1
|
Aberdeen H, Battles K, Taylor A, Garner-Donald J, Davis-Wilson A, Rogers BT, Cavalier C, Williams ED. The Aging Vasculature: Glucose Tolerance, Hypoglycemia and the Role of the Serum Response Factor. J Cardiovasc Dev Dis 2021; 8:58. [PMID: 34067715 PMCID: PMC8156687 DOI: 10.3390/jcdd8050058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The fastest growing demographic in the U.S. at the present time is those aged 65 years and older. Accompanying advancing age are a myriad of physiological changes in which reserve capacity is diminished and homeostatic control attenuates. One facet of homeostatic control lost with advancing age is glucose tolerance. Nowhere is this more accentuated than in the high proportion of older Americans who are diabetic. Coupled with advancing age, diabetes predisposes affected subjects to the onset and progression of cardiovascular disease (CVD). In the treatment of type 2 diabetes, hypoglycemic episodes are a frequent clinical manifestation, which often result in more severe pathological outcomes compared to those observed in cases of insulin resistance, including premature appearance of biomarkers of senescence. Unfortunately, molecular mechanisms of hypoglycemia remain unclear and the subject of much debate. In this review, the molecular basis of the aging vasculature (endothelium) and how glycemic flux drives the appearance of cardiovascular lesions and injury are discussed. Further, we review the potential role of the serum response factor (SRF) in driving glycemic flux-related cellular signaling through its association with various proteins.
Collapse
Affiliation(s)
- Hazel Aberdeen
- Department of Biomedical Sciences, Baptist Health Sciences University, Memphis, TN 38103, USA; or
| | - Kaela Battles
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Ariana Taylor
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Jeranae Garner-Donald
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Ana Davis-Wilson
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Bryan T. Rogers
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Candice Cavalier
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| | - Emmanuel D. Williams
- Department of Biology and Chemistry, Southern University and A&M College, Baton Rouge, LA 70813, USA; (K.B.); (A.T.); (J.G.-D.); (A.D.-W.); (B.T.R.); (C.C.)
| |
Collapse
|
2
|
Eisenmann KM, Dykema KJ, Matheson SF, Kent NF, DeWard AD, West RA, Tibes R, Furge KA, Alberts AS. 5q– myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene 2009; 28:3429-41. [DOI: 10.1038/onc.2009.207] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Stepanek J, Vincent M, Turpin PY, Paulin D, Fermandjian S, Alpert B, Zentz C. C-->G base mutations in the CArG box of c-fos serum response element alter its bending flexibility. Consequences for core-SRF recognition. FEBS J 2007; 274:2333-48. [PMID: 17403043 DOI: 10.1111/j.1742-4658.2007.05768.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
By binding to the CArG box sequence, the serum response factor (SRF) activates several muscle-specific genes, as well as genes that respond to mitogens. The core domain of the SRF (core-SRF) binds as a dimer to the CArG box C-5C-4A-3T-2A-1T+1T+2A+3G+4G+5 of the c-fos serum response element (SREfos). However, previous studies using 20-mer DNAs have shown that the binding stoichiometry of core-SRF is significantly altered by mutations C-5-->G (SREGfos) and C-5C-4-->GG (SREGGfos) of the CArG box [A Huet, A Parlakian, M-C Arnaud, J-M Glandières, P Valat, S Fermandjian, D Paulin, B Alpert & C Zentz (2005) FEBS J272, 3105-3119]. To understand these effects, we carried out a comparative analysis of the three 20-mer DNAs SREfos, SREGfos and SREGGfos in aqueous solution. Their CD spectra were of the B-DNA type with small differences generated by variations in the mutual arrangement of the base pairs. Analysis by singular value decomposition of a set of Raman spectra recorded as a function of temperature, revealed a premelting transition associated with a conformational shift in the DNA double helices from a bent to a linear form. Time-resolved fluorescence anisotropy shows that the fluorescein reporter linked to the oligonucleotide 5'-ends experiences twisting motions of the double helices related to the interconversion between bent and linear conformers. The three SREs present various bent populations submitted, however, to particular internal dynamics, decisive for the mutual adjustment of binding partners and therefore specific complex formation.
