1
|
Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines 2021; 9:biomedicines9040414. [PMID: 33921329 PMCID: PMC8069212 DOI: 10.3390/biomedicines9040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in prostate cancer (PC) research unveiled real androgen receptor (AR) functions in castration-resistant PC (CRPC). Moreover, AR still accelerates PC cell proliferation via the activation of several mechanisms (e.g., mutation, variants, and amplifications in CRPC). New-generation AR signaling-targeted agents, inhibiting extremely the activity of AR, were developed based on these incontrovertible mechanisms of AR-induced CRPC progression. However, long-term administration of AR signaling-targeted agents subsequently induces the major problem that AR (complete)-independent CRPC cells present neither AR nor prostate-specific antigen, including neuroendocrine differentiation as a subtype of AR-independent CRPC. Moreover, there are few treatments effective for AR-independent CRPC with solid evidence. This study focuses on the transformation mechanisms of AR-independent from AR-dependent CRPC cells and potential treatment strategy for AR-independent CRPC and discusses them based on a review of basic and clinical literature.
Collapse
|
2
|
Gomi H, Osawa H, Uno R, Yasui T, Hosaka M, Torii S, Tsukise A. Canine Salivary Glands: Analysis of Rab and SNARE Protein Expression and SNARE Complex Formation With Diverse Tissue Properties. J Histochem Cytochem 2017; 65:637-653. [PMID: 28914590 DOI: 10.1369/0022155417732527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The comparative structure and expression of salivary components and vesicular transport proteins in the canine major salivary glands were investigated. Histochemical analysis revealed that the morphology of the five major salivary glands-parotid, submandibular, polystomatic sublingual, monostomatic sublingual, and zygomatic glands-was greatly diverse. Immunoblot analysis revealed that expression levels of α-amylase and antimicrobial proteins, such as lysozyme, lactoperoxidase, and lactoferrin, differed among the different glands. Similarly, Rab proteins (Rab3d, Rab11a, Rab11b, Rab27a, and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins VAMP4, VAMP8, syntaxin-2, syntaxin-3, syntaxin-4, and syntaxin-6 were expressed at various levels in individual glands. mmunohistochemistry of Rab3d, Rab11b, Rab27b, VAMP4, VAMP8, syntaxin-4, and syntaxin-6 revealed their predominant expression in serous acinar cells, demilunes, and ductal cells. The VAMP4/syntaxin-6 SNARE complex, which is thought to be involved in the maturation of secretory granules in the Golgi field, was found more predominantly in the monostomatic sublingual gland than in the parotid gland. These results suggest that protein expression profiles in canine salivary glands differ among individual glands and reflect the properties of their specialized functions.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiromi Osawa
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Rie Uno
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
3
|
Jayaveni S, Nithyanandham K, Rose C. In vitro secretion of zymogens by bovine pancreatic acini and ultra-structural analysis of exocytosis. Biochem Biophys Rep 2015; 5:237-245. [PMID: 28955829 PMCID: PMC5600341 DOI: 10.1016/j.bbrep.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023] Open
Abstract
The aim of this study is to establish a bovine pancreatic acinar cell culture model with longer viability and functionality. The cells could be maintained in a functional state for upto 20 days with normal morphology. Cells were positive for amylase as observed by immunofluorescence staining. Acinar cells are spherical and range about 2–3 µm in diameter. The porosome formed by exocytosis and heterogenous enzyme granules of size ranging 100–300 nm were seen on the surface of cells by electron microscopy. The activity of the enzymes was high on day 15 and the activity profile of the enzymes is in the order: protease>lipase>amylase and the enzymes were identified by SDS-PAGE. Long-term culture of bovine pancreatic acini could be useful in studying the pathogenesis of pancreatitis. Since the bovine genome shares about 80% identity with the human genome, the cells derived from bovine pancreas can be engineered and used as a potential xenotransplant to treat conditions like pancreatitis as the tissue source is abundantly available. Acinar cells are functional unit of pancreas. In vitro release of enzyme granules by exocytosis are well demonstrated. Amylase shares 86% protein identity with that of human. Acinar culture showed longer viability upto 20 days with normal cellular function. Useful culture model in understanding the acinar cell biology and physiology.
Collapse
Affiliation(s)
- Sivalingam Jayaveni
- Department of Biotechnology, CSIR - Central Leather Research Institute, Chennai 600020, Tamil Nadu, India
| | - Kamaraj Nithyanandham
- Department of Biotechnology, CSIR - Central Leather Research Institute, Chennai 600020, Tamil Nadu, India
| | - Chellan Rose
- Department of Biotechnology, CSIR - Central Leather Research Institute, Chennai 600020, Tamil Nadu, India
| |
Collapse
|
4
|
Messenger SW, Falkowski MA, Groblewski GE. Ca²⁺-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 2014; 55:369-75. [PMID: 24742357 DOI: 10.1016/j.ceca.2014.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023]
Abstract
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca(2+), diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca(2+). However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG-SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20-30 min. Studies indicate the early phase is triggered by Ca(2+) and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca(2+)-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.
Collapse
Affiliation(s)
- Scott W Messenger
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Michelle A Falkowski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Guy E Groblewski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
5
|
Messenger SW, Thomas DDH, Falkowski MA, Byrne JA, Gorelick FS, Groblewski GE. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G439-52. [PMID: 23868405 PMCID: PMC3761242 DOI: 10.1152/ajpgi.00143.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/31/2023]
Abstract
Zymogen granule (ZG) formation in acinar cells involves zymogen cargo sorting from trans-Golgi into immature secretory granules (ISGs). ISG maturation progresses by removal of lysosomal membrane and select content proteins, which enter endosomal intermediates prior to their apical exocytosis. Constitutive and stimulated secretion through this mechanism is termed the constitutive-like and minor-regulated pathways, respectively. However, the molecular components that control membrane trafficking within these endosomal compartments are largely unknown. We show that tumor protein D52 is highly expressed in endosomal compartments following pancreatic acinar cell stimulation and regulates apical exocytosis of an apically directed endolysosomal compartment. Secretion from the endolysosomal compartment was detected by cell-surface antigen labeling of lysosome-associated membrane protein LAMP1, which is absent from ZGs, and had incomplete overlap with surface labeling of synaptotagmin 1, a marker of ZG exocytosis. Although culturing (16-18 h) of isolated acinar cells is accompanied by a loss of secretory responsiveness, the levels of SNARE proteins necessary for ZG exocytosis were preserved. However, levels of endolysosomal proteins D52, EEA1, Rab5, and LAMP1 markedly decreased with culture. When D52 levels were restored by adenoviral delivery, the levels of these regulatory proteins and secretion of both LAMP1 (endolysosomal) and amylase was strongly enhanced. These secretory effects were absent in alanine and aspartate substitutions of serine 136, the major D52 phosphorylation site, and were inhibited by brefeldin A, which does not directly affect the ZG compartment. Our results indicate that D52 directly regulates apical endolysosomal secretion and are consistent with previous studies, suggesting that this pathway indirectly regulates ZG secretion of digestive enzymes.
