1
|
Greenman AC, Diffee GM, Power AS, Wilkins GT, Gold OMS, Erickson JR, Baldi JC. Treadmill running increases the calcium sensitivity of myofilaments in diabetic rats. J Appl Physiol (1985) 2022; 132:1350-1360. [PMID: 35482324 DOI: 10.1152/japplphysiol.00785.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cardiovascular benefits of regular exercise are unequivocal, yet patients with type 2 diabetes respond poorly to exercise due to a reduced cardiac reserve. The contractile response of diabetic cardiomyocytes to beta-adrenergic stimulation is attenuated, which may result in altered myofilament calcium sensitivity and post-translational modifications of cardiac troponin I (cTnI). Treadmill running increases myofilament calcium sensitivity in non‑diabetic rats, and thus we hypothesized that endurance training would increase calcium sensitivity of diabetic cardiomyocytes and alter site-specific phosphorylation of cTnI. Calcium sensitivity, or pCa50, was measured in Zucker Diabetic Fatty (ZDF) non-diabetic (nDM) and diabetic (DM) rat hearts after 8 weeks of either a sedentary (SED) or progressive treadmill running (TR) intervention. Skinned cardiomyocytes were connected to a capacitance-gauge transducer and a torque motor to measure force as a function of pCa (‑log[Ca2+]). Specific phospho-sites on cTnI and O‑GlcNAcylation were quantified by immunoblot and total protein phosphorylation by fluorescent gel staining (ProQ Diamond). The novel finding in this study was that training increased pCa50 in both DM and nDM cardiomyocytes (p = 0.009). Phosphorylation of cTnI amino acid residues Ser23/24, a crucial protein kinase A site, and Threonine (Thr)144, was lower in DM hearts, but there was no effect of training on site-specific phosphorylation. Additionally, total phosphorylation and O-GlcNAcylation levels were not different between SED and TR groups. These findings suggest that regular exercise may benefit the diabetic heart by specifically targeting myofilament contractile function.
Collapse
Affiliation(s)
- Angela Claire Greenman
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI
| | - Amelia S Power
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Gerard T Wilkins
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Olivia M S Gold
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - James C Baldi
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ, Kostyukova AS. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 2018; 30:268-281. [PMID: 30462572 PMCID: PMC6589558 DOI: 10.1091/mbc.e18-06-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin’s thin-filament pointed-end assembly but does not affect tropomodulin’s assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin’s affinity for F-actin and affects leiomodin’s function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin’s function.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Dylan Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834
| | - William Schlecht
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
3
|
Mickelson AV, Chandra M. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers. Am J Physiol Heart Circ Physiol 2017; 313:H1180-H1189. [PMID: 28842439 DOI: 10.1152/ajpheart.00369.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023]
Abstract
The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnTR94H)-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnTWT) and the guinea pig analog of the human R94H mutation (TnTR95H) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnTR95H increased pCa50 (-log of free Ca2+ concentration) to a greater extent at short SL; TnTR95H increased pCa50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa50) was attenuated nearly twofold in TnTR95H fibers; ΔpCa50 was 0.09 pCa units for TnTWT fibers but only 0.05 pCa units for TnTR95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnTR95H Collectively, our observations on the SL dependency of pCa50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnTR95HNEW & NOTEWORTHY Mutant cardiac troponin T (TnTR95H) differently affects myofilament Ca2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnTR95H TnTR95H enhances myofilament Ca2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
4
|
Mickelson AV, Gollapudi SK, Chandra M. Cardiomyopathy-related mutation (A30V) in mouse cardiac troponin T divergently alters the magnitude of stretch activation in α- and β-myosin heavy chain fibers. Am J Physiol Heart Circ Physiol 2017; 312:H141-H149. [PMID: 27769999 PMCID: PMC5283911 DOI: 10.1152/ajpheart.00487.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/29/2016] [Accepted: 10/15/2016] [Indexed: 01/19/2023]
Abstract
The present study investigated the functional consequences of the human hypertrophic cardiomyopathy (HCM) mutation A28V in cardiac troponin T (TnT). The A28V mutation is located within the NH2 terminus of TnT, a region known to be important for full activation of cardiac thin filaments. The functional consequences of the A28V mutation in TnT remain unknown. Given how α- and β-myosin heavy chain (MHC) isoforms differently alter the functional effect of the NH2 terminus of TnT, we hypothesized that the A28V-induced effects would be differently modulated by α- and β-MHC isoforms. Recombinant wild-type mouse TnT (TnTWT) and the mouse equivalent of the human A28V mutation (TnTA30V) were reconstituted into detergent-skinned cardiac muscle fibers extracted from normal (α-MHC) and transgenic (β-MHC) mice. Dynamic and steady-state contractile parameters were measured in reconstituted muscle fibers. Step-like length perturbation experiments demonstrated that TnTA30V decreased the magnitude of the muscle length-mediated recruitment of new force-bearing cross bridges (ER) by 30% in α-MHC fibers. In sharp contrast, TnTA30V increased ER by 55% in β-MHC fibers. Inferences drawn from other dynamic contractile parameters suggest that directional changes in ER in TnTA30V + α-MHC and TnTA30V + β-MHC fibers result from a divergent impact on cross bridge-regulatory unit (troponin-tropomyosin complex) cooperativity. TnTA30V-mediated effects on Ca2+-activated maximal tension and instantaneous muscle fiber stiffness (ED) were also divergently affected by α- and β-MHC. Our study demonstrates that TnTA30V + α-MHC and TnTA30V + β-MHC fibers show contrasting contractile phenotypes; however, only the observations from β-MHC fibers are consistent with the clinical data for A28V in humans. NEW & NOTEWORTHY The differential impact of α- and β-myosin heavy chain (MHC) on contractile dynamics causes a mutant cardiac troponin T (TnTA30V) to differently modulate cardiac contractile function. TnTA30V attenuated Ca2+-activated maximal tension and length-mediated cross-bridge recruitment against α-MHC but augmented these parameters against β-MHC, suggesting divergent contractile phenotypes.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
5
|
Gollapudi SK, Chandra M. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain. Front Physiol 2016; 7:443. [PMID: 27757084 PMCID: PMC5047882 DOI: 10.3389/fphys.2016.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant-such as myofilament Ca2+ sensitivity-is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
6
|
Michael JJ, Gollapudi SK, Chandra M. Interplay between the effects of a Protein Kinase C phosphomimic (T204E) and a dilated cardiomyopathy mutation (K211Δ or R206W) in rat cardiac troponin T blunts the magnitude of muscle length-mediated crossbridge recruitment against the β-myosin heavy chain background. J Muscle Res Cell Motil 2016; 37:83-93. [PMID: 27411801 DOI: 10.1007/s10974-016-9448-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
Failing hearts of dilated cardiomyopathy (DCM)-patients reveal systolic dysfunction and upregulation of several Protein Kinase C (PKC) isoforms. Recently, we demonstrated that the functional effects of T204E, a PKC phosphomimic of cardiac troponin T (TnT), were differently modulated by α- and β-myosin heavy chain (MHC) isoforms. Therefore, we hypothesized that the interplay between the effects of T204E and a DCM-linked mutation (K211Δ or R206W) in TnT would modulate contractile parameters linked-to systolic function in an MHC-dependent manner. To test our hypothesis, five TnT variants (wildtype, K211Δ, K211Δ + T204E, R206W, and R206W + T204E) were generated and individually reconstituted into demembranated cardiac muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rats. Steady-state and mechano-dynamic measurements were performed on reconstituted fibers. Myofilament Ca(2+) sensitivity (pCa50) was decreased by both K211Δ and R206W to a greater extent in α-MHC fibers (~0.15 pCa units) than in β-MHC fibers (~0.06 pCa units). However, T204E exacerbated the attenuating influence of both mutants on pCa50 only in β-MHC fibers. Moreover, the magnitude of muscle length (ML)-mediated crossbridge (XB) recruitment was decreased by K211Δ + T204E (~47 %), R206W (~34 %), and R206W + T204E (~36 %) only in β-MHC fibers. In relevance to human hearts, which predominantly express β-MHC, our data suggest that the interplay between the effects of DCM mutations, PKC phosphomimic in TnT, and β-MHC lead to systolic dysfunction by attenuating pCa50 and the magnitude of ML-mediated XB recruitment.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
7
|
Michael JJ, Chandra M. Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α- and β-Myosin Heavy Chain Isoforms. J Am Heart Assoc 2016; 5:e002777. [PMID: 27001966 PMCID: PMC4943253 DOI: 10.1161/jaha.115.002777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis was based on two observations: (1) α‐ and β‐MHC differentially influence the functional effects of TnT; and (2) PKC isoforms capable of phosphorylating TnT are upregulated in failing human hearts. Methods and Results We generated 4 recombinant TnT variants: wild type; R206L; T204E; and R206L+T204E. Functional effects of the TnT variants were tested in cardiac muscle fibers (minimum 14 per group) from normal (α‐MHC) and propylthiouracil‐treated rats (β‐MHC) using steady‐state and dynamic contractile measurements. Notably, in α‐MHC fibers, Ca2+‐activated maximal tension was attenuated by R206L (≈32%), T204E (≈63%), and R206L+T204E (≈64%). In β‐MHC fibers, maximal tension was unaffected by R206L, but was attenuated by T204E (≈33%) and R206L+T204E (≈40%). Thus, β‐MHC differentially counteracted the attenuating effects of the TnT variants on tension. However, in β‐MHC fibers, R206L+T204E attenuated tension to a greater extent when compared to T204E alone. In β‐MHC fibers, R206L+T204E attenuated the magnitude of the length‐mediated recruitment of new cross‐bridges (≈28%), suggesting that the Frank‐Starling mechanism was impaired. Conclusions Our findings are the first (to our knowledge) to demonstrate that the functional effects of a DCM‐linked TnT mutation are not only modulated by MHC isoforms, but also by the pathology‐associated post‐translational modifications of TnT.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| |
Collapse
|
8
|
Gollapudi SK, Chandra M. The effect of cardiomyopathy mutation (R97L) in mouse cardiac troponin T on the muscle length-mediated recruitment of crossbridges is modified divergently by α- and β-myosin heavy chain. Arch Biochem Biophys 2016; 601:105-12. [PMID: 26792537 DOI: 10.1016/j.abb.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
Abstract
Hypertrophic cardiomyopathy mutations in cardiac troponin T (TnT) lead to sudden cardiac death. Augmented myofilament Ca(2+) sensitivity is a common feature in TnT mutants, but such observations fail to provide a rational explanation for severe cardiac phenotypes. To better understand the mutation-induced effect on the cardiac phenotype, it is imperative to determine the effects on dynamic contractile features such as the muscle length (ML)-mediated activation against α- and β-myosin heavy chain (MHC) isoforms. α- and β-MHC are not only differentially expressed in rodent and human hearts, but they also modify ML-mediated activation differently. Mouse analog of human TnTR94L (TnTR97L) or wild-type TnT was reconstituted into de-membranated muscle fibers from normal (α-MHC) and transgenic (β-MHC) mouse hearts. TnTR97L augmented myofilament Ca(2+) sensitivity by a similar amount in α- and β-MHC fibers. However, TnTR97L augmented the negative impact of strained crossbridges on other crossbridges (γ) by 22% in α-MHC fibers, but attenuated γ by 21% in β-MHC fibers. TnTR97L decreased the magnitude of ML-mediated recruitment of crossbridges (ER) by 37% in α-MHC fibers, but increased ER by 35% in β-MHC fibers. We provide a mechanistic basis for the TnTR97L-induced effects in α- and β-MHC fibers and discuss the relevance to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA.