Collapse
Affiliation(s)
- Josef Stepanek
- Laboratoire de Biophysique Moléculaire Cellulaire & Tissulaire, Université Pierre et Marie Curie, Evry, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Miano JM, Long X, Fujiwara K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 2006; 292:C70-81. [PMID: 16928770 DOI: 10.1152/ajpcell.00386.2006] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum response factor (SRF) is a highly conserved and widely expressed, single copy transcription factor that theoretically binds up to 1,216 permutations of a 10-base pair cis element known as the CArG box. SRF-binding sites were defined initially in growth-related genes. Gene inactivation or knockdown studies in species ranging from unicellular eukaryotes to mice have consistently shown loss of SRF to be incompatible with life. However, rather than being critical for proliferation and growth, these genetic studies point to a crucial role for SRF in cellular migration and normal actin cytoskeleton and contractile biology. In fact, recent genomic studies reveal nearly half of the >200 SRF target genes encoding proteins with functions related to actin dynamics, lamellipodial/filopodial formation, integrin-cytoskeletal coupling, myofibrillogenesis, and muscle contraction. SRF has therefore emerged as a dispensable transcription factor for cellular growth but an absolutely essential orchestrator of actin cytoskeleton and contractile homeostasis. This review summarizes the recent genomic and genetic analyses of CArG-SRF that support its role as an ancient, master regulator of the actin cytoskeleton and contractile machinery.
Collapse
Affiliation(s)
- Joseph M Miano
- Cardiovascular Research Institute, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
5
|
Lee HJ, Yun CH, Lim SH, Kim BC, Baik KG, Kim JM, Kim WH, Kim SJ. SRF is a nuclear repressor of Smad3-mediated TGF-beta signaling. Oncogene 2006; 26:173-85. [PMID: 16819512 DOI: 10.1038/sj.onc.1209774] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Serum response factor (SRF) is a widely expressed transcription factor involved in immediate-early and tissue-specific gene expression, cell proliferation and differentiation. We defined a new role of SRF as a nuclear repressor of the tumor growth factor beta1 (TGF-beta1) growth-inhibitory signal during cell proliferation. We show that SRF significantly inhibits the TGF-beta1/Smad-dependent transcription by associating with Smad3. SRF causes resistance to the TGF-beta1 cytostatic response by directly repressing the Smad transcriptional activity and Smad binding to DNA. Furthermore, we demonstrated that overexpression of SRF markedly decreases the level of Smad3 complex binding to the promoters of Smad3 target genes, p15(INK4b) and p21(Cip1). This leads to the inhibition of expression of TGF-beta1-responsive genes. SRF therefore acts as a nuclear repressor of Smad3-mediated TGF-beta1 signaling.
Collapse
Affiliation(s)
- H-J Lee
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS. The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. ACTA ACUST UNITED AC 2004; 124:40-50. [PMID: 15093684 DOI: 10.1016/j.molbrainres.2004.02.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2004] [Indexed: 11/16/2022]
Abstract
Prion diseases are transmissible neurodegenerative disorders that are invariably fatal in humans and animals. Although the nature of the infectious agent and pathogenic mechanisms of prion diseases are not clear, it has been reported that prion diseases may be associated with aberrant metabolism of cellular prion protein (PrP(C)). In various reports, it has been postulated that PrP(C) may be involved in one or more of the following: neurotransmitter metabolism, cell adhesion, signal transduction, copper metabolism, antioxidant activity or programmed cell death. Despite suggestive results supporting each of these mechanisms, the physiological function(s) of PrP(C) is not known. To investigate whether PrP(C) can prevent apoptotic cell death in prion diseases, we established the cell lines stably expressing PrP(C) from PrP knockout (PrP(-/-)) neuronal cells and examined the role of PrP(C) under apoptosis and/or serum-deprived condition. We found that PrP(-/-) cells were vulnerable to apoptotic cell death and that this vulnerability was rescued by the expression of PrP(C). The expression levels of apoptosis-related proteins including p53, Bax, caspase-3, poly(ADP-ribose) polymerase (PARP) and cytochrome c were significantly increased in PrP(-/-) cells. In addition, Ca(2+) levels of mitochondria were increased, whereas mitochondrial membrane potentials were decreased in PrP(-/-) cells. These results strongly suggest that PrP(C) may play a central role as an effective anti-apoptotic protein through caspase-dependent apoptotic pathways in mitochondria, supporting the concept that disruption of PrP(C) and consequent reduction of anti-apoptotic capacity of PrP(C) may be one of the pathogenic mechanisms of prion diseases.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Ilsong Institute of Life Science, Hallym Academy of Sciences, Hallym University, Ilsong Building, Kwanyang-dong 1605-4, Dongan-gu, Anyang 431-060, South Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Woo CH, Jeong DT, Yoon SB, Kim KS, Chung IY, Saeki T, Kim JH. Eotaxin induces migration of RBL-2H3 mast cells via a Rac-ERK-dependent pathway. Biochem Biophys Res Commun 2002; 298:392-7. [PMID: 12413953 DOI: 10.1016/s0006-291x(02)02432-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.
