1
|
Zou X, Wang L, Li Z, Luo J, Wang Y, Deng Z, Du S, Chen S. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Med Res Rev 2017; 38:229-260. [PMID: 28295439 DOI: 10.1002/med.21439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Xuan Zou
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Lianrong Wang
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Zhiqiang Li
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Jie Luo
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Yunfu Wang
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Zixin Deng
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Shi Chen
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| |
Collapse
|
2
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Matsuoka TA, Kaneto H, Miyatsuka T, Yamamoto T, Yamamoto K, Kato K, Shimomura I, Stein R, Matsuhisa M. Regulation of MafA expression in pancreatic beta-cells in db/db mice with diabetes. Diabetes 2010; 59:1709-20. [PMID: 20424231 PMCID: PMC2889771 DOI: 10.2337/db08-0693] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Islet beta-cells loose their ability to synthesize insulin under diabetic conditions, which is at least partially due to the decreased activity of insulin transcription factors such as MafA. Although an in vitro study showed that reactive oxygen species (ROS) decrease MafA expression, the underlying mechanism still remains unclear. In this study, we examined the effects of c-Jun, which is known to be upregulated by ROS, on the expression of MafA under diabetic conditions. RESEARCH DESIGN AND METHODS To examine the protein levels of MafA and c-Jun, we performed histological analysis and Western blotting using diabetic db/db mice. In addition, to evaluate the possible effects of c-Jun on MafA expression, we performed adenoviral overexpression of c-Jun in the MIN6 beta-cell line and freshly isolated islets. RESULTS MafA expression was markedly decreased in the islets of db/db mice, while in contrast c-Jun expression was increased. Costaining of these factors in the islets of db/db mice clearly showed that MafA and insulin levels are decreased in c-Jun-positive cells. Consistent with these results, overexpression of c-Jun significantly decreased MafA expression, accompanied by suppression of insulin expression. Importantly, MafA overexpression restored the insulin promoter activity and protein levels that were suppressed by c-Jun. These results indicate that the decreased insulin biosynthesis induced by c-Jun is principally mediated by the suppression of MafA activity. CONCLUSIONS It is likely that the augmented expression of c-Jun in diabetic islets decreases MafA expression and thereby reduces insulin biosynthesis, which is often observed in type 2 diabetes.
Collapse
Affiliation(s)
- Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Matsuoka TA, Kaneto H, Stein R, Miyatsuka T, Kawamori D, Henderson E, Kojima I, Matsuhisa M, Hori M, Yamasaki Y. MafA regulates expression of genes important to islet beta-cell function. Mol Endocrinol 2007; 21:2764-74. [PMID: 17636040 DOI: 10.1210/me.2007-0028] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin transcription factor MafA is unique in being exclusively expressed at the secondary and principal phase of insulin-expressing cell production during pancreas organogenesis and is the only transcriptional activator present exclusively in islet beta-cells. Here we show that ectopic expression of MafA is sufficient to induce a small amount of endogenous insulin expression in a variety of non-beta-cell lines. Insulin mRNA and protein expression was induced to a much higher level when MafA was provided with two other key insulin activators, pancreatic and duodenal homeobox (PDX-1) and BETA2. Potentiation by PDX-1 and BETA2 was entirely dependent upon MafA, and MafA binding to the insulin enhancer region was increased by PDX-1 and BETA2. Treatment with activin A and hepatocyte growth factor induced even larger amounts of insulin in AR42J pancreatic acinar cells, compared with other non-beta endodermal cells. The combination of PDX-1, BETA2, and MafA also induced the expression of other important regulators of islet beta-cell activity. These results support a critical role of MafA in islet beta-cell function.
