1
|
Wang Q, Aleshintsev A, Rai K, Jin E, Gupta R. Proton Transfer via Arginine with Suppressed p Ka Mediates Catalysis by Gentisate and Salicylate Dioxygenase. J Phys Chem B 2024; 128:6797-6805. [PMID: 38978492 PMCID: PMC11264262 DOI: 10.1021/acs.jpcb.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Gentisate and salicylate 1,2-dioxygenases (GDO and SDO) facilitate aerobic degradation of aromatic rings by inserting both atoms of dioxygen into their substrates, thereby participating in global carbon cycling. The role of acid-base catalysts in the reaction cycles of these enzymes is debatable. We present evidence of the participation of a proton shuffler during catalysis by GDO and SDO. The pH dependence of Michaelis-Menten parameters demonstrates that a single proton transfer is mandatory for the catalysis. Measurements at variable temperatures and pHs were used to determine the standard enthalpy of ionization (ΔHion°) of 51 kJ/mol for the proton transfer event. Although the observed apparent pKa in the range of 6.0-7.0 for substrates of both enzymes is highly suggestive of a histidine residue, ΔHion° establishes an arginine residue as the likely proton source, providing phylogenetic relevance for this strictly conserved residue in the GDO family. We propose that the atypical 3-histidine ferrous binding scaffold of GDOs contributes to the suppression of arginine pKa and provides support for this argument by employing a 2-histidine-1-carboxylate variant of the enzyme that exhibits elevated pKa. A reaction mechanism considering the role of the proton source in stabilizing key reaction intermediates is proposed.
Collapse
Affiliation(s)
- Qian Wang
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
| | - Aleksey Aleshintsev
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
- Ph.D.
Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Kamal Rai
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
| | - Eric Jin
- Staten
Island Technical High School, Staten Island, New York 10306, United States
| | - Rupal Gupta
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
- Ph.D.
Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Alkaline Stress Causes Changes in Polyamine Biosynthesis in Thermus thermophilus. Int J Mol Sci 2022; 23:ijms232113523. [DOI: 10.3390/ijms232113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
An extreme thermophile, Thermus thermophilus, produces 16 different polyamines including long-chain and branched-chain polyamines. The composition and content of polyamines in the thermophile cells change not only with growth temperature but also with pH changes. In particular, cell growth decreased greatly at alkaline medium together with significant changes in the composition and content of polyamines. The amounts of tetraamines (spermine and its homologs) markedly decreased at alkaline pH. Thus, we knocked out the speE gene, which is involved in the biosynthesis of tetraamines, and changes of composition of polyamines with pH changes in the mutant cells were studied. Cell growth in the ΔspeE strain was decreased compared with that of the wild-type strain for all pHs, suggesting that tetraamines are important for cell proliferation. Interestingly, the amount of spermidine decreased and that of putrescine increased in wild-type cells at elevated pH, although T. thermophilus lacks a putrescine synthesizing pathway. In addition, polyamines possessing a diaminobutane moiety, such as spermine, decreased greatly at high pH. We assessed whether the speB gene encoding aminopropylagmatine ureohydrolase (TtSpeB) is directly involved in the synthesis of putrescine. The catalytic assay of the purified enzyme indicated that TtSpeB accepts agmatine as its substrate and produces putrescine due to the change in substrate specificity at high pH. These results suggest that pH stress was exacerbated upon intracellular depletion of polyamines possessing a diaminobutane moiety induced by unusual changes in polyamine biosynthesis under high pH conditions.