Collapse
Affiliation(s)
- Chang-Hoon Woo
- Graduate School of Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Lee SY, Song EJ, Kim HJ, Kang HJ, Kim JH, Lee KJ. Rac1 regulates heat shock responses by reorganization of vimentin filaments: identification using MALDI-TOF MS. Cell Death Differ 2001; 8:1093-102. [PMID: 11687887 DOI: 10.1038/sj.cdd.4400923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Revised: 05/16/2001] [Accepted: 06/11/2001] [Indexed: 11/08/2022] Open
Abstract
Rac1 has been implicated in a wide variety of biological processes, including actin remodeling and various signaling cascades. Here we have examined whether Rac1 might be involved in heat shock-induced cell signaling. We found that Rat2 stable cells expressing a dominant negative Rac1 mutant, RacN17 (Rat2-RacN17), were significantly more tolerant to heat shock than control Rat2 cells, and simultaneously inhibited the activation of SAPK/JNK by heat shock compared to control Rat2 cells. However, no discernible effect was observed in typical heat shock responses including total protein synthesis and heat shock protein synthesis. To identify the proteins involved in this difference, we separated the proteins of both Rat2 and Rat2-RacN17 cell lines after heat shock using two-dimensional gel electrophoresis and identified the differentially expressed proteins by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) after in-gel trypsin digestion. Differentially expressed proteins between two cell lines were identified as vimentin. Rat2-RacN17 cells showed significant changes in vimentin as well as marked changes in vimentin reorganization by heat shock. The vimentin changes were identified as N-terminal head domain cleavage. These results suggest that Rac1 plays a pivotal role in the heat shock-induced signaling cascade by modifying intermediate vimentin filaments.
Collapse
Affiliation(s)
- S Y Lee
- The Center for Cell Signaling Research, Division of Molecular Life Sciences and College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Zhang X, Chai J, Azhar G, Sheridan P, Borras AM, Furr MC, Khrapko K, Lawitts J, Misra RP, Wei JY. Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J Biol Chem 2001; 276:40033-40. [PMID: 11514558 DOI: 10.1074/jbc.m104934200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum response factor (SRF) is a key regulator of a number of extracellular signal-regulated genes important for cell growth and differentiation. A form of the SRF gene with a double mutation (dmSRF) was generated. This mutation reduced the binding activity of SRF protein to the serum response element and reduced the capability of SRF to activate the atrial natriuretic factor promoter that contains the serum response element. Cardiac-specific overexpression of dmSRF attenuated the total SRF binding activity and resulted in remarkable morphologic changes in the heart of the transgenic mice. These mice had dilated atrial and ventricular chambers, and their ventricular wall thicknesses were only 1/2 to 1/3 the thickness of that of nontransgenic mice. Also these mice had smaller cardiac myocytes and had less myofibrils in their myocytes relative to nontransgenic mice. Altered gene expression and slight interstitial fibrosis were observed in the myocardium of the transgenic mice. All the transgenic mice died within the first 12 days after birth, because of the early onset of severe, dilated cardiomyopathy. These results indicate that dmSRF overexpression in the heart apparently alters cardiac gene expression and blocks normal postnatal cardiac growth and development.
Collapse
Affiliation(s)
- X Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim SW, Kim HJ, Jung DJ, Lee SK, Kim YS, Kim JH, Kim TS, Lee JW. Retinoid-dependent antagonism of serum response factor transactivation mediated by transcriptional coactivator proteins. Oncogene 2001; 20:6638-42. [PMID: 11641790 DOI: 10.1038/sj.onc.1204695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Revised: 05/25/2001] [Accepted: 05/31/2001] [Indexed: 11/09/2022]
Abstract
Transcriptional coactivators SRC-1 and p300 specifically interact with liganded-nuclear receptors and also modulate other transcription factors, including serum response factor (SRF). Here, we report that retinoids repress transactivation by SRF and specific interactions exist between the DNA binding domains of SRF and retinoic acid and retinoid X receptors. We further demonstrate that the repression may involve retinoid-dependent competition for a limiting amount of SRC-1 and p300 between SRF and retinoid receptors. We propose that the well-defined anti-proliferative action of retinoids could, at least in part, result from this novel transrepressive action on the mitogenic transcription factor SRF.