Collapse
Affiliation(s)
- Scott W Messenger
- Univ. of Wisconsin, Dept. of Nutritional Sciences, 1415 Linden Dr., Madison, WI 53706.
| | | | | | | | | | | |
Collapse
|
6
|
Stoeckelhuber M, Scherer EQ, Janssen KP, Slotta-Huspenina J, Loeffelbein DJ, Rohleder NH, Nieberler M, Hasler R, Kesting MR. The human submandibular gland: immunohistochemical analysis of SNAREs and cytoskeletal proteins. J Histochem Cytochem 2011; 60:110-20. [PMID: 22131313 DOI: 10.1369/0022155411432785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Submandibular acinar glands secrete numerous proteins such as digestive enzymes and defense proteins on the basis of the exocrine secretion mode. Exocytosis is a complex process, including a soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion of vesicles and target membrane and the additional activation of cytoskeletal proteins. Relevant data are available predominantly for animal salivary glands, especially of the rat parotid acinar cells. The authors investigated the secretory molecular machinery of acinar (serous) cells in the human submandibular gland by immunohistochemistry and immunofluorescence and found diverse proteins associated with exocytosis for the first time. SNAP-23, syntaxin-2, syntaxin-4, and VAMP-2 were localized at the luminal plasma membrane; syntaxin-2 and septin-2 were expressed in vesicles in the cytoplasm. Double staining of syntaxin-2 and septin-2 revealed a colocalization on the same vesicles. Lactoferrin and α-amylase served as a marker for secretory vesicles and were labeled positively together with syntaxin-2 and septin-2 in double-staining procedures. Cytoskeletal components such as actin, myosin II, cofilin, and profilin are concentrated at the apical plasma membrane of acinar submandibular glands. These observations complement the understanding of the complex exocytosis mechanisms.
Collapse
Affiliation(s)
- Mechthild Stoeckelhuber
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Falkowski MA, Thomas DDH, Messenger SW, Martin TF, Groblewski GE. Expression, localization, and functional role for synaptotagmins in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G306-16. [PMID: 21636530 PMCID: PMC3154608 DOI: 10.1152/ajpgi.00108.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/01/2011] [Indexed: 01/31/2023]
Abstract
Secretagogue-induced changes in intracellular Ca(2+) play a pivotal role in secretion in pancreatic acini yet the molecules that respond to Ca(2+) are uncertain. Zymogen granule (ZG) exocytosis is regulated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. In nerve and endocrine cells, Ca(2+)-stimulated exocytosis is regulated by the SNARE-associated family of proteins termed synaptotagmins. This study examined a potential role for synaptotagmins in acinar secretion. RT-PCR revealed that synaptotagmin isoforms 1, 3, 6, and 7 are present in isolated acini. Immunoblotting and immunofluorescence using three different antibodies demonstrated synaptotagmin 1 immunoreactivity in apical cytoplasm and ZG fractions of acini, where it colocalized with vesicle-associated membrane protein 2. Synaptotagmin 3 immunoreactivity was detected in membrane fractions and colocalized with an endolysosomal marker. A potential functional role for synaptotagmin 1 in secretion was indicated by results that introduction of synaptotagmin 1 C2AB domain into permeabilized acini inhibited Ca(2+)-dependent exocytosis by 35%. In contrast, constructs of synaptotagmin 3 had no effect. Confirmation of these findings was achieved by incubating intact acini with an antibody specific to the intraluminal domain of synaptotagmin 1, which is externalized following exocytosis. Externalized synaptotagmin 1 was detected exclusively along the apical membrane. Treatment with CCK-8 (100 pM, 5 min) enhanced immunoreactivity by fourfold, demonstrating that synaptotagmin is inserted into the apical membrane during ZG fusion. Collectively, these data indicate that acini express synaptotagmin 1 and support that it plays a functional role in secretion whereas synaptotagmin 3 has an alternative role in endolysosomal membrane trafficking.
Collapse
|
8
|
Behrendorff N, Dolai S, Hong W, Gaisano HY, Thorn P. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem 2011; 286:29627-34. [PMID: 21733851 DOI: 10.1074/jbc.m111.265199] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.
Collapse
|
9
|
Falkowski MA, Thomas DDH, Groblewski GE. Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem 2010; 285:35558-66. [PMID: 20829354 DOI: 10.1074/jbc.m110.146597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complexins are soluble proteins that regulate the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion. Neuronal specific complexin 1 has inhibitory and stimulatory effects on exocytosis by clamping trans-SNARE complexes in a prefusion state and promoting conformational changes to facilitate membrane fusion following cell stimulation. Complexins are unable to bind to monomeric SNARE proteins but bind with high affinity to ternary SNARE complexes and with lower affinity to target SNARE complexes. Far less is understood about complexin function outside the nervous system. Pancreatic acini express the complexin 2 isoform by RT-PCR and immunoblotting. Immunofluorescence microscopy revealed complexin 2 localized along the apical plasma membrane consistent with a role in secretion. Accordingly, complexin 2 was found to interact with vesicle-associated membrane protein (VAMP) 2, syntaxins 3 and 4, but not with VAMP 8 or syntaxin 2. Introduction of recombinant complexin 2 into permeabilized acini inhibited Ca(2+)-stimulated secretion in a concentration-dependent manner with a maximal inhibition of nearly 50%. Mutations of the central α-helical domain reduced complexin 2 SNARE binding and concurrently abolished its inhibitory activity. Surprisingly, mutation of arginine 59 to histidine within the central α-helical domain did not alter SNARE binding and moreover, augmented Ca(2+)-stimulated secretion by 130% of control. Consistent with biochemical studies, complexin 2 colocalized with VAMP 2 along the apical plasma membrane following cholecystokinin-8 stimulation. These data demonstrate a functional role for complexin 2 outside the nervous system and indicate that it participates in the Ca(2+)-sensitive regulatory pathway for zymogen granule exocytosis.
Collapse
Affiliation(s)
- Michelle A Falkowski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
10
|
Lvov A, Chikvashvili D, Michaelevski I, Lotan I. VAMP2 interacts directly with the N terminus of Kv2.1 to enhance channel inactivation. Pflugers Arch 2008; 456:1121-36. [PMID: 18542995 DOI: 10.1007/s00424-008-0468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/06/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
Recently, we demonstrated that the Kv2.1 channel plays a role in regulated exocytosis of dense-core vesicles (DCVs) through direct interaction of its C terminus with syntaxin 1A, a plasma membrane soluble NSF attachment receptor (SNARE) component. We report here that Kv2.1 interacts with VAMP2, the vesicular SNARE partner that is also present at high concentration in neuronal plasma membrane. This is the first report of VAMP2 interaction with an ion channel. The interaction was demonstrated in brain membranes and characterized using electrophysiological and biochemical analyses in Xenopus oocytes combined with an in vitro binding analysis and protein modeling. Comparative study performed with wild-type and mutant Kv2.1, wild-type Kv1.5, and chimeric Kv1.5N/Kv2.1 channels revealed that VAMP2 enhanced the inactivation of Kv2.1, but not of Kv1.5, via direct interaction with the T1 domain of the N terminus of Kv2.1. Given the proposed role for surface VAMP2 in the regulation of the vesicle cycle and the important role for the sustained Kv2.1 current in the regulation of dendritic calcium entry during high-frequency stimulation, the interaction of VAMP2 with Kv2.1 N terminus may contribute, alongside with the interaction of syntaxin with Kv2.1 C terminus, to the activity dependence of DCV release.