Collapse
|
3
|
Sardar S, Weitz A, Hendrich MP, Pierce BS. Outer-Sphere Tyrosine 159 within the 3-Mercaptopropionic Acid Dioxygenase S-H-Y Motif Gates Substrate-Coordination Denticity at the Non-Heme Iron Active Site. Biochemistry 2019; 58:5135-5150. [PMID: 31750652 PMCID: PMC10071547 DOI: 10.1021/acs.biochem.9b00674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2-). Regardless of the phylogenic domain, the active site for this enzyme class is typically comprised of two major features: (1) a mononuclear ferrous iron coordinated by three protein-derived histidines and (2) a conserved sequence of outer Fe-coordination-sphere amino acids (Ser-His-Tyr) spatially adjacent to the iron site (∼3 Å). Here, we utilize a promiscuous 3-mercaptopropionic acid dioxygenase cloned from Azotobacter vinelandii (Av MDO) to explore the function of the conserved S-H-Y motif. This enzyme exhibits activity with 3-mercaptopropionic acid (3mpa), l-cysteine (cys), as well as several other thiol-bearing substrates, thus making it an ideal system to study the influence of residues within the highly conserved S-H-Y motif (H157 and Y159) on substrate specificity and reactivity. The pKa values for these residues were determined by pH-dependent steady-state kinetics, and their assignments verified by comparison to H157N and Y159F variants. Complementary electron paramagnetic resonance and Mössbauer studies demonstrate a network of hydrogen bonds connecting H157-Y159 and Fe-bound ligands within the enzymatic Fe site. Crucially, these experiments suggest that the hydroxyl group of Y159 hydrogen bonds to Fe-bound NO and, by extension, Fe-bound oxygen during native catalysis. This interaction alters both the NO binding affinity and rhombicity of the 3mpa-bound iron-nitrosyl site. In addition, Fe coordination of cys is switched from thiolate only to bidentate (thiolate/amine) for the Y159F variant, indicating that perturbations within the S-H-Y proton relay network also influence cys Fe binding denticity.
Collapse
Affiliation(s)
- Sinjinee Sardar
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Place , Arlington , Texas 76019 , United States
| | - Andrew Weitz
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Brad S Pierce
- Department of Chemistry and Biochemistry , University of Alabama , 250 Hackberry Lane , Tuscaloosa , Alabama 35487 , United States
| |
Collapse
|
4
|
Trimmer EE, Wanninayake US, Fitzpatrick PF. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase. Biochemistry 2017; 56:2024-2030. [PMID: 28355481 DOI: 10.1021/acs.biochem.7b00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavoprotein d-amino acid oxidase has long served as a paradigm for understanding the mechanism of oxidation of amino acids by flavoproteins. Recently, a mutant d-amino acid oxidase (Y228L/R283G) that catalyzed the oxidation of amines rather than amino acids was described [Yasukawa, K., et al. (2014) Angew. Chem., Int. Ed. 53, 4428-4431]. We describe here the use of pH and kinetic isotope effects with (R)-α-methylbenzylamine as a substrate to determine whether the mutant enzyme utilizes the same catalytic mechanism as the wild-type enzyme. The effects of pH on the steady-state and rapid-reaction kinetics establish that the neutral amine is the substrate, while an active-site residue, likely Tyr224, must be uncharged for productive binding. There is no solvent isotope effect on the kcat/Km value for the amine, consistent with the neutral amine being the substrate. The deuterium isotope effect on the kcat/Km value is pH-independent, with an average value of 5.3, similar to values found with amino acids as substrates for the wild-type enzyme and establishing that there is no commitment to catalysis with this substrate. The kcat/KO2 value is similar to that seen with amino acids as the substrate, consistent with the oxidative half-reaction being unperturbed by the mutation and with flavin oxidation preceding product release. All of the data are consistent with the mutant enzyme utilizing the same mechanism as the wild-type enzyme, transfer of hydride from the neutral amine to the flavin.