Collapse
Affiliation(s)
- S W Kim
- Center for Ligand and Transcription, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yoo MH, Woo CH, You HJ, Cho SH, Kim BC, Choi JE, Chun JS, Jhun BH, Kim TS, Kim JH. Role of the cytosolic phospholipase A2-linked cascade in signaling by an oncogenic, constitutively active Ha-Ras isoform. J Biol Chem 2001; 276:24645-53. [PMID: 11323430 DOI: 10.1074/jbc.m101975200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activation of Ras signaling by growth factors has been associated with gene regulation and cell proliferation. Here we characterize the contributory role of cytosolic phospholipase A(2) in the oncogenic Ha-Ras(V12) signaling pathway leading to activation of c-fos serum response element (SRE) and transformation in Rat-2 fibroblasts. Using a c-fos SRE-luciferase reporter gene, we showed that the transactivation of SRE by Ha-Ras(V12) is mainly via a Rac-linked cascade, although the Raf-mitogen-activated protein kinase cascade is required for full activation. In addition, Ha-Ras(V12)-induced DNA synthesis was significantly attenuated by microinjection of recombinant Rac(N17), a dominant negative mutant of Rac1. To identify the mediators downstream of Rac in the Ha-Ras(V12) signaling, we investigated the involvement of cytosolic phospholipase A(2). Oncogenic Ha-Ras(V12)-induced SRE activation was significantly inhibited by either pretreatment with mepacrine, a phospholipase A(2) inhibitor, or cotransfection with the antisense oligonucleotide of cytosolic phospholipase A(2). We also found cytosolic phospholipase A(2) to be situated downstream of Ha-Ras(V12) in a signal pathway leading to transformation. Together, these results are indicative of mediatory roles of Rac and cytosolic phospholipase A(2) in the signaling pathway by which Ha-Ras(V12) transactivates c-fos SRE and transformation. Our findings point to cytosolic phospholipase A(2) as a novel potential target for suppressing oncogenic Ha-Ras(V12) signaling in the cell.
Collapse
Affiliation(s)
- M H Yoo
- Department of Life Science, Kwangju Institute of Science and Technology, Kwang-Ju 500-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE. The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem 2000; 275:39061-72. [PMID: 10993896 DOI: 10.1074/jbc.m006532200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An evolutionarily conserved vertebrate homologue of the Drosophila NK-3 homeodomain gene bagpipe, Nkx3-1, is expressed in vascular and visceral mesoderm-derived muscle tissues and may influence smooth muscle cell differentiation. Nkx3-1 was evaluated for mediating smooth muscle gamma-actin (SMGA) gene activity, a specific marker of smooth muscle differentiation. Expression of mNkx3-1 in heterologous CV-1 fibroblasts was unable to elicit SMGA promoter activity but required the coexpression of serum response factor (SRF) to activate robust SMGA transcription. A novel complex element containing a juxtaposed Nkx-binding site (NKE) and an SRF-binding element (SRE) in the proximal promoter region was found to be necessary for the Nkx3-1/SRF coactivation of SMGA transcription. Furthermore, Nkx3-1 and SRF associate through protein-protein interactions and the homeodomain region of Nkx3-1 facilitated SRF binding to the complex NKE.SRE. Mutagenesis of Nkx3-1 revealed an inhibitory domain within its C-terminal segment. In addition, mNkx3-1/SRF cooperative activity required an intact Nkx3-1 homeodomain along with the MADS box of SRF, which contains DNA binding and dimerization structural domains, and the contiguous C-terminal SRF activation domain. Thus, SMGA is a novel target for Nkx3-1, and the activity of Nkx3-1 on the SMGA promoter is dependent upon SRF.
Collapse
Affiliation(s)
- J A Carson
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Okamoto-Inoue M, Kamada S, Kimura G, Taniguchi S. The induction of smooth muscle alpha actin in a transformed rat cell line suppresses malignant properties in vitro and in vivo. Cancer Lett 1999; 142:173-8. [PMID: 10463773 DOI: 10.1016/s0304-3835(99)00150-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A normal rat fibroblast 3Y1 cell line expresses smooth muscle a actin and the expression of alpha actin is suppressed in the transformant (SR-3Y1-2) induced by a Raus sarcoma virus. Gene transfer with smooth muscle alpha actin into the SR-3Y1-2 cell line reduced growth and invasiveness in vitro, as well as tumor growth and experimental lung metastasis depending on the expression of the alpha actin. These results indicated that smooth muscle alpha actin is involved in the regulation of cell growth as well as cell motility and thus leads to the suppression of malignant phenotypes in transformed cells.
Collapse
Affiliation(s)
- M Okamoto-Inoue
- Department of Dermatology, Kurume University School of Medicine, Japan
| | | | | | | |
Collapse
|
14
|
Choi SE, Choi EY, Kim PH, Kim JH. Involvement of protein kinase C and rho GTPase in the nuclear signalling pathway by transforming growth factor-beta1 in rat-2 fibroblast cells. Cell Signal 1999; 11:71-6. [PMID: 10206347 DOI: 10.1016/s0898-6568(98)00033-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transforming growth factor (TGF)-beta signal-transduction cascade from the cell membrane to the nuclear target is poorly characterised. Here we report that treatment with TGF-beta1 induces the levels of endogenous c-fos mRNA in Rat-2 fibroblast cells. In addition, by transient transfection analysis, TGF-beta1 was shown to stimulate c-fos serum response element (SRE)-driven reporter gene activity in a dose- and time-dependent manner, suggesting that SRE is one of the nuclear targets of TGF-beta1. To understand the signalling cascade by which TGF-beta1 mediates the transactivation of c-fos SRE, cells were either pre-treated with various inhibitors or co-transfected with expression plasmids encoding inhibitory proteins for Rho GTPase together with the SRE-luciferase reporter gene. Our results showed that an inhibition of protein kinase C (PKC) or RhoA selectively repressed the stimulation of c-fos SRE by TGF-beta1, implying the possible roles of PKC and RhoA GTPase in TGF-beta1-induced signalling to c-fos SRE.
