1
|
Dulko-Smith B, Ojeda-May P, Ådén J, Wolf-Watz M, Nam K. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase. J Chem Inf Model 2023; 63:1556-1569. [PMID: 36802243 DOI: 10.1021/acs.jcim.2c01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
Collapse
Affiliation(s)
- Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pedro Ojeda-May
- High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Integration of Adenylate Kinase 1 with Its Peptide Conformational Imprint. Int J Mol Sci 2022; 23:ijms23126521. [PMID: 35742970 PMCID: PMC9223553 DOI: 10.3390/ijms23126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
In the present study, molecularly imprinted polymers (MIPs) were used as a tool to grasp a targeted α-helix or β-sheet of protein. During the fabrication of the hinge-mediated MIPs, elegant cavities took shape in a special solvent on quartz crystal microbalance (QCM) chips. The cavities, which were complementary to the protein secondary structure, acted as a peptide conformational imprint (PCI) for adenylate kinase 1 (AK1). We established a promising strategy to examine the binding affinities of human AK1 in conformational dynamics using the peptide-imprinting method. Moreover, when bound to AK1, PCIs are able to gain stability and tend to maintain higher catalytic activities than free AK1. Such designed fixations not only act on hinges as accelerators; some are also inhibitors. One example of PCI inhibition of AK1 catalytic activity takes place when PCI integrates with an AK19-23 β-sheet. In addition, conformation ties, a general MIP method derived from random-coil AK1133-144 in buffer/acetonitrile, are also inhibitors. The inhibition may be due to the need for this peptide to execute conformational transition during catalysis.
Collapse
|
3
|
Resistance to the nucleotide analogue cidofovir in HPV(+) cells: a multifactorial process involving UMP/CMP kinase 1. Oncotarget 2016; 7:10386-401. [PMID: 26824416 PMCID: PMC4891127 DOI: 10.18632/oncotarget.7006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(−) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
Collapse
|
4
|
Igamberdiev AU, Kleczkowski LA. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium. FRONTIERS IN PLANT SCIENCE 2015; 6:10. [PMID: 25674099 PMCID: PMC4309032 DOI: 10.3389/fpls.2015.00010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/06/2015] [Indexed: 05/09/2023]
Abstract
The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg(2+), supported by adenylate kinase (AK) equilibrium in the intermembrane space, (ii) the supply of phosphate via membrane transporter in symport with H(+), and (iii) the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg(2+) contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg(2+), adenylate transport, and phosphate release and supply.
Collapse
Affiliation(s)
- Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- *Correspondence: Abir U. Igamberdiev, Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B3X9, Canada e-mail:
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, Umeå, Sweden
| |
Collapse
|
5
|
Abrusci P, Chiarelli LR, Galizzi A, Fermo E, Bianchi P, Zanella A, Valentini G. Erythrocyte adenylate kinase deficiency: characterization of recombinant mutant forms and relationship with nonspherocytic hemolytic anemia. Exp Hematol 2007; 35:1182-9. [PMID: 17662886 DOI: 10.1016/j.exphem.2007.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/19/2007] [Accepted: 05/07/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Red cell adenylate kinase (AK) deficiency is a rare hereditary erythroenzymopathy associated with moderate to severe nonspherocytic hemolytic anemia and, in some cases, with mental retardation and psychomotor impairment. To date, diagnosis of AK deficiency depends upon demonstration of low enzyme activity in red blood cells and detection of mutations in AK1 gene. To investigate the molecular bases of the AK deficiency, we characterized five variants of AK1 isoenzyme-bearing mutations (118G>A, 190G>A, 382C>T, 418-420del, and 491A>G) found in AK-deficient patients with chronic hemolytic anemia. MATERIALS AND METHODS The complete AK1 cDNA was obtained by standard procedures and using as template the reticulocyte RNA. The cDNA was cloned in a plasmid vector and the enzyme was expressed in Escherichia coli BL21(DE3)pLysS, and purified by standard protocols to homogeneity. DNA mutants bearing point mutations were obtained from the cloned wild-type cDNA using standard methods of site-directed mutagenesis, whereas the DNA mutant with deletion of codon 140 was obtained by a two-step method. RESULTS Four mutant enzymes (Gly40Arg, Gly64Arg, Arg128Trp, Asp140del) were severely affected in activity, displaying a catalytic efficiency of four orders of magnitude lower than the wild-type; one (Tyr164Cys) was grossly perturbed in protein stability. CONCLUSIONS The altered properties displayed by the mutant enzymes support the cause-effect relationship between AK1 mutations and hemolytic anemia.