Collapse
Affiliation(s)
- Taka-aki Matsuoka
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 2005; 54:1009-22. [PMID: 15793239 DOI: 10.2337/diabetes.54.4.1009] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is the most prevalent and serious metabolic disease, and the number of diabetic patients worldwide is increasing. The reduction of insulin biosynthesis in pancreatic beta-cells is closely associated with the onset and progression of diabetes, and thus it is important to search for ways to induce insulin-producing cells in non-beta-cells. In this study, we showed that a modified form of the pancreatic and duodenal homeobox factor 1 (PDX-1) carrying the VP16 transcriptional activation domain (PDX-1/VP16) markedly increases insulin biosynthesis and induces various pancreas-related factors in the liver, especially in the presence of NeuroD or neurogenin 3 (Ngn3). Furthermore, in streptozotocin-induced diabetic mice, PDX-1/VP16 overexpression, together with NeuroD or Ngn3, drastically ameliorated glucose tolerance. Thus PDX-1/VP16 expression, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. This approach warrants further investigation and may have utility in the treatment of diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Kaneto H, Matsuoka TA, Nakatani Y, Miyatsuka T, Matsuhisa M, Hori M, Yamasaki Y. A crucial role of MafA as a novel therapeutic target for diabetes. J Biol Chem 2005; 280:15047-52. [PMID: 15664997 DOI: 10.1074/jbc.m412013200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MafA, a recently isolated pancreatic beta-cell-specific transcription factor, is a potent activator of insulin gene transcription. In this study, we show that MafA overexpression, together with PDX-1 (pancreatic and duodenal homeobox factor-1) and NeuroD, markedly increases insulin gene expression in the liver. Consequently, substantial amounts of insulin protein were induced by such combination. Furthermore, in streptozotocin-induced diabetic mice, MafA overexpression in the liver, together with PDX-1 and NeuroD, dramatically ameliorated glucose tolerance, while combination of PDX-1 and NeuroD was much less effective. These results suggest a crucial role of MafA as a novel therapeutic target for diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhao L, Guo M, Matsuoka TA, Hagman DK, Parazzoli SD, Poitout V, Stein R. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem 2005; 280:11887-94. [PMID: 15665000 DOI: 10.1074/jbc.m409475200] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The islet-enriched MafA, PDX-1, and BETA2 activators contribute to both beta cell-specific and glucose-responsive insulin gene transcription. To investigate how these factors impart activation, their combined impact upon insulin enhancer-driven expression was first examined in non-beta cell line transfection assays. Individual expression of PDX-1 and BETA2 led to little or no activation, whereas MafA alone did so modestly. MafA together with PDX-1 or BETA2 produced synergistic activation, with even higher insulin promoter activity found when all three proteins were present. Stimulation was attenuated upon compromising either MafA transactivation or DNA-binding activity. MafA interacted with endogenous PDX-1 and BETA2 in coimmunoprecipitation and in vitro GST pull-down assays, suggesting that regulation involved direct binding. Dominant-negative acting and small interfering RNAs of MafA also profoundly reduced insulin promoter activity in beta cell lines. In addition, MafA was induced in parallel with insulin mRNA expression in glucose-stimulated rat islets. Insulin mRNA levels were also elevated in rat islets by adenoviral-mediated expression of MafA. Collectively, these results suggest that MafA plays a key role in coordinating and controlling the level of insulin gene expression in islet beta cells.