Collapse
Affiliation(s)
- S E Choi
- Institute of Environment and Life Science, Hallym University, Chun-Cheon, South Korea
| | | | | | | |
Collapse
|
15
|
Kim HJ, Kim JH, Lee JW. Steroid receptor coactivator-1 interacts with serum response factor and coactivates serum response element-mediated transactivations. J Biol Chem 1998; 273:28564-7. [PMID: 9786846 DOI: 10.1074/jbc.273.44.28564] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid receptor coactivator-1 (SRC-1) specifically bound to serum response factor (SRF), as demonstrated by glutathione S-transferase pull down assays, and the yeast and mammalian two-hybrid tests. In mammalian cells, SRC-1 potentiated serum response element (SRE)-mediated transactivations in a dose-dependent manner. Coexpression of p300 synergistically enhanced this SRC-1-potentiated level of transactivations, consistent with the recent finding (Ramirez, S., Ali, S. A. S., Robin, P., Trouche, D., and Harel-Bellan, A. (1997) J. Biol. Chem. 272, 31016-31021) in which the p300 homologue CREB-binding protein was shown to be a transcription coactivator of SRF. Thus, we concluded that at least two distinct classes of coactivator molecules may cooperate to regulate SRF-dependent transactivations in vivo.
Collapse
Affiliation(s)
- H J Kim
- College of Pharmacy, Chonnam National University, Kwangju 500-757, Korea
| | | | | |
Collapse
|
16
|
Hautmann MB, Madsen CS, Mack CP, Owens GK. Substitution of the degenerate smooth muscle (SM) alpha-actin CC(A/T-rich)6GG elements with c-fos serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin II inducibility. J Biol Chem 1998; 273:8398-406. [PMID: 9525950 DOI: 10.1074/jbc.273.14.8398] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously demonstrated that both CC(A/T-rich)6GG (CArG) elements A and B of the smooth muscle (SM) alpha-actin promoter are required for smooth muscle cell (SMC)-specific expression and angiotensin II (AII)-induced stimulation. Moreover, results provided evidence that AII responsiveness of SM alpha-actin was at least partially dependent on modulation of serum response factor (SRF) binding to the SM alpha-actin CArGs by the homeodomain containing protein, MHox. The goal of the present study was to investigate whether the degeneracy of the SM alpha-actin CArGs (both contain a Gua or Cyt substitution in their A/T-rich center) and their reduced SRF binding activity as compared with c-fos serum response element (SRE) is important for conferring cell type-specific expression and AII responsiveness. Transient transfection assays using SM alpha-actin reporter gene constructs in which the endogenous SM alpha-actin CArGs were replaced by c-fos SREs demonstrated the following: 1) relaxation of cell-specific expression, 2) a 50% reduction in AII responsiveness, and 3) reduced ability to be transactivated by MHox. In addition, we also showed that the position of the SM alpha-actin CArGs was important in that interchanging them abolished both basal and AII-induced activities. Taken together, these results suggest that the reduced SRF binding activities of the SM alpha-actin CArGs and CArG positional context contribute to SMC-specific expression of SM alpha-actin as well as maximal AII responsiveness.
Collapse
Affiliation(s)
- M B Hautmann
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
17
|
Kitamura M, Ishikawa Y. Three-dimensional matrix primes mesangial cells to down-regulation of alpha-smooth muscle actin via deactivation of CArG box elements. Kidney Int 1998; 53:690-7. [PMID: 9507215 DOI: 10.1046/j.1523-1755.1998.00806.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prolonged culture of mesangial cells forms multifocal nodular structures, termed "hillocks," composed of cells and extracellular matrix (ECM), which may mimic the situation in the glomerular mesangium. Mesangial cells incorporated in hillocks show repressed expression of alpha-smooth muscle actin, a marker of mesangial cell activation/dedifferentiation. The aim of this study is to elucidate molecular mechanisms involved in this phenomenon, focusing on the activity of CArG box elements located in 5'-flanking region of the alpha-smooth muscle actin gene. Reporter mesangial cells were created to monitor the activity of CArG elements. These clones expressed beta-galactosidase gene (lacZ) under the control of CArG boxes. Within the hillocks, reporter cells showed repressed expression of lacZ as well as alpha-smooth muscle actin compared to the cells in two-dimensional cultures. Consistent with this result, the reporter cells embedded in collagen gel exhibited down-regulation of lacZ and alpha-smooth muscle actin transcripts. Deactivation of CArG box elements by transfection with either a dominant negative mutant of serum response factor or a dominant negative form of ternary complex factor Elk-1 led to depressed expression of alpha-smooth muscle actin gene. These data suggested that three-dimensional ECM primes mesangial cells to down-regulation of alpha-smooth muscle actin via deactivation of CArG box elements.