| |
Collapse
|
9
|
Chandra V, Gollapudi SK, Chandra M. Rat cardiac troponin T mutation (F72L)-mediated impact on thin filament cooperativity is divergently modulated by α- and β-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol 2015; 309:H1260-70. [PMID: 26342069 DOI: 10.1152/ajpheart.00519.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022]
Abstract
The primary causal link between disparate effects of human hypertrophic cardiomyopathy (HCM)-related mutations in troponin T (TnT) and α- and β-myosin heavy chain (MHC) isoforms on cardiac contractile phenotype remains poorly understood. Given the divergent impact of α- and β-MHC on the NH2-terminal extension (44-73 residues) of TnT, we tested if the effects of the HCM-linked mutation (TnTF70L) were differentially altered by α- and β-MHC. We hypothesized that the emergence of divergent thin filament cooperativity would lead to contrasting effects of TnTF70L on contractile function in the presence of α- and β-MHC. The rat TnT analog of the human F70L mutation (TnTF72L) or the wild-type rat TnT (TnTWT) was reconstituted into demembranated muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rat hearts to measure steady-state and dynamic contractile function. TnTF72L-mediated effects on tension, myofilament Ca(2+) sensitivity, myofilament cooperativity, rate constants of cross-bridge (XB) recruitment dynamics, and force redevelopment were divergently modulated by α- and β-MHC. TnTF72L increased the rate of XB distortion dynamics by 49% in α-MHC fibers but had no effect in β-MHC fibers; these observations suggest that TnTF72L augmented XB detachment kinetics in α-MHC, but not β-MHC, fibers. TnTF72L increased the negative impact of strained XBs on the force-bearing XBs by 39% in α-MHC fibers but had no effect in β-MHC fibers. Therefore, TnTF72L leads to contractile changes that are linked to dilated cardiomyopathy in the presence of α-MHC. On the other hand, TnTF72L leads to contractile changes that are linked to HCM in the presence of β-MHC.
Collapse
Affiliation(s)
- Vikram Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
10
|
Thompson BR, Metzger JM. Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential. Anat Rec (Hoboken) 2015; 297:1663-9. [PMID: 25125179 DOI: 10.1002/ar.22966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/09/2022]
Abstract
The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins, held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure-function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia-mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia-resistant histidine-button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults, or neutralize altered sarcomeric function in disease.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | | |
Collapse
|
11
|
Gollapudi SK, Tardiff JC, Chandra M. The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by α- and β-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol 2015; 308:H884-93. [PMID: 25681424 DOI: 10.1152/ajpheart.00528.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca(2+) sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| | - Jil C Tardiff
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| |
Collapse
|
12
|
Effects of pseudo-phosphorylated rat cardiac troponin T are differently modulated by α- and β-myosin heavy chain isoforms. Basic Res Cardiol 2014; 109:442. [PMID: 25301196 DOI: 10.1007/s00395-014-0442-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/31/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Interplay between the protein kinase C (PKC)-mediated phosphorylation of troponin T (TnT)- and myosin heavy chain (MHC)-mediated effects on thin filaments takes on a new significance because: (1) there is significant interaction between the TnT- and MHC-mediated effects on cardiac thin filaments; (2) although the phosphorylation of TnT by PKC isoforms is common to both human and rodent hearts, human hearts predominantly express β-MHC while rodent hearts predominantly express α-MHC. Therefore, we tested how α- and β-MHC isoforms differently affected the functional effects of phosphorylated TnT. Contractile measurements were made on cardiac muscle fibers from normal rats (α-MHC) and propylthiouracil-treated rats (β-MHC), reconstituted with the recombinant phosphomimetic-TnT (T204E; threonine 204 replaced by glutamate). Ca2+ -activated maximal tension decreased differently in α-MHC + T204E (~68%) and β-MHC + T204E (~35%). However, myofilament Ca2+ sensitivity decreased similarly in α-MHC + T204E and β-MHC + T204E, demonstrating that a decrease in Ca2+ sensitivity alone cannot explain the greater attenuation of tension in α-MHC + T204E. Interestingly, dynamic contractile parameters (rates of tension redevelopment, crossbridge (XB) recruitment dynamics, XB distortion dynamics, and XB detachment kinetics) decreased only in α-MHC + T204E. Thus, the transition of thin filaments from the blocked- to closed-state was attenuated in α-MHC + T204E and β-MHC + T204E, but the closed- to open-state transition was attenuated only in α-MHC + T204E. Our study demonstrates that the effects of phosphorylated TnT and MHC isoforms interact to bring about different functional states of cardiac thin filaments.
Collapse
|
13
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
14
|
Hanft LM, Biesiadecki BJ, McDonald KS. Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24. J Physiol 2013; 591:4535-47. [PMID: 23836688 PMCID: PMC3784197 DOI: 10.1113/jphysiol.2013.258400] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/02/2013] [Indexed: 01/24/2023] Open
Abstract
According to the Frank-Starling relationship, greater end-diastolic volume increases ventricular output. The Frank-Starling relationship is based, in part, on the length-tension relationship in cardiac myocytes. Recently, we identified a dichotomy in the steepness of length-tension relationships in mammalian cardiac myocytes that was dependent upon protein kinase A (PKA)-induced myofibrillar phosphorylation. Because PKA has multiple myofibrillar substrates including titin, myosin-binding protein-C and cardiac troponin I (cTnI), we sought to define if phosphorylation of one of these molecules could control length-tension relationships. We focused on cTnI as troponin can be exchanged in permeabilized striated muscle cell preparations, and tested the hypothesis that phosphorylation of cTnI modulates length dependence of force generation. For these experiments, we exchanged unphosphorylated recombinant cTn into either a rat cardiac myocyte preparation or a skinned slow-twitch skeletal muscle fibre. In all cases unphosphorylated cTn yielded a shallow length-tension relationship, which was shifted to a steep relationship after PKA treatment. Furthermore, exchange with cTn having cTnI serines 23/24 mutated to aspartic acids to mimic phosphorylation always shifted a shallow length-tension relationship to a steep relationship. Overall, these results indicate that phosphorylation of cTnI serines 23/24 is a key regulator of length dependence of force generation in striated muscle.
Collapse
Affiliation(s)
- Laurin M Hanft
- K. S. McDonald: Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
15
|
The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers. J Mol Biol 2013; 425:1565-81. [PMID: 23357173 DOI: 10.1016/j.jmb.2013.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/22/2022]
Abstract
The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2- and RcT1-RfsT2-reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to the force response of small-amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a 40% decrease in tension and a 44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge (XB) recruitment (E0) decreased by ~33% and the speed of XB recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates XB recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of the CR to modulate XB recruitment dynamics; (3) the T2 region is important for tuning the Ca(2+) regulation of cardiac thin filaments. The combined effects of CR-tropomyosin interactions and the modulating effect of the N-terminal end of cTnT on CR-tropomyosin interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates.