Collapse
Affiliation(s)
- Li Zhao
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Martin CC, Oeser JK, O'Brien RM. Differential regulation of islet-specific glucose-6-phosphatase catalytic subunit-related protein gene transcription by Pax-6 and Pdx-1. J Biol Chem 2004; 279:34277-89. [PMID: 15180990 DOI: 10.1074/jbc.m404830200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) is selectively expressed in islet beta cells and is a major autoantigen in a mouse model of type I diabetes. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion gene expression through transient transfection of islet-derived betaTC-3 cells revealed that a promoter region, located between -273 and -254, is essential for high IGRP-CAT fusion gene expression. The sequence of this promoter region does not match that for any known islet-enriched transcription factor. However, data derived from gel retardation assays, a modified ligation-mediated polymerase chain reaction in situ footprinting technique and a SDS-polyacrylamide separation/renaturation procedure led to the hypothesis that this protein might be Pax-6, a conclusion that was confirmed by gel supershift assays. Additional experiments revealed a second non-consensus Pax-6 binding site in the -306/-274 IGRP promoter region. Pax-6 binding to these elements is unusual in that it appears to require both its homeo and paired domains. Interestingly, loss of Pax-6 binding to the -273/ -246 element is compensated by Pax-6 binding to the -306/-274 element and vice versa. Gel retardation assays revealed that another islet-enriched transcription factor, namely Pdx-1, binds four non-consensus elements in the IGRP promoter. However, mutation of these elements has little effect on IGRP fusion gene expression. Although chromatin immunoprecipitation assays show that both Pax-6 and Pdx-1 bind to the IGRP promoter within intact cells, in contrast to the critical role of these factors in beta cell-specific insulin gene expression, IGRP gene transcription appears to require Pax-6 but not Pdx-1.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Binding Sites
- Catalytic Domain
- Cell Nucleus/metabolism
- Cells, Cultured
- Chloramphenicol O-Acetyltransferase/metabolism
- Chromatin/metabolism
- DNA/chemistry
- DNA/metabolism
- Diabetes Mellitus, Experimental
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Eye Proteins
- Gene Expression Regulation, Enzymologic
- Glucose-6-Phosphatase/chemistry
- Homeodomain Proteins/metabolism
- Islets of Langerhans/enzymology
- Luciferases/metabolism
- Methylation
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Oligonucleotides/chemistry
- PAX6 Transcription Factor
- Paired Box Transcription Factors
- Plasmids/metabolism
- Polymerase Chain Reaction
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Repressor Proteins
- Salts/pharmacology
- Subcellular Fractions/metabolism
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Cyrus C Martin
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | |
Collapse
|
9
|
Qiu Y, Guo M, Huang S, Stein R. Acetylation of the BETA2 transcription factor by p300-associated factor is important in insulin gene expression. J Biol Chem 2003; 279:9796-802. [PMID: 14701848 DOI: 10.1074/jbc.m307577200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BETA2 transcription factor influences islet beta cell development and function. Activation of insulin gene transcription by this member of the basic helix-loop-helix gene family is mediated by p300 through the ability of this coactivator to form a functional bridge between the basal transcriptional apparatus, BETA2, and PDX-1, another key transcription factor. In this report, we examined whether BETA2-mediated stimulation was also directly influenced by the acetyltransferase activities of p300 or the p300-associated factor. BETA2 was specifically and selectively acetylated by p300-associated factor in beta cells. Sites of BETA2 acetylation were found within the loop region of the basic helix-loop-helix DNA binding/dimerization domain and a more C-terminal region involved in activation. Insulin gene transcription was decreased by blocking acetylation of BETA2 because of effects on DNA binding and activation potential. These findings suggest that acetylation of BETA2 plays a role in controlling the activation state of this islet regulatory factor.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37215, USA
| | | | | | | |
Collapse
|
10
|
Cissell MA, Zhao L, Sussel L, Henderson E, Stein R. Transcription factor occupancy of the insulin gene in vivo. Evidence for direct regulation by Nkx2.2. J Biol Chem 2003; 278:751-6. [PMID: 12426319 DOI: 10.1074/jbc.m205905200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consensus-binding sites for many transcription factors are relatively non-selective and found at high frequency within the genome. This raises the possibility that factors that are capable of binding to a cis-acting element in vitro and regulating transcription from a transiently transfected plasmid, which would not have higher order chromatin structure, may not occupy this site within the endogenous gene. Closed chromatin structure and competition from another DNA-binding protein with similar nucleotide specificity are two possible mechanisms by which a transcription factor may be excluded from a potential binding site in vivo. Multiple transcription factors, including Pdx-1, BETA-2, and Pax6, have been implicated in expression of the insulin gene in pancreatic beta cells. In this study, the chromatin immunoprecipitation assay has been used to show that these factors do, in fact, bind to insulin control region sequences in intact beta cells. In addition, another key islet-enriched transcription factor, Nkx2.2, was found to occupy this region using the chromatin immunoprecipitation assay. In vitro DNA-binding and transient transfection assays defined how Nkx2.2 affected insulin gene expression. Pdx-1 was also shown to bind within a region of the endogenous islet amyloid polypeptide, pax-4, and glucokinase genes that were associated with control in vitro. Because Pdx-1 does not regulate gene transcription in isolation, these sequences were examined for occupancy by the other insulin transcriptional regulators. BETA-2, Pax6, and Nkx2.2 were also found to bind to amyloid polypeptide, glucokinase, and pax-4 control sequences in vivo. These studies reveal the broad application of the Pdx-1, BETA-2, Pax6, and Nkx2.2 transcription factors in regulating expression of genes selectively expressed in islet beta cells.