Collapse
Affiliation(s)
- Anatoli Lvov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat-Aviv, Israel
| | | | | | | |
Collapse
|
11
|
Pickett JA, Campos-Toimil M, Thomas P, Edwardson JM. Identification of SNAREs that mediate zymogen granule exocytosis. Biochem Biophys Res Commun 2007; 359:599-603. [PMID: 17544372 DOI: 10.1016/j.bbrc.2007.05.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
A secretagogue-stimulated pancreatic acinar cell releases digestive enzymes from its apical pole. We attempted to identify the SNAREs involved in zymogen granule exocytosis. Antibodies against syntaxins 2 and 3, SNAP-23 and VAMP 8, and the corresponding recombinant SNAREs, inhibited amylase secretion from streptolysin O-permeabilised acini; other anti-SNARE antibodies and SNAREs had no effect. Botulinum neurotoxin C, which cleaved syntaxin 2 and (to a lesser extent) syntaxin 3, but not syntaxins 4, 7 or 8, also inhibited exocytosis. We propose that syntaxin 2, SNAP-23 and VAMP 8 mediate primary granule-plasma membrane fusion. Syntaxin 3 may be involved in secondary granule-granule fusion.
Collapse
Affiliation(s)
- James A Pickett
- Department of Pharmacology, Tennis Court Road, University of Cambridge, Cambridge CB2 1PD, UK
| | | | | | | |
Collapse
|
12
|
Bai L, Swayne LA, Braun JEA. The CSPα/G protein complex in PC12 cells. Biochem Biophys Res Commun 2007; 352:123-9. [PMID: 17113038 DOI: 10.1016/j.bbrc.2006.10.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/28/2022]
Abstract
Cysteine string proteinalpha (CSPalpha) is a regulated vesicle protein and molecular chaperone that has been found to be critical for continuous synaptic transmission and is implicated in the defense against neurodegeneration. Previous work has revealed links between CSPalpha and heterotrimeric GTP binding protein (G protein) signal transduction pathways. We have shown that CSPalpha is a guanine nucleotide exchange factor (GEF) for Galphas. In vitro Hsc70 (70 kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) switch CSPalpha from an inactive GEF to an active GEF. Here we have examined the cellular distribution of the CSPalpha system in the PC12 neuroendocrine cell line. CSPalpha, an established secretory vesicle protein, was found to concentrate in the processes of NGF-differentiated PC12 cells as expected. Gbeta subunits co-localized and Galphas subunits partially co-localized with CSPalpha. However, under the conditions examined, the GEF activity of CSPalpha is expected to be inactive, in that Hsc70 was not found in PC12 processes. These results indicate that CSPalpha activity is subject to regulation by factors that alter Hsc70 distribution and translocation within the cell.
Collapse
Affiliation(s)
- Liping Bai
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
13
|
Rosado JA, Redondo PC, Salido GM, Sage SO, Pariente JA. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+entry in mouse pancreatic acinar cells. Am J Physiol Cell Physiol 2005; 288:C214-21. [DOI: 10.1152/ajpcell.00241.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that store-operated Ca2+entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as “secretion-like coupling.” As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type.
Collapse
|
14
|
Portela-Gomes GM, Hacker GW, Weitgasser R. Neuroendocrine cell markers for pancreatic islets and tumors. Appl Immunohistochem Mol Morphol 2004; 12:183-92. [PMID: 15551729 DOI: 10.1097/00129039-200409000-00001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The authors review the application of a variety of neuroendocrine cell markers to identify pancreatic islet cells and tumors. In the past, several empiric histochemical techniques had been used to demonstrate neuroendocrine cells, particularly the Grimelius argyrophilic stain. The development of immunohistochemistry made it possible to demonstrate specific cell products such as regulatory peptides, thus allowing the classification of pancreatic neuroendocrine tumors with a view to clinical symptoms. However, it is not always possible to visualize regulatory peptides in these tumors. It is therefore important to use broad-spectrum neuroendocrine cell markers to identify the neuroendocrine nature. These markers are proteins localized in the secretory granules (core- or membrane-related), in the cytosol, or in the cellular membrane. The markers most commonly used in routine histopathology are the secretory granule proteins chromogranin A and synaptophysin and the cytosolic enzyme neuronspecific enolase. Other new markers (e.g., synaptic vesicle protein 2) are of general diagnostic value. Region-specific antibodies to chromogranin A can be valuable in differentiating between benign and malignant neuroendocrine tumors. Some markers may be related to the functioning characteristics of pancreatic neuroendocrine tumors, such as prohormone convertases. In addition, markers giving further complementary information have been identified, such as five somatostatin receptor subtypes, the expression of which varies markedly in pancreatic neuroendocrine tumors. Antibodies against all somatostatin receptor subtypes are now commercially available, and immunohistochemical investigation of its expression should be routinely applied when considering treatment with somatostatin analogs.
Collapse
|
15
|
Yu S, Michie SA, Lowe AW. Absence of the Major Zymogen Granule Membrane Protein, GP2, Does Not Affect Pancreatic Morphology or Secretion. J Biol Chem 2004; 279:50274-9. [PMID: 15385539 DOI: 10.1074/jbc.m410599200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of digestive enzymes in humans are produced in the pancreas where they are stored in zymogen granules before secretion into the intestine. GP2 is the major membrane protein present in zymogen granules of the exocrine pancreas. Numerous studies have shown that GP2 binds digestive enzymes such as amylase, thereby supporting a role in protein sorting to the zymogen granule. Other studies have suggested that GP2 is important in the formation of zymogen granules. A knock-out mouse was generated for GP2 to study the impact of the protein on pancreatic function. GP2-deficient mice displayed no gross signs of nutrient malab-sorption such as weight loss, growth retardation, or diarrhea. Zymogen granules in the GP2 knock-out mice appeared normal on electron microscopy and contained the normal complement of proteins excluding GP2. Primary cultures of pancreatic acini appropriately responded to secretagogue stimulation with the secretion of digestive enzymes. The course of experimentally induced pancreatitis was also examined in the knock-out mice because proteins known to associate with GP2 have been found to possess a protective role. When GP2 knock-out mice were subjected to two different models of pancreatitis, no major differences were detected. In conclusion, GP2 is not essential for pancreatic exocrine secretion or zymogen granule formation. It is unlikely that GP2 serves a major intracellular role within the pancreatic acinar cell and may be functionally active after it is secreted from the pancreas.
