1
|
Heffernan SM, Waldron M, Meldrum K, Evans SJ, Conway GE. Red Algae Alters Expression of Inflammatory Pathways in an Osteoarthritis In Vitro Co-Culture. Pharmaceuticals (Basel) 2025; 18:315. [PMID: 40143094 PMCID: PMC11945273 DOI: 10.3390/ph18030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Osteoarthritis (OA) is one of the most prevalent chronic conditions and significantly contributes to local and global disease burden. Common pharmaceuticals that are used to treat OA cause significant side effects, thus non-pharmaceutical bioactive alternatives have been developed that can impact OA symptoms without severe side-effects. One such alternative is the Red Algae Lithothamnion species (Litho). However, there is little mechanistic knowledge of its potential to effect OA gene expression, and a human in vitro model using commercially available cell lines to test its effectiveness has yet to be developed. Methods: Human osteoblast (hFOB 1.19. CRL-11372) and chondrocyte (C28/I2) cell lines were co-cultured indirectly using transwells. IL1-β was used to induce an inflammatory state and gene expression profiles following treatment were the primary outcome. Conclusions: Results indicated that the model was physiologically relevant, remained viable over at least seven days, untreated or following induction of an inflammatory state while maintaining hFOB 1.19. and C28/I2 cell phenotypic characteristics. Following treatment, Litho reduced the expression of inflammatory and pain associated genes, most notably IL-1β, IL-6, PTGS2 (COX-2) and C1qTNF2 (CTRP2). Confirmatory analysis with droplet digital PCR (ddPCR) revealed that Il-1β induced a significant reduction in C1qTNF2 at 7 days which was ameliorated with Litho treatment. These data present a novel and replicable co-culture model of inflammatory OA that can be used to investigate bioactive nutraceuticals. For the first time, this model demonstrated a reduction in C1qTNF2 expression that was mitigated by Red Algae Lithothamnion species.
Collapse
Affiliation(s)
- Shane M. Heffernan
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK;
| | - Mark Waldron
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK;
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK; (K.M.); (S.J.E.); (G.E.C.)
| | - Stephen J. Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK; (K.M.); (S.J.E.); (G.E.C.)
| | - Gillian E. Conway
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK; (K.M.); (S.J.E.); (G.E.C.)
| |
Collapse
|
2
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024; 44:430-456. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Rasouli H, Razavi BM, Ghasemzadeh Rahbardar M, Sadeghian H, Tabatabaee Yazdi SA, Hosseinzadeh H. Hepatoprotective effect of amifostine and WR-1065 on acetaminophen-induced liver toxicity on Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6001-6015. [PMID: 38381146 DOI: 10.1007/s00210-024-03000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE The most important problem with acetaminophen is its hepatotoxicity. N-acetylcysteine (NAC) is used to treat the hepatotoxicity of acetaminophen. Due to the structural similarities of this compound with amifostine, we decided to test the effect of this substance and its metabolite, WR-1065, on the hepatotoxicity of acetaminophen. METHODS The single-dose method contained 1. Control; 2. Acetaminophen (1 g/kg, gavage); 3-5. Acetaminophen + amifostine (100, 200, 400 mg/kg, i.p.); 6-8. Acetaminophen + WR-1065 (50, 100, 200 mg/kg, i.p.); and 9. Acetaminophen + NAC (100, 200 mg/kg, i.p.). The multiple-dose method included the same groups: amifostine (50, 100, 200 mg/kg), WR-1065 (25, 50, 100 mg/kg), and NAC (100 mg/kg). Then, animals were sacrificed, and blood samples were collected for measuring ALT, AST, ALP, and T-Bil, liver tissue for histopathological examination, MDA, and GSH amounts. RESULTS Acetaminophen increased the levels of MDA, T-Bil, ALT, AST, and ALP, decreased GSH levels, and augmented necrosis, neutrophils, lymphocytes, and macrophages in the port space in single-dose and multiple-dose studies. Amifostine and WR-1065 significantly reduced the levels of MDA, T-Bil, ALT, AST, ALP, increased GSH content, and ameliorated histopathological alterations in a single-dose and multiple-dose method compared to the acetaminophen group. Moreover, NAC caused a significant decrease in the levels of MDA, T-Bil, ALT, AST, and ALP, and reduced GSH amounts in single-dose and multiple-dose studies. CONCLUSION Amifostine and WR-1065 as antioxidant and hepatoprotective compounds are effective in reducing acetaminophen-induced hepatotoxicity with a similar effect to NAC and can be administered as an adjunct in the treatment of acetaminophen overdose.
Collapse
Affiliation(s)
- Hashem Rasouli
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Bazan HA, Bhattacharjee S, Reid MM, Jun B, Polk C, Strain M, St Pierre LA, Desai N, Daly PW, Cucinello-Ragland JA, Edwards S, Recio J, Alvarez-Builla J, Cai JJ, Bazan NG. Transcriptomic signature, bioactivity and safety of a non-hepatotoxic analgesic generating AM404 in the midbrain PAG region. Sci Rep 2024; 14:11103. [PMID: 38750093 PMCID: PMC11096368 DOI: 10.1038/s41598-024-61791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Safe and effective pain management is a critical healthcare and societal need. The potential for acute liver injury from paracetamol (ApAP) overdose; nephrotoxicity and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use; and opioids' addiction are unresolved challenges. We developed SRP-001, a non-opioid and non-hepatotoxic small molecule that, unlike ApAP, does not produce the hepatotoxic metabolite N-acetyl-p-benzoquinone-imine (NAPQI) and preserves hepatic tight junction integrity at high doses. CD-1 mice exposed to SRP-001 showed no mortality, unlike a 70% mortality observed with increasing equimolar doses of ApAP within 72 h. SRP-001 and ApAP have comparable antinociceptive effects, including the complete Freund's adjuvant-induced inflammatory von Frey model. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception region, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways/networks, including endocannabinoid signaling, genes pertaining to mechanical nociception, and fatty acid amide hydrolase (FAAH). Both regulate the expression of key genes encoding FAAH, 2-arachidonoylglycerol (2-AG), cannabinoid receptor 1 (CNR1), CNR2, transient receptor potential vanilloid type 4 (TRPV4), and voltage-gated Ca2+ channel. Phase 1 trial (NCT05484414) (02/08/2022) demonstrates SRP-001's safety, tolerability, and favorable pharmacokinetics, including a half-life from 4.9 to 9.8 h. Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.
Collapse
Affiliation(s)
- Hernan A Bazan
- Section of Vascular/Endovascular Surgery, Department of Surgery, Ochsner Clinic, New Orleans, LA, 70118, USA.
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Connor Polk
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Madeleine Strain
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Linsey A St Pierre
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Neehar Desai
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Patrick W Daly
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Jessica A Cucinello-Ragland
- Department of Physiology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
- Department of Physiology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Javier Recio
- Department of Organic Chemistry and IQAR, University of Alcala, 28805, Alcala de Henares, Madrid, Spain
| | - Julio Alvarez-Builla
- Department of Organic Chemistry and IQAR, University of Alcala, 28805, Alcala de Henares, Madrid, Spain
| | - James J Cai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Zhou J, De Jonghe S, Codd EE, Weiner S, Gallacher D, Stahle P, Kelley MF, Kuffner EK, Flores CM, Eichenbaum GE. Preclinical safety assessment of JNJ-10450232 (NTM-006), a structural analog of acetaminophen, that does not cause hepatotoxicity at supratherapeutic doses. Regul Toxicol Pharmacol 2023:105334. [PMID: 36608923 DOI: 10.1016/j.yrtph.2023.105334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
JNJ-10450232 (NTM-006) is a new molecular entity that is structurally related to acetaminophen. A comprehensive non-clinical safety program was conducted to support first-in-human and clinical efficacy studies based on preclinical data suggesting that the compound has comparable or enhanced antinociceptive and antipyretic efficacy without causing hepatotoxicity at supratherapeutic doses. No hepatic toxicity was noted in a mouse model sensitive to acetaminophen hepatotoxicity or in rats, dogs, and non-human primates in 28-day repeat dose toxicity studies at and above doses/exposures at which acetaminophen is known to cause hepatotoxicity. In the 28-day toxicity studies, all treatment-related findings were monitorable and reversible. Methemoglobinemia, which was observed in dogs and to a lesser extent in rats, is also observed with acetaminophen. This finding is considered not relevant to humans due to species differences in metabolism. Thyroid hypertrophy and hyperplasia were also observed in dogs and were shown to be a consequence of a species-specific UGT induction also demonstrated with increased thyroid hormone metabolism. Indirect bilirubin elevation was observed in rats as a result of UGT1A1 Inhibition. JNJ-10450232 (NTM-006) had no toxicologically relevant findings in safety pharmacology or genotoxicity studies. Together, these data supported progressing into safety and efficacy studies in humans.