Collapse
Affiliation(s)
- M Kitamura
- Department of Medicine, University College London Medical School, England, United Kingdom.
| | | |
Collapse
|
18
|
Hautmann MB, Thompson MM, Swartz EA, Olson EN, Owens GK. Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ Res 1997; 81:600-10. [PMID: 9314842 DOI: 10.1161/01.res.81.4.600] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to examine the molecular mechanisms whereby angiotensin II (Ang II) stimulates smooth muscle (SM) alpha-actin expression in rat aortic smooth muscle cells (SMCs). Nuclear run-on analysis and transfection studies indicated that the effects of Ang II on SM alpha-actin were mediated at least in part at the transcriptional level. Transfection of various rat SM alpha-actin promoter/chloramphenicol acetyltransferase (CAT) constructs into SMCs demonstrated that the first 155 bp of the SM alpha-actin promoter was sufficient to confer maximal Ang II responsiveness, conferring an approximately 4-fold increase in reporter activities in these SMCs compared with vehicle-treated SMCs. Mutation of either of two highly conserved CArG elements, designated A (-62) and B (-112), completely abolished Ang II-induced increases in reporter activity, whereas mutation of a homeodomain-like binding sequence at -145 (ATTA) reduced reporter activity by half. Results of EMSAs showed that nuclear extracts from Ang II-treated SMCs exhibited enhanced binding activity of serum response factor (SRF) to the CArG elements and of a homeodomain factor, MHox, to the ATTA element. Northern analyses showed that Ang II also stimulated marked increases in MHox mRNA levels. Western analyses demonstrated that Ang II-induced increases in SRF binding were not due to increased SRF protein expression. Recombinant MHox markedly enhanced binding activity of SRF in EMSAs. Finally, MHox overexpression transactivated a SM alpha-actin promoter/CAT reporter construct by approximately 3.5-fold in transient cotransfection studies. These results provide evidence for involvement of a homeodomain transcription factor, MHox, in Ang II-mediated stimulation of SM alpha-actin via a CArG/SRF-dependent mechanism.
Collapse
Affiliation(s)
- M B Hautmann
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The role of Rac in epidermal growth factor (EGF)-induced c-fos serum response element (SRE) activation was examined in Rat-2 fibroblast cells. By reporter gene analysis following transient or stable transfections with pEXV-RacN17 encoding a dominant-negative mutant of Rac, EGF-induced activation of c-fos SRE-luciferase gene was shown to be selectively inhibited, suggesting that Rac activity is necessary for the full activation of SRE by EGF. Our further study to analyze the downstream mediator of Rac in EGF-signaling cascade demonstrated that there is a functional link between Rac and phospholipase A2 (PLA2) activation and further that PLA2 mediates, at least partly, the Rac signaling to SRE. Together, our results point to a critical role of Rac and Rac-activated PLA2 in the EGF-signaling cascade to c-fos SRE. We propose that 'Rac-PLA2' cascade is one of the major signaling pathways by which EGF stimulates c-fos SRE.