Collapse
Affiliation(s)
- Su Yu
- Department of Medicine, Satnford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
16
|
Huang X, Sheu L, Tamori Y, Trimble WS, Gaisano HY. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23. Pancreas 2001; 23:125-33. [PMID: 11484914 DOI: 10.1097/00006676-200108000-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Exocytosis is thought to result from the fusion of vesicle and plasma membranes caused by the formation of a trans-complex between proteins of the vesicle-associated membrane protein (VAMP) family on the vesicle with members of the syntaxin and synaptosomal-associated protein of 25 kd (SNAP-25) families on the plasma membrane. In the pancreatic acinar cell, synaptosomal-associated protein of 23 kd (SNAP-23) is the major SNAP-25 isoform expressed in pancreatic acinar cells, but its role in acinar cell exocytosis has not been determined. AIMS To examine the role of SNAP-23 in regulated exocytosis in acinar cells, we subcloned into adenoviral vectors SNAP-23, SNAP-25, and dominant negative mutants in which the C-terminal domains corresponding to the botulinum neurotoxin A cleavage sites are deleted. METHODOLOGY AND RESULTS High-efficiency infection of rat pancreatic acini in culture with these adenoviruses by subcellular fractionation showed that the overexpressed SNAP-23, SNAP-25, and their truncated mutant proteins were uniformly targeted to the zymogen granules and plasma membrane. To maximally stimulate apical exocytosis from these infected acini, we used the cholecystokinin-phenylethyl ester analog (CCK-OPE), which does not show inhibition of secretion from maximal levels at high doses. CCK-OPE-stimulated amylase release from adenovirus-cytomegalovirus (AdCMV)-SNAP-23 or AdCMV-SNAP-25-infected acini to the same extent as from acini infected with the empty vector. In contrast, CCK-OPE-evoked enzyme secretion from AdCMV-SNAP-23deltaC8- and AdCMV-SNAP-25(1-197)-infected acini were inhibited by 60% and 40%, respectively. The identical targeting of the mutant SNAP-23 and SNAP-25 proteins to the same membrane compartments as SNAP-23 suggests that the inhibition of secretion was a result of their competition against endogenous SNAP-23. This is supported by the fact that this inhibition by the mutant proteins was partially reversed or rescued when the AdCMV-SNAP-25AC8- or AdCMV-SNAP-25(1-197)-infected acini were co-infected with wild-type SNAP-23 or SNAP-25. CONCLUSION From these results, we conclude that SNAP-23 plays a role in CCK-evoked regulated exocytosis in the acinar cells.
Collapse
Affiliation(s)
- X Huang
- Department of Medicine and Physiology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 2001; 63:77-97. [PMID: 11181949 DOI: 10.1146/annurev.physiol.63.1.77] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular signaling mechanisms by which cholecystokinin (CCK) and other secretagogues regulate pancreatic acinar function are more complex than originally realized. CCK couples through heterotrimeric G proteins of the Gq family to lead to an increase in intracellular free Ca2+, which shows spatial and temporal patterns of signaling. The actions of Ca2+ are mediated in part by activation of a number of Ca2+-activated protein kinases and the protein phosphatase calcineurin. By the process of exocytosis the intracellular messengers Ca2+, diacylglycerol, and cAMP activate the release of the zymogen granule content in a manner that is poorly understood. This fusion event most likely involves SNARE and Rab proteins present on zymogen granules and cellular membrane domains. More likely related to nonsecretory aspects of cell function, CCK also activates three MAPK cascades leading to activation of ERKs, JNKs, and p38 MAPK. Although the function of these pathways is not well understood, ERKs are probably related to cell growth, and through phosphorylation of hsp27, p38 can affect the actin cytoskeleton. The PI3K (phosphatidylinositol 3-kinase)-mTOR (mammalian target of rapamycin) pathway is important for regulation of acinar cell protein synthesis because it leads to both activation of p70S6K and regulation of the availability of eIF4E in response to CCK. CCK also activates a number of tyrosyl phosphorylation events including that of p125FAK and other proteins associated with focal adhesions.
Collapse
Affiliation(s)
- J A Williams
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| |
Collapse
|
18
|
Okamoto CT, Forte JG. Vesicular trafficking machinery, the actin cytoskeleton, and H+-K+-ATPase recycling in the gastric parietal cell. J Physiol 2001; 532:287-96. [PMID: 11306650 PMCID: PMC2278542 DOI: 10.1111/j.1469-7793.2001.0287f.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gastric HCl secretion by the parietal cell involves the secretagogue-regulated re-cycling of the H+-K+-ATPase at the apical membrane. The trafficking of the H+-K+-ATPase and the remodelling of the apical membrane during this process are likely to involve the co-ordination of the function of vesicular trafficking machinery and the cytoskeleton. This review summarizes the progress made in the identification and characterization of components of the vesicular trafficking machinery that are associated with the H+-K+-ATPase and of components of the actin-based cytoskeleton that are associated with the apical membrane of the parietal cell. Since many of these proteins are also expressed at the apical pole of other epithelial cells, the parietal cell may represent a model system to characterize the protein- protein interactions that regulate apical membrane trafficking in many other epithelial cells.
Collapse
Affiliation(s)
- C T Okamoto
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA.
| | | |
Collapse
|
19
|
Feng D, Flaumenhaft R, Bandeira-Melo C, Weller P, Dvorak A. Ultrastructural localization of vesicle-associated membrane protein(s) to specialized membrane structures in human pericytes, vascular smooth muscle cells, endothelial cells, neutrophils, and eosinophils. J Histochem Cytochem 2001; 49:293-304. [PMID: 11181732 DOI: 10.1177/002215540104900303] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vesicle-associated membrane proteins (VAMPs) are important to the trafficking of vesicles between membrane-bound intracytoplasmic organelles, in the facilitation of neurosecretion, and in constitutive and regulated secretion in non-neuronal cells. We used a pre-embedding ultrastructural immunonanogold method to localize VAMPs to subcellular sites in human cells of five lineages known to have cytoplasmic vesicles that may function in vesicular transport. We found VAMPs localized to caveolae in pericytes, vascular smooth muscle cells, and endothelial cells of venules, to the vesiculo-vacuolar organelle, recently defined in venular endothelial cells, to the vesicle-rich intergranular cytoplasm and secretory granule membranes of neutrophils, and to perigranular cytoplasmic secretory vesicles and secretory granule membranes in eosinophils. These specific localizations in five human vascular and granulocyte lineages support the notion that VAMPs have vesicle-associated functions in these cells.
Collapse
Affiliation(s)
- D Feng
- Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
20
|
Padfield PJ. A tetanus toxin sensitive protein other than VAMP 2 is required for exocytosis in the pancreatic acinar cell. FEBS Lett 2000; 484:129-32. [PMID: 11068046 DOI: 10.1016/s0014-5793(00)02126-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neurotoxin sensitivity of regulated exocytosis in the pancreatic acinar cell was investigated using streptolysin-O permeabilized pancreatic acini. Treatment of permeabilized acini with botulinum toxin B (BoNT/B) or botulinum toxin D (BoNT/D) had no detectable effect on Ca(2+)-dependent amylase secretion but did result in the complete cleavage of VAMP 2. In comparison, tetanus toxin (TeTx) treatment both significantly inhibited Ca(2+)-dependent amylase secretion and cleaved VAMP 2. These results indicate that regulated exocytosis in the pancreatic acinar cell requires a tetanus toxin sensitive protein(s) other than VAMP 2.