Collapse
Affiliation(s)
- Junguo Zhou
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Sandra De Jonghe
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ellen E Codd
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Sandy Weiner
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - David Gallacher
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Paul Stahle
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Edwin K Kuffner
- Johnson & Johnson Consumer Companies, Fort Washington, PA, USA.
| | | | - Gary E Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Gum Arabic nanoformulation rescues neuronal lesions in bromobenzene-challenged rats by its antioxidant, anti-apoptotic and cytoprotective potentials. Sci Rep 2022; 12:21213. [PMID: 36481816 PMCID: PMC9731957 DOI: 10.1038/s41598-022-24556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Bromobenzene (BB) is a hazardous environmental contaminant because of its multiple routes of exposure and the toxicity of its bio-derivates. It could elicit neuronal alterations by stimulating redox imbalance and apoptotic pathways. Gum Arabic (GA) protected the hippocampus of a type 2 diabetic rat model from cognitive decline. Whether gum Arabic nanoemulsion (GANE) can increase the neuroprotectant potency of GA in fighting BB-associated neurological lesions is the question to be answered. To accomplish this objective, 25 adult male Wistar rats were randomly and equally assigned into five groups. Control received olive oil (vehicle of BB). BB group received BB at a dose of 460 mg/kg BW. Blank nanoemulsion (BNE) group supplemented with BNE at 2 mL of 10% w/v aqueous suspension/kg BW. GANE group received GANE at a dose of 2 mL of 10% w/v aqueous suspension/kg BW. BB + GANE group exposed to BB in concomitant with GANE at the same previous doses. All interventions were carried out daily by oral gavage for ten consecutive days. BB caused a marked increase in malondialdehyde and succinate dehydrogenase together with a marked decrease in reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and lactate dehydrogenase in the brain. BB was accompanied by pathological deteriorations, amyloidosis, and reduced immuno-expression of integrase interactor 1 in the hippocampal region. Administration of GANE was beneficial in reversing the aforementioned abnormalities. These results pave the road for further discovery of nano-formulated natural products to counter the threats of BB.
Collapse
|
8
|
Kim HY, Yoon HS, Heo AJ, Jung EJ, Ji CH, Mun SR, Lee MJ, Kwon YT, Park JW. Mitophagy and endoplasmic reticulum-phagy accelerated by a p62 ZZ ligand alleviates paracetamol-induced hepatotoxicity. Br J Pharmacol 2022; 180:1247-1266. [PMID: 36479690 DOI: 10.1111/bph.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol (acetaminophen)-induced hepatotoxicity is the leading cause of drug-induced liver injury worldwide. Autophagy is a degradative process by which various cargoes are collected by the autophagic receptors such as p62/SQSTM1/Sequestosome-1 for lysosomal degradation. Here, we investigated the protective role of p62-dependent autophagy in paracetamol-induced liver injury. EXPERIMENTAL APPROACH Paracetamol-induced hepatotoxicity was induced by a single i.p. injection of paracetamol (500 mg·kg-1 ) in C57/BL6 male mice. YTK-2205 (20 mg·kg-1 ), a p62 agonist targeting ZZ domain, was co- or post-administered with paracetamol. Western blotting and immunocytochemistry were performed to explore the mechanism. KEY RESULTS N-terminal arginylation of the molecular chaperone calreticulin retro-translocated from the endoplasmic reticulum (ER) was induced in the livers undergoing paracetamol-induced hepatotoxicity, and YTK-2205 exhibited notable therapeutic efficacy in acute hepatotoxicity as assessed by the levels of serum alanine aminotransferase and hepatic necrosis. This efficacy was significantly attributed to accelerated degradation of ubiquitin (Ub) conjugates as well as damaged mitochondria (mitophagy) and endoplasmic reticulum (ER-phagy). In primary murine hepatocytes treated with paracetamol, YTK-2205 induced the co-localization of p62+ LC3+ phagophores to the sites of mitophagy and ER-phagy. A similar activity of YTK-2205 was observed with N-acetyl-p-benzoquinone imine, a putative toxic metabolite of paracetamol in Hep3B cells. CONCLUSION AND IMPLICATIONS Our results elucidated that p62-dependent autophagy plays a key role in the removal of cytotoxic materials such as damaged mitochondria in paracetamol-induced hepatotoxicity. Small molecule ligands to p62 may be developed into drugs to treat this pathological condition.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yang HM, Hou TZ, Zhang YN, Zhao SD, Wu YL, Zhang H. Blocked metabotropic glutamate receptor 5 enhances chemosensitivity in hepatocellular carcinoma and attenuates chemotoxicity in the normal liver by regulating DNA damage. Cancer Gene Ther 2022; 29:1487-1501. [PMID: 35396501 DOI: 10.1038/s41417-022-00465-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
DNA damaging agents are used as chemotherapeutics in many cancers, including hepatocellular carcinoma (HCC). However, they are associated with problems such as low sensitivity to chemotherapy and the induction of liver injury, underscoring the need to identify new therapies. Here, we investigated the differential regulatory effect of metabotropic glutamate receptor 5 (mGlu5) on chemosensitivity in HCC and chemotoxicity to the normal liver. The expression of mGlu5 was higher in HCC than in the normal liver, and correlated with poor prognosis according to The Cancer Genome Atlas database and Integrative Molecular Database of Hepatocellular Carcinoma. Cisplatin, oxaliplatin or methyl methanesulfonate (MMS) caused cell death by decreasing mGlu5 expression in HCC cells and increased mGlu5 expression in hepatic cells. In HCC cells, inhibition of mGlu5 aggravated MMS-induced DNA damage by increasing intracellular Ca2+ overload and mitogen-activated protein kinase (MAPK) activation, thereby promoting cell death, and activation of mGlu5 rescued the effect of MMS. However, in hepatic cells, mGlu5 inhibition alleviated MMS-induced DNA damage by downregulating Ca2+-derived MAPK pathways to advance hepatic cell survival. The opposite effects of mGlu5 overexpression or knockdown on MMS-induced DNA damage supported that cell death is a result of the differential regulation of mGlu5 expression. Inhibition of mGlu5 increased chemosensitivity and decreased chemotoxicity in a rat tumor model. This study suggests that mGlu5 inhibition could act synergistically with HCC chemotherapeutics with minimal side effects, which may improve the treatment of patients with HCC in the future.
Collapse
Affiliation(s)
- Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Ya-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Shu-Dong Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100083, Beijing, China
| | - Yong-Le Wu
- Center of Hepatic and Digestive Disease, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
10
|
Di Tinno A, Cancelliere R, Mantegazza P, Cataldo A, Paddubskaya A, Ferrigno L, Kuzhir P, Maksimenko S, Shuba M, Maffucci A, Bellucci S, Micheli L. Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. NANOMATERIALS 2022; 12:nano12101779. [PMID: 35631001 PMCID: PMC9142962 DOI: 10.3390/nano12101779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Water pollution is nowadays a global problem and the effective detection of pollutants is of fundamental importance. Herein, a facile, efficient, robust, and rapid (response time < 2 min) method for the determination of important quinone-based industrial pollutants such as hydroquinone and benzoquinone is reported. The recognition method is based on the use of screen-printed electrodes as sensing platforms, enhanced with carbon-based nanomaterials. The enhancement is achieved by modifying the working electrode of such platforms through highly sensitive membranes made of Single- or Multi-Walled Carbon Nanotubes (SWNTs and MWNTs) or by graphene nanoplatelets. The modified sensing platforms are first carefully morphologically and electrochemically characterized, whereupon they are tested in the detection of different pollutants (i.e., hydroquinone and benzoquinone) in water solution, by using both cyclic and square-wave voltammetry. In particular, the sensors based on film-deposited nanomaterials show good sensitivity with a limit of detection in the nanomolar range (0.04 and 0.07 μM for SWNT- and MWNT-modified SPEs, respectively) and a linear working range of 10 to 1000 ppb under optimal conditions. The results highlight the improved performance of these novel sensing platforms and the large-scale applicability of this method for other analytes (i.e., toxins, pollutants).