Collapse
Affiliation(s)
- Michelle A Cissell
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
11
|
Kaneto H, Sharma A, Suzuma K, Laybutt DR, Xu G, Bonner-Weir S, Weir GC. Induction of c-Myc expression suppresses insulin gene transcription by inhibiting NeuroD/BETA2-mediated transcriptional activation. J Biol Chem 2002; 277:12998-3006. [PMID: 11799123 DOI: 10.1074/jbc.m111148200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin biosynthesis and secretion are critical for pancreatic beta-cell function, but both are impaired under diabetic conditions. We have found that hyperglycemia induces the expression of the basic helix-loop-helix transcription factor c-Myc in islets in several different diabetic models. To examine the possible implication of c-Myc in beta-cell dysfunction, c-Myc was overexpressed in isolated rat islets using adenovirus. Adenovirus-mediated c-Myc overexpression suppressed both insulin gene transcription and glucose-stimulated insulin secretion. Insulin protein content, determined by immunostaining, was markedly decreased in c-Myc-overexpressing cells. In gel-shift assays c-Myc bound to the E-box in the insulin gene promoter region. Furthermore, in betaTC1, MIN6, and HIT-T15 cells and primary rat islets, wild type insulin gene promoter activity was dramatically decreased by c-Myc overexpression, whereas the activity of an E-box mutated insulin promoter was not affected. In HeLa and HepG2 cells c-Myc exerted a suppressive effect on the insulin promoter activity only in the presence of NeuroD/BETA2 but not PDX-1. Both c-Myc and NeuroD can bind the E-box element in the insulin promoter, but unlike NeuroD, the c-Myc transactivation domain lacked the ability to activate insulin gene expression. Additionally p300, a co-activator of NeuroD, did not function as a co-activator of c-Myc. In conclusion, increased expression of c-Myc in beta-cells suppresses the insulin gene transcription by inhibiting NeuroD-mediated transcriptional activation. This mechanism may explain some of the beta-cell dysfunction found in diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Section on Islet Transplantation and Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Qiu Y, Guo M, Huang S, Stein R. Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol 2002; 22:412-20. [PMID: 11756538 PMCID: PMC139753 DOI: 10.1128/mcb.22.2.412-420.2002] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancreatic beta-cell-type-specific expression of the insulin gene requires both ubiquitous and cell-enriched activators, which are organized within the enhancer region into a network of protein-protein and protein-DNA interactions to promote transcriptional synergy. Protein-protein-mediated communication between DNA-bound activators and the RNA polymerase II transcriptional machinery is inhibited by the adenovirus E1A protein as a result of E1A's binding to the p300 coactivator. E1A disrupts signaling between the non-DNA-binding p300 protein and the basic helix-loop-helix DNA-binding factors of insulin's E-element activator (i.e., the islet-enriched BETA2 and generally distributed E47 proteins), as well as a distinct but unidentified enhancer factor. In the present report, we show that E1A binding to p300 prevents activation by insulin's beta-cell-enriched PDX-1 activator. p300 interacts directly with the N-terminal region of the PDX-1 homeodomain protein, which contains conserved amino acid sequences essential for activation. The unique combination of PDX-1, BETA2, E47, and p300 was shown to promote synergistic activation from a transfected insulin enhancer-driven reporter construct in non-beta cells, a process inhibited by E1A. In addition, E1A inhibited the level of PDX-1 and BETA2 complex formation in beta cells. These results indicate that E1A inhibits insulin gene transcription by preventing communication between the p300 coactivator and key DNA-bound activators, like PDX-1 and BETA2:E47.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, Tennessee 37215, USA
| | | | | | | |
Collapse
|
13
|