Collapse
|
16
|
Cardiomyopathy-Related Mutations in Cardiac Troponin C, L29Q and G159D, Have Divergent Effects on Rat Cardiac Myofiber Contractile Dynamics. Biochem Res Int 2012; 2012:824068. [PMID: 23008774 PMCID: PMC3447348 DOI: 10.1155/2012/824068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/06/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Previous studies of cardiomyopathy-related mutations in cardiac troponin C (cTnC)-L29Q and G159D-have shown diverse findings. The link between such mutant effects and their divergent impact on cardiac phenotypes has remained elusive due to lack of studies on contractile dynamics. We hypothesized that a cTnC mutant-induced change in the thin filament will affect global myofilament mechanodynamics because of the interactions of thin filament kinetics with both Ca(2+) binding and crossbridge (XB) cycling kinetics. We measured pCa-tension relationship and contractile dynamics in detergent-skinned rat cardiac papillary muscle fibers reconstituted with the recombinant wild-type rat cTnC (cTnC(WT)), cTnC(L29Q), and cTnC(G159D) mutants. cTnC(L29Q) fibers demonstrated a significant decrease in Ca(2+) sensitivity, but cTnC(G159D) fibers did not. Both mutants had no effect on Ca(2+)-activated maximal tension. The rate of XB recruitment dynamics increased in cTnC(L29Q) (26%) and cTnC(G159D) (25%) fibers. The rate of XB distortion dynamics increased in cTnC(G159D) fibers (15%). Thus, the cTnC(L29Q) mutant modulates the equilibrium between the non-cycling and cycling pool of XB by affecting the on/off kinetics of the regulatory units (Tropomyosin-Troponin); whereas, the cTnC(G159D) mutant increases XB cycling rate. Different effects on contractile dynamics may offer clue regarding how cTnC(L29Q) and cTnC(G159D) cause divergent effects on cardiac phenotypes.
Collapse
|
17
|
Kirkpatrick KP, Robertson AS, Klaiman JM, Gillis TE. The influence of trout cardiac troponin I and PKA phosphorylation on the Ca2+ affinity of the cardiac troponin complex. ACTA ACUST UNITED AC 2011; 214:1981-8. [PMID: 21613513 DOI: 10.1242/jeb.052860] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trout heart is 10-fold more sensitive to Ca(2+) than the mammalian heart. This difference is due, in part, to cardiac troponin C (cTnC) from trout having a greater Ca(2+) affinity than human cTnC. To determine what other proteins are involved, we cloned cardiac troponin I (cTnI) from the trout heart and determined how it alters the Ca(2+) affinity of a cTn complex containing all mammalian components (mammalian cTn). Ca(2+) activation of the complex was characterized using a human cTnC mutant that contains anilinonapthalenesulfote iodoacetamide attached to Cys53. When the cTn complex containing labeled human cTnC was titrated with Ca(2+), its fluorescence changed, reaching an asymptote upon saturation. Our results reveal that trout cTnI lacks the N-terminal extension found in cTnI from all other vertebrate groups. This protein domain contains two targets (Ser23 and Ser24) for protein kinase A (PKA) and protein kinase C. When these are phosphorylated, the rate of cardiomyocyte relaxation increases. When rat cTnI in the mammalian cTn complex was replaced with trout cTnI, the Ca(2+) affinity was increased ∼1.8-fold. This suggests that trout cTnI contributes to the high Ca(2+) sensitivity of the trout heart. Treatment of the two cTn complexes with PKA decreased the Ca(2+) affinity of both complexes. However, the change for the complex containing rat cTnI was 2.2-fold that of the complex containing trout cTnI. This suggests that the phosphorylation of trout cTnI does not play as significant a role in regulating cTn function in trout.
Collapse
Affiliation(s)
- Kelly P Kirkpatrick
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | | | | |
Collapse
|
18
|
Tikunova SB, Liu B, Swindle N, Little SC, Gomes AV, Swartz DR, Davis JP. Effect of calcium-sensitizing mutations on calcium binding and exchange with troponin C in increasingly complex biochemical systems. Biochemistry 2010; 49:1975-84. [PMID: 20128626 DOI: 10.1021/bi901867s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-dependent interactions between troponin C (TnC) and other thin and thick filament proteins play a key role in the regulation of cardiac muscle contraction. Five hydrophobic residues (Phe(20), Val(44), Met(45), Leu(48), and Met(81)) in the regulatory domain of TnC were individually substituted with polar Gln, to examine the effect of these mutations that sensitized isolated TnC to calcium on (1) the calcium binding and exchange with TnC in increasingly complex biochemical systems and (2) the calcium sensitivity of actomyosin ATPase. The hydrophobic residue mutations drastically affected calcium binding and exchange with TnC in increasingly complex biochemical systems, indicating that side chain intra- and intermolecular interactions of these residues play a crucial role in determining how TnC responds to calcium. However, the mutations that sensitized isolated TnC to calcium did not necessarily increase the calcium sensitivity of the troponin (Tn) complex or reconstituted thin filaments with or without myosin S1. Furthermore, the calcium sensitivity of reconstituted thin filaments (in the absence of myosin S1) was a better predictor of the calcium dependence of actomyosin ATPase activity than that of TnC or the Tn complex. Thus, both the intrinsic properties of TnC and its interactions with the other contractile proteins play a crucial role in modulating the binding of calcium to TnC in increasingly complex biochemical systems.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas 77204, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Phosphorylation of cardiac troponin I by mammalian sterile 20-like kinase 1. Biochem J 2009; 418:93-101. [PMID: 18986304 DOI: 10.1042/bj20081340] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mst1 (mammalian sterile 20-like kinase 1) is a ubiquitously expressed serine/threonine kinase and its activation in the heart causes cardiomyocyte apoptosis and dilated cardiomyopathy. Its myocardial substrates, however, remain unknown. In a yeast two-hybrid screen of a human heart cDNA library with a dominant-negative Mst1 (K59R) mutant used as bait, cTn [cardiac Tn (troponin)] I was identified as an Mst1-interacting protein. The interaction of cTnI with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK-293 cells (human embryonic kidney cells) and native cardiomyocytes, in which cTnI interacted with full-length Mst1, but not with its N-terminal kinase fragment. in vitro phosphorylation assays demonstrated that cTnI is a sensitive substrate for Mst1. In contrast, cTnT was phosphorylated by Mst1 only when it was incorporated into the Tn complex. MS analysis indicated that Mst1 phosphorylates cTnI at Thr(31), Thr(51), Thr(129) and Thr(143). Substitution of Thr(31) with an alanine residue reduced Mst1-mediated cTnI phosphorylation by 90%, whereas replacement of Thr(51), Thr(129) or Thr(143) with alanine residues reduced Mst1-catalysed cTnI phosphorylation by approx. 60%, suggesting that Thr(31) is a preferential phosphorylation site for Mst1. Furthermore, treatment of cardiomyocytes with hydrogen peroxide rapidly induced Mst1-dependent phosphorylation of cTnI at Thr(31). Protein epitope analysis and binding assays showed that Mst1-mediated phosphorylation modulates the molecular conformation of cTnI and its binding affinity to TnT and TnC, thus indicating functional significances. The results of the present study suggest that Mst1 is a novel mediator of cTnI phosphorylation in the heart and may contribute to the modulation of myofilament function under a variety of physiological and pathophysiological conditions.
Collapse
|
20
|
Lu XY, Chen L, Cai XL, Yang HT. Overexpression of heat shock protein 27 protects against ischaemia/reperfusion-induced cardiac dysfunction via stabilization of troponin I and T. Cardiovasc Res 2008; 79:500-8. [DOI: 10.1093/cvr/cvn091] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
21
|
Norman C, Rall JA, Tikunova SB, Davis JP. Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities. Am J Physiol Heart Circ Physiol 2007; 293:H2580-7. [PMID: 17693547 DOI: 10.1152/ajpheart.00039.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether changing thin filament Ca2+sensitivity alters the rate of contraction, either during normal cross-bridge cycling or when cross-bridge cycling is increased by inorganic phosphate (Pi). We increased or decreased Ca2+sensitivity of force production by incorporating into rat skinned cardiac trabeculae the troponin C (TnC) mutants V44QTnCF27Wand F20QTnCF27W. The rate of isometric contraction was assessed as the rate of force redevelopment ( ktr) after a rapid release and restretch to the original length of the muscle. Both in the absence of added Piand in the presence of 2.5 mM added Pi1) Ca2+sensitivity of ktrwas increased by V44QTnCF27Wand decreased by F20QTnCF27Wcompared with control TnCF27W; 2) ktrat submaximal Ca2+activation was significantly faster for V44QTnCF27Wand slower for F20QTnCF27Wcompared with control TnCF27W; 3) at maximum Ca2+activation, ktrvalues were similar for control TnCF27W, V44QTnCF27W, and F20QTnCF27W; and 4) ktrexhibited a linear dependence on force that was indistinguishable for all TnCs. In the presence of 2.5 mM Pi, ktrwas faster at all pCa values compared with the values for no added Pifor TnCF27W, V44QTnCF27W, and F20QTnCF27W. This study suggests that TnC Ca2+binding properties modulate the rate of cardiac muscle contraction at submaximal levels of Ca2+activation. This result has physiological relevance considering that, on a beat-to-beat basis, the heart contracts at submaximal Ca2+activation.