Collapse
Affiliation(s)
- Alessio Di Tinno
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Pietro Mantegazza
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Antonino Cataldo
- DISPREV Laboratory, Casaccia Research Center, ENEA, 00185 Rome, Italy;
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
| | - Alesia Paddubskaya
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Luigi Ferrigno
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (L.F.); (A.M.)
| | - Polina Kuzhir
- Department of Physics and Mathematics, Institute of Photonics, University of Eastern Finland, 80200 Joensuu, Finland;
| | - Sergey Maksimenko
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Mikhail Shuba
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Antonio Maffucci
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (L.F.); (A.M.)
| | - Stefano Bellucci
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
- Correspondence:
| |
Collapse
|
11
|
Stolarczyk M, Wolska A, Mikołajczyk A, Bryndal I, Cieplik J, Lis T, Matera-Witkiewicz A. A New Pyrimidine Schiff Base with Selective Activities against Enterococcus faecalis and Gastric Adenocarcinoma. Molecules 2021; 26:2296. [PMID: 33921108 PMCID: PMC8071423 DOI: 10.3390/molecules26082296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Enterococcus faecalis is known as a significant nosocomial pathogen due to its natural resistance to many antibacterial drugs. Moreover, it was found that E. faecalis infection causes inflammation, production of reactive oxygen species, and DNA damage to human gastric cancer cells, which can induce cancer. In this study, we synthesized and tested the biological activity of a new Schiff base, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine (3), and compared its properties with an analogous amine (2). In the biological investigation, 3 was found to have antibacterial activity against E. faecalis 29212 and far better anticancer properties, especially against gastric adenocarcinoma (human Caucasian gastric adenocarcinoma), than 2. In addition, both derivatives were non-toxic to normal cells. It is worth mentioning that 3 could potentially inhibit cancer cell growth by inducing cell apoptosis. The results suggest that the presence of the -C=N- bond in the molecule of 3 increases its activity, indicating that 5-iminomethylpyrimidine could be a potent core for further drug discovery research.
Collapse
Affiliation(s)
- Marcin Stolarczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Wrocław Medical University, 211A Borowska, 50-556 Wroclaw, Poland;
| | - Aleksandra Wolska
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (A.M.)
| | - Aleksandra Mikołajczyk
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (A.M.)
| | - Iwona Bryndal
- Department of Drugs Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (I.B.); (J.C.)
| | - Jerzy Cieplik
- Department of Drugs Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (I.B.); (J.C.)
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie Street 14, 50-383 Wroclaw, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wroclaw, Poland; (A.W.); (A.M.)
| |
Collapse
|
12
|
Julien M, Liégeois M, Höhener P, Paneth P, Remaud GS. Intramolecular non-covalent isotope effects at natural abundance associated with the migration of paracetamol in solid matrices during liquid chromatography. J Chromatogr A 2021; 1639:461932. [PMID: 33535117 DOI: 10.1016/j.chroma.2021.461932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Position-specific isotope analysis by Nuclear Magnetic Resonance spectrometry was employed to study the 13C intramolecular isotopic fractionation associated with the migration of organic substrates through different stationary phases chromatography columns. Liquid chromatography is often used to isolate compounds prior to their isotope analysis and this purification step potentially alters the isotopic composition of target compounds introducing a bias in the later measured data. Moreover, results from liquid chromatography can yield the sorption parameters needed in reactive transport models that predict the transport and fate of organic contaminants to in the environment. The aim of this study was to use intramolecular isotope analysis to study both 13C and 15N isotope effects associated with the elution of paracetamol (acetaminophen) through different stationary phases and to compare them to effects observed previously for vanillin. Results showed very different intramolecular isotope fractionation profiles depending on the chemical structure of the stationary phase. The data also demonstrate that both the amplitude and the distribution of measured isotope effects depend on the nature of the non-covalent interactions involved in the migration process. Results provided by theoretical calculation performed during this study also confirmed the direct link between observed intramolecular isotope fractionation and the nature of involved intermolecular interactions. It is concluded that the nature of the stationary phase through which the substrate passes has a major impact on the intramolecular isotopic composition of organic compounds isolated by chromatography methods..
Collapse
Affiliation(s)
- Maxime Julien
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ōokayama, Meguro-ku, Tokyo, 152-8551 Japan; Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | - Patrick Höhener
- University of Aix-Marseille-CNRS, Laboratoire Chimie Environnement, UMR 7376, place Victor Hugo 3, 13331 Marseille, France
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Gérald S Remaud
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
13
|
Liver says no: the ongoing search for safe catechol O-methyltransferase inhibitors to replace tolcapone. Drug Discov Today 2020; 25:1846-1854. [DOI: 10.1016/j.drudis.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
|
14
|
Scialis RJ, Ghanem CI, Manautou JE. The modulation of transcriptional expression and inhibition of multidrug resistance associated protein 4 (MRP4) by analgesics and their primary metabolites. Curr Res Toxicol 2020; 1:34-41. [PMID: 34345835 PMCID: PMC8320619 DOI: 10.1016/j.crtox.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
During the course of a toxic challenge, changes in gene expression can manifest such as induction of metabolizing enzymes as a compensatory detoxification response. We currently report that a single 400 mg/kg acetaminophen (APAP) dose to C57BL/6J mice led to an increase in multidrug resistance-associated (Mrp) 4 (Abcc4) mRNA 12 h after administration. Alanine aminotransferase, as a marker of liver injury, was also elevated indicating hepatotoxicity had occurred. Therefore, induction of Mrp4 mRNA was likely attributable to APAP-induced liver injury. Mrp4 has been shown to be upregulated during oxidative stress, and it is well-established that APAP overdose causes oxidative stress due to depletion of glutathione. Given the importance of Mrp4 upregulation as an adaptive response during cholestatic and oxidative liver injury, we next investigated the extent by which human MRP4 can be inhibited by the analgesics, APAP, diclofenac (DCF), and their metabolites. Using an in vitro assay with inside out human MRP4 vesicles, we determined that APAP-cysteine inhibited MRP4-mediated transport of leukotriene C4 with an apparent IC50 of 125 μM. APAP-glutathione also attenuated MRP4 activity though it achieved only 28% inhibition at 300 μM. Diclofenac acyl glucuronide (DCF-AG) inhibited MRP4 transport by 34% at 300 μM. The MRP4 in vitro inhibition occurs at APAP-cysteine and DCF-AG concentrations seen in vivo after toxic doses of APAP or DCF in mice, hence the findings are important given the role that Mrp4 serves as a compensatory response during oxidative stress following toxic challenge.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMP, adenosine monophosphate
- APAP, acetaminophen
- APAP-CYS, acetaminophen cysteine
- APAP-GLU, acetaminophen glucuronide
- APAP-NAC, acetaminophen N-acetylcysteine
- APAP-SUL, acetaminophen sulfate
- ATP, adenosine triphosphate
- Acetaminophen
- DCF, diclofenac
- DCF-AG, diclofenac acyl glucuronide
- Diclofenac
- Fmo, flavin containing monooxygenase
- IS, internal standard
- Inhibition
- LTC4, leukotriene C4
- MRP, multidrug resistance-associated protein
- MRP4
- Metabolite
- OH-DCF, 4′-hydroxy diclofenac
- PGE2, prostaglandin E2
Collapse
Affiliation(s)
| | - Carolina I. Ghanem
- University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT 06269, USA
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José E. Manautou
- Corresponding author at: University of Connecticut, Dept. of Pharmaceutical Sciences, 69 North Eagleville Road, Storrs, CT 06269-3092, USA.
| |
Collapse
|
15
|
Stefanello ST, de Carvalho NR, Reis SB, Soares FAA, Barcelos RP. Acetaminophen Oxidation and Inflammatory Markers - A Review of Hepatic Molecular Mechanisms and Preclinical Studies. Curr Drug Targets 2020; 21:1225-1236. [PMID: 32386489 DOI: 10.2174/1389450121666200510014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
Acetaminophen is a widely used analgesic for pain management, especially useful in chronic diseases, such as rheumatoid arthritis. However, easy access to this medicine has increased the occurrence of episodes of poisoning. Patients often develop severe liver damage, which may quickly lead to death. Consequently, numerous studies have been conducted to identify new biomarkers that allow the prediction of the degree of acetaminophen intoxication and thus intervene in a timely manner to save patients' lives. This review highlights the main mechanisms of the induction and progression of liver damage arising from acetaminophen poisoning. In addition, we have discussed the possibility of using new clinical biomarkers for detecting acetaminophen poisoning.