Collapse
Affiliation(s)
- Patrizia Abrusci
- Dipartimento di Biochimica A. Castellani, Università degli Studi di Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Ulschmid JK, Rahlfs S, Schirmer RH, Becker K. Adenylate kinase and GTP:AMP phosphotransferase of the malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 2004; 136:211-20. [PMID: 15478799 DOI: 10.1016/j.molbiopara.2004.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For coping with energetic and synthetic challenges, parasites require high activities of adenylate kinase (AK; ATP + AMP <==> 2 ADP) and GTP:AMP phosphotransferase (GAK; GTP + AMP <==> GDP + ADP). These enzymes were identified in erythrocytic stages of Plasmodium falciparum. The genes encoding PfAK and PfGAK are located on chromosomes 10 and 4, respectively. Molecular cloning and heterologous expression in E. coli yielded enzymatically active proteins of 28.9 (PfAK) and 28.0 kDa (PfGAK). Recombinant PfAK resembles authentic PfAK in its biochemical characteristics including the possible association with a stabilizing protein and the high specificity for AMP as the mononucleotide substrate. Specificity is less stringent for the triphosphate, with ATP as the best substrate (75 U/mg; kcat = 2160 min(-1) at 25 degrees C). PfAK contains the sequence of the amphiphatic helix that is known to mediate translocation of the cytosolic protein into the mitochondrial intermembrane space. PfGAK exhibits substrate preference for GTP and AMP (100 U/mg; kcat = 2800 min(-1) at 25 degrees C); notably, there is no detectable activity with ATP. In contrast to its human orthologue (AK3), PfGAK contains a zinc finger motif and binds ionic iron. The dinucleoside pentaphosphate compounds AP5A and GP5A inhibited PfAK and PfGAK, respectively, with Ki values of approximately 0.2 microM which is more than 250-fold lower than the KM values determined for the nucleotide substrates. The disubstrate inhibitors are useful for studying the enzymatic mechanism of PfAK and PfGAK as well as their function in adenine nucleotide homeostasis; in addition, the chimeric inhibitors represent interesting lead compounds for developing nucleosides to be used as antiparasitic agents.
Collapse
Affiliation(s)
- Julia K Ulschmid
- Interdisciplinary Research Center, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
7
|
Waas WF, Rainey MA, Szafranska AE, Cox K, Dalby KN. A kinetic approach towards understanding substrate interactions and the catalytic mechanism of the serine/threonine protein kinase ERK2: identifying a potential regulatory role for divalent magnesium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:81-7. [PMID: 15023352 DOI: 10.1016/j.bbapap.2003.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 11/12/2003] [Indexed: 02/05/2023]
Abstract
We are interested in the mechanism and regulation of the extracellular regulated protein kinases, ERK1 and ERK2, due to their key roles in cellular signal transduction and disease. Both enzymes phosphorylate a large number of structurally disparate proteins upon activation by phorbol esters, serum and growth factors, and are activated through a protein kinase cascade, termed the mitogen activated protein kinase (MAPK) pathway. ERK2 catalyses the transfer of the gamma-phosphate of adenosine triphosphate to serine or threonine residues found in Ser-Pro or Thr-Pro motifs on proteins. Its catalytic mechanism is intriguing, because it appears to predominantly rely on interactions outside of the active site cleft to specify a substrate. To study ERK2, we developed a recombinant protein called EtsDelta138, which comprises residues 1-138 of the transcription factor Ets-1, an excellent substrate of ERK2. Here we review several steady-state kinetic experiments that reveal details of the ERK2 mechanism and a hitherto unknown process of ERK2 activation by free magnesium. The physiological relevance of this mechanism is discussed.