Collapse
Affiliation(s)
- B C Kim
- Laboratory of Molecular and Cellular Genetics, Institute of Environment and Life Science, Hallym University, Chun-Cheon, Kangwon-do, South Korea
| | | |
Collapse
|
20
|
Hautmann MB, Madsen CS, Owens GK. A transforming growth factor beta (TGFbeta) control element drives TGFbeta-induced stimulation of smooth muscle alpha-actin gene expression in concert with two CArG elements. J Biol Chem 1997; 272:10948-56. [PMID: 9099754 DOI: 10.1074/jbc.272.16.10948] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The goal of the present study was to determine the molecular mechanism whereby transforming growth factor beta (TGFbeta) increases smooth muscle (SM) alpha-actin expression. Confluent, growth-arrested rat aortic smooth muscle cells (SMC) were transiently transfected with various SM alpha-actin promoter/chloramphenicol acetyltransferase deletion mutants and stimulated with TGFbeta (2.5 ng/ml). Results demonstrated that the first 125 base pairs of the SM alpha-actin promoter were sufficient to confer TGFbeta responsiveness. Three cis elements were shown to be required for TGFbeta inducibility: two highly conserved CArG boxes, designated A (-62) and B (-112) and a novel TGFbeta control element (TCE) (-42). Mutation of any one of these elements completely abolished TGFbeta-induced reporter activity. Results of electrophoretic mobility shift assays demonstrated that nuclear extracts from TGFbeta-treated SMC enhanced binding activity of serum response factor to the CArG elements and binding of an as yet unidentified factor to the TCE. Northern analysis showed that TGFbeta also stimulated transcription of two other SM (SM myosin heavy chain) differentiation marker genes, SM myosin heavy chain and h1 calponin, whose promoters also contained a TCE-like element. In summary, we identified a TGFbeta response element in the SM alpha-actin promoter that may contribute to coordinate regulation of expression of multiple cell-type specific proteins during SMC differentiation.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Animals
- Aorta
- Base Sequence
- Calcium-Binding Proteins/biosynthesis
- Calcium-Binding Proteins/metabolism
- Cell Differentiation
- Cells, Cultured
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Consensus Sequence
- Conserved Sequence
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Mice
- Microfilament Proteins
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutagenesis, Site-Directed
- Myosin Heavy Chains/biosynthesis
- Promoter Regions, Genetic/drug effects
- Rats
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Transcription, Genetic/drug effects
- Transfection
- Transforming Growth Factor beta/pharmacology
- Calponins
Collapse
Affiliation(s)
- M B Hautmann
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
21
|
Kim JH, Kwack HJ, Choi SE, Kim BC, Kim YS, Kang IJ, Kumar CC. Essential role of Rac GTPase in hydrogen peroxide-induced activation of c-fos serum response element. FEBS Lett 1997; 406:93-6. [PMID: 9109393 DOI: 10.1016/s0014-5793(97)00249-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we investigated whether hydrogen peroxide activates c-fos serum response element (SRE) in Rat-2 fibroblast cells. By transient transfection analysis, exogenous H2O2 stimulated SRE-dependent reporter gene activity in a dose and time-dependent manner. Also, we examined the role of Rac GTPase and phospholipase A2 (PLA2) in the H2O2-induced SRE activation. Either transfection of a dominant negative Rac mutant, RacN17, plasmid or pretreatment of mepacrine, a potent inhibitor of PLA2, blocked H2O2-induced SRE activation dramatically. Together, these findings suggest a critical role of 'Rac and subsequent activation of phospholipase A2' in the signaling pathway of H2O2 to SRE.
Collapse
Affiliation(s)
- J H Kim
- Laboratory of Molecular and Cellular Genetics, Institute of Environment and Life Science, Hallym University, Chun-Cheon, South Korea.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim JH, Cho YS, Kim BC, Kim YS, Lee GS. Role of Rho GTPase in the endothelin-1-induced nuclear signaling. Biochem Biophys Res Commun 1997; 232:223-6. [PMID: 9125136 DOI: 10.1006/bbrc.1997.6261] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Binding of Endothelin-1 (ET-1) to its heterotrimeric G protein-coupled receptors stimulates various signaling cascades involving the activation of phospholipase C-beta, phospholipase D, protein kinase C (PKC), tyrosine kinases, Ca2+/calmodulin-dependent kinase (CaMKs), and Ras, a small molecular weight G-protein, but, the role of Rho GTPase remains unclear. In this project, we examined whether RhoA contributes to the ET-1-induced signaling cascade to c-fos SRE activation in Rat-2 fibroblast cells. Our results demonstrate that Rho activation is critical for the signal transduction of ET-1 to c-fos SRE.
Collapse
Affiliation(s)
- J H Kim
- Laboratory of Molecular & Cellular Genetics, Hallym University, Chun-Cheon, Korea.
| | | | | | | | | |
Collapse
|
23
|
Paradis P, MacLellan WR, Belaguli NS, Schwartz RJ, Schneider MD. Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem 1996; 271:10827-33. [PMID: 8631897 DOI: 10.1074/jbc.271.18.10827] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Fetal" gene transcription, including activation of the skeletal alpha-actin (SkA) promoter, is provoked in cardiac myocytes by mechanical stress and trophic ligands. Induction of the promoter by transforming growth factor beta or norepinephrine requires serum response factor (SRF) and TEF-1; expression is inhibited by YY1. We and others postulated that immediate-early transcription factors might couple trophic signals to this fetal program. However, multiple Fos/Jun proteins exist, and the exact relationship between control by Fos/Jun versus SRF, TEF-1, and YY1 is unexplained. We therefore cotransfected ventricular myocytes with Fos, Jun, or JunB, and SkA reporter genes. SkA transcription was augmented by Jun, Fos/Jun, Fos/JunB, and Jun/JunB; Fos and JunB alone were neutral or inhibitory. Mutation of the SRF site, SRE1, impaired activation by Jun; YY1, TEF-1, and Sp1 sites were dispensable. SRE1 conferred Jun activation to a heterologous promoter, as did the c-fos SRE. Deletions of DNA binding, dimerization, or trans-activation domains of Jun and SRF abolished activation by Jun and synergy with SRF. Neither direct binding of Fos/Jun to SREs, nor physical interaction between Fos/Jun and SRF, was detected in mobility-shift assays. Thus, AP-1 factors activate a hypertrophy-associated gene via SRF, without detectable binding to the promoter or to SRF.