Miyamoto T, Kakizawa T, Ichikawa K, Nishio S, Kajikawa S, Hashizume K. Expression of dominant negative form of PAX4 in human insulinoma. Biochem Biophys Res Commun 2001; 282:34-40. [PMID: 11263967 DOI: 10.1006/bbrc.2001.4552] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paired-homeodomain transcription factor PAX4 is expressed in the early pancreas, but is later restricted to beta cells and not expressed in mature islets, suggesting an important role of PAX4 in differentiation and development of pancreatic islet. Here we show that PAX4 mRNA was highly expressed in human insulinoma tissues, whereas little if any mRNA was expressed in normal islets. Furthermore, this insulinoma associated expression of PAX4 mRNA was accompanied with expression of its novel variant form (PAX4v). PAX4v was generated by alternative splicing lacking the exon 7, and containing intact paired and homeo domain followed by novel 35 amino acids. PAX4v reversed the wild-type PAX4 mediated repression of the insulin promoter in cotransfection assays. PAX4v may play a role to antagonize the wild-type PAX4 function in human insulinoma. These data imply a role of PAX4 and PAX4v expression in tumorigenesis and development of insulinoma.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Aging Medicine and Geriatrics, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Harrington RH, Sharma A. Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression. J Biol Chem 2001; 276:104-13. [PMID: 11024035 DOI: 10.1074/jbc.m008415200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors binding the insulin enhancer region, RIPE3b, mediate beta-cell type-specific and glucose-responsive expression of the insulin gene. Earlier studies demonstrate that activator present in the beta-cell-specific RIPE3b1-binding complex is critical for these actions. The DNA binding activity of the RIPE3b1 activator is induced in response to glucose stimulation and is inhibited under glucotoxic conditions. The C1 element within the RIPE3b region has been implicated as the binding site for RIPE3b1 activator. The RIPE3b region also contains an additional element, A2, which shares homology with the A elements in the insulin enhancer. Transcription factors (PDX-1 and HNF-1 alpha) binding to A elements are critical regulators of insulin gene expression and/or pancreatic development. Hence, to understand the roles of C1 and A2 elements in regulating insulin gene expression, we have systematically mutated the RIPE3b region and analyzed the effect of these mutations on gene expression. Our results demonstrate that both C1 and A2 elements together constitute the binding site for the RIPE3b1 activator. In addition to C1-A2 (RIPE3b) binding complexes, three binding complexes that specifically recognize A2 elements are found in nuclear extracts from insulinoma cell lines; the A2.2 complex is detected only in insulin-producing cell lines. Furthermore, two base pairs in the A2 element were critical for binding of both RIPE3b1 and A2.2 activators. Transient transfection results indicate that both C1-A2 and A2-specific binding activators cooperatively activate insulin gene expression. In addition, RIPE3b1- and A2-specific activators respond differently to glucose, suggesting that their overlapping binding specificity and functional cooperation may play an important role in regulating insulin gene expression.
Collapse
Affiliation(s)
- R H Harrington
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
15
|
Zhao L, Cissell MA, Henderson E, Colbran R, Stein R. The RIPE3b1 activator of the insulin gene is composed of a protein(s) of approximately 43 kDa, whose DNA binding activity is inhibited by protein phosphatase treatment. J Biol Chem 2000; 275:10532-7. [PMID: 10744746 DOI: 10.1074/jbc.275.14.10532] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-stimulated and pancreatic islet beta cell-specific expression of the insulin gene is mediated in part by the C1 DNA-element binding complex, termed RIPE3b1. In this report, we define the molecular weight range of the protein(s) that compose this beta cell-enriched activator complex and show that protein phosphatase treatment inhibits RIPE3b1 DNA binding activity. Fractionation of beta cell nuclear extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that RIPE3b1 binding was mediated by a protein(s) within the 37-49-kDa ranges. Direct analysis of the proteins within the RIPE3b1 complex by ultraviolet light cross-linking analysis identified three binding species of approximately 51, 45, and 38 kDa. Incubating beta cell nuclear extracts with either calf alkaline phosphatase or a rat brain phosphatase preparation dramatically reduced RIPE3b1 DNA complex formation. Phosphatase inhibition of RIPE3b1 binding was prevented by sodium pyrophosphate, a general phosphatase inhibitor. We discuss how changes in the phosphorylation status of the RIPE3b1 activator may influence its DNA binding activity.