Collapse
Affiliation(s)
- Elizabeth E Trimmer
- Department of Chemistry, Grinnell College , Grinnell, Iowa 50112, United States
| | - Udayanga S Wanninayake
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center , San Antonio, Texas 78229, United States
| |
Collapse
|
5
|
Crowell JK, Sardar S, Hossain MS, Foss FW, Pierce BS. Non-chemical proton-dependent steps prior to O2-activation limit Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase (MDO) catalysis. Arch Biochem Biophys 2016; 604:86-94. [PMID: 27311613 DOI: 10.1016/j.abb.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022]
Abstract
3-mercaptopropionate dioxygenase from Azotobacter vinelandii (Av MDO) is a non-heme mononuclear iron enzyme that catalyzes the O2-dependent oxidation of 3-mercaptopropionate (3mpa) to produce 3-sulfinopropionic acid (3spa). With one exception, the active site residues of MDO are identical to bacterial cysteine dioxygenase (CDO). Specifically, the CDO Arg-residue (R50) is replaced by Gln (Q67) in MDO. Despite this minor active site perturbation, substrate-specificity of Av MDO is more relaxed as compared to CDO. In order to investigate the relative timing of chemical and non-chemical events in Av MDO catalysis, the pH/D-dependence of steady-state kinetic parameters (kcat and kcat/KM) and viscosity effects are measured using two different substrates [3mpa and l-cysteine (cys)]. The pL-dependent activity of Av MDO in these reactions can be rationalized assuming a diprotic enzyme model in which three ionic forms of the enzyme are present [cationic, E((z+1)); neutral, E(z); and anionic, E((z-1))]. The activities observed for each substrate appear to be dominated by electrostatic interactions within the enzymatic active site. Given the similarity between MDO and the more extensively characterized mammalian CDO, a tentative model for the role of the conserved 'catalytic triad' is proposed.
Collapse
Affiliation(s)
- Joshua K Crowell
- Department of Chemistry & Biochemistry, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sinjinee Sardar
- Department of Chemistry & Biochemistry, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mohammad S Hossain
- Department of Chemistry & Biochemistry, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
6
|
Pierce BS, Subedi BP, Sardar S, Crowell JK. The "Gln-Type" Thiol Dioxygenase from Azotobacter vinelandii is a 3-Mercaptopropionic Acid Dioxygenase. Biochemistry 2015; 54:7477-90. [PMID: 26624219 DOI: 10.1021/acs.biochem.5b00636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine to produce cysteinesulfinic acid. Bacterial CDOs have been subdivided as either "Arg-type" or "Gln-type" on the basis of the identity of conserved active site residues. To date, "Gln-type" enzymes remain largely uncharacterized. It was recently noted that the "Gln-type" enzymes are more homologous with another thiol dioxygenase [3-mercaptopropionate dioxygenase (MDO)] identified in Variovorax paradoxus, suggesting that enzymes of the "Gln-type" subclass are in fact MDOs. In this work, a putative "Gln-type" thiol dioxygenase from Azotobacter vinelandii (Av) was purified to homogeneity and characterized. Steady-state assays were performed using three substrates [3-mercaptopropionic acid (3mpa), l-cysteine (cys), and cysteamine (ca)]. Despite comparable maximal velocities, the "Gln-type" Av enzyme exhibited a specificity for 3mpa (kcat/KM = 72000 M(-1) s(-1)) nearly 2 orders of magnitude greater than those for cys (110 M(-1) s(-1)) and ca (11 M(-1) s(-1)). Supporting X-band electron paramagnetic resonance (EPR) studies were performed using nitric oxide (NO) as a surrogate for O2 binding to confirm obligate-ordered addition of substrate prior to NO. Stoichimetric addition of NO to solutions of 3mpa-bound enzyme quantitatively yields an iron-nitrosyl species (Av ES-NO) with EPR features consistent with a mononuclear (S = (3)/2) {FeNO}(7) site. Conversely, two distinct substrate-bound conformations were observed in Av ES-NO samples prepared with cys and ca, suggesting heterogeneous binding within the enzymatic active site. Analytical EPR simulations are provided to establish the relative binding affinity for each substrate (3map > cys > ca). Both kinetic and spectroscopic results presented here are consistent with 3mpa being the preferred substrate for this enzyme.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Bishnu P Subedi
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Sinjinee Sardar
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Joshua K Crowell