Collapse
Affiliation(s)
- Silvio Terra Stefanello
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| | | | - Simone Beder Reis
- Institudo de Ciencias Biologicas (ICB), Programa de Posgraduacao em Bioexperimentacao, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Felix Alexandre Antunes Soares
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| | - Rômulo Pillon Barcelos
- Programa de Pos-Graduacao em Bioquimica Toxicologica, Centro de Ciencias Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
16
|
Auriculatone Sulfate Effectively Protects Mice Against Acetaminophen-Induced Liver Injury. Molecules 2019; 24:molecules24203642. [PMID: 31600996 PMCID: PMC6832223 DOI: 10.3390/molecules24203642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/28/2023] Open
Abstract
Acetaminophen (APAP) overdose is very common worldwide and has been widely recognized as the leading cause of drug-induced liver injury in the Western world. In our previous investigation, auriculatone, a natural product firstly obtained from Aster auriculatus, has demonstrated a potent protective effect against APAP-induced hepatotoxicity in HL-7702 cells. However, the poor water solubility and low bioavailability restrict its application. Auriculatone sulfate (AS) is a sulfated derivative of auriculatone with highly improved water-solubility. Hepatoprotective effects against APAP-induced liver injury (AILI) showed that intragastric pretreatment with AS at 50 mg/kg almost completely prevented mice against APAP-induced increases of serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and ATPase. Histological results showed that AS could protect the liver tissue damage. In addition, AS pretreatment not only significantly retained hepatic malondialdehyde and the activities of glutathione, superoxide dismutase, and glutathione peroxidase at normal levels, but also markedly suppressed the increase of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 levels in mouse liver caused by overdose APAP. Immunohistochemical analysis showed that AS obviously attenuated the expression of CD45 and HNE in liver tissue. Further mechanisms of action investigation showed that inhibition of cytochrome P450 3A11 (CYP 3A11) and CYP2E1 enzymatic activities (but not that of CYP1A2) was responsible for APAP bioactivation. In conclusion, AS showed a hepatoprotective effect against AILI through alleviating oxidative stress and inflammation and inhibiting CYP-mediated APAP bioactivation. It may be an effective hepatoprotective agent for AILI and other forms of human liver disease.
Collapse
|
17
|
Salem GA, Alamyel FB, Abushaala FA, Hussain MS, Elnory KA, Abusheba H, Sahu RP. Evaluation of the hepatoprotective, anti-inflammatory, antinociceptive and antiepileptic activities of Chrysanthemum trifurcatum. Biomed Pharmacother 2019; 117:109123. [PMID: 31234026 DOI: 10.1016/j.biopha.2019.109123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 01/20/2023] Open
Abstract
Chrysanthemum trifurcatum is common to Mediterranean countries and widely-used in traditional medicine. Due to the scarcity of data about the pharmacological properties of C. trifurcatum, this present study was designed to determine the effects of C. trifurcatumethanolic extract (CEE) for its anti-nociceptive, anti-epileptic, anti-inflammatory, and hepatoprotective activities in mice and rat models. We demonstrate that CEE contains alkaloids, carbohydrates, and flavonoids, and in a dose-dependent (300 and 500 mg/kg) manner exhibited significant reductions in paracetamol (PCM; 500 mg/kg)-induced increased serum AST, ALT and ALP levels, similar to as seen by silymarin (25 mg/kg). Additionally, CEE (300 mg/kg) elicited inhibition in acetic acid-induced abdominal writhes, delayed latency time to paw's licking in hot plate tests, exerted an anti-convulsant effect by prolonging the onset of clonic and tonic convulsions, and reduced pentylenetetrazole (PTZ; 80 mg/kg)-induced mortality. Moreover, CEE (500 mg/kg) exhibited a prominent reduction in carrageenan-induced paw edema. These studies indicate that CEE possesses profound central and peripheral analgesic, anti-convulsant, anti-inflammatory, and hepatoprotective activities.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, P.O. Box 44511, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya.
| | - Fathi B Alamyel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Faraj A Abushaala
- Department of Micobiology, Faculty of Science, Misurata University, P.O. Box 2478, Libya
| | - Md Sarfaraj Hussain
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Khloud A Elnory
- Department of Pharmacognosy, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Hawa Abusheba
- Department of Pharmacognosy, Faculty of Pharmacy, Misurata University, Misurata, P.O. Box 2478, Libya
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 45345, USA.
| |
Collapse
|
18
|
Pingili R, Pawar AK, Challa SR. Quercetin reduced the formation of
N
‐acetyl‐
p
‐benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Phytother Res 2019; 33:1770-1783. [DOI: 10.1002/ptr.6365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/24/2019] [Accepted: 03/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Ravindrababu Pingili
- Research and Development, Department of PharmacyJawaharlal Nehru Technological University Kakinada India
- Department of PharmacologyKVSR Siddhartha College of Pharmaceutical Sciences Vijayawada India
| | - A. Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical SciencesAndhra University Visakhapatnam India
| | - Siva Reddy Challa
- Department of PharmacologyKVSR Siddhartha College of Pharmaceutical Sciences Vijayawada India
| |
Collapse
|
19
|
Pingili RB, Pawar AK, Challa SR. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chem Biol Interact 2019; 302:123-134. [PMID: 30794797 DOI: 10.1016/j.cbi.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Paracetamol (N-acetyl-para amino phenol) is the most commonly used analgesic and antipyretic around the world. Its causes hepatotoxicity and nephrotoxicity at overdose or even at therapeutic doses. It is primarily metabolized by glucuronidation and sulfate conjugation. It is also metabolized by cytochrome-P450 system (CYP2E1, CYP1A2 and CYP 3A4), leading to the formation of N-acetyl-p-benzoquinoneimine (NAPQI). The present study was planned to investigate the influence of chrysin (known CYP2E1 and CYP3A4 inhibitor) on the bioactivation of paracetamol to NAPQI using rat liver microsomes in vitro and rats in vivo. Paracetamol (80 mg/kg) was administered orally without or with silymarin (100 mg/kg), a known CYP2E1 inhibitor and chrysin (100 and 200 mg/kg) to rats for 15 consecutive days. The area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of paracetamol were dose-dependently increased with chrysin (100 and 200 mg/kg) compared to paracetamol control group. On the other hand, the AUC0-∞ and Cmax of NAPQI were decreased significantly with chrysin (100 and 200 mg/kg). The elevated liver and kidney function markers were significantly reduced by chrysin and silymarin compared to paracetamol control group (P < 0.01). Histopathological studies of liver and kidney also well correlated with liver and kidney function tests. Chrysin also reduced the formation of NAPQI in the incubation samples of rat hepatocytes. The present study (both in vivo and in vitro) results revealed that chrysin might be inhibited the CYP2E1, CYP1A2 and CYP3A4-mediated metabolism of paracetamol; thereby decreased the formation of NAPQI and protected the liver and kidney.
Collapse
Affiliation(s)
- Ravindra Babu Pingili
- Research and Development, Department of Pharmacy, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
| | - A Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Siva R Challa
- Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
| |
Collapse
|
20
|
Parui PP, Ray A, Das S, Sarkar Y, Paul T, Roy S, Majumder R, Bandyopadhyay J. Glutathione-selective “off–on” fluorescence response by a probe-displaced modified ligand for its detection in biological domains. NEW J CHEM 2019. [DOI: 10.1039/c8nj05784b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutathione-induced oxidation of benzylic-alcohol into the formyl moiety in the ligand displaced from the Cu(ii)-complex exhibits in vitro and in vivo “off–on” fluorescence responses.