Collapse
Affiliation(s)
- L Zhao
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
16
|
Sayo Y, Hosokawa H, Imachi H, Murao K, Sato M, Wong NC, Ishida T, Takahara J. Transforming growth factor beta induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:971-8. [PMID: 10672004 DOI: 10.1046/j.1432-1327.2000.01080.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although transforming growth factor-beta (TGF-beta) stimulates pancreatic islet cells to synthesize and secret insulin, the mechanism underlying this effect is not known. To investigate this question, we examined the insulin promoter activity focusing on a transcription factor, pancreatic and duodenal homeobox gene-1 (PDX-1) that binds to the A3 element of the rat insulin promoter. Studies performed using the rat insulinoma cell line, INS-1 showed that TGF-beta stimulation of endogenous insulin mRNA expression correlated with increased activity of a reporter construct containing the insulin promoter. A potential mechanism for this increase arose from, electrophoretic mobility shift assay showing that the nuclear extract from TGF-beta treated cells contained higher levels of A3 binding activity. Western blot analysis confirmed that PDX-1 was increased in the nuclear extract from INS-1 cells treated with TGF-beta. As expected, a mutant insulin promoter that lacked the PDX-1 binding site was not stimulated by TGF-beta. In summary, the results of these studies show that TGF-beta stimulates the transcription of insulin gene and this action is mediated by the transcription factor, PDX-1.
Collapse
Affiliation(s)
- Y Sayo
- First Department of Internal Medicine, Kagawa Medical University, Kagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R. The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 1999; 19:704-13. [PMID: 9858593 PMCID: PMC83927 DOI: 10.1128/mcb.19.1.704] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/1998] [Accepted: 09/17/1998] [Indexed: 11/20/2022] Open
Abstract
NeuroD1/BETA2 is a key regulator of pancreatic islet morphogenesis and insulin hormone gene transcription in islet beta cells. This factor also appears to be involved in neurogenic differentiation, because NeuroD1/BETA2 is able to induce premature differentiation of neuronal precursors and convert ectoderm into fully differentiated neurons upon ectopic expression in Xenopus embryos. We have identified amino acid sequences in mammalian and Xenopus NeuroD1/BETA2 that are necessary for insulin gene expression and ectopic neurogenesis. Our results indicate that evolutionarily conserved sequences spanning the basic helix-loop-helix (amino acids [aa] 100 to 155) and C-terminal (aa 156 to 355) regions are important for both of these processes. The transactivation domains (AD1, aa 189 to 299; AD2, aa 300 to 355) were within the carboxy-terminal region, as analyzed by using GAL4:NeuroD1/BETA2 chimeras. Selective activation of mammalian insulin gene enhancer-driven expression and ectopic neurogenesis in Xenopus embryos was regulated by two independent and separable domains of NeuroD1/BETA2, located between aa 156 to 251 and aa 252 to 355. GAL4:NeuroD1/BETA2 constructs spanning these sequences demonstrated that only aa 252 to 355 contained activation domain function, although both aa 156 to 251 and 300 to 355 were found to interact with the p300/CREB binding protein (CBP) coactivator. These results implicate p300/CBP in NeuroD1/BETA2 function and further suggest that comparable mechanisms are utilized to direct target gene transcription during differentiation and in adult islet beta cells.