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
7
|
Crowell JK, Li W, Pierce BS. Oxidative uncoupling in cysteine dioxygenase is gated by a proton-sensitive intermediate. Biochemistry 2014; 53:7541-8. [PMID: 25387045 DOI: 10.1021/bi501241d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine (Cys) to produce cysteine sulfinic acid (CSA). This enzyme catalyzes the first committed step in Cys catabolism; thus, it is central to mammalian sulfur metabolism and redox homeostasis. Ironically, despite nearly 45 years of continued research on CDO, essentially no information has been reported with respect to its kinetic mechanism. In this work, the timing of chemical steps in the CDO kinetic mechanism is investigated by pH/pD-dependent steady-state kinetics and solvent isotope effects on kcat, kcat/KM, and (O2/CSA) coupling. Normal solvent kinetic isotope effects of 1.45 ± 0.05 and 2.0 ± 0.1 are observed in kcat-pL and kcat/KM-pL profiles, respectively. Proton inventory experiments within the pL-independent region (pL 8.5) suggest multiple solvent-exchangeable protons in flight for both kcat and kcat/KM data. The influence of solvent viscosity was also investigated to probe non-chemical steps and to verify that the apparent isotope effects were not attributable to increased solvent viscosity of D2O reactions relative to H2O. Although solvent viscosity did have a modest influence on kcat and kcat/KM, the response is not sufficient to account for the observed solvent isotope effects. This suggests that product release is only partially rate-limiting for CDO catalysis. Most crucially, proton inventory of (O2/CSA) coupling indicates that a proton-sensitive transition state directly follows O2 activation. Thus, protonation of a transient species preceding Cys oxidation is gated by protons in flight. This behavior provides valuable insight into the kinetically masked transients generated during catalysis.
Collapse
Affiliation(s)
- Joshua K Crowell
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | | |
Collapse
|
8
|
Prongjit M, Sucharitakul J, Palfey BA, Chaiyen P. Oxidation mode of pyranose 2-oxidase is controlled by pH. Biochemistry 2013; 52:1437-45. [PMID: 23356577 DOI: 10.1021/bi301442x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.
Collapse
Affiliation(s)
- Methinee Prongjit
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
9
|
Adachi MS, Taylor AB, Hart PJ, Fitzpatrick PF. Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1. Biochemistry 2012; 51:4888-97. [PMID: 22642831 DOI: 10.1021/bi300517s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N(1)-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The k(cat)/K(O2) value changes very little upon mutation with N(1)-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k(cat)/K(M)-pH profiles with N(1)-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK(a) values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK(a) as wild-type Fms1, about ∼7.4; this pK(a) is assigned to the substrate N4. The k(cat)/K(O2)-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK(a) of about ∼6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k(cat) value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 Å. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.
Collapse
Affiliation(s)
- Mariya S Adachi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
10
|
Adachi MS, Torres JM, Fitzpatrick PF. Mechanistic studies of the yeast polyamine oxidase Fms1: kinetic mechanism, substrate specificity, and pH dependence. Biochemistry 2010; 49:10440-8. [PMID: 21067138 PMCID: PMC2999662 DOI: 10.1021/bi1016099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N(1)-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s(-1) and apparent K(d) values of 24.3 and 484 μM for spermine and N(1)-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM(-1) s(-1) with spermine at 25 °C and 204 mM(-1) s(-1) with N(1)-acetylspermine at 4 °C and pH 9.0. This step is followed by rate-limiting product dissociation. The k(cat)/K(amine)-pH profiles are bell-shaped, with an average pK(a) value of 9.3 with spermine and pK(a) values of 8.3 and 9.6 with N(1)-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pK(a) values of 8.3 and 7.2 for spermine and N(1)-acetylspermine, respectively, for groups that must be unprotonated; these pK(a) values are assigned to the substrate N4. The k(cat)/K(O(2))-pH profiles show pK(a) values of 7.5 for spermine and 6.8 for N(1)-acetylspermine. With both substrates, the k(cat) value decreases when a single residue is protonated.