Collapse
Affiliation(s)
- Catalina Norman
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
22
|
Chandra M, Tschirgi ML, Ford SJ, Slinker BK, Campbell KB. Interaction between myosin heavy chain and troponin isoforms modulate cardiac myofiber contractile dynamics. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1595-607. [PMID: 17626127 DOI: 10.1152/ajpregu.00157.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coordinated expression of species-specific myosin heavy chain (MHC) and troponin (Tn) isoforms may bring about a dynamic complementarity to match muscle contraction speed with species-specific heart rates. Contractile system function and dynamic force-length measurements were made in muscle fibers from mouse and rat hearts and in muscle fibers after reconstitution with either recombinant homologous Tn or orthologous Tn. The rate constants of length-mediated cross-bridge (XB) recruitment (b) and tension redevelopment (k(tr)) of mouse fibers were significantly faster than those of rat fibers. Both the tension cost (ATPase/tension) and rate constant of length-mediated XB distortion (c) were higher in the mouse than in the rat. Thus the mouse fiber was faster in all dynamic and functional aspects than the rat fiber. Mouse Tn significantly increased b and k(tr) in rat fibers; conversely, rat Tn significantly decreased b and k(tr) in mouse fibers. Thus the length-mediated recruitment of force-bearing XB occurs much more rapidly in the presence of mouse Tn than in the presence of rat Tn, demonstrating that the speed of XB recruitment is regulated by Tn. There was a significant interaction between Tn and MHC such that changes in either Tn or MHC affected the speed of XB recruitment. Our data demonstrate that the dynamics of myocardial contraction are different in the mouse and rat hearts because of sequence heterogeneity in MHC and Tn. At the myofilament level, coordinated expression of complementary regulatory contractile proteins produces a functional dynamic phenotype that allows the cardiovascular systems to function effectively at different heart rates.
Collapse
Affiliation(s)
- Murali Chandra
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, 205 Wegner Hall, Pullman, Washington 99164, USA.
| | | | | | | | | |
Collapse
|
23
|
Engel PL, Kobayashi T, Biesiadecki B, Davis J, Tikunova S, Wu S, Solaro RJ. Identification of a region of troponin I important in signaling cross-bridge-dependent activation of cardiac myofilaments. J Biol Chem 2006; 282:183-93. [PMID: 17099250 DOI: 10.1074/jbc.m512337200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Force generating strong cross-bridges are required to fully activate cardiac thin filaments, but the molecular signaling mechanism remains unclear. Evidence demonstrating differential extents of cross-bridge-dependent activation of force, especially at acidic pH, in myofilaments in which slow skeletal troponin I (ssTnI) replaced cardiac TnI (cTnI) indicates the significance of a His in ssTnI that is an homologous Ala in cTnI. We compared cross-bridge-dependent activation in myofilaments regulated by cTnI, ssTnI, cTnI(A66H), or ssTnI(H34A). A drop from pH 7.0 to 6.5 induced enhanced cross-bridge-dependent activation in cTnI myofilaments, but depressed activation in cTnI(A66H) myofilaments. This same drop in pH depressed cross-bridge-dependent activation in both ssTnI myofilaments and ssTnI(H34A) myofilaments. Compared with controls, cTnI(A66H) myofilaments were desensitized to Ca(2+), whereas there was no difference in the Ca(2+)-force relationship between ssTnI and ssTnI(H34A) myofilaments. The mutations in cTnI and ssTnI did not affect Ca(2+) dissociation rates from cTnC at pH 7.0 or 6.5. However, at pH 6.5, cTnI(A66H) had lower affinity for cTnT than cTnI. We also probed cross-bridge-dependent activation in myofilaments regulated by cTnI(Q56A). Myofilaments containing cTnI(Q56A) demonstrated cross-bridge-dependent activation that was similar to controls containing cTnI at pH 7.0 and an enhanced cross-bridge-dependent activation at pH 6.5. We conclude that a localized N-terminal region of TnI comprised of amino acids 33-80, which interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing signaling of thin filament activation by strong cross-bridges.
Collapse
Affiliation(s)
- Patti L Engel
- Center for Cardiovascular Research, Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
McCall SJ, Nassar R, Malouf NN, Saunders AJ, Oakeley AE, Henderson PM, Solaro RJ, Pielak GJ, Alexander KA, Anderson PAW. Development and cardiac contractility: cardiac troponin T isoforms and cytosolic calcium in rabbit. Pediatr Res 2006; 60:276-81. [PMID: 16857772 DOI: 10.1203/01.pdr.0000233004.95404.1f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac contractility depends on calcium sensitivity of the myofilaments and cytosolic free calcium concentration ([Ca(2+)](i)) during activation. During development, the cardiac troponin T isoform cTnT(1) is replaced by shorter cTnT isoforms, including cTnT(4), and changes occur in other myofibrillar proteins and in calcium regulation. We expressed rabbit recombinant (r)cTnT(1) and rcTnT(4) in Spodoptera frugiperda cells and determined their effect on calcium binding to TnC in solution and on the calcium sensitivity of myofilaments in skinned rabbit ventricular fibers in vitro. We measured [Ca(2+)](i) and L-type calcium current (I(Ca)) in ventricular myocytes from 3-wk-old and adult rabbits. The dissociation constant (K(d)) of Ca-Tn(cTnT1) in solution was smaller than that of Ca-Tn(cTnT4) (mean +/- SE: 0.52 +/- 0.08 mumol/L versus 0.83 +/- 0.09 mumol/L). The Ca(2+) sensitivity of force development was greater in fibers reconstituted with rcTnT(1) (pCa(50) 6.07 +/- 0.04) than those reconstituted with rcTnT(4) (pCa(50) 5.75 +/- 0.07). Systolic [Ca](i) was lower in 3-wk-old than adult cells (443 +/- 35 nmol/L versus 882 +/- 88 nmol/L) as was I(Ca) (5.8 +/- 0.9 pA/pF versus 14.2 +/- 1.6 pA/pF). The higher calcium sensitivity of Tn-Ca binding and of force development conferred by rcTnT(1) suggest that higher neonatal cTnT(1) expression may partially compensate for the lower systolic [Ca(2+)](i).
Collapse
Affiliation(s)
- Shannon J McCall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chandra M, Tschirgi ML, Rajapakse I, Campbell KB. Troponin T modulates sarcomere length-dependent recruitment of cross-bridges in cardiac muscle. Biophys J 2006; 90:2867-76. [PMID: 16443664 PMCID: PMC1414571 DOI: 10.1529/biophysj.105.076950] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterogenic nature of troponin T (TnT) isoforms in fast skeletal and cardiac muscle suggests important functional differences. Dynamic features of rat cardiac TnT (cTnT) and rat fast skeletal TnT (fsTnT) reconstituted cardiac muscle preparations were captured by fitting the force response of small amplitude (0.5%) muscle length changes to the recruitment-distortion model. The recruitment of force-bearing cross-bridges (XBs) by increases in muscle length was favored by cTnT. The recruitment magnitude was approximately 1.5 times greater for cTnT- than for fsTnT-reconstituted muscle fibers. The speed of length-mediated XB recruitment (b) in cTnT-reconstituted muscle fiber was 0.50-0.57 times as fast as fsTnT-reconstituted muscle fibers (3.05 vs. 5.32 s(-1) at sarcomere length, SL, of 1.9 microm and 4.16 vs. 8.36 s(-1) at SL of 2.2 microm). Due to slowing of b in cTnT-reconstituted muscle fibers, the frequency of minimum stiffness (f(min)) was shifted to lower frequencies of muscle length changes (at SL of 1.9 microm, 0.64 Hz, and 1.16 Hz for cTnT- and fsTnT-reconstituted muscle fibers, respectively; at SL of 2.2 microm, 0.79 Hz, and 1.11 Hz for cTnT- and fsTnT-reconstituted muscle fibers, respectively). Our model simulation of the data implicates TnT as a participant in the process by which SL- and XB-regulatory unit cooperative interactions activate thin filaments. Our data suggest that the amino-acid sequence differences in cTnT may confer a heart-specific regulatory role. cTnT may participate in tuning the heart muscle by decreasing the speed of XB recruitment so that the heart beats at a rate commensurate with f(min).
Collapse
Affiliation(s)
- Murali Chandra
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, 99164-6520, USA.
| | | | | | | |
Collapse
|
26
|
Barbato JC, Huang QQ, Hossain MM, Bond M, Jin JP. Proteolytic N-terminal Truncation of Cardiac Troponin I Enhances Ventricular Diastolic Function. J Biol Chem 2005; 280:6602-9. [PMID: 15611140 DOI: 10.1074/jbc.m408525200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides the core structure conserved in all troponin I isoforms, cardiac troponin I (cTnI) has an N-terminal extension that contains phosphorylation sites for protein kinase A under beta-adrenergic regulation. A restricted cleavage of this N-terminal regulatory domain occurs in normal cardiac muscle and is up-regulated during hemodynamic adaptation (Z.-B. Yu, L.-F. Zhang, and J.-P. Jin (2001) J. Biol. Chem. 276, 15753-15760). In the present study, we developed transgenic mice overexpressing the N-terminal truncated cTnI (cTnI-ND) in the heart to examine its biochemical and physiological significance. Ca(2+)-activated actomyosin ATPase activity showed that cTnI-ND myofibrils had lower affinity for Ca(2+) than controls, similar to the effect of isoproterenol treatment. In vivo and isolated working heart experiments revealed that cTnI-ND hearts had a significantly faster rate of relaxation and lower left ventricular end diastolic pressure compared with controls. The higher baseline relaxation rate of cTnI-ND hearts was at a level similar to that of wild type mouse hearts under beta-adrenergic stimulation. The decrease in cardiac output due to lowered preload was significantly smaller for cTnI-ND hearts compared with controls. These findings indicate that removal of the N-terminal extension of cTnI via restricted proteolysis enhances cardiac function by increasing the rate of myocardial relaxation and lowering left ventricular end diastolic pressure to facilitate ventricular filling, thus resulting in better utilization of the Frank-Starling mechanism.