Collapse
Affiliation(s)
- A Sharma
- Department of Molecular Physiology and Biophysics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sharma A, Henderson E, Gamer L, Zhuang Y, Stein R. Analysis of the role of E2A-encoded proteins in insulin gene transcription. Mol Endocrinol 1997; 11:1608-17. [PMID: 9328343 DOI: 10.1210/mend.11.11.0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pancreatic beta-cell type-specific transcription of the insulin gene is mediated, in part, by factors in the basic helix-loop-helix (bHLH) family that act on a site within the insulin enhancer, termed the E1-box. Expression from this element is regulated by a heteromeric protein complex containing ubiquitous (i.e. the E2A- and HEB-encoded proteins) and islet-enriched members of the bHLH family. Recent studies indicate that the E2A- and HEB-encoded proteins contain a transactivation domain, termed AD2, that functions more efficiently in transfected beta-cell lines. In the present report, we extend this observation by demonstrating that expression of full-length E2A proteins (E47, E12, and E2/5) activates insulin E element-directed transcription in a beta-cell line-selective manner. Stimulation required functional interactions with other key insulin gene transcription factors, including its islet bHLH partner as well as those that act on the RIPE3b1 and RIPE3a2 elements of the insulin gene enhancer. The conserved AD2 domain in the E2A proteins was essential in this process. The effect of the E2A- and HEB-encoded proteins on insulin gene expression was also analyzed in mice lacking a functional E2A or HEB gene. There was no apparent difference in insulin production between wild type, heterozygote, and homozygous mutant E2A or HEB mice. These results suggest that neither the E2A- or HEB-encoded proteins are essential for insulin transcription and that one factor can substitute for the other to impart normal insulin E1 activator function in mutant animals.
Collapse
Affiliation(s)
- A Sharma
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
19
|
Mutoh H, Fung BP, Naya FJ, Tsai MJ, Nishitani J, Leiter AB. The basic helix-loop-helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc Natl Acad Sci U S A 1997; 94:3560-4. [PMID: 9108015 PMCID: PMC20478 DOI: 10.1073/pnas.94.8.3560] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1996] [Accepted: 02/10/1997] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the hormone secretin is expressed only in enteroendocrine S cells and insulin-producing pancreatic beta cells during development. A 120-bp enhancer directs cell-specific expression of the rat secretin gene in secretin-expressing cells. The enhancer includes an E-box sequence, CAGCTG, which is important for transcriptional activity. To further characterize the role of the E box, a consensus binding site for basic helix-loop-helix (bHLH) proteins, we have examined factors that interact with this element in the secretin gene. The results suggest that transcription is activated by a recently isolated tissue-specific bHLH protein, BETA2, heterodimerized to the ubiquitously expressed bHLH proteins, Pan 1 and Pan 2, the rodent homologues of E47 and E12. The importance of BETA2 for transcriptional activation of secretin is further illustrated by antisense experiments inhibiting BETA2 expression in secretin-producing cell lines, which resulted in the inhibition of most E box-dependent transcription. Expression of BETA2 in a nonendocrine cell line conferred the ability to express secretin-reporter genes that are transcribed at minimal levels in the absence of BETA2. Secretin-producing enteroendocrine cells in the murine small intestine showed specific immunostaining with BETA2 antibodies, corroborating observations in cell lines. Thus BETA2 is to our knowledge the first transcription factor identified that specifically activates cell type-specific expression of an intestinal hormone gene.
Collapse
Affiliation(s)
- H Mutoh
- Division of Gastroenterology, New England Medical Center-Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
20
|
Atouf F, Czernichow P, Scharfmann R. Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J Biol Chem 1997; 272:1929-34. [PMID: 8999882 DOI: 10.1074/jbc.272.3.1929] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pancreatic beta cells (insulin-producing cells) and neuronal cells share a large number of similarities. Here, we investigate whether the same mechanisms could control the expression of neuronal genes in both neurons and insulin-producing cells. For that purpose, we tested the role of the transcriptional repressor neuron-restrictive silencing factor/repressor element silencing transciption factor (NRSF/REST) in the expression of a battery of neuronal genes in insulin-producing cells. NRSF/REST is a negative regulator of the neuronal fate. It is known to silence neuronal-specific genes in non-neuronal cells. We demonstrate that, as in the case of the neuronal pheochromocytoma cell line PC12, mRNA coding for NRSF/REST is absent from the insulinoma cell line INS-1 and from three other insulin- and glucagon-producing cell lines. NRSF/REST activity is also absent from insulin-producing cell lines. Transient expression of REST in insulin-producing cell lines is sufficient to silence a reporter gene containing a NRSF/REST binding site, demonstrating the role of NRSF/REST in the expression of neuronal markers in insulin-producing cells. Finally, by searching for the expression of NRSF/REST-regulated genes in insulin-producing cells, we increased the list of the genes expressed in both neurons and insulin-producing cells.