Collapse
Affiliation(s)
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolakta 700013
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Tanaya Paul
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| | - Snigdha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Rini Majumder
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Jaya Bandyopadhyay
- Department of Biotechnology
- Maulana Abul Kalam Azad University of Technology
- Kolkata 700064
- India
| |
Collapse
|
21
|
El-Sayed AEKB, Aboulthana WM, El-Feky AM, Ibrahim NE, Seif MM. Bio and phyto-chemical effect of Amphora coffeaeformis extract against hepatic injury induced by paracetamol in rats. Mol Biol Rep 2018; 45:2007-2023. [DOI: 10.1007/s11033-018-4356-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
|
22
|
Chan JCY, Soh ACK, Kioh DYQ, Li J, Verma C, Koh SK, Beuerman RW, Zhou L, Chan ECY. Reactive Metabolite-induced Protein Glutathionylation: A Potentially Novel Mechanism Underlying Acetaminophen Hepatotoxicity. Mol Cell Proteomics 2018; 17:2034-2050. [PMID: 30006487 DOI: 10.1074/mcp.ra118.000875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Although covalent protein binding is established as the pivotal event underpinning acetaminophen (APAP) toxicity, its mechanistic details remain unclear. In this study, we demonstrated that APAP induces widespread protein glutathionylation in a time-, dose- and bioactivation-dependent manner in HepaRG cells. Proteo-metabonomic mapping provided evidence that APAP-induced glutathionylation resulted in functional deficits in energy metabolism, elevations in oxidative stress and cytosolic calcium, as well as mitochondrial dysfunction that correlate strongly with the well-established toxicity features of APAP. We also provide novel evidence that APAP-induced glutathionylation of carnitine O-palmitoyltransferase 1 (CPT1) and voltage-dependent anion-selective channel protein 1 are respectively involved in inhibition of fatty acid β-oxidation and opening of the mitochondrial permeability transition pore. Importantly, we show that the inhibitory effect of CPT1 glutathionylation can be mitigated by PPARα induction, which provides a mechanistic explanation for the prophylactic effect of fibrates, which are PPARα ligands, against APAP toxicity. Finally, we propose that APAP-induced protein glutathionylation likely occurs secondary to covalent binding, which is a previously unknown mechanism of glutathionylation, suggesting that this post-translational modification could be functionally implicated in drug-induced toxicity.
Collapse
Affiliation(s)
- James Chun Yip Chan
- From the ‡Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Alex Cheow Khoon Soh
- §School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Dorinda Yan Qin Kioh
- From the ‡Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Jianguo Li
- ¶Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856
| | - Chandra Verma
- ¶Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,**Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558.,‡‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siew Kwan Koh
- ‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856
| | - Roger Wilmer Beuerman
- ‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856.,§§Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228.,¶¶Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Lei Zhou
- ‖Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Level 6, Singapore 169856; .,§§Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228.,¶¶Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Eric Chun Yong Chan
- From the ‡Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543; .,‖‖Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609
| |
Collapse
|
23
|
Athersuch TJ, Antoine DJ, Boobis AR, Coen M, Daly AK, Possamai L, Nicholson JK, Wilson ID. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: a perspective. Toxicol Res (Camb) 2018; 7:347-357. [PMID: 30090586 PMCID: PMC6062253 DOI: 10.1039/c7tx00340d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022] Open
Abstract
After over 60 years of therapeutic use in the UK, paracetamol (acetaminophen, N-acetyl-p-aminophenol, APAP) remains the subject of considerable research into both its mode of action and toxicity. The pharmacological properties of APAP are the focus of some activity, with the role of the metabolite N-arachidonoylaminophenol (AM404) still a topic of debate. However, that the hepatotoxicity of APAP results from the production of the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI/NABQI) that can deplete glutathione, react with cellular macromolecules, and initiate cell death, is now beyond dispute. The disruption of cellular pathways that results from the production of NAPQI provides a source of potential biomarkers of the severity of the damage. Research in this area has provided new diagnostic markers such as the microRNA miR-122 as well as mechanistic biomarkers associated with apoptosis, mitochondrial dysfunction, inflammation and tissue regeneration. Additionally, biomarkers of, and systems biology models for, glutathione depletion have been developed. Furthermore, there have been significant advances in determining the role of both the innate immune system and genetic factors that might predispose individuals to APAP-mediated toxicity. This perspective highlights some of the progress in current APAP-related research.
Collapse
Affiliation(s)
- Toby J Athersuch
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Daniel J Antoine
- MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , EH16 4TJ , UK
| | - Alan R Boobis
- Department of Medicine , Imperial College London , London W12 0NN , UK
| | - Muireann Coen
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Ann K Daly
- Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne NE2 4HH , UK
| | - Lucia Possamai
- Department of Hepatology , St Mary's Hospital , Imperial College London , London W2 1NY , UK
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| | - Ian D Wilson
- Division of Computational and Systems Medicine , Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , South Kensington , London SW7 2AZ , UK .
| |
Collapse
|
24
|
Saheed S, Frans Hendrik O, Tom AAO. Zea mays, Stigma maydis prevents and extenuates acetaminophen-perturbed oxidative onslaughts in rat hepatocytes. PHARMACEUTICAL BIOLOGY 2016; 54:2664-2673. [PMID: 27159805 DOI: 10.1080/13880209.2016.1178307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Zea mays L. (Poaceae) Stigma maydis is an underutilized product of corn cultivation finding therapeutic applications in oxidative stress-related disorders. OBJECTIVES This study investigated its aqueous extract against acetaminophen (APAP)-perturbed oxidative insults in rat hepatocytes. MATERIALS AND METHODS Hepatotoxic rats were orally pre- and post-treated with the extract (at 200 and 400 mg/kg body weight) and vitamin C (200 mg/kg body weight), respectively, for 14 days. Liver function, antioxidative and histological analyses were thereafter evaluated. RESULTS The APAP-induced marked (p < 0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase and the concentrations of bilirubin, oxidized glutathione, protein carbonyls, malondialdehyde, conjugated dienes, lipid hydroperoxides and fragmented DNA were dose-dependently extenuated in the extract-treated animals. The extract also significantly (p < 0.05) improved the reduced activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase as well as total protein, albumin and glutathione concentrations in the hepatotoxic rats. These improvements may be attributed to the bioactive constituents as revealed by the gas chromatography-mass spectrometric chromatogram of the extract. The observed effects compared favourably with vitamin C and are informative of hepatoprotective and antioxidative attributes of the extract and were further supported by the histological analysis. CONCLUSION The data from the present findings suggest that Stigma maydis aqueous extract is capable of preventing and ameliorating APAP-mediated oxidative hepatic damage via enhancement of antioxidant defence systems.
Collapse
Affiliation(s)
- Sabiu Saheed
- a Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences , University of the Free State-QwaQwa Campus , Phuthaditjhaba , South Africa
- b Department of Microbial, Biochemical and Food Biotechnology , University of the Free State , Bloemfontein , South Africa
| | - O'Neill Frans Hendrik
- b Department of Microbial, Biochemical and Food Biotechnology , University of the Free State , Bloemfontein , South Africa
| | - Ashafa Anofi Omotayo Tom
- a Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences , University of the Free State-QwaQwa Campus , Phuthaditjhaba , South Africa
| |
Collapse
|
25
|
Devkar ST, Kandhare AD, Zanwar AA, Jagtap SD, Katyare SS, Bodhankar SL, Hegde MV. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS. PHARMACEUTICAL BIOLOGY 2016; 54:2394-2403. [PMID: 27043749 DOI: 10.3109/13880209.2016.1157193] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Overdose of acetaminophen (APAP) is common in humans and is often associated with hepatic damage. Withania somnifera (L.) Dunal (Solanaceae) shows multiple pharmacological activities including antioxidant and anti-inflammatory potential. OBJECTIVE To evaluate the possible mechanism of hepatoprotective activity of withanolide-rich fraction (WRF) isolated from a methanolic extract of Withania somnifera roots. MATERIALS AND METHODS Hepatotoxicity was induced by oral administration of APAP (750 mg/kg, p.o.) for 14 d. The control group received the vehicle. APAP-treated animals were given either silymarin (25 mg/kg) or graded doses of WRF (50, 100 and 200mg/kg) 2 h prior to APAP administration. Animals were killed on 15th day and blood and liver tissue samples were collected for the further analysis. RESULTS In WRF-treated group, there was significant and dose-dependent (p < 0.01 and p < 0.001) decrease in serum bilirubin, ALP, AST and ALT levels with significant and dose-dependent (p < 0.01 and p < 0.001) increase in hepatic SOD, GSH and total antioxidant capacity. The level of MDA and NO decreased significantly (p < 0.01) by WRF treatment. Up-regulated mRNA expression of TNF-α, IL-1β, COX-II and iNOS was significantly down-regulated (p < 0.001) by WRF. Histological alternations induced by APAP in liver were restored to near normality by WRF pretreatment. CONCLUSION WRF may exert its hepatoprotective action by alleviating inflammatory and oxido-nitrosative stress via inhibition of TNF-α, IL-1β, COX-II and iNOS.