Collapse
Affiliation(s)
- William F Waas
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
8
|
Daniel JM, McCombie G, Wendt S, Zenobi R. Mass spectrometric determination of association constants of adenylate kinase with two noncovalent inhibitors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:442-8. [PMID: 12745213 DOI: 10.1016/s1044-0305(03)00132-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Noncovalent complexes between chicken muscle adenylate kinase and two inhibitors, P(1),P(4)-di(adenosine-5')tetraphosphate (Ap4A) and P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A), were investigated with electrospray ionization mass spectrometry under non-denaturing conditions. The nonconvalent nature and the specificity of the complexes are demonstrated with a number of control experiments. Titration experiments allowed the association constants for inhibitor binding to be determined. Problems with concentration dependent ion yields are circumvented by a data evaluation method that is insensitive to the overall ionization efficiency. The K(a) values found were 9.0 x 10(4) M(-1) (Ap4A) and 4.0 x 10(7) M(-1) (Ap5A), respectively, in very good agreement with available literature data.
Collapse
Affiliation(s)
- Jürg M Daniel
- Department of Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093, Zürich, Switzerland
| | | | | | | |
Collapse
|
9
|
Yan H, Tsai MD. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:103-34, x. [PMID: 10218107 DOI: 10.1002/9780470123195.ch4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The catalytic mechanisms of adenylate kinase, guanylate kinase, uridylate kinase, and cytidylate kinase are reviewed in terms of kinetic and structural information that has been obtained in recent years. All four kinases share a highly related tertiary structure, characterized by a central five-stranded parallel beta-sheet with helices on both sides, as well as the three regions designated as the CORE, NMPbind, and LID domains. The catalytic mechanism continues to be refined to higher levels of resolution by iterative structure-function studies, and the strengths and limitations of site-directed mutagenesis are well illustrated in the case of adenylate kinase. The identity and roles of active site residues now appear to be resolved, and this review describes how specific site substitutions with unnatural amino acid side-chains have proven to be a major advance. Likewise, there is mounting evidence that phosphoryl transfer occurs by an associative transition state, based on (a) the stereochemical course of phosphoryl transfer, (b) geometric considerations, (c) examination of likely electronic distributions, (d) the orientation of the phosphoryl acceptor relative to the phosphoryl being transferred, (e) the most likely role of magnesium ion, (f) the lack of restricted access of solvent water, and (g) the results of oxygen-18 kinetic isotope. effect experiments.
Collapse
Affiliation(s)
- H Yan
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
10
|
Yamada M, Sugahara M, Hishitani Y, Nobumoto M, Nakazawa A. Isolation and characterization of mutated mitochondrial GTP:AMP phosphotransferase. J Mol Biol 1998; 280:551-8. [PMID: 9665856 DOI: 10.1006/jmbi.1998.1876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GTP:AMP phosphotransferase (adenylate kinase isozyme 3, AK3) mutants were obtained by using the ability of AK3 to complement a temperature-sensitive mutation of Escherichia coli adenylate kinase (AKe). Five mutants, P16L, G19S, G91D, G91S, and P93L, had mutation sites located at two loops that are involved in substrate binding of the enzyme. P16L and G19S bearing changes at the first loop showed reduced affinity for both GTP and AMP, the extent of reduction being slightly higher for GTP than AMP. In contrast, G91S and P93L having alterations at the second loop had lower affinities for AMP. Only the alterations at the second loop strongly influenced the Vmax value of the enzyme. Another mutant, D163N, had a substitution at the site forming a salt bridge in adenylate kinase isozyme 1 (AK1), which influenced the Vmax as well as the Km values for both substrates. The kinetic characteristics of these mutants were comparable to those of the corresponding AK1 or AKe mutants. Furthermore, from the results of mutations T201P and T201A that had alterations in all the kinetic parameters of AK3 and from a comparison with the structure and the kinetic parameters of AKe, we expect that a residue(s) around Thr201 is involved in recognition of the base of nucleoside triphosphate.