Collapse
Affiliation(s)
- P Paradis
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Schmoelzl S, Leeb T, Brinkmeier H, Brem G, Brenig B. Regulation of tissue-specific expression of the skeletal muscle ryanodine receptor gene. J Biol Chem 1996; 271:4763-9. [PMID: 8617743 DOI: 10.1074/jbc.271.9.4763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ryanodine receptors (RYR) are a family of calcium release channels that are expressed in a variety of tissues. Three genes, i. e. ryr1, ryr2, and ryr3, have been identified coding for a skeletal muscle, cardiac muscle, and brain isoform, respectively. Although, the skeletal muscle isoform (RYR1) was shown to be expressed predominantly in skeletal muscle, expression was also detected in the esophagus and brain. To analyze the transcriptional regulation of the RYR1 gene, we have constructed chimeric genes composed of the upstream region of the RYR1 gene and the bacterial chloramphenicol acetyltransferase (CAT) gene and transiently transfected them into primary cultured porcine myoblasts, myotubes, and fibroblasts. A 443-base pair region upstream from the transcription start site was sufficient to direct CAT activity without tissue specificity. Deletion of a 61-base pair fragment from the 5'-end of the promoter resulted in a marked reduction of CAT activity in all three tissue types. A similar reduction of expression was observed when using a construct with the first intron in antisense orientation upstream from the promoter. In contrast, the first intron in sense orientation enhanced expression only in myotubes, while expression was repressed in fibroblasts and myoblasts. Gel retardation analyses showed DNA binding activity in nuclear extracts for two upstream DNA sequence elements. Our data suggest that (i) RYR1 gene expression is regulated by at least two novel transcription factors (designated RYREF-1 and RYREF-2), and (ii) tissue specificity results from a transcriptional repression in nonmuscle cells mediated by the first intron.
Collapse
Affiliation(s)
- S Schmoelzl
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
25
|
Van Putten V, Li X, Maselli J, Nemenoff RA. Regulation of smooth muscle alpha-actin promoter by vasopressin and platelet-derived growth factor in rat aortic vascular smooth muscle cells. Circ Res 1994; 75:1126-30. [PMID: 7955149 DOI: 10.1161/01.res.75.6.1126] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vasoconstrictors such as arginine vasopressin (AVP) and angiotensin II (Ang II) have been shown to increase protein and mRNA levels of smooth muscle alpha-actin (SM-alpha-actin) in vascular smooth muscle cells. In the same cells, platelet-derived growth factor (PDGF) decreased SM-alpha-actin protein and mRNA. The rat SM-alpha-actin promoter that has recently been isolated contains two E-boxes and three CC(A/T)6GG (CArG) elements. To examine regulation of the SM-alpha-actin promoter, a 765-bp region of the rat SM-alpha-actin gene was ligated into chloramphenicol acetyltransferase (CAT)-containing vectors and transfected into rat aortic vascular smooth muscle cells. Stimulation of cells with either AVP or Ang II increased CAT activity 5- to 10-fold. PDGF was able to completely block the AVP-induced increase in CAT activity. To identify regions of the promoter responsible for both the AVP stimulation and PDGF inhibition of promoter activity, a series of truncation mutants were prepared and transfected into vascular smooth muscle cells. Truncation of both E-boxes and the most distal CArG element did not qualitatively alter either AVP-induced stimulation of CAT activity or PDGF inhibition. However, removal of the middle CArG element resulted in a loss of AVP stimulation. These studies indicate that the AVP-induced elevation and PDGF-induced inhibition of SM-alpha-actin levels in vascular smooth muscle cells are mediated at least in part through regulation of the SM-alpha-actin promoter. The critical region of the promoter mediating this effect involves at a minimum one of the CArG elements.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Aorta, Thoracic
- Arginine Vasopressin/pharmacology
- Blotting, Western
- Cells, Cultured
- Chloramphenicol O-Acetyltransferase/genetics
- Gene Expression Regulation
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/drug effects
- Rats
- Rats, Sprague-Dawley
- Transfection
- Vasopressins/pharmacology
Collapse
Affiliation(s)
- V Van Putten
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
26
|
Tikoo A, Varga M, Ramesh V, Gusella J, Maruta H. An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31525-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|