Collapse
Affiliation(s)
- Santosh T Devkar
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Amit D Kandhare
- b Department of Pharmacology , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Anand A Zanwar
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Suresh D Jagtap
- c Interactive Research School in Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Surendra S Katyare
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Subhash L Bodhankar
- b Department of Pharmacology , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Mahabaleshwar V Hegde
- a Center for Innovation in Nutrition, Health and Disease, Interactive Research School for Health Affairs , Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| |
Collapse
|
26
|
Hughes G, Pemberton R, Fielden P, Hart J. A novel reagentless glutamate microband biosensor for real-time cell toxicity monitoring. Anal Chim Acta 2016; 933:82-8. [DOI: 10.1016/j.aca.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
|
27
|
Tapia G, Cornejo P, Ferreira J, Fernández V, Videla LA. Acetaminophen-induced liver oxidative stress and hepatotoxicity: influence of Kupffer cell activity assessed in the isolated perfused rat liver. Redox Rep 2016; 3:213-8. [DOI: 10.1080/13510002.1997.11747112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Sahoo AK, Goswami U, Dutta D, Banerjee S, Chattopadhyay A, Ghosh SS. Silver Nanocluster Embedded Composite Nanoparticles for Targeted Prodrug Delivery in Cancer Theranostics. ACS Biomater Sci Eng 2016; 2:1395-1402. [DOI: 10.1021/acsbiomaterials.6b00334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amaresh Kumar Sahoo
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Upashi Goswami
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deepanjalee Dutta
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Subhamoy Banerjee
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
29
|
Walker V, Mills GA, Anderson ME, Ingle BL, Jackson JM, Moss CL, Sharrod-Cole H, Skipp PJ. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis? Xenobiotica 2016; 47:164-175. [PMID: 27086508 DOI: 10.3109/00498254.2016.1166533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.
Collapse
Affiliation(s)
- Valerie Walker
- a Department of Clinical Biochemistry , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Graham A Mills
- b School of Pharmacy and Biomedical Sciences, University of Portsmouth , Portsmouth , UK
| | - Mary E Anderson
- c Department of Chemistry and Biochemistry , Texas Woman's University , Denton , TX , USA
| | - Brandall L Ingle
- d Department of Chemistry , Center for Advanced Scientific Computing and Modeling, University of North Texas , Denton , TX , USA
| | - John M Jackson
- e NIHR Southampton Biomedical Research Centre, Southampton General Hospital , Southampton , UK , and
| | - Charlotte L Moss
- f Centre for Proteomic Research and Biological Sciences, University of Southampton , Southampton , UK
| | - Hayley Sharrod-Cole
- a Department of Clinical Biochemistry , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Paul J Skipp
- f Centre for Proteomic Research and Biological Sciences, University of Southampton , Southampton , UK
| |
Collapse
|
30
|
Correia B, Freitas R, Figueira E, Soares AMVM, Nunes B. Oxidative effects of the pharmaceutical drug paracetamol on the edible clam Ruditapes philippinarum under different salinities. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:116-24. [PMID: 26409706 DOI: 10.1016/j.cbpc.2015.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023]
Abstract
Paracetamol, a drug with analgesic and antipyretic properties, is one of the most used substances in human therapeutics, being also frequently detected in aquatic environments. Recent studies report its toxicity towards aquatic species, but the overall amount of data concerning its effects is still scarce. Global changes, likely alterations in abiotic conditions, including salinity, can modulate the interactions of contaminants with biota, conditioning the toxicological responses elicited also by pharmaceuticals. The present article describes the oxidative toxic effects posed by paracetamol on the clam species Ruditapes philippinarum under different salinity conditions. The results demonstrated the establishment of an oxidative-based effect, with significant alteration of several parameters, such as superoxide dismutase (SOD) and the ratio of reduced/oxidized glutathione (GSH/GSSG). Water salinity influenced the response of clams exposed to different paracetamol concentrations, showing the importance of studying physiological traits under realistic test conditions, which are likely to vary in great extent as a result of climate change.
Collapse
Affiliation(s)
- Bárbara Correia
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Bruno Nunes
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal.
| |
Collapse
|
31
|
Nakagawa Y, Inomata A, Ogata A, Nakae D. Comparative effects of sulfhydryl compounds on target organellae, nuclei and mitochondria, of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes. J Appl Toxicol 2015; 35:1465-72. [PMID: 25809591 DOI: 10.1002/jat.3137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 11/06/2022]
Abstract
DNA damage and cytotoxicity induced by a hydroxylated fullerene [C60 (OH)24 ], which is a spherical nanomaterial and/or a water-soluble fullerene derivative, and their protection by sulfhydryl compounds were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60 (OH)24 at a concentration of 50 μM caused time (0 to 3 h)-dependent cell death accompanied by the formation of cell surface blebs, the loss of cellular levels of ATP and reduced glutathione, accumulation of glutathione disulfide, and induction of DNA fragmentation assayed using alkali single-cell agarose-gel electrophoresis. C60 (OH)24 -induced cytotoxicity was effectively prevented by pretreatment with sulfhydryl compounds. N-acetyl-L-cysteine (NAC), L-cysteine and L-methionine, at a concentration of 2.5 mM, ameliorated cell death, accompanied by a decrease in cellular ATP levels, formation of cell surface blebs, induction of reactive oxygen species (ROS) and loss of mitochondrial membrane potential caused by C60 (OH)24 . In addition, DNA fragmentation caused by C60 (OH)24 was also inhibited by NAC, whereas an antioxidant ascorbic acid did not affect C60 (OH)24 -induced cell death and DNA damage in rat hepatocytes. Taken collectively, these results indicate that incubation of rat hepatocytes with C60 (OH)24 elicits DNA damage, suggesting that nuclei as well as mitochondria are target sites of the hydroxylated fullerene; and induction of DNA damage and oxidative stress is ameliorated by an increase in cellular GSH levels, suggesting that the onset of toxic effects may be partially attributable to a thiol redox-state imbalance caused by C60 (OH)24 .
Collapse
Affiliation(s)
- Yoshio Nakagawa
- Division of Toxicology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Akiko Inomata
- Division of Toxicology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Akio Ogata
- Division of Toxicology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Dai Nakae
- Division of Toxicology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| |
Collapse
|
32
|
Sabiu S, Sunmonu TO, Ajani EO, Ajiboye TO. Combined administration of silymarin and vitamin C stalls acetaminophen-mediated hepatic oxidative insults in Wistar rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2014.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Abstract
This article provides a review of Sid Nelson's key contributions to the fields of drug metabolism and toxicology over a long and distinguished career. Selected examples are discussed to illustrate the diversity of Sid's research, with an emphasis on understanding mechanistic aspects of metabolic activation processes and structure-toxicity relationships. These examples serve to illustrate the importance of emerging mass spectrometry and isotope labeling techniques in elucidating details of foreign compound metabolism at the molecular level, an area in which Sid pioneered most effectively.
Collapse
Affiliation(s)
- Thomas A Baillie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington , Seattle, WA , USA
| |
Collapse
|
34
|
Abstract
![]()
The
analgesic and antipyretic compound acetaminophen (paracetamol)
is one of the most used drugs worldwide. Acetaminophen overdose is
also the most common cause for acute liver toxicity. Here we show
that acetaminophen and many structurally related compounds bind quinone
reductase 2 (NQO2) in vitro and in live cells, establishing
NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen
derived reactive oxygen species, more specifically superoxide anions,
in cultured cells. In humans, NQO2 is highly expressed in liver and
kidney, the main sites of acetaminophen toxicity. We suggest that
NQO2 mediated superoxide production may function as a novel mechanism
augmenting acetaminophen toxicity.
Collapse
Affiliation(s)
- Teemu P Miettinen
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee , DD1 5EH Dundee, Scotland , U.K
| | | |
Collapse
|
35
|
Shine VJ, Latha PG, Suja SNR, Anuja GI, Raj G, Rajasekharan SN. Ameliorative effect of alkaloid extract of Cyclea peltata (Poir.) Hook. f. & Thoms. roots (ACP) on APAP/CCl4 induced liver toxicity in Wistar rats and in vitro free radical scavenging property. Asian Pac J Trop Biomed 2014; 4:143-51. [PMID: 25182286 DOI: 10.1016/s2221-1691(14)60223-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/18/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To evaluate the hepatoprotective and antioxidant properties of alkaloid extract of Cyclea peltata (C. peltata) against paracetamol/carbon tetra chloride induced liver damage in Wistar rats. METHODS In vivo paracetamol/carbon tetrachloride induced liver damage in Wistar rats, in vitro free radical scavenging studies, HPTLC estimation of tetrandrine and direct analysis in real time- mass spectrometry of alkaloid extract of C. peltata were used for the validation. RESULTS The results showed that pretreatment with alkaloid extract of C. peltata caused significant reduction of serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, serum alkaline phosphatase, serum cholesterol, liver malondialdehyde levels. The reduced glutathione, catalase, superoxide dismutase levels in liver were increased with alkaloid extract of C. peltata treatment. These results were almost comparable to silymarin and normal control. Histopathological studies also substantiated the biochemical findings. The in vitro hydroxyl, superoxide and DPPH scavenging study of alkaloid extract of C. peltata showed significant free radical scavenging property. CONCLUSIONS The hepatoprotective property of alkaloid extract of C. peltata against paracetamol/carbon tetrachloride may be due the synergistic action of alkaloids especially tetrandrine, fangchinoline through free radical scavenging and thus preventing oxidative stress.