Collapse
Affiliation(s)
- P J Padfield
- Department of Pathology, Saint Louis University Medical Centre, South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
21
|
Abstract
The protein-protein interaction between [soluble NSF attachment protein (SNAP) receptor] (SNARE) proteins found in the lysate of parotid acinar cells was investigated. Immunoblotting analysis showed that parotid acini contain both syntaxin-4 and SNAP-23, plausible candidates of target membranes (t-) SNAREs in non-neuronal cells. However, when vesicle-associated membrane protein (VAMP)-2 was immunoprecipitated from lysates of parotid acinar cells, syntaxin-4 and SNAP-23 were not coprecipitated with VAMP-2, although syntaxin-1 and SNAP-25, t-SNAREs in neuronal cells, were clearly coprecipitated with VAMP-2 from brain lysates. Inversely, when syntaxin-4 was immunoprecipitated from parotid lysates, SNAP-23, Munc18c, and N-ethylmaleimide-sensitive fusion protein (NSF) were coprecipitated, but VAMP-2 was again undetectable. When proteins in the crude secretory-granule fraction were biotinylated and then immunoprecipitated with anti-VAMP-2, 35- and 80-kDa proteins were coprecipitated along with VAMP-2. These results suggest that the interaction between syntaxin-4, SNAP-23 and VAMP-2 is fairly weak and their concentrations in the cell lysate are insufficient to make a readily detectable complex, and that bindings between these proteins are hindered by other proteins in parotid acinar cells.
Collapse
Affiliation(s)
- T Takuma
- Department of Oral Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, Japan.
| | | | | |
Collapse
|
22
|
Abstract
Nerve terminals are specific sites of action of a very large number of toxins produced by many different organisms. The mechanism of action of three groups of presynaptic neurotoxins that interfere directly with the process of neurotransmitter release is reviewed, whereas presynaptic neurotoxins acting on ion channels are not dealt with here. These neurotoxins can be grouped in three large families: 1) the clostridial neurotoxins that act inside nerves and block neurotransmitter release via their metalloproteolytic activity directed specifically on SNARE proteins; 2) the snake presynaptic neurotoxins with phospholipase A(2) activity, whose site of action is still undefined and which induce the release of acethylcholine followed by impairment of synaptic functions; and 3) the excitatory latrotoxin-like neurotoxins that induce a massive release of neurotransmitter at peripheral and central synapses. Their modes of binding, sites of action, and biochemical activities are discussed in relation to the symptoms of the diseases they cause. The use of these toxins in cell biology and neuroscience is considered as well as the therapeutic utilization of the botulinum neurotoxins in human diseases characterized by hyperfunction of cholinergic terminals.
Collapse
Affiliation(s)
- G Schiavo
- Imperial Cancer Research Fund, London, United Kingdom
| | | | | |
Collapse
|
23
|
Gaisano HY. A hypothesis: SNARE-ing the mechanisms of regulated exocytosis and pathologic membrane fusions in the pancreatic acinar cell. Pancreas 2000; 20:217-26. [PMID: 10766446 DOI: 10.1097/00006676-200004000-00001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pancreatic acinar cell has been a classic model to study regulated exocytosis occurring at the apical plasma membrane. The acinar cell is also an excellent model with which to study pathologic membrane fusion events, including aberrant zymogen granule fusion with the lysosome and basolateral exocytosis, which are the earliest cellular events of acute pancreatitis. However, despite much effort, little is known about the precise mechanisms that mediate these physiologic and pathologic membrane fusion events until recently. Over the past 5 years, there has been a major advance in the fundamental understanding of vesicle fusion based on the SNARE hypothesis. A basic tenet of the SNARE hypothesis is that the minimal machinery for membrane fusion is a cognate set of v- and t-SNAREs on opposing membranes. A corollary to this hypothesis is that these SNARE proteins are prevented from spontaneous assembly by clamping proteins. Here, the recent developments in the identification of cognate v- and t-SNAREs and clamping proteins are reviewed, which are strategically located to mediate these physiologic exocytic and pathologic fusion events in the pancreatic acinar cell.
Collapse
Affiliation(s)
- H Y Gaisano
- Department of Medicine and Physiology, University of Toronto, and University Health Network, Ontario, Canada.
| |
Collapse
|
24
|
Valentijn K, Valentijn JA, Jamieson JD. Role of actin in regulated exocytosis and compensatory membrane retrieval: insights from an old acquaintance. Biochem Biophys Res Commun 1999; 266:652-61. [PMID: 10603303 DOI: 10.1006/bbrc.1999.1883] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes new insights into the role of the actin cytoskeleton in exocytosis and compensatory membrane retrieval from mammalian regulated secretory cells. Data from our lab and others now indicate that the actin cytoskeleton is involved in exocytosis both as a negative regulator of membrane fusion under resting conditions and as a facilitator of movement of secretory granules to their site of fusion with the apical plasmalemma. Coating of docked secretory granules with actin filaments correlates with the dissociation of secretory-granule-associated rab3D, pointing out a novel role for rab proteins in modulating the actin cytoskeleton during regulated exocytosis. Compensatory membrane retrieval following regulated exocytosis is also critically dependent on the actin cytoskeleton both in initiating the formation of clathrin-coated retrieval vesicles and subsequent trafficking back into the cell. We propose that insertion of secretory granule membrane into the plasmalemma initiates a trigger for membrane retrieval, possibly by exposing sites where proteins involved in compensatory membrane retrieval are assembled. The results summarized in this review were derived primarily from investigations on the pancreatic acinar cell, an old friend who is providing modern wisdom not attainable in other simpler systems.
Collapse
Affiliation(s)
- K Valentijn
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, 60520, USA
| | | | | |
Collapse
|
25
|
Mandic R, Lowe AW. Characterization of an alternatively spliced isoform of rat vesicle associated membrane protein-2 (VAMP-2). FEBS Lett 1999; 451:209-13. [PMID: 10371166 DOI: 10.1016/s0014-5793(99)00551-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
VAMPs are vesicle associated membrane proteins that are essential for secretion. A spliced isoform of rat VAMP-2, called VAMP-2B, is characterized in this study. The VAMP-2B transcript is the result of alternative RNA splicing in which an intron is retained. The predicted amino acid sequence of VAMP-2B differs from VAMP-2 at its carboxy-terminal end. Because recent studies have shown that VAMP's carboxy-terminal end influences the protein's sorting, the location of myc-epitope tagged VAMP-2B in PC12 cells was determined. Subcellular fractionation showed colocalization of myc-VAMP-2B and endogenous VAMP-2. Thus alternative RNA splicing does not affect VAMP-2 sorting in PC12 cells.
Collapse
Affiliation(s)
- R Mandic
- Department of Medicine and the Digestive Disease Center, Stanford University, CA 94305-5487, USA
| | | |
Collapse
|
26
|
Avery J, Jahn R, Edwardson JM. Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu Rev Physiol 1999; 61:777-807. [PMID: 10099710 DOI: 10.1146/annurev.physiol.61.1.777] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated exocytosis involves the tightly controlled fusion of a transport vesicle with the plasma membrane. It includes processes as diverse as the release of neurotransmitters from presynaptic nerve endings and the sperm-triggered deposition of a barrier preventing polyspermy in oocytes. Cell-free model systems have been developed for studying the biochemical events underlying exocytosis. They range from semi-intact permeabilized cells to the reconstitution of membrane fusion from isolated secretory vesicles and their target plasma membranes. Interest in such cell-free systems has recently been reinvigorated by new evidence suggesting that membrane fusion is mediated by a basic mechanism common to all intracellular fusion events. In this chapter, we review some of the literature in the light of these new developments and attempt to provide a critical discussion of the strengths and limitations of the various cell-free systems.
