exposed to media containing up to 10% serum was 56% higher with serum from tg mice than controls. In conclusion, the efflux of cholesterol from a localized depot of cat-LDL was not enhanced in h apo A-I tg mice. It appears, therefore, that while an increase above physiological levels of apo A-I or plasma HDL does play a pivotal role in the prevention of initiation and progression of early stages of atherosclerosis, the effectiveness of such an increase for the regression stage remains still to be demonstrated.
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The aim of this review was to bring together results obtained from studies on different aspects of HDL as related to CHD and atherosclerosis. As atherosclerosis is a multistep process, the various components of HDL can intervene at different stages, such as induction of monocyte adhesion molecules, prevention of LDL modification and removal of excess cholesterol by reverse cholesterol transport. Transgenic technology has provided a model for atherosclerosis, and permitted evaluation of the contributions of different HDL components towards the global effect. The availability of apo AIV transgenic mice amplified the results obtained from apo AI overexpressors with respect to prevention of atherosclerosis. Prevention of atherosclerosis in apo E deficient mice by relatively small amounts of macrophage derived apo E may open new possibilities for therapeutic intervention. Contrary to early notions, increased plasma levels of CETP, even in the presence of low but functionally normal HDL, were atheroprotective. The extent to which paraoxonase and apo J participate in prevention of human atherosclerosis needs further evaluation. The findings that LCAT overexpression in rabbits was atheroprotective in contrast to increase in atherosclerosis in h LCAT tg mice, which was only partially corrected by CETP expression, call for some caution in the extrapolation of results from transgenic animals to humans. The important discovery of SR-BI as the receptor for selective uptake of CE from HDL revived interest in the clearance of CE from plasma. This pathway supplies also the vital precursor for steroidogenesis in adrenals and gonads and was shown to be dependent on apo AI.
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|