Collapse
Affiliation(s)
- Varghese Jancy Shine
- Division of Ethnomedicine and Ethnopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Trivandrum, Kerala 695562, India
| | - Panikamparambil Gopalakrishnan Latha
- Division of Ethnomedicine and Ethnopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Trivandrum, Kerala 695562, India
| | - Somasekharan Nair Rajam Suja
- Division of Ethnomedicine and Ethnopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Trivandrum, Kerala 695562, India
| | - Gangadharan Indira Anuja
- Division of Ethnomedicine and Ethnopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Trivandrum, Kerala 695562, India
| | - Gopan Raj
- Deparment of Chemistry, Sree Narayana College, Punalur, Kollam-691305, Kerala, India
| | - Sreedharan Nair Rajasekharan
- Division of Ethnomedicine and Ethnopharmacology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Trivandrum, Kerala 695562, India
| |
Collapse
|
36
|
Werawatganon D, Linlawan S, Thanapirom K, Somanawat K, Klaikeaw N, Rerknimitr R, Siriviriyakul P. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:229. [PMID: 25005608 PMCID: PMC4227002 DOI: 10.1186/1472-6882-14-229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/26/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. METHODS Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). RESULTS In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. CONCLUSIONS APAP overdose can cause liver injury. Our result indicate that Aloe vera attenuate APAP-induced hepatitis through the improvement of liver histopathology by decreased oxidative stress, reduced liver injury, and restored hepatic GSH.
Collapse
|
37
|
The amelioration of N-acetyl-p-benzoquinone imine toxicity by ginsenoside Rg3: the role of Nrf2-mediated detoxification and Mrp1/Mrp3 transports. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:957947. [PMID: 23766864 PMCID: PMC3666202 DOI: 10.1155/2013/957947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Previously, we found that Korean red ginseng suppressed acetaminophen (APAP)-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI), a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL), the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp) 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2.
Collapse
|
38
|
Seeland S, Török M, Kettiger H, Treiber A, Hafner M, Huwyler J. A cell-based, multiparametric sensor approach characterises drug-induced cytotoxicity in human liver HepG2 cells. Toxicol In Vitro 2013; 27:1109-20. [DOI: 10.1016/j.tiv.2013.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/30/2012] [Accepted: 02/06/2013] [Indexed: 01/23/2023]
|
39
|
Fromenty B. Bridging the gap between old and new concepts in drug-induced liver injury. Clin Res Hepatol Gastroenterol 2013; 37:6-9. [PMID: 23333233 DOI: 10.1016/j.clinre.2012.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 02/04/2023]
Abstract
Recent studies have provided important information in the field of drug-induced liver injury (DILI), in particular regarding the pathogenesis of acetaminophen hepatotoxicity. However, these studies have sometimes left aside some old (but seminal) findings. Efforts should be made to bridge the gap between old and new concepts in DILI.
Collapse
Affiliation(s)
- B Fromenty
- Inserm, U991, université de Rennes 1, 35000 Rennes, France.
| |
Collapse
|
40
|
Acharya M, Lau-Cam CA. Comparative Evaluation of the Effects of Taurine and Thiotaurine on Alterations of the Cellular Redox Status and Activities of Antioxidant and Glutathione-Related Enzymes by Acetaminophen in the Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:199-215. [DOI: 10.1007/978-1-4614-6093-0_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Effects and mechanisms of rifampin on hepatotoxicity of acetaminophen in mice. Food Chem Toxicol 2012; 50:3142-9. [DOI: 10.1016/j.fct.2012.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/03/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
|
42
|
Agarwal R, Hennings L, Rafferty TM, Letzig LG, McCullough S, James LP, MacMillan-Crow LA, Hinson JA. Acetaminophen-induced hepatotoxicity and protein nitration in neuronal nitric-oxide synthase knockout mice. J Pharmacol Exp Ther 2012; 340:134-42. [PMID: 22001257 PMCID: PMC3251022 DOI: 10.1124/jpet.111.184192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022] Open
Abstract
In overdose acetaminophen (APAP) is hepatotoxic. Toxicity occurs by metabolism to N-acetyl-p-benzoquinone imine, which depletes GSH and covalently binds to proteins followed by protein nitration. Nitration can occur via the strong oxidant and nitrating agent peroxynitrite, formed from superoxide and nitric oxide (NO). In hepatocyte suspensions we reported that an inhibitor of neuronal nitric-oxide synthase (nNOS; NOS1), which has been reported to be in mitochondria, inhibited toxicity and protein nitration. We recently showed that manganese superoxide dismutase (MnSOD; SOD2) was nitrated and inactivated in APAP-treated mice. To understand the role of nNOS in APAP toxicity and MnSOD nitration, nNOS knockout (KO) and wild-type (WT) mice were administered APAP (300 mg/kg). In WT mice serum alanine aminotransferase (ALT) significantly increased at 6 and 8 h, and serum aspartate aminotransferase (AST) significantly increased at 4, 6 and 8 h; however, in KO mice neither ALT nor AST significantly increased until 8 h. There were no significant differences in hepatic GSH depletion, APAP protein binding, hydroxynonenal covalent binding, or histopathological assessment of toxicity. The activity of hepatic MnSOD was significantly lower at 1 to 2 h in WT mice and subsequently increased at 8 h. MnSOD activity was not altered at 0 to 6 h in KO mice but was significantly decreased at 8 h. There were significant increases in MnSOD nitration at 1 to 8 h in WT mice and 6 to 8 h in KO mice. Significantly more nitration occurred at 1 to 6 h in WT than in KO mice. MnSOD was the only observed nitrated protein after APAP treatment. These data indicate a role for nNOS with inactivation of MnSOD and ALT release during APAP toxicity.
Collapse
Affiliation(s)
- Rakhee Agarwal
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jin SM, Kil HR, Park K, Noh CI. Gene expression in rat hearts following oral administration of a single hepatotoxic dose of acetaminophen. Yonsei Med J 2012; 53:172-80. [PMID: 22187249 PMCID: PMC3250324 DOI: 10.3349/ymj.2012.53.1.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Toxicity caused by acetaminophen and its toxic mechanisms in the liver have been widely studied, including effects involving metabolism and oxidative stress. However, its adverse effects on heart have not been sufficiently investigated. This study evaluated the cardiac influence and molecular events occurring within the myocardium in rats treated with a dose of acetaminophen large enough to induce conventional liver damage. MATERIALS AND METHODS Male rats were orally administered a single dose of acetaminophen at 1,000 mg/kg-body weight, and subsequently examined for conventional toxicological parameters and for gene expression alterations to both the heart and liver 24 hours after administration. RESULTS Following treatment, serum biochemical parameters including aspartate aminotransferase and alanine aminotransferase were elevated. Histopathological alterations of necrosis were observed in the liver, but not in the heart. However, alterations in gene expression were observed in both the liver and heart 24 hours after dosing. Transcriptional profiling revealed that acetaminophen changed the expression of genes implicated in oxidative stress, inflammatory processes, and apoptosis in the heart as well as in the liver. The numbers of up-regulated and down-regulated genes in the heart were 271 and 81, respectively, based on a two-fold criterion. CONCLUSION The induced expression of genes implicated in oxidative stress and inflammatory processes in the myocardium reflects molecular levels of injury caused by acetaminophen (APAP), which could not be identified by conventional histopathology.
Collapse
Affiliation(s)
- Seon Mi Jin
- Department of Pediatrics, College of Medicine, Eulji University, 14 Hangeulbiseok-gil, Nowon-gu, Seoul 139-711, Korea.
| | | | | | | |
Collapse
|
44
|
Greco T, Shafer J, Fiskum G. Sulforaphane inhibits mitochondrial permeability transition and oxidative stress. Free Radic Biol Med 2011; 51:2164-71. [PMID: 21986339 PMCID: PMC3278304 DOI: 10.1016/j.freeradbiomed.2011.09.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 02/06/2023]
Abstract
Exposure of mitochondria to oxidative stress and elevated Ca(2+) promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40h later. Respiring mitochondria actively accumulated added Ca(2+), which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca(2+) release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies.