Collapse
Affiliation(s)
- J Avery
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
27
|
Madison DL, Krueger WH, Cheng D, Trapp BD, Pfeiffer SE. SNARE complex proteins, including the cognate pair VAMP-2 and syntaxin-4, are expressed in cultured oligodendrocytes. J Neurochem 1999; 72:988-98. [PMID: 10037470 DOI: 10.1046/j.1471-4159.1999.0720988.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelin membrane synthesis in the CNS by oligodendrocytes (OLs) involves directed intracellular transport and targeting of copious amounts of specialized lipids and proteins over a relatively short time span. As in other plasma membrane-directed fusion, this process is expected to use specific trafficking and vesicle fusion proteins characteristic of the SNARE model. We have investigated the developmental expression of SNARE proteins in highly enriched primary cultures of OLs at discrete stages of differentiation. VAMP-2/synaptobrevin-2, syntaxin-2 and -4, nsec-1/munc-18-1, Rab3a, synaptophysin, and synapsin were expressed. During differentiation, expression of the vesicular SNARE VAMP-2, the small GTP-binding protein Rab3a, and the target SNARE syntaxin-4 were up-regulated. VAMP-2 and Rab3 proteins detected immunocytochemically in cultured OLs were localized within the developing process network; in situ anti-VAMP-2 antibody stained the perikarya of rows of cells with the distribution and appearance of OLs. We discuss the potential involvement of SNARE complex proteins in a plasma membrane-directed transport mechanism targeting nascent myelin vesicles to the forming myelin sheath.
Collapse
Affiliation(s)
- D L Madison
- Department of Microbiology, University of Connecticut School of Medicine, Farmington 06032-3205, USA
| | | | | | | | | |
Collapse
|
28
|
Flaumenhaft R, Croce K, Chen E, Furie B, Furie BC. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J Biol Chem 1999; 274:2492-501. [PMID: 9891020 DOI: 10.1074/jbc.274.4.2492] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the molecular basis of granule release from platelets, we examined the role of vesicle-associated membrane protein, SNAP-23, and syntaxin 4 in alpha-granule secretion. A vesicle-associated membrane protein, SNAP-23, and syntaxin 4 were detected in platelet lysate. These proteins form a SDS-resistant complex that disassembles upon platelet activation. To determine whether these proteins are involved in alpha-granule secretion, we developed a streptolysin O-permeabilized platelet model of alpha-granule secretion. Streptolysin O-permeabilized platelets released alpha-granules, as measured by surface expression of P-selectin, in response to Ca2+ up to 120 min after permeabilization. Incubation of streptolysin O-permeabilized platelets with an antibody directed against vesicle-associated membrane protein completely inhibited Ca2+-induced alpha-granule release. Tetanus toxin cleaved platelet vesicle-associated membrane protein and inhibited Ca2+-induced alpha-granule secretion from streptolysin O-permeabilized platelets. An antibody to syntaxin 4 also inhibited Ca2+-induced alpha-granule release by approximately 75% in this system. These results show that vesicle-associated membrane protein, SNAP-23, and syntaxin 4 form a heterotrimeric complex in platelets that disassembles with activation and demonstrate that alpha-granule release is dependent on vesicle SNAP receptor-target SNAP receptor (vSNARE-tSNARE) interactions.
Collapse
Affiliation(s)
- R Flaumenhaft
- Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
29
|
Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 1999; 79:73-98. [PMID: 9922368 DOI: 10.1152/physrev.1999.79.1.73] [Citation(s) in RCA: 404] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polarized epithelial cells form barriers that separate biological compartments and regulate homeostasis by controlling ion and solute transport between those compartments. Receptors, ion transporters and channels, signal transduction proteins, and cytoskeletal proteins are organized into functionally and structurally distinct domains of the cell surface, termed apical and basolateral, that face these different compartments. This review is about mechanisms involved in the establishment and maintenance of cell polarity. Previous reports and reviews have adopted a Golgi-centric view of how epithelial cell polarity is established, in which the sorting of apical and basolateral membrane proteins in the Golgi complex is a specialized process in polarized cells, and the generation of cell surface polarity is a direct consequence of this process. Here, we argue that events at the cell surface are fundamental to the generation of cell polarity. We propose that the establishment of structural asymmetry in the plasma membrane is the first, critical event, and subsequently, this asymmetry is reinforced and maintained by delivery of proteins that were constitutively sorted in the Golgi. We propose a hierarchy of stages for establishing cell polarity.
Collapse
Affiliation(s)
- C Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
30
|
Martin TF. Mechanisms of protein secretion in endocrine and exocrine cells. VITAMINS AND HORMONES 1998; 54:207-26. [PMID: 9529978 DOI: 10.1016/s0083-6729(08)60926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T F Martin
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
31
|
Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:213-320. [PMID: 9522458 DOI: 10.1016/s0074-7696(08)60419-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromaffin cell has been used as a model to characterize releasable components present in secretory granules and to understand the cellular mechanisms involved in catecholamine release. Recent physiological and biochemical developments have revealed that molecular mechanisms implicated in granule trafficking are conserved in all eukaryotic species: a rise in intracellular calcium triggers regulated exocytosis, and highly conserved proteins are essential elements which interact with each other to form a molecular scaffolding, ensuring the docking of granules at the plasma membrane, and perhaps membrane fusion. However, the mechanisms regulating secretion are multiple and cell specific. They operate at different steps along the life of a granule, from the time of granule biosynthesis up to the last step of exocytosis. With regard to cell specificity, noradrenaline and adrenaline chromaffin cells display different receptor and signaling characteristics that may be important to exocytosis. Characterization of regulated exocytosis in chromaffin cells provides not only fundamental knowledge of neurosecretion but is of additional importance as these cells are used for therapeutic purposes.
Collapse
Affiliation(s)
- D Aunis
- Biologie de la Communication Cellulaire, Unité INSERM U-338, Strasbourg, France
| |
Collapse
|
32
|
Sengupta D, Valentijn JA, Jamieson JD. Regulated Exocytosis in Mammalian Secretory Cells. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
García-Montero AC, Manso MA, Rodriguez AI, Orfao A, de Dios I. Glucocorticoids regulate L-fucose glycoconjugates in rat pancreatic zymogen granules. Mol Cell Endocrinol 1997; 133:117-25. [PMID: 9406857 DOI: 10.1016/s0303-7207(97)00153-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lectin-binding studies were performed on rat pancreatic zymogen granules to investigate the influence of glucocorticoid levels on saccharide membrane composition. The following animal groups were used: (1) control rats; (2) rats treated with hydrocortisone (1, 10 and 25 mg/kg/day) for 1, 3 and 8 days; (3) postadrenalectomized rats at days +1, +3 and +8; and (4) adrenalectomized rats receiving hydrocortisone therapy (10 mg/kg/day) for 8 days. By flow cytometry, fluoresceinated (FITC) lectins were used to measure the amount of Concanavalin A (Con A) (specific for D-mannose), wheat germ agglutinin (WGA) (specific for N-acetyl-D-glucosamine) and sialic acids and Tetragonolobus purpureus (TP) (specific for L-fucose) bound to individual zymogen granules from two subpopulations, Z1 and Z2, identified on the basis of their forward and side scatter properties. The molar ratio of the different FITC-lectins revealed significant differences in the glycoconjugate composition of Z1 and Z2 granules, the Z1 granules showing higher ratios of N-acetyl-D-glucosamine:L-fucose and N-acetyl-D-glucosamine:D-mannose, both in control, adrenalectomized and hydrocortisone-treated rats. It was also observed that N-acetyl-D-glucosamine and/or sialic acids were more abundant than L-fucose and D-mannose in the zymogen granule membrane. Z1 and Z2 granules had different glycosylation patterns. Neither adrenalectomy nor hydrocortisone treatments varied the Con A binding to zymogen granules. An increase in WGA binding was only induced by administration of very high doses of hydrocortisone (25 mg/kg/day) for 8 days, an effect not directly related to glucocorticoids. In contrast, a correlation between the FITC-TP labelling and glucocorticoid levels can be established, so that, in a time-dose dependent way, an increase was observed in zymogen granules of rats treated with hydrocortisone while a decreased TP binding was found in adrenalectomized rats-an effect which was reversed with hydrocortisone therapy. Therefore, glucocorticoids exert a direct influence on the saccharide composition of rat pancreatic zymogen granules, regulating the amount of L-fucose glycoconjugates, with Z2 granules more sensitive than Z1 ones.