Collapse
Affiliation(s)
- Mariya S. Adachi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Jason M. Torres
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| |
Collapse
|
11
|
Pozzi MH, Fitzpatrick PF. A lysine conserved in the monoamine oxidase family is involved in oxidation of the reduced flavin in mouse polyamine oxidase. Arch Biochem Biophys 2010; 498:83-8. [PMID: 20417173 PMCID: PMC2880204 DOI: 10.1016/j.abb.2010.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Lysine 315 of mouse polyamine amine oxidase corresponds to a lysine residue that is conserved in the flavoprotein amine oxidases of the monoamine oxidase structural family. In several structures, this lysine residue forms a hydrogen bond to a water molecule that is hydrogen-bonded to the flavin N(5). Mutation of Lys315 in polyamine oxidase to methionine was previously shown to have no effect on the kinetics of the reductive half-reaction of the enzyme (M. Henderson Pozzi, V. Gawandi, P.F. Fitzpatrick, Biochemistry 48 (2009) 1508-1516). In contrast, the mutation does affect steps in the oxidative half-reaction. The k(cat) value is unaffected by the mutation; this kinetic parameter likely reflects product release. At pH 10, the k(cat)/K(m) value for oxygen is 25-fold lower in the mutant enzyme. The k(cat)/K(O2) value is pH-dependent for the wild-type enzyme, decreasing below a pK(a) of 7.0, while this kinetic parameter for the mutant enzyme is pH-independent. This is consistent with the neutral form of Lys315 being required for more rapid flavin oxidation. The solvent isotope effect on the k(cat)/K(O2) value increases from 1.4 in the wild-type enzyme to 1.9 in the mutant protein, and the solvent inventory changes from linear to bowed. The effects of the mutation can be explained by the lysine orienting the bridging water so that it can accept the proton from the flavin N(5) during flavin oxidation. In the mutant enzyme the lysine amine would be replaced by a water chain.
Collapse
Affiliation(s)
| | - Paul F. Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio TX 78229-3900
| |
Collapse
|
12
|
Hama Y, Katsuki H, Tochikawa Y, Suminaka C, Kume T, Akaike A. Contribution of endogenous glycine site NMDA agonists to excitotoxic retinal damage in vivo. Neurosci Res 2006; 56:279-85. [PMID: 16934894 DOI: 10.1016/j.neures.2006.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/27/2006] [Accepted: 07/19/2006] [Indexed: 12/13/2022]
Abstract
N-Methyl-d-aspartate (NMDA) receptors, which play an important role in neuronal excitotoxicity, require not only agonists at the glutamate-binding site but also co-agonists at the glycine site for their activation. Here we examined the role of endogenous agonists at the glycine site of NMDA receptors in excitotoxic retinal damage in vivo. To quantify the number of surviving retinal ganglion cells (RGCs), we injected a retrograde tracer, fluoro-gold, into the superior colliculus bilaterally and subsequently counted RGCs on whole-mounted retinas. Co-injection of 5,7-dichlorokynurenic acid (300 nmol), a competitive antagonist at the glycine site of NMDA receptors, rescued RGCs from damage induced by 200 nmol NMDA. On the other hand, RGC death induced by 20 nmol NMDA was enhanced by addition of glycine (10 nmol), D-serine (10 nmol) or a competitive glycine transporter-1 inhibitor, sarcosine (0.3 or 3 nmol). Moreover, application of d-serine-degrading enzyme, D-amino acid oxidase (30 mU), partially suppressed RGC death induced by 20 nmol NMDA. These results suggest that the severity of excitotoxic retinal damage in vivo depends on the levels of both glycine and D-serine.
Collapse
Affiliation(s)
- Yasuhiro Hama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Boselli A, Piubelli L, Molla G, Sacchi S, Pilone MS, Ghisla S, Pollegioni L. On the mechanism of Rhodotorula gracilis d-amino acid oxidase: role of the active site serine 335. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:19-32. [PMID: 15450847 DOI: 10.1016/j.bbapap.2004.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 07/20/2004] [Indexed: 11/29/2022]
Abstract
Serine 335 at the active site of D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO) is not conserved in other DAAO sequences. To assess its role in catalysis, it was mutated to Gly, the residue present in mammalian DAAO, an enzyme with a 35-fold lower turnover number with D-alanine. The spectral and ligand binding properties of the S335G mutant are similar to those of wild-type enzyme, suggesting an active site with minimally altered electrostatic properties. The S335G mutant is catalytically active, excluding an essential role of S335 in catalysis. However, S335-OH contributes to the high efficiency of the mutant enzyme since the catalytic activity of the latter is lower due to a decreased rate of flavin reduction relative to wild-type RgDAAO. Catalytic rates are pH-dependent and appear to converge to very low, but finite and similar values at low pH for both wild-type and S335G RgDAAO. While this dependence exhibits two apparent pKs with wild-type RgDAAO, with the S335G mutant a single, apparent pK approximately 8 is observed, which is attributed to the ionization of the alphaNH2 group of the bound substrate. Removal of S335-OH thus suppresses an apparent pK approximately 6. Both wild-type RgDAAO and the S335G mutant exhibit a substantial deuterium solvent kinetic isotope effect (> or =4) at pH<7 that disappears with increasing pH and reflects a pKapp=6.9 +/- 0.4. Interestingly, the substitution suppresses the activity towards d-lactate, suggesting a role of the serine 335 in removal of the substrate alpha-OH hydrogen.