Collapse
Affiliation(s)
- M Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | | | | | | | | |
Collapse
|
11
|
Zeng C, Aleshin AE, Hardie JB, Harrison RW, Fromm HJ. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis. Biochemistry 1996; 35:13157-64. [PMID: 8855953 DOI: 10.1021/bi960750e] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction of ATP with the active site of hexokinase is unknown since the crystal structure of the hexokinase-ATP complex is unavailable. It was found that the ATP binding site of brain hexokinase is homologous to that of actin, heat shock protein hsc70, and glycerol kinase. On the basis of these similarities, the ATP molecule was positioned in the catalytic domain of human brain hexokinase, which was modeled from the X-ray structure of yeast hexokinase. Site-directed mutagenesis was performed to test the function of residues presumably involved in interaction with the tripolyphosphoryl moiety of ATP. Asp532, which is though to be involved in binding the Mg2+ ion of the MgATP2- complex, was mutated to Lys and Glu. The kcat values decreased 1000- and 200-fold, respectively, for the two mutants. Another residue, Thr680 was proposed to interact with the gamma-phosphoryl group of ATP through hydrogen bonds and was mutated to Val and Ser. The kcat value of the Thr680Val mutant decreased 2000-fold, whereas the kcat value of the Thr680Ser decreased only 2.5-fold, implying the importance of the hydroxyl group. The Km and dissociation constant values for either ATP or glucose of all the above mutants showed little or no change relative to the wild-type enzyme. The Ki values for the glucose 6-phosphate analogue 1,5-anhydroglucitol 6-phosphate, were the same as that of the wild-type enzyme, and the inhibition was reversed by inorganic phosphate (Pi) for all four mutants. The circular dichroism spectra of the mutants were the same as that of the wild-type enzyme. The results from the site-directed mutagenesis demonstrate that the presumed interactions of investigated residues with ATP are important for the stabilization of the transition state.
Collapse
Affiliation(s)
- C Zeng
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
12
|
Scheffzek K, Kliche W, Wiesmüller L, Reinstein J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 A: implications for water-mediated specificity. Biochemistry 1996; 35:9716-27. [PMID: 8703943 DOI: 10.1021/bi960642s] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three-dimensional structure of the UMP/CMP kinase (UK) from the slime mold Dictyostelium discoideum complexed with the specific and asymmetric bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) has been determined at a resolution of 2.2 A. The structure of the enzyme, which has up to 41% sequence homology with known adenylate kinases (AK), represents a closed conformation with the flexible monophosphate binding domain (NMP site) being closed over the uridyl moiety of the dinucleotide. Two water molecules were found within hydrogen-bonding distance to the uracil base. The key residue for the positioning and stabilization of those water molecules appears to be asparagine 97, a residue that is highly specific for AK-homologous UMP kinases, but is almost invariably a glutamine in adenylate kinases. Other residues in this region are highly conserved among AK-related NMP kinases. The catalytic Mg2+ ion is coordinated with octahedral geometry to four water molecules and two oxygens of the phosphate chain of UP5A but has no direct interactions with the protein. The comparison of the geometry of the UKdicty.UP5A.Mg2+ complex with the previously reported structure of the UKyeast.ADP.ADP complex [Müller-Dieckmann & Schulz (1994) J. Mol. Biol. 236, 361-367] suggests that UP5A in our structure mimics an ADP.Mg.UDP biproduct inhibitor rather than an ATP. MG.UMP bisubstrate inhibitor.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für Medizinische Forschung, Abteilung Biophysik, Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
The method of time-resolved dynamic nonradiative excitation energy transfer (ET) was used to analyze the proposed domain closure in adenylate kinase (AK). A highly active mutant of Escherichia coli AK, (C77S, V169W, A55C)-AK, was prepared, in which the solvent- accessible residues valine 169 and alanine 55 were replaced by tryptophan (the donor of excitation energy) and cysteine, respectively. The latter was subsequently labeled with either 5- or 4-acetamidosalicylic acid (the acceptor). From the comparative analysis of AK crystal structures [Schulz, G.E., Müller, C.W., & Diederichs, K. (1990) J. Mol. Biol. 213, 627-630] (apo-AK,AK.AMP complex and AK.AP5A [P1,P5-di(adenosine-5') pentaphosphate] complex), "sequential formation" of the pseudoternary AK.AP5A complex is followed by two- step domain closure. The domain closure reduces interdomain distances in a two-step manner. Specifically, the distance between C alpha-atoms of the residues 169 and 55 (numbers correspond to those of E. coli AK) is decreased from 23.6 A in the apo-enzyme to 16.2 A upon the formation of the AK.AMP complex and to 12.3 A upon the further formation of the pseudoternary AK.AP5A complex. Time-resolved dynamic nonradiative excitation energy transfer was measured for the following ligand forms of the labeled derivative of the mutant enzyme: the apo-enzyme, the enzyme-MgATP complex, the enzyme.AMP complex, and the enzyme.AP5A "ternary" complex. The transfer efficiencies, which were determined in these experiments, were approximately 7.5%, 22%, 33%, and 65%, respectively. Global analyses of the time resolved ET experiments with the same ligand forms yielded intermolecular distance distributions with corresponding means of 31, 23, 19, and 12 A and full widths at half- maximum of 29, 24, 14, and 11 A. The data confirmed the proposed stepwise manner of the domain closure of the enzyme and revealed the presence of multiple conformations of E. coli AK in solution.