Collapse
Affiliation(s)
- John C Barbato
- Section of Molecular Cardiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, Illinois 60201, USA
| | | | | | | | | |
Collapse
|
27
|
Gaffin RD, Tong CW, Zawieja DC, Hewett TE, Klevitsky R, Robbins J, Muthuchamy M. Charged residue alterations in the inner-core domain and carboxy-terminus of alpha-tropomyosin differentially affect mouse cardiac muscle contractility. J Physiol 2004; 561:777-91. [PMID: 15486021 PMCID: PMC1665389 DOI: 10.1113/jphysiol.2004.070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two important charge differences between the alpha- and beta-tropomyosin (TM) isoforms are the exchange of a serine residue in the inner-core region at position 229, and a histidine residue at the carboxy-terminal end at position 276, with glutamic acid and asparagine, respectively. We have recently shown that altering these two residues in alpha-TM to their beta-TM counterparts in transgenic (TG) mouse hearts causes a depression in both +dP/dt and -dP/dt and a decrease in calcium sensitivity. In this study, we address whether independent charge changes at these two residues in alpha-TM modulate cardiac function differentially. To test this hypothesis we generated two TG lines: alpha-TMSer229Glu and alpha-TMHis276Asn. Molecular analyses show that 98% of native alpha-TM is replaced by mutated protein in alpha-TM229 hearts whereas alpha-TM276 hearts show 82% replacement with the mutated protein. Isolated working heart data show that alpha-TM229 TG hearts exhibit a significant decrease in both +dP/dt (7%) and -dP/dt (8%) compared with nontransgenics (NTGs) and time to peak pressure (TPP) is also reduced in alpha-TM229 hearts. alpha-TM276 hearts show a decrease only in -dP/dt (14%) and TPP is increased. pCa(2+)-tension relationships in skinned fibre preparations indicate decreased calcium sensitivity in alpha-TM229 but no change in alpha-TM276 preparations. Force-[Ca(2+)](IC) measurements from intact papillary fibres indicate that alpha-TM276 fibres produce more force per given [Ca(2+)](IC) when compared to NTG fibres, while alpha-TM229 fibres produce less force per given [Ca(2+)](IC). These data demonstrate that changing charged residues at either the inner-core domain or the carboxyl end of TM alters sarcomeric performance differently, suggesting that the function of TM is compartmentalized along its length.
Collapse
Affiliation(s)
- Robert D Gaffin
- Cardiovascular Research Institute and Department of Medical Physiology, College of Medicine, Texas A & M University System Health Science Center, 336 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Warkman AS, Atkinson BG. Amphibian cardiac troponin I gene's organization, developmental expression, and regulatory properties are different from its mammalian homologue. Dev Dyn 2004; 229:275-88. [PMID: 14745952 DOI: 10.1002/dvdy.10434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In mammals, the expression of the troponin I-slow (TnIs) isoform is predominant in the heart during embryogenesis and, shortly after birth, is replaced by the cardiac-specific isoform, TnIc; a developmental switch thought to be mediated by thyroid hormone. Whereas, in Xenopus, TnIc is expressed at the onset of heart formation and is the only TnI isoform expressed in the heart. Herein, we demonstrate that the expression patterns of these genes appear to be common within the anuran lineage and, unlike their mammalian counterparts, are not affected by thyroid hormone. To elucidate the regulatory mechanism(s) governing the expression of the amphibian TnIc gene, we characterized the TnIc gene from Rana catesbeiana and used its 5'-flanking region to drive expression of green fluorescent protein in the Xenopus transgenic system. Our results demonstrate that a 300-bp minimal promoter containing intact GATA and CArG-box elements is sufficient to drive expression of this reporter gene in a pattern that mimics, both spatially and temporally, the expression of the endogenous Xenopus TnIc gene.
Collapse
Affiliation(s)
- Andrew S Warkman
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
29
|
Metzger JM, Westfall MV. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res 2004; 94:146-58. [PMID: 14764650 DOI: 10.1161/01.res.0000110083.17024.60] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Troponin is essential for the regulation of cardiac contraction. Troponin is a sarcomeric molecular switch, directly regulating the contractile event in concert with intracellular calcium signals. Troponin isoform switching, missense mutations, proteolytic cleavage, and posttranslational modifications are known to directly affect sarcomeric regulation. This review focuses on physiologically relevant covalent and noncovalent modifications in troponin as part of a thematic series on cardiac thin filament function in health and disease.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Mich 48109, USA.
| | | |
Collapse
|
30
|
Onishi J, Browne VA, Kono S, Stiffel VM, Gilbert RD. Effects of long-term high-altitude hypoxia and troponin I phosphorylation on cardiac myofilament calcium responses in fetal and nonpregnant sheep. ACTA ACUST UNITED AC 2004; 11:1-8. [PMID: 14706676 DOI: 10.1016/j.jsgi.2003.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We studied the effects of long-term high-altitude hypoxia and protein kinase A (PKA) phosphorylation on calcium (Ca2+) responses of skinned cardiac papillary muscles from fetal and adult sheep. METHODS Fetal and nonpregnant adult sheep were exposed to high-altitude (3820 m), long-term (approximately 110 days) hypoxia. Papillary muscles were isolated and mounted in well-oxygenated, temperature-controlled baths. After the papillary muscles were stimulated electrically to establish the diastolic tension that produced the maximum active contraction, the electrical stimulation was stopped, and the muscles were skinned with 1% vol/vol Triton-X-100. In protocol 1, the skinned muscles were exposed to activating solutions containing different calcium concentrations (pCa; from pCa 8.0 to pCa 4.0), which were prepared by varying the Ca-EGTA/EGTA ratio, and the steady-state tension was measured at each pCa. In protocol 2, the skinned muscles were contracted with activating solution containing a pCa of 5.0. After equilibration, the solution in some baths was changed to activating solution at the same pCa of 5.0 but also containing the catalytic subunit of PKA. The other baths were exchanged with activating solution at a pCa of 5.0 containing no PKA. We then measured the degree of tension reduction caused by PKA until tension reached a new steady state. RESULTS In the long-term hypoxic fetal heart, the maximum tension response of right, but not left, ventricular skinned papillary muscle to Ca2+ was significantly less than that in control muscles. In the long-term hypoxic adult heart, the left ventricle, but not the right ventricle, displayed an increased maximum tension response to Ca2+ compared with control. Phosphorylation of troponin I (TnI) with PKA reduced active tension in both fetal ventricles of the long-term hypoxic group more than in hearts from control fetuses. In the adult, phosphorylation with PKA resulted in a larger decrease in tension in the left ventricle and a smaller decrease in tension in the right ventricle in the long-term hypoxic group, although the differences were small. CONCLUSION In the long-term hypoxic fetal right ventricle, the decreased maximum tension response to Ca2+ is consistent with the decrease in myofibrillar magnesium-activated adenosine triphosphatase activity observed previously. The larger decrease in tension after PKA phosphorylation of TnI in the long-term hypoxic fetal left ventricle indicates a larger reduction in Ca2+ binding to troponin C.
Collapse
Affiliation(s)
- Junji Onishi
- Center for Perinatal Biology, Department of Physiology and Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | | | | | | |
Collapse
|
31
|
Gaffin RD, Gokulan K, Sacchettini JC, Hewett T, Klevitsky R, Robbins J, Muthuchamy M. Charged residue changes in the carboxy-terminus of alpha-tropomyosin alter mouse cardiac muscle contractility. J Physiol 2004; 556:531-43. [PMID: 14766940 PMCID: PMC1664955 DOI: 10.1113/jphysiol.2003.058487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Striated muscle tropomyosin (TM) is an essential thin filament protein that is sterically and allosterically involved in calcium-mediated cardiac contraction. We have previously shown that overexpressing the beta-TM isoform in mouse hearts leads to physiological changes in myocardial relaxation and Ca(2+) handling of myofilaments. Two important charge differences in beta-TM compared to alpha-TM are the exchange of serine and histidine at positions 229 and 276 with glutamic acid and asparagine, respectively, imparting a more negative charge to beta-TM relative to alpha-TM. Our hypothesis is that the net charge at specific sites on TM might be a major determinant of its role in modulating cardiac muscle performance and in regulating Ca(2+) sensitivity of the myofilaments. To address this, we generated transgenic (TG) double mutation mouse lines (alpha-TM DM) expressing mutated alpha-TM at the two residues that differ between alpha- and beta-TM (Ser229Glu + His276Asn). Molecular analyses show 60-88% of the native TM is replaced with alpha-TM DM in the different TG lines. Work-performing heart analyses show that alpha-TM DM mouse hearts exhibit decreased rates of pressure development and relaxation (+dP/dt and -dP/dt). Skinned myofibre preparations from the TG hearts indicate a decrease in calcium sensitivity of steady state force. Protein modelling studies show that these two charge alterations in alpha-TM cause a change in the surface charges of the molecule. Our results provide the first evidence that charge changes at the carboxy-terminal of alpha-TM alter the functional characteristics of the heart at both the whole organ and myofilament levels.