Collapse
Affiliation(s)
- Angelo Boselli
- Department of Structural and Functional Biology, University of Insubria, via JH Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Pollegioni L, Harris CM, Molla G, Pilone MS, Ghisla S. Identification and role of ionizing functional groups at the active center of Rhodotorula gracilis D-amino acid oxidase. FEBS Lett 2001; 507:323-6. [PMID: 11696364 DOI: 10.1016/s0014-5793(01)02983-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
D-Amino acid oxidase (DAAO) is a flavoprotein oxidase that catalyzes the oxidation of amino acids and produces ketoacids and H(2)O(2). The rate of product release from reduced DAAO from Rhodotorula gracilis is pH dependent and reflects a pK(a) of approximately 9.3. Binding of benzoate and 3,3,3-trifluoro-D-alanine to wild-type and Y238F-DAAO is also pH dependent (pK(a)=9.8+/-0.1 and 9.05+/-0.1, respectively for benzoate binding). However, binding of benzoate to Y223F-DAAO is pH independent, indicating the pK(a) is due to Y223-OH. This latter residue is thus involved in substrate binding, and probably is the group that governs product release. In contrast to this, the second active site tyrosine, Y238, has little influence on ligand binding.
Collapse
Affiliation(s)
- L Pollegioni
- Department of Structural and Functional Biology, University of Insubria, Varese, Italy.
| | | | | | | | | |
Collapse
|
15
|
Mothet JP, Parent AT, Wolosker H, Brady RO, Linden DJ, Ferris CD, Rogawski MA, Snyder SH. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 2000; 97:4926-31. [PMID: 10781100 PMCID: PMC18334 DOI: 10.1073/pnas.97.9.4926] [Citation(s) in RCA: 883] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional activity of N-methyl-D-aspartate (NMDA) receptors requires both glutamate binding and the binding of an endogenous coagonist that has been presumed to be glycine, although D-serine is a more potent agonist. Localizations of D-serine and it biosynthetic enzyme serine racemase approximate the distribution of NMDA receptors more closely than glycine. We now show that selective degradation of d-serine with D-amino acid oxidase greatly attenuates NMDA receptor-mediated neurotransmission as assessed by using whole-cell patch-clamp recordings or indirectly by using biochemical assays of the sequelae of NMDA receptor-mediated calcium flux. The inhibitory effects of the enzyme are fully reversed by exogenously applied D-serine, which by itself did not potentiate NMDA receptor-mediated synaptic responses. Thus, D-serine is an endogenous modulator of the glycine site of NMDA receptors and fully occupies this site at some functional synapses.
Collapse
Affiliation(s)
- J P Mothet
- Departments of Neuroscience, Pharmacology and Molecular Sciences and Psychiatry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-21185, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin LL, Wang WC, Ju SS, Chien HR, Hsu WH. The role of a conserved histidine residue, His324, in Trigonopsis variabilis D-amino acid oxidase. FEMS Microbiol Lett 1999; 176:443-8. [PMID: 10427728 DOI: 10.1111/j.1574-6968.1999.tb13695.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
To investigate the functional role of an invariant histidine residue in Trigonopsis variabilis D-amino acid oxidase (DAAO), a set of mutant enzymes with replacement of the histidine residue at position 324 was constructed and their enzymatic properties were examined. Wild-type and mutant enzymes have been purified to homogeneity using the His-bound column and the molecular masses were determined to be 39.2 kDa. Western blot analysis revealed that the in vivo synthesized mutant enzymes are immuno-identical with that of the wild-type DAAO. The His324Asn and His324Gln mutants displayed comparable enzymatic activity to that of the wild-type enzyme, while the other mutant DAAOs showed markedly decreased or no detectable activity. The mutants, His324/Asn/Gln/Ala/Tyr/Glu, exhibited 38-181% increase in Km and a 2-10-fold reduction in kcat/Km. Based on the crystal structure of a homologous protein, pig kidney DAAO, it is suggested that His324 might play a structural role for proper catalytic function of T. variabilis DAAO.
