1
|
Khaliq SA, Park SY, Maham S, Cho Y, Lee M, Nam S, Seong JK, Chen J, Choi CS, Yoon MS. ARHGEF3 coordinates adipocyte hypertrophy and differentiation through dual YAP-RhoA and PPARγ activation. J Adv Res 2025:S2090-1232(25)00229-2. [PMID: 40216078 DOI: 10.1016/j.jare.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Obesity presents a significant global health burden, necessitating insights into the molecular drivers of adipogenesis and adipose tissue regulation. OBJECTIVES This study investigates the role of Rho guanine nucleotide exchange factor 3 (ARHGEF3) in adipocyte differentiation and hypertrophy, focusing on its influence on adipogenesis and body weight regulation under high-fat diet conditions. METHODS ARHGEF3-/- mice and littermate controls were subjected to a high-fat diet (HFD) and underwent comprehensive metabolic phenotyping. In vitro studies in C3H10T1/2 cells were conducted to assess ARHGEF3's role in adipogenesis, utilizing quantitative PCR, western blotting, chromatin immunoprecipitation (ChIP), immunoprecipitation (IP), immunostaining, and luciferase reporter assays. RESULTS ARHGEF3 expression increased in white adipose tissue (WAT) of HFD-fed mice and during adipogenic differentiation in C3H10T1/2 cells. ARHGEF3-deficient mice exhibited reduced weight gain and adipocyte size, correlating with decreased RhoA expression and altered cytoskeletal dynamics. Additionally, ARHGEF3 facilitated yes-associated protein (YAP) nuclear translocation and its direct binding to the RhoA promoter, an effect reliant on ARHGEF3. ARHGEF3 also enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ), establishing a reciprocal activation loop to drive adipocyte differentiation and hypertrophy. CONCLUSION ARHGEF3 emerges as a pivotal regulator of adipocyte dynamics by coordinating YAP-RhoA signaling and enhancing PPARγ activity. These findings offer novel therapeutic insights for addressing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Shi-Young Park
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Syeda Maham
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Yoonil Cho
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Miseon Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul 08826, Republic of Korea
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cheol Soo Choi
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
2
|
Petshow S, Coblentz A, Hamilton AM, Sarkar D, Anisimova M, Flores JC, Zito K. Activity-dependent regulation of Cdc42 by Ephexin5 drives synapse growth and stabilization. SCIENCE ADVANCES 2025; 11:eadp5782. [PMID: 40138406 PMCID: PMC11939064 DOI: 10.1126/sciadv.adp5782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Synaptic Rho guanosine triphosphatase (GTPase) guanine nucleotide exchange factors (RhoGEFs) play vital roles in regulating the activity-dependent neuronal plasticity that is critical for learning. Ephexin5, a RhoGEF implicated in the etiology of Alzheimer's disease and Angelman syndrome, was originally reported in neurons as a RhoA-specific GEF that negatively regulates spine synapse density. Here, we show that Ephexin5 activates both RhoA and Cdc42 in the brain. Furthermore, using live imaging of GTPase biosensors, we demonstrate that Ephexin5 regulates activity-dependent Cdc42, but not RhoA, signaling at single synapses. The selectivity of Ephexin5 for