Collapse
Affiliation(s)
- Tiffany Greco
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jonathan Shafer
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- University of Maryland Baltimore County, Baltimore, MD, 21201, USA
| | - Gary Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
45
|
Letelier ME, López-Valladares M, Peredo-Silva L, Rojas-Sepúlveda D, Aracena P. Microsomal oxidative damage promoted by acetaminophen metabolism. Toxicol In Vitro 2011; 25:1310-3. [PMID: 21569833 DOI: 10.1016/j.tiv.2011.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 12/13/2022]
Abstract
Adverse reactions of acetaminophen have been associated to oxidative stress, which may be elicited by reactive oxygen species (ROS) and/or production of the metabolite NAPQI. Both phenomena would arise through the activity of liver cytochrome P450 (CYP450) system, but their contribution to this oxidative stress is yet to be clarified. A NADPH oxidase activity has been proposed in rat liver microsomes. This activity may be due to the presence of NAD(P)H oxidase (NOX) isoforms in liver endoplasmic reticulum. Both NOX and the CYP450 system activities can catalyze ROS generation using NADPH as a cofactor. Therefore, acetaminophen biotransformation, which requires NADPH, may promote ROS generation through either activity or both. To discriminate between these possibilities, rat liver microsomes were incubated with acetaminophen and NADPH in the presence or absence of specific inhibitors. Incubation with NADPH and acetaminophen elicited lipid peroxidation and decreased thiol content and glutathione-S-transferase (GST) activity. The NOX inhibitors apocynin and plumbagin prevented all these phenomena but the decrease in thiol content. In contrast, this decrease was completely prevented by the specific CYP450 system inhibitor SKF-525A. These data suggest that ROS generation following incubation of microsomes with acetaminophen and NADPH appears to be mainly caused by a NOX activity. In light of these data, toxicity of acetaminophen is discussed.
Collapse
Affiliation(s)
- María Eugenia Letelier
- Laboratory of Pharmacology and Toxicology, Department of Pharmacological and Toxicological Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile.
| | | | | | | | | |
Collapse
|
46
|
Maioli MA, Alves LC, Perandin D, Garcia AF, Pereira FTV, Mingatto FE. Cytotoxicity of monocrotaline in isolated rat hepatocytes: effects of dithiothreitol and fructose. Toxicon 2011; 57:1057-64. [PMID: 21530570 DOI: 10.1016/j.toxicon.2011.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 12/18/2022]
Abstract
Monocrotaline (MCT) is a pyrrolizidine alkaloid present in plants of the Crotalaria species that causes cytotoxicity and genotoxicity, including hepatotoxicity in animals and humans. It is metabolized by cytochrome P-450 in the liver to the alkylating agent dehydromonocrotaline (DHM). In previous studies using isolated rat liver mitochondria, we observed that DHM, but not MCT, inhibited the activity of respiratory chain complex I and stimulated the mitochondrial permeability transition with the consequent release of cytochrome c. In this study, we evaluated the effects of MCT and DHM on isolated rat hepatocytes. DHM, but not MCT, caused inhibition of the NADH-linked mitochondrial respiration. When hepatocytes of rats pre-treated with dexamethasone were incubated with MCT (5 mM), they showed ALT leakage, impaired ATP production and decreased levels of intracellular reduced glutathione and protein thiols. In addition, MCT caused cellular death by apoptosis. The addition of fructose or dithiotreitol to the isolated rat hepatocyte suspension containing MCT prevented the ATP depletion and/or glutathione or thiol oxidation and decreased the ALT leakage and apoptosis. These results suggest that the toxic effect of MCT on hepatocytes may be caused by metabolite-induced mitochondrial energetic impairment, together with a decrease of cellular glutathione and protein thiols.
Collapse
Affiliation(s)
- Marcos A Maioli
- Laboratório de Bioquímica Metabólica e Toxicológica, UNESP-Univ Estadual Paulista, Campus de Dracena, 17900-000 Dracena, SP, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Imsanguan P, Yanothai T, Pongamphai S, Douglas S, Teppaitoon W, Douglas PL. Precipitation of pharmaceuticals using a supercritical anti-solvent (SAS) dechnique: A preliminary study. CAN J CHEM ENG 2010. [DOI: 10.1002/cjce.20427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Brown JM, Ball JG, Hogsett A, Williams T, Valentovic M. Temporal study of acetaminophen (APAP) and S-adenosyl-L-methionine (SAMe) effects on subcellular hepatic SAMe levels and methionine adenosyltransferase (MAT) expression and activity. Toxicol Appl Pharmacol 2010; 247:1-9. [PMID: 20450926 PMCID: PMC2906679 DOI: 10.1016/j.taap.2010.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/19/2010] [Accepted: 04/08/2010] [Indexed: 01/19/2023]
Abstract
Acetaminophen (APAP) is the leading cause of drug induced liver failure in the United States. Previous studies in our laboratory have shown that S-adenosyl methionine (SAMe) is protective for APAP hepatic toxicity. SAMe is critical for glutathione synthesis and transmethylation of nucleic acids, proteins and phospholipids which would facilitate recovery from APAP toxicity. SAMe is synthesized in cells through the action of methionine adenosyltransferase (MAT). This study tested the hypothesis that total hepatic and subcellular SAMe levels are decreased by APAP toxicity. Studies further examined MAT expression and activity in response to APAP toxicity. Male C57BL/6 mice (16-22 g) were treated with vehicle (Veh; water 15 ml/kg ip injections), 250 mg/kg APAP (15 ml/kg, ip), SAMe (1.25 mmol/kg) or SAMe administered 1h after APAP injection (SAMe and SAMe+APAP). Hepatic tissue was collected 2, 4, and 6h after APAP administration. Levels of SAMe and its metabolite S-adenosylhomocysteine (SAH) were determined by HPLC analysis. MAT expression was examined by Western blot. MAT activity was determined by fluorescence assay. Total liver SAMe levels were depressed at 4h by APAP overdose, but not at 2 or 6h. APAP depressed mitochondrial SAMe levels at 4 and 6h relative to the Veh group. In the nucleus, levels of SAMe were depressed below detectable limits 4h following APAP administration. SAMe administration following APAP (SAMe+APAP) prevented APAP associated decline in mitochondrial and nuclear SAMe levels. In conclusion, the maintenance of SAMe may provide benefit in preventing damage associated with APAP toxicity.
Collapse
Affiliation(s)
- J. Michael Brown
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV 25755
| | - John G. Ball
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV 25755
| | - Amy Hogsett
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV 25755
| | - Tierra Williams
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV 25755
| | - Monica Valentovic
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV 25755
| |
Collapse
|
49
|
Van Dorp DR, Malleis JM, Sullivan BP, Klein MD. Teratogens inducing congenital abdominal wall defects in animal models. Pediatr Surg Int 2010; 26:127-39. [PMID: 19756655 DOI: 10.1007/s00383-009-2482-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2009] [Indexed: 02/04/2023]
Abstract
Congenital abdominal wall defects are common anomalies which include gastroschisis, omphalocele and umbilical cord hernia. Recent reports indicate that gastroschisis is increasing in prevalence, whereas omphalocele has remained steady, suggesting that environmental factors may play a part in their pathogenesis. The aim of this study is to review animal teratogen studies resulting in abdominal wall defects to investigate their possible causes. Each report was examined not only for the teratogens causing the defects, but also to carefully identify the defect occurring and its correlation with the known clinical anomalies. We found many discrepancies between the nomenclature used by animal teratology investigators and that used by clinicians. We were able to confirm the induction of gastroschisis by 22 teratogens, omphalocele by 9 teratogens and umbilical cord hernia by 8. There is no doubt that environmental factors may be responsible, at least in part, for all three of the clinical abdominal wall defects. Future studies should take care to appreciate the differences between these anomalies and describe them in detail, so that accurate and meaningful conclusions can be obtained.
Collapse
Affiliation(s)
- Dennis R Van Dorp
- Departments of Surgery, Wayne State University and Children's Hospital of Michigan, Michigan, USA
| | | | | | | |
Collapse
|
50
|
Blood gene expression markers to detect and distinguish target organ toxicity. Mol Cell Biochem 2009; 335:223-34. [DOI: 10.1007/s11010-009-0272-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
|