Collapse
Affiliation(s)
- Robert D Gaffin
- Cardiovascular Research Institute and Department of Medical Physiology, College of Medicine, Texas A & M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Foster DB, Noguchi T, VanBuren P, Murphy AM, Van Eyk JE. C-Terminal Truncation of Cardiac Troponin I Causes Divergent Effects on ATPase and Force. Circ Res 2003; 93:917-24. [PMID: 14551240 DOI: 10.1161/01.res.0000099889.35340.6f] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardial stunning is a form of reversible myocardial ischemia/reperfusion injury associated with systolic and diastolic contractile dysfunction. In the isolated rat heart model, myocardial stunning is characterized by specific C-terminal proteolysis of the myofilament protein, troponin I (cTnI) that yields cTnI
1-193
. To determine the effect of this particular C-terminal truncation of cTnI, without the confounding factor of other stunning-induced protein modifications, a series of solution biochemical assays has been undertaken using the human homologue of mouse/rat cTnI
1-193
, cTnI
1-192
. Affinity chromatography and actin sedimentation experiments detected little, or no, difference between the binding of cTnI (cTnI
1-209
) and cTnI
1-192
to actin-tropomyosin, troponin T, or troponin C. Both cTnI and cTnI
1-192
inhibit the actin-tropomyosin–activated ATPase activity of myosin subfragment 1 (S1), and this inhibition is released by troponin C in the presence of Ca
2+
. However, cTnI
1-192
, when reconstituted as part of the troponin complex (cTn
1-192
), caused a 54±11% increase in the maximum Ca
2+
-activated actin-tropomyosin-S1 ATPase activity, compared with troponin reconstituted with cTnI (cTn). Furthermore, cTn
1-192
increased Ca
2+
sensitivity of both the actin-tropomyosin-activated S1 ATPase activity and the Ca
2+
-dependent sliding velocity of reconstituted thin filaments, in an in vitro motility assay, compared with cTn. In an in vitro force assay, the actin-tropomyosin filaments bearing cTn
1-192
developed only 76±4% (
P
<0.001) of the force obtained with filaments composed of reconstituted cTn. We suggest that cTnI proteolysis may contribute to the pathophysiology of myocardial stunning by altering the Ca
2+
-sensing and chemomechanical properties of the myofilaments.
Collapse
Affiliation(s)
- D Brian Foster
- Department of Biochemistry , Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Sumandea MP, Pyle WG, Kobayashi T, de Tombe PP, Solaro RJ. Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem 2003; 278:35135-44. [PMID: 12832403 DOI: 10.1074/jbc.m306325200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac Troponin T (cTnT) is one prominent substrate through which protein kinase C (PKC) exerts its effect on cardiomyocyte function. To determine the specific functional effects of the cTnT PKC-dependent phosphorylation sites (Thr197, Ser201, Thr206, and Thr287) we first mutated these residues to glutamate (E) or alanine (A). cTnT was selectively mutated to generate single, double, triple, and quadruple mutants. Bacterially expressed mutants were evaluated in detergent-treated mouse left ventricular papillary muscle fiber bundles where the endogenous troponin was replaced with a recombinant troponin complex containing either cTnT phosphorylated by PKC-alpha or a mutant cTnT. We simultaneously determined isometric tension development and actomyosin Mg-ATPase activity of the exchanged fiber bundles as a function of Ca2+ concentration. Our systematic analysis of the functional role of the multiple PKC phosphorylation sites on cTnT identified a localized region that controls maximum tension, ATPase activity, and Ca2+ sensitivity of the myofilaments. An important and novel finding of our study was that Thr206 is a functionally critical cTnT PKC phosphorylation residue. Its exclusive phosphorylation by PKC-alpha or replacement by Glu (mimicking phosphorylation) significantly decreased maximum tension, actomyosin Mg-ATPase activity, myofilament Ca2+ sensitivity, and cooperativity. On the other hand the charge modification of the other three residues together (T197/S201/T287-E) had no functional effect. Fibers bundles containing phosphorylated cTnT-wt (but not the T197/S201/T206/T287-E) exhibited a significant decrease of tension cost as compared with cTnT-wt.
Collapse
Affiliation(s)
- Marius P Sumandea
- Department of Physiology and Biophysics, Program in Cardiovascular Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
34
|
Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ. Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 2003; 278:11265-72. [PMID: 12551921 DOI: 10.1074/jbc.m210712200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force. Compared with controls, fibers reconstituted with phosphorylated cTnI, cTnI-S43E/S45E/T144E, or cTnI-S43E/S45E were desensitized to Ca(2+), and maximum tension was as much as 27% lower, whereas fibers reconstituted with cTnI-T144E showed no change. In the in vitro motility assay actin filaments regulated by troponin complexes containing phosphorylated cTnI or cTnI-S43E/S45E/T144E showed both a decrease in Ca(2+) sensitivity and maximum sliding speed compared with controls, whereas filaments regulated by cTnI-S43E/S45E showed only decreased maximum sliding speed and filaments regulated by cTnI-T144E demonstrated only desensitization to Ca(2+). Our results demonstrate novel site specificity of effects of PKC phosphorylation on cTnI function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament.
Collapse
Affiliation(s)
- Eileen M Burkart
- University of Illinois at Chicago, Department of Physiology and Biophysics, Program in Cardiovascular Sciences, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Ward DG, Cornes MP, Trayer IP. Structural consequences of cardiac troponin I phosphorylation. J Biol Chem 2002; 277:41795-801. [PMID: 12207022 DOI: 10.1074/jbc.m206744200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Adrenergic stimulation of the heart results in bisphosphorylation of the N-terminal extension of cardiac troponin I (TnI). Bisphosphorylation of TnI reduces the affinity of the regulatory site on troponin C (TnC) for Ca(2+) by increasing the rate of Ca(2+) dissociation. What remains unclear is how the phosphorylation signal is transmitted from one subunit of troponin to another. We have produced a series of mutations in the N-terminal extension of TnI designed to further our understanding of the mechanisms involved. The ability of phosphorylation of the mutant TnIs to affect Ca(2+) sensitivity has been assessed. We find that the Pro residues found in a conserved (Xaa-Pro)(4) motif N-terminal to the phosphorylation sites are not required for the effect of the N-terminal extension on Ca(2+) binding in the presence or absence of phosphorylation. Our experiments also reveal that the full effects of phosphorylation are seen even when residues 1-15 of TnI are deleted. If further residues are removed, not only does the effect of phosphorylation diminish but deletion of the N-terminal extension mimics phosphorylation. We propose that TnI residues 16-29 bind to TnC stabilizing the "open" Ca(2+)-bound state. Phosphorylation (or deletion) prevents this binding, accelerating Ca(2+) release.
Collapse
Affiliation(s)
- Douglas G Ward
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | | | | |
Collapse
|
38
|
Tobacman LS, Nihli M, Butters C, Heller M, Hatch V, Craig R, Lehman W, Homsher E. The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. J Biol Chem 2002; 277:27636-42. [PMID: 12011043 DOI: 10.1074/jbc.m201768200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cardiac and skeletal muscles tropomyosin binds to the actin outer domain in the absence of Ca(2+), and in this position tropomyosin inhibits muscle contraction by interfering sterically with myosin-actin binding. The globular domain of troponin is believed to produce this B-state of the thin filament (Lehman, W., Hatch, V., Korman, V. L., Rosol, M., Thomas, L. T., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S., and Craig, R. (2000) J. Mol. Biol. 302, 593-606) via troponin I-actin interactions that constrain the tropomyosin. The present study shows that the B-state can be promoted independently by the elongated tail region of troponin (the NH(2) terminus (TnT-(1-153)) of cardiac troponin T). In the absence of the troponin globular domain, TnT-(1-153) markedly inhibited both myosin S1-actin-tropomyosin MgATPase activity and (at low S1 concentrations) myosin S1-ADP binding to the thin filament. Similarly, TnT-(1-153) increased the concentration of heavy meromyosin required to support in vitro sliding of thin filaments. Electron microscopy and three-dimensional reconstruction of thin filaments containing TnT-(1-153) and either cardiac or skeletal muscle tropomyosin showed that tropomyosin was in the B-state in the complete absence of troponin I. All of these results indicate that portions of the troponin tail domain, and not only troponin I, contribute to the positioning of tropomyosin on the actin outer domain, thereby inhibiting muscle contraction in the absence of Ca(2+).
Collapse
Affiliation(s)
- Larry S Tobacman
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
VanBuren P, Alix SL, Gorga JA, Begin KJ, LeWinter MM, Alpert NR. Cardiac troponin T isoforms demonstrate similar effects on mechanical performance in a regulated contractile system. Am J Physiol Heart Circ Physiol 2002; 282:H1665-71. [PMID: 11959629 DOI: 10.1152/ajpheart.00938.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alteration of troponin T (TnT) isoform expression has been reported in human and animal models of myocardial failure. The two adult beef cardiac TnT isoforms (TnT(3) and TnT(4)) were isolated for comparative functional analysis. Thin filaments were reconstituted containing pure populations of the isoforms. The in vitro motility assay was used to directly compare the effect of the two TnT isoforms on force and unloaded shortening as a function of free calcium. We found no significant differences between the two isoforms in terms of calcium sensitivity, cooperativity, or maximal activation (velocity and force) as assessed in a fully calcium-regulated system. Activation by myosin strong binding was similar for thin filaments containing either of the two TnT isoforms. Whereas maximally activated velocity and cooperativity was depressed at pH 6.5, no difference between thin filaments containing the two isoforms was detected. From the small magnitude of the TnT isoform shifts detected in myocardial failure and the lack of significant mechanical effect detected in the motility assay, variable TnT isoform expression is unlikely to be any functional significance in heart failure.