Collapse
Affiliation(s)
- M A Sinev
- Department of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
14
|
Byeon L, Shi Z, Tsai MD. Mechanism of adenylate kinase. The "essential lysine" helps to orient the phosphates and the active site residues to proper conformations. Biochemistry 1995; 34:3172-82. [PMID: 7880812 DOI: 10.1021/bi00010a006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although how Lys21 interacts with the substrate MgATP of muscle adenylate kinase (AK) can now be deduced from the crystal structure of Escherichia coli AK.MgAP5A [P1,P5-bis(5'-adenosyl) pentaphosphate] [Müller, C. W., & Schulz, G. E. (1992) J. Mol. Biol. 224, 159-177], its contribution to catalysis has not yet been demonstrated by functional studies since the proton NMR of the K21M mutant was shown to be perturbed significantly [Tian, G., Yan., H., Jiang, R.-T., Kishi, F., Nakazawa, A., & Tsai, M.-D. (1990) Biochemistry 29, 4296-4304]. We therefore undertook further structural and functional analyses of a conservative mutant K21R and a nonconservative mutant K21A. In addition to kinetic analyses, the structures of the mutants were analyzed by one- and two-dimensional proton NMR spectroscopy and (1H, 15N) heteronuclear multiple-quantum coherence (HMQC) experiments. Detailed assignments were performed in reference to the total backbone assignments of the WT AK.MgAP5A complex [Byeon, I.-J. L., Yan, H., Edison, A. S., Mooberry, E. S., Abildgaard, F., Markley, J. L., & Tsai, M.-D. (1993) Biochemistry 32, 12508-12521]. The analysis showed that the residues located near the active site (Gly15, Thr23, Arg97, Gln101, Arg128, Arg132, Asp140, Asp141, and Tyr153) exhibit greater changes in 1H-15N chemical shifts. Finally, two-dimensional 31P-31P COSY experiments were used to examine the effects of the lysine side chain on the phosphate groups in the bound AP5A. Our data have led to the following conclusions independent of the crystal structure: (i) Because the perturbations in the conformation of the mutants are not global and are mainly localized at active site residues and Tyr153, the side chain of Lys21 can be concluded to stabilize the transition state in the catalysis of AK by up to 7 kcal/mol on the basis of the 10(5)-fold decreases in the kcat/Km of mutants. (ii) The results of 31P NMR analyses suggest that Lys21 functions by orienting the triphosphate chain of MgATP to a proper conformation required for catalysis. (iii) The interaction between Lys21 and the phosphate chain in turn dictates the interactions between the substrates and the active site residues. In the K21R.MgATP complex, the NH chemical shifts of many of the active site residues are perturbed. (iv) The catalytic functions of Lys21 cannot be replaced by a conservative residue arginine. In addition, since K21A and K21R behave similarly, the catalytic function of Lys21 should not be merely a charge effect.
Collapse
Affiliation(s)
- L Byeon
- Department of Chemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|