Collapse
Affiliation(s)
- L L Lin
- Department of Food Science and Nutrition, Hung Kuang Institute of Technology, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Contrasting Values of Commitment Factors Measured from Viscosity, pH, and Kinetic Isotope Effects: Evidence for Slow Conformational Changes in theD-Amino Acid Oxidase Reaction. Bioorg Chem 1997. [DOI: 10.1006/bioo.1997.1057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Pollegioni L, Blodig W, Ghisla S. On the mechanism of D-amino acid oxidase. Structure/linear free energy correlations and deuterium kinetic isotope effects using substituted phenylglycines. J Biol Chem 1997; 272:4924-34. [PMID: 9030552 DOI: 10.1074/jbc.272.8.4924] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The kinetic mechanism of the reaction of D-amino acid oxidase (EC 1.4.3.3) from Trigonopsis variabilis with [alpha-1H]- and [alpha-2H]phenylglycine has been determined. The pH dependence of Vmax is compatible with pKa values of approximately 8.1 and >9.5, the former of which is attributed to a base which should be deprotonated for efficient catalysis. The deuterium isotope effect on turnover is approximately 3.9, and the solvent isotope effect approximately 1.6. The reductive half-reaction is biphasic, the first, fast phase, k2, corresponding to substrate dehydrogenation/enzyme flavin reduction and the second to conversion/release of product. Enzyme flavin reduction consists in an approach to equilibrium involving a finite rate for k-2, the reversal of k2. k2 is 28.8 and 4.6 s-1 for [alpha-1H]- and [alpha-2H]phenylglycine, respectively, yielding a primary deuterium isotope effect approximately 6. The solvent deuterium isotope effect on the apparent rate of reduction for [alpha-1H]- and [alpha-2H]phenylglycine is approximately 2.8 and approximately 5. The rates for k-2 are 4.2 and 0.9 s-1 for [alpha-1H]- and [alpha-2H]phenylglycine, respectively, and the corresponding isotope effect is approximately 4.7. The isotope effect on alpha-H and the solvent one thus behave multiplicatively consistent with a highly concerted process and a symmetric transition state. The k2 and k-2 values for phenylglycines carrying the para substituents F, Cl, Br, CH3, OH, NO2 and OCH3 have been determined. There is a linear correlation of k2 with the substituent volume VM and with sigma+; k-2 correlates best with sigma or sigma+ while steric parameters have little influence. This is consistent with the transition state being structurally similar to the product. The Bronsted plot of DeltaG versus DeltaG0 allows the estimation of the intrinsic DeltaG0 as approximately 58 kJ.M-1. From the linear free energy correlations, the relation of DeltaG versus DeltaG0 and according to the theory of Marcus it is concluded that there is little if any development of charge in the transition state. This, together with the recently solved three-dimensional structure of D-amino acid oxidase from pig kidney (Mattevi, A., Vanoni, M.A., Todone, F., Rizzi, M., Teplyakov, A., Coda, A., Bolognesi, M., and Curti, B. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 7496-7501), argues against a carbanion mechanism in its classical formulation. Our data are compatible with transfer of a hydride from the substrate alphaC-H to the oxidized flavin N(5) position, although, clearly, they cannot prove it.
Collapse
Affiliation(s)
- L Pollegioni
- Fakultät für Biologie, Universität Konstanz, D-78434 Konstanz, Germany
| | | | | |
Collapse
|