Collapse
Affiliation(s)
- Peter VanBuren
- Cardiology Unit, Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Montgomery DE, Tardiff JC, Chandra M. Cardiac troponin T mutations: correlation between the type of mutation and the nature of myofilament dysfunction in transgenic mice. J Physiol 2001; 536:583-92. [PMID: 11600691 PMCID: PMC2278862 DOI: 10.1111/j.1469-7793.2001.0583c.xd] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The heterogenic nature of familial hypertrophic cardiomyopathy (FHC) in humans suggests a link between the type of mutation and the nature of patho-physiological alterations in cardiac myocytes. Exactly how FHC-associated mutations in cardiac troponin T (cTnT) lead to impaired cardiac function is unclear. 2. We measured steady-state isometric force and ATPase activity in detergent-skinned cardiac fibre bundles from three transgenic (TG) mouse hearts in which 50, 92 and 6 % of the native cTnT was replaced by the wild type (WT) cTnT, R92Q mutant cTnT (R92Q) and the C-terminal deletion mutant of cTnT (cTnT(DEL)), respectively. 3. Normalized pCa-tension relationships of R92Q and cTnT(DEL) fibres demonstrated a significant increase in sensitivity to Ca2+ at short (2.0 microm) and long (2.3 microm) sarcomere lengths (SL). At short SL, the pCa50 values, representing the midpoint of the pCa-tension relationship, were 5.69 +/- 0.01, 5.96 +/- 0.01 and 5.81 +/- 0.01 for WT, R92Q and cTnT(DEL) fibres, respectively. At long SL, the pCa50 values were 5.81 +/- 0.01, 6.08 +/- 0.01 and 5.95 +/- 0.01 for WT, R92Q and cTnT(DEL) fibres, respectively. 4. The difference in pCa required for half-maximal activation (DeltapCa50) at short and long SL was 0.12 +/- 0.01 for the R92Q (92 %) TG fibres, which is significantly less than the previously reported DeltapCa50 value of 0.29 +/- 0.02 for R92Q (67 %) TG fibres. 5. At short SL, Ca2+-activated maximal tension in both R92Q and cTnT(DEL) fibres decreased significantly (24 and 21 %, respectively; P < 0.005), with no corresponding decrease in Ca2+-activated maximal ATPase activity. Therefore, at short SL, the tension cost in R92Q and cTnT(DEL) fibres increased by 35 and 29 %, respectively (P < 0.001). 6. The fibre bundles reconstituted with the recombinant mutant cTnT(DEL) protein developed only 37 % of the Ca2+-activated maximal force developed by recombinant WT cTnT reconstituted fibre bundles, with no apparent changes in Ca2+ sensitivity. 7. Our data indicate that an important mutation-linked effect on cardiac function is the result of an inefficient use of ATP at the myofilament level. Furthermore, the extent of the mutation-induced dysfunction depends not only on the nature of the mutation, but also on the concentration of the mutant protein in the sarcomere.
Collapse
Affiliation(s)
- D E Montgomery
- Department of Physiology and Biophysics and Program in Cardiovascular Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
42
|
Li G, Martin AF, Solaro RJ. Localization of regions of troponin I important in deactivation of cardiac myofilaments by acidic pH. J Mol Cell Cardiol 2001; 33:1309-20. [PMID: 11437537 DOI: 10.1006/jmcc.2000.1392] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+-activation of cardiac muscle myofilaments is more sensitive to depression by acidic pH than is the case with skeletal myofilaments. We tested the hypothesis that this difference is related to specific regions of the TnI (troponin I) isoforms in these muscles. We exchanged native Tn complex in detergent-extracted fiber bundles from mouse ventricles with Tn containing various combinations of fast (fsTnI) or slow skeletal (ssTnI) complexed with either cardiac TnC (cTnC) or fsTnC, and with cTnC complexed with the following chimeras: (1) fsTnI N-terminal region (fN) plus cTnI inhibitory peptide (cIp) and cTnI C-terminal region (cC); and (2) cTnI N-terminal region (cN)-cIp-fsTnI C-terminal region (fC). We determined the change in half maximal Ca2+(DeltaEC50) for tension activation at pH 7.0 and pH 6.5. Similar DeltaEC50 values were obtained for unextracted controls (5.53+/-0.30 microm), for preparations containing cTnI-cTnC (5.74+/-0.40 microm), and preparations exchanged with cTnI-fsTnC (5.63+/-0.40 microm). However, replacement of cTnI with fsTnI significantly decreased DeltaEC50 to 3.95+/-0.17 microm. Replacement of cTnI with ssTnI also significantly depressed DeltaEC50 to 2.07+/-0.15 microm. Results of studies using the chimeras demonstrated that the C-terminal domains of cTnI and fsTnI are responsible for these differences. This conclusion also fits with data from experiments in which we measured Ca2+-binding to the regulatory site of cTnC in binary complexes containing cTnC with cTnI, fsTnI, or the chimeras. Our results localize a region of TnI important in effects of acidosis on cardiac myofilaments and extend our earlier data indicating that C-terminal regions of cTnI outside the Ip are critical for activation by Ca2+.
Collapse
Affiliation(s)
- G Li
- Department of Physiology and Biophysics, College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
43
|
Yu ZB, Zhang LF, Jin JP. A proteolytic NH2-terminal truncation of cardiac troponin I that is up-regulated in simulated microgravity. J Biol Chem 2001; 276:15753-60. [PMID: 11278823 DOI: 10.1074/jbc.m011048200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a tail suspension rat model, we investigated changes in myofilament protein during cardiac adaptation in simulated microgravity. Contractile force and velocity of cardiac muscle were decreased in the tail suspension rats as compared with the control. Ca(2+)-dependent actomyosin ATPase activity was also decreased; however, sensitivity of cardiac muscle to Ca(2+) activation was unchanged. There was no change in expression of myosin heavy chain, tropomyosin, troponin T, or troponin I isoforms in hearts of tail suspension rats. A novel finding is a fragment of cardiac troponin I (cTnI) that had increased amounts in the heart of tail suspension rats. Binding of this cTnI fragment by a monoclonal antibody that specifically recognizes the COOH terminus indicates an intact COOH terminus. NH(2)-terminal sequence analysis of the cTnI fragment revealed truncations primarily of amino acids 1-26 and 1-27 and smaller amounts of 1-30, including Ser(23) and Ser(24), which are substrates of protein kinase A phosphorylation. This cTnI fragment is present in normal cardiac muscle and incorporated into myofibrils, indicating a role in regulating contractility. This proteolytic modification of cTnI up-regulated during simulated microgravity suggests a potential role of the NH(2)-terminal segment of cTnI in functional adaptations of cardiac muscle.
Collapse
Affiliation(s)
- Z B Yu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
44
|
Chandra M, Kim JJ, Solaro RJ. An improved method for exchanging troponin subunits in detergent skinned rat cardiac fiber bundles. Biochem Biophys Res Commun 1999; 263:219-23. [PMID: 10486280 DOI: 10.1006/bbrc.1999.1341] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a method for the removal of endogenous troponin (Tn) complex from bundles of detergent-treated cardiac fibers. After 70 min treatment with cTnT-cTnI most of the endogenous Tn complex was removed from fiber bundles. Complete reconstitution of the Tn complex was achieved by reconstituting with cardiac troponin C (cTnC) in fully relaxing conditions. Ca(2+)-dependent maximum force of the fibers treated with cTnT-cTnI or cTnT-cTnI(33-211), which was used to aid in the visualization of the troponin exchange, decreased to 85-90% of the force developed by fibers before the treatment. SDS-PAGE analysis of the cTnT-cTnI(33-211) and the cTnT(77-289)-cTnI(33-211) treated fiber bundles demonstrated that 70-80% of the endogenous Tn subunits were removed. After reconstitution with cTnC, approximately 80-85% of the Ca(2+)-regulated force was restored in cTnT-cTnI/cTnI(33-211) treated fibers. Our results demonstrate that by minimizing the prolonged exposure of skinned cardiac fiber bundles to rigor conditions, successful exchange of all three subunits of the Tn complex can be accomplished with minimal loss of function.
Collapse
Affiliation(s)
- M Chandra
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612-7342, USA.
| | | | | |
Collapse
|
45
|
Abstract
Compounds that sensitize cardiac muscle to Ca(2+) by intervening at the level of regulatory thin filament proteins would have potential therapeutic benefit in the treatment of myocardial infarctions. Two putative Ca(2+) sensitizers, EMD 57033 and levosimendan, are reported to bind to cardiac troponin C (cTnC). In this study, we use heteronuclear NMR techniques to study drug binding to [methyl-(13)C]methionine-labeled cTnC when free or when complexed with cardiac troponin I (cTnI). In the absence of Ca(2+), neither drug interacted with cTnC. In the presence of Ca(2+), one molecule of EMD 57033 bound specifically to the C-terminal domain of free cTnC. NMR and equilibrium dialysis failed to demonstrate binding of levosimendan to free cTnC, and the presence of levosimendan had no apparent effect on the Ca(2+) binding affinity of cTnC. Changes in the N-terminal methionine methyl chemical shifts in cTnC upon association with cTnI suggest that cTnI associates with the A-B helical interface and the N terminus of the central helix in cTnC. NMR experiments failed to show evidence of binding of levosimendan to the cTnC.cTnI complex. However, levosimendan covalently bound to a small percentage of free cTnC after prolonged incubation with the protein. These findings suggest that levosimendan exerts its positive inotropic effect by mechanisms that do not involve binding to cTnC.