Collapse
Affiliation(s)
- F Atouf
- INSERM CJF93-13, Hospital R. Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | | | | |
Collapse
|
21
|
Madsen OD, Jensen J, Blume N, Petersen HV, Lund K, Karlsen C, Andersen FG, Jensen PB, Larsson LI, Serup P. Pancreatic development and maturation of the islet B cell. Studies of pluripotent islet cultures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:435-45. [PMID: 9022666 DOI: 10.1111/j.1432-1033.1996.435rr.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pancreas organogenesis is a highly regulated process, in which two anlage evaginate from the primitive gut. They later fuse, and, under the influence of the surrounding mesenchyme, the mature organ develops, being mainly composed of ductal, exocrine and endocrine compartments. Early buds are characterized by a branching morphogenesis of the ductal epithelium from which endocrine and exocrine precursor cells bud to eventually form the two other compartments. The three compartments are thought to be of common endodermal origin; in contrast to earlier hypotheses, which suggested that the endocrine compartment was of neuroectodermal origin. It is thus generally believed that the pancreatic endocrine-lineage possesses the ability to mature along a differentiation pathway that shares many characteristics with those of neuronal differentiation. During recent years, studies of insulin-gene regulation and, in particular, the tissue-specific transcriptional control of insulin-gene activity have provided information on pancreas development in general. The present review summarizes these findings, with a special focus on our own studies on pluripotent endocrine cultures of rat pancreas.
Collapse
Affiliation(s)
- O D Madsen
- Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 1995; 9:1009-19. [PMID: 7774807 DOI: 10.1101/gad.9.8.1009] [Citation(s) in RCA: 450] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The insulin gene is one of the best paradigms of tissue-specific gene expression. It is developmentally regulated and is expressed exclusively in the pancreatic beta-cell. This restricted expression is directed by a tissue-specific enhancer, within the promoter, which contains an E-box sequence. The insulin E-box binds an islet-specific protein complex, termed 3a1. E-boxes bind proteins belonging to the basic helix-loop-helix (bHLH) family of transcription factors. The bHLH proteins function as potent transcriptional activators of tissue-specific genes by forming heterodimers between ubiquitous and cell-restricted family members. In addition, the cell-restricted bHLH members play an important role in specifying cell fate. To isolate the tissue-specific bHLH factor controlling insulin gene expression and study its role in islet cell differentiation, a modified yeast two-hybrid system was utilized to clone a novel bHLH factor, BETA2 (beta-cell E-box trans-activator 2), from a hamster insulin tumor (HIT) cell cDNA library. Northern analysis demonstrates that high-level expression of the BETA2 gene is restricted to pancreatic alpha- and beta-cell lines. As expected of tissue-specific bHLH members, BETA2 binds to the insulin E-box sequence with high affinity as a heterodimer with the ubiquitous bHLH factor E47. More importantly, antibody supershift experiments clearly show that BETA2 is a component of the native insulin E-box-binding complex. Transient transfection assays demonstrate that the BETA2/E47 heterodimer synergistically interacts with a neighboring beta-cell-specific complex to activate an insulin enhancer. In contrast, other bHLH factors such as MyoD and E47, which can bind to the insulin E-box with high affinity, fail to do so. Thus, a unique, cooperative interaction is the basis by which the insulin E-box enhancer discriminates between various bHLH factors to achieve tissue-specific activation of the insulin gene.
Collapse
Affiliation(s)
- F J Naya
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|