Collapse
Affiliation(s)
- A C García-Montero
- Department of Physiology and Pharmacology, Miguel de Unamuno Campus, University of Salamanca, Spain
| | | | | | | | | |
Collapse
|
34
|
Almeida MT, Ramalho-Santos J, Oliveira CR, Pedroso de Lima MC. Evidence that synaptobrevin is involved in fusion between synaptic vesicles and synaptic plasma membrane vesicles. Biochem Biophys Res Commun 1997; 236:184-8. [PMID: 9223449 DOI: 10.1006/bbrc.1997.6928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have developed a model system, consisting of rat brain synaptic vesicles and rat brain synaptic plasma membrane vesicles, to study the fusion process associated with the exocytotic release of neurotransmitters. Our results show a significant increase in the extent of fusion when the reaction takes place in cytosol compared to that obtained when fusion is carried out in buffer. This effect is mediated by cytosolic proteins, although N-ethylmaleimide-sensitive factor does not play a role in fusion. We also registered an almost complete inhibition of fusion when synaptic vesicles were pre-incubated with botulinum toxin B, indicating that synaptobrevin plays an important role in the coalescence of membrane lipids of the interacting membranes.
Collapse
Affiliation(s)
- M T Almeida
- Department of Biochemistry, Faculty of Medicine, and Center for Neurosciences of Coimbra, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
35
|
Kandror KV, Pilch PF. Compartmentalization of protein traffic in insulin-sensitive cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E1-14. [PMID: 8760075 DOI: 10.1152/ajpendo.1996.271.1.e1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insulin-sensitive cells, adipocytes and myocytes, translocate a number of intracellular proteins to the cell surface in response to insulin. Among these proteins are glucose transporters 1 and 4 (GLUT-1 and GLUT-4, respectively), receptors for insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) and transferrin, the aminopeptidase gp 160, caveolin, and a few others. In the case of insulin-activated glucose transport, this translocation has been proven to be the major, if not the only regulatory mechanism of this process. It seems likely that the cell surface recruitment of the IGF-II/Man-6-P and transferrin receptors also serves the nutritional needs of cells, whereas the physiological role of the aminopeptidase gp160 remains uncertain. Analysis of the compartmentalization and trafficking pathways of translocatable proteins in fat cells identified more than one population of recycling vesicles, although all have identical sedimentation coefficients and buoyant densities in vitro. GLUT-4-containing vesicles include essentially all the intracellular GLUT-4, gp160, and the acutely recycling populations of receptors for IGF-II/Man-6-P and transferrin. Besides these proteins, which can be considered as vesicle "cargo", GLUT-4-containing vesicles have other components, like secretory carrier-associated membrane proteins (SCAMP), Rab(s), and vesicle-associated membrane protein (VAMP)/cellubrevin, which are ubiquitous to secretory vesicles and granules from different tissues. GLUT-1 and caveolin are excluded from GLUT-4-containing vesicles and form different vesicular populations of unknown polypeptide composition. In skeletal muscle, two independent populations of GLUT-4-containing vesicles are found, insulin sensitive and exercise sensitive, which explains the additive effect of insulin and exercise on glucose uptake. Both vesicular populations are similar to each other and to analogous vesicles in fat cells.
Collapse
Affiliation(s)
- K V Kandror
- Boston University Medical School, Massachusetts 02118, USA
| | | |
Collapse
|
36
|
Braun JE, Scheller RH. Cysteine string protein, a DnaJ family member, is present on diverse secretory vesicles. Neuropharmacology 1995; 34:1361-9. [PMID: 8606785 DOI: 10.1016/0028-3908(95)00114-l] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synaptic vesicles are the secretory organelles responsible for the regulated secretion of neurotransmission. Proteins associated with or integral components of the lipid bilayer likely represent important components in regulated secretion. CSP (cysteine string protein) is a 34 kDa protein which copurifies with cholinergic synaptic vesicles from the marine ray Torpedo californica. In Drosophila melanogaster deletion of the CSP gene causes impaired presynaptic neuromuscular transmission. A rat brain complementary DNA (cDNA) encoding CSP was isolated and sequence analysis predicts a protein with 86% identity to Torpedo CSP. Rat CSP contains a "J domain" as well as a cysteine rich "string" region. The J domain "fingerprints" the CSP family as members of the universally conserved DnaJ/hsp40 (heat shock protein) chaperone family. Polyclonal antisera raised against a seventeen amino acid peptide representing the carboxy terminus of rat CSP detected a 35 kDa immunoreactive protein in a rat brain synaptic vesicle enriched preparation. A 35 kDa immunoreactive protein that comigrates electrophoretically with rat brain CSP was also detected in zymogen granule membranes. These results establish the presence of a CSP in rat brain and in the zymogen granule of the rat pancreas and suggest that CSPs have a role in exocrine and neural secretion.
Collapse
Affiliation(s)
- J E Braun
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical Center, CA 94305, USA
| | | |
Collapse
|
37
|
Abstract
Tetanus and botulinum neurotoxins are produced by Clostridia and cause the neuroparalytic syndromes of tetanus and botulism. Tetanus neurotoxin acts mainly at the CNS synapse, while the seven botulinum neurotoxins act peripherally. Clostridial neurotoxins share a similar mechanism of cell intoxication: they block the release of neurotransmitters. They are composed of two disulfide-linked polypeptide chains. The larger subunit is responsible for neurospecific binding and cell penetration. Reduction releases the smaller chain in the neuronal cytosol, where it displays its zinc-endopeptidase activity specific for protein components of the neuroexocytosis apparatus. Tetanus neurotoxin and botulinum neurotoxins B, D, F and G recognize specifically VAMP/ synaptobrevin. This integral protein of the synaptic vesicle membrane is cleaved at single peptide bonds, which differ for each neurotoxin. Botulinum A, and E neurotoxins recognize and cleave specifically SNAP-25, a protein of the presynaptic membrane, at two different sites within the carboxyl-terminus. Botulinum neurotoxin type C cleaves syntaxin, another protein of the nerve plasmalemma. These results indicate that VAMP, SNAP-25 and syntaxin play a central role in neuroexocytosis. These three proteins are conserved from yeast to humans and are essential in a variety of docking and fusion events in every cell. Tetanus and botulinum neurotoxins form a new group of zinc-endopeptidases with characteristic sequence, mode of zinc coordination, mechanism of activation and target recognition. They will be of great value in the unravelling of the mechanisms of exocytosis and endocytosis, as they are in the clinical treatment of dystonias.