Collapse
Affiliation(s)
- Q Kleerekoper
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
46
|
Chandra M, Montgomery DE, Kim JJ, Solaro RJ. The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. J Mol Cell Cardiol 1999; 31:867-80. [PMID: 10329214 DOI: 10.1006/jmcc.1999.0928] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Troponin T (TnT) is an essential protein in the transduction of the Ca2+-binding signal that triggers striated muscle contraction. Functional diversity among various TnT isoforms found in cardiac and skeletal muscles has been correlated with the sequence heterogeneity at the amino (N-) and the carboxyl (C-) terminal regions. The most striking difference between cardiac TnT (cTnT) and skeletal TnT (sTnT) is that cTnT has an extended N-terminus, which is rich in negatively charged amino acids. To investigate the role of this region in cTnT, we deleted the first 76 amino acids in rat cTnT (cTnT77-289) by site-directed mutagenesis. We exchanged the native troponin complex in rat cardiac myofibrillar preparations and detergent skinned cardiac fiber bundles by treatment with excess cTnT or cTnT77-289. After reconstituting the cTnT77-289 containing myofibrils with cardiac troponin I-cardiac troponin C (cTnI-cTnC), the MgATPase activity was 70% of the cTnT treated myofibrils in the relaxed state and 83% of the cTnT treated myofibrils in the maximal Ca2+-activated state. These observations were supported by force measurements in which cTnT and cTnT77-289 were exchanged into skinned fiber bundles. Prior to reconstitution with cTnI-cTnC, the Ca2+-independent maximal force developed by the cTnT77-289 containing fiber was 45% of the force developed by the cTnT containing fiber. After reconstituting with cTnI-cTnC, the Ca2+-activated maximal force of the cTnT77-289 containing fiber was 62% of the force developed by the cTnT containing +cTnI-cTnC reconstituted fiber. In both assays, no significant changes in the normalized Ca2+-activity relation or in co-operativity were observed. Fluorescence experiments using pyrene-labeled Tm demonstrated that the binding of cTnT77-289 to Tm was 3-4 fold stronger than that of cTnT. Our results suggest that strong interactions between cTnT77-289 and Tm stabilize cardiac myofilaments in a sub-maximally activated state. Our findings also indicate that the N-terminus of cTnT is essential for maximal activation of cardiac myofilaments.
Collapse
Affiliation(s)
- M Chandra
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | | | | | | |
Collapse
|
47
|
Mohamed AS, Dignam JD, Schlender KK. Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites. Arch Biochem Biophys 1998; 358:313-9. [PMID: 9784245 DOI: 10.1006/abbi.1998.0857] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin binding protein C (MyBP-C) is a major myofibril-associated protein in cardiac muscle which is subject to reversible phosphorylation. Cardiac MyBP-C is a substrate in vivo and in vitro for cAMP-dependent protein kinase (PKA) and calcium/phospholipid-dependent protein kinase (PKC). Chicken cardiac MyBP-C was phosphorylated by PKA to 3.0 mol phosphate/mol and by PKC to 2.0 mol phosphate/mol. Tryptic phosphopeptides from MyBP-C were purified by successive iron iminodiacetate column chromatography and reversed-phase high-performance liquid chromatography. Three phosphopeptides purified from PKA-phosphorylated MyBP-C contained phosphoserine [T1, (RTS[P]LAGGGR) and T2, (KRDS[P]FLR)] or phosphothreonine (CT3, MT[P]SAFL). PKC phosphorylated two of the same sites (T1 and T2) as PKA and an additional site [T2a (TGTTYKPPS[P]YK)]. PKA phosphorylation sites corresponding to peptides T1, T2, and T3 were identified in the N-terminus of the cDNA deduced amino acid sequence (S265, S300, and T274, respectively). The PKC-specific site in peptide T2a was at position S1169. cDNA clones encoding rat cardiac MyBP-C were isolated, and the segment corresponding to PKA and major PKC phosphorylation sites was sequenced. Chicken cardiac MyBP-C has a threonine at position 274 (CT3), whereas rat cardiac MyBP-C has a serine at the corresponding position. Only chicken cardiac MyBP-C had a phosphorylatable residue at the position corresponding to S1169. All of the cardiac MyBP-C phosphorylation sites are absent in known sequences of skeletal muscle MyBP-C isoforms.
Collapse
Affiliation(s)
- A S Mohamed
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, Ohio, 43614-5804, USA
| | | | | |
Collapse
|
48
|
Solaro RJ, Rarick HM. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 1998; 83:471-80. [PMID: 9734469 DOI: 10.1161/01.res.83.5.471] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a current perception of the regulation of activation of cardiac myofilaments with emphasis on troponin (Tn) and tropomyosin (Tm). Activation involves both a Ca2+-regulated molecular switch and a potentiated state, dependent on feedback effects of force-generating crossbridges. Recent developments in the elucidation of the structure and arrangement of the myofilament proteins offer insights into the molecular interactions that constitute the switching and potentiating mechanisms. Transgenic mice overexpressing myofilament proteins, in vitro studies of mutant myofilament proteins, multidimensional multinuclear nuclear magnetic resonance, and fluorescence resonance energy transfer offer important approaches to understanding the molecular signaling processes. These studies reveal special features of the cardiac myofilament proteins that appear specialized for the unique functions of the heart. An important aspect of these special features is their role in mechanical, chemical, and neurohumoral coupling processes that tune myofilament activation to hemodynamics and beating frequency. Understanding these processes has become essential to understanding cardiac pathologies such as heart failure, ischemia and reperfusion injury, stunning, and familial hypertrophic cardiac myopathies.
Collapse
Affiliation(s)
- R J Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 60612-7342, USA
| | | |
Collapse
|
49
|
Rarick HM, Tu XH, Solaro RJ, Martin AF. The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils. J Biol Chem 1997; 272:26887-92. [PMID: 9341121 DOI: 10.1074/jbc.272.43.26887] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the C terminus of troponin I is known to be important in myofilament Ca2+ regulation in skeletal muscle, the regulatory function of this region of cardiac troponin I (cTnI) has not been defined. To address this question, the following recombinant proteins were expressed in Escherichia coli and purified: mouse wild-type cTnI (WT cTnI; 211 residues), cTnI-(1-199) (missing 12 residues), cTnI-(1-188) (missing 23 residues), and cTnI-(1-151) (missing 60 residues). The inhibitory activity of cTnI and the mutants was tested in myofibrils, from which cTnI.cTnC was extracted by exchanging endogenous cardiac troponin with exogenous cTnT causing the Ca2+ sensitivity of the myofibrils to be lost. Addition of increasing amounts of exogenous WT cTnI or cTnI-(1-199) to cTnT-treated myofibrils at pCa 8 caused a concentration-dependent inhibition of the maximum ATPase activity. However, cTnI-(1-188) and cTnI-(1-151) inhibited this activity to about 75% and 50% of that of the WT cTnI, respectively. We also formed a complex of either WT cTnI or each of the mutants with cTnC, reconstituted the complex into the cTnT-treated myofibrils, and measured the Mg2+-ATPase activity as a function of pCa. We found that the cTnI-(1-188).cTnC complex only partially restored Ca2+ sensitivity, whereas the cTnI-(1-151).cTnC complex did not restore any Ca2+ sensitivity. Each cTnI C-terminal deletion mutant was able to bind to cTnC, as shown by urea-polyacrylamide gel-shift analysis and size exclusion chromatography. Each mutant also co-sedimented with actin. Our results indicate that residues 152-199 (C-terminal to the inhibitory region) of cTnI are essential for full inhibitory activity and Ca2+ sensitivity of myofibrillar ATPase activity in the heart.
Collapse
Affiliation(s)
- H M Rarick
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612-7342, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Background
Endomyocardial biopsy is currently the standard method used to diagnose myocarditis. However, it is invasive and has a low diagnostic yield. Because the histological diagnosis of myocarditis requires the presence of myocyte injury, we sought to determine whether measurement of cardiac troponin I (cTnI), which is a serum marker with high sensitivity and specificity for cardiac myocyte injury, could aid in the diagnosis of myocarditis.
Methods and Results
To validate this approach, cTnI values were first measured in mice with autoimmune myocarditis. cTnI values were elevated in 24 of 26 mice with myocarditis but were not elevated in any of the control animals (
P
<.001). Next, cTnI values were measured in the sera from 88 patients referred to the Myocarditis Treatment Trial and were compared with creatine kinase–MB (CK-MB) values measured in the same patients. cTnI values were elevated in 18 (34%) of 53 patients with myocarditis and in only 4 (11%) of 35 patients without myocarditis (
P
=.01). In contrast, CK-MB values were elevated in only 3 (5.7%) of 53 patients with myocarditis and 0 of 35 patients without myocarditis (
P
=.27). Thus, elevations of cTnI occurred more frequently than did elevations of CK-MB in patients with biopsy-proven myocarditis (
P
=.001). Importantly, elevations of cTnI in patients with myocarditis were significantly correlated with ≤1 month duration of heart failure symptoms (
P
=.02), suggesting that the majority of myocyte necrosis occurs early, and thus the window for diagnosis and treatment may be relatively brief.
Conclusions
cTnI was superior to CK-MB for detection of myocyte injury in myocarditis, and cTnI elevations were substantially more common in the first month after the onset of heart failure symptoms.
Collapse
Affiliation(s)
- Stacy C. Smith
- the Washington University School of Medicine, Department of Medicine, Cardiovascular Division, St Louis, Mo
| | - Jack H. Ladenson
- the Washington University School of Medicine, Department of Medicine, Cardiovascular Division, St Louis, Mo
| | - Jay W. Mason
- the Washington University School of Medicine, Department of Medicine, Cardiovascular Division, St Louis, Mo
| | - Allan S. Jaffe
- the Washington University School of Medicine, Department of Medicine, Cardiovascular Division, St Louis, Mo
| |
Collapse
|