Collapse
Affiliation(s)
- C Montecucco
- Centro CNR Biomembrane, Università di Padova, Italy
| | | |
Collapse
|
38
|
Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 1995; 270:14399-404. [PMID: 7782301 DOI: 10.1074/jbc.270.24.14399] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transport by discrete vesicular carriers is well established at least in part because of recent discoveries identifying key protein mediators of vesicle formation, docking, and fusion. A general mechanism sensitive to N-ethylmaleimide (NEM) is required for the transport of a divergent group of vesicular carriers in all eukaryotes. Many endothelia have an abundant population of non-coated plasmalemmal vesicles or caveolae, which have been reported with considerable controversy to function in transport. We recently have shown that like other vesicular transport systems, caveolae-mediated endocytosis and transcytosis are inhibited by NEM (Schnitzer, J. E., Allard, J., and Oh, P. (1995) Am. J. Physiol. 268, H48-H55). Here, we continue this work by utilizing our recently developed method for purifying endothelial caveolae from rat lung tissue (Schnitzer, J. E., Oh, P., Jacobson, B. S., and Dvorak, A. M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1759-1763) to show that these caveolae contain key proteins known to mediate different aspects of vesicle formation, docking, and/or fusion including the vSNARE VAMP-2, monomeric and trimeric GTPases, annexins II and VI, and the NEM-sensitive fusion factor NSF along with its attachment protein SNAP. Like neuronal VAMPs, this endothelial VAMP is sensitive to cleavage by botulinum B and tetanus neurotoxins. Caveolae in endothelium are indeed like other carrier vesicles and contain similar NEM-sensitive molecular machinery for transport.
Collapse
Affiliation(s)
- J E Schnitzer
- Department of Pathology, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
39
|
Volchuk A, Sargeant R, Sumitani S, Liu Z, He L, Klip A. Cellubrevin is a resident protein of insulin-sensitive GLUT4 glucose transporter vesicles in 3T3-L1 adipocytes. J Biol Chem 1995; 270:8233-40. [PMID: 7713930 DOI: 10.1074/jbc.270.14.8233] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin stimulates glucose transport in muscle and fat cells by inducing translocation of GLUT4 glucose transporters from a storage site to the cell surface. The mechanism of this translocation and the identity of the storage site are unknown, but it has been hypothesized that transporters recycle between an insulin-sensitive pool, endosomes, and the cell surface. Upon cell homogenization and fractionation, the storage site migrates with light microsomes (LDM) separate from the plasma membrane fraction (PM). Cellubrevin is a recently identified endosomal protein that may be involved in the reexocytosis of recycling endosomes. Here we describe that cellubrevin is expressed in 3T3-L1 adipocytes and is more abundant in the LDM than in the PM. Cellubrevin was markedly induced during differentiation of 3T3-L1 fibroblasts into adipocytes, in parallel with GLUT4, and the development of insulin regulated traffic. In response to insulin, the cellubrevin content decreased in the LDM and increased in the PM, suggesting translocation akin to that of the GLUT4 glucose transporter. Vesicle-associated membrane protein 2 (VAMP-2)/synaptobrevin-II, a protein associated with regulated exocytosis in secretory cells, also redistributed in response to insulin. Both cellubrevin and VAMP-2 were susceptible to cleavage by tetanus toxin. Immunopurified GLUT4-containing vesicles contained cellubrevin and VAMP-2, and immunopurified cellubrevin-containing vesicles contained GLUT4 protein, but undiscernible amounts of VAMP-2. These observations suggest that cellubrevin and VAMP-2 are constituents of the insulin-regulated pathway of membrane traffic. These results are the first demonstration that cellubrevin is present in a regulated intracellular compartment. We hypothesize that cellubrevin and VAMP-2 may be present in different subsets of GLUT4-containing vesicles.
Collapse
Affiliation(s)
- A Volchuk
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Papini E, Rossetto O, Cutler DF. Vesicle-associated membrane protein (VAMP)/synaptobrevin-2 is associated with dense core secretory granules in PC12 neuroendocrine cells. J Biol Chem 1995; 270:1332-6. [PMID: 7836399 DOI: 10.1074/jbc.270.3.1332] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The presence and intracellular distribution of vesicle-associated membrane protein-1 (VAMP-1) and VAMP-2 were investigated in the PC12 neuroendocrine cell line using isotype-specific polyclonal antibodies. VAMP-2 was detected in the total membrane fraction, while VAMP-1 was undetectable. Subcellular fractionation demonstrates that a substantial amount of the VAMP-2 (24-36%) is associated with dense core, catecholamine-containing granules (DCGs). This was confirmed by immunofluorescence microscopy. The L chain of tetanus neurotoxin, known to inhibit granule mediated secretion in permeabilized PC12 cells, as well as botulinum neurotoxins F and G, effectively cleaved DCG-associated VAMP-2. These data demonstrate that VAMP-2 is present on the secretory granules of PC12 cells.
Collapse
Affiliation(s)
- E Papini
- MRC Laboratory for Molecular Cell Biology, University College London, United Kingdom
| | | | | |
Collapse
|
41
|
Schiavo G, Rossetto O, Tonello F, Montecucco C. Intracellular targets and metalloprotease activity of tetanus and botulism neurotoxins. Curr Top Microbiol Immunol 1995; 195:257-74. [PMID: 8542757 DOI: 10.1007/978-3-642-85173-5_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- G Schiavo
- Centro CNR Biomembrane, Università di Padova, Italy
| | | | | | | |
Collapse
|
42
|
Abstract
Synaptic vesicles play the central role in synaptic transmission. They are regarded as key organelles involved in synaptic functions such as uptake, storage and stimulus-dependent release of neurotransmitter. In the last few years our knowledge concerning the molecular components involved in the functioning of synaptic vesicles has grown impressively. Combined biochemical and molecular genetic approaches characterize many constituents of synaptic vesicles in molecular detail and contribute to an elaborate understanding of the organelle responsible for fast neuronal signalling. By studying synaptic vesicles from the electric organ of electric rays and from the mammalian cerebral cortex several proteins have been characterized as functional carriers of vesicle function, including proteins involved in the molecular cascade of exocytosis. The synaptic vesicle specific proteins, their presumptive function and targets of synaptic vesicle proteins will be discussed. This paper focuses on the small synaptic vesicles responsible for fast neuronal transmission. Comparing synaptic vesicles from the peripheral and central nervous systems strengthens the view of a high conservation in the overall composition of synaptic vesicles with a unique set of proteins attributed to this cellular compartment. Synaptic vesicle proteins belong to gene families encoding multiple isoforms present in subpopulations of neurons. The overall architecture of synaptic vesicle proteins is highly conserved during evolution and homologues of these proteins govern the constitutive secretion in yeast. Neurotoxins from different sources helped to identify target proteins of synaptic vesicles and to elucidate the molecular machinery of docking and fusion. Synaptic vesicle proteins and their markers are useful tools for the understanding of the complex life cycle of synaptic vesicles.
Collapse
Affiliation(s)
- W Volknandt
- Zoologisches Institut, J. W. Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
43
|
Kandror KV, Yu L, Pilch PF. The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47348-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Calakos N, Scheller R. Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31422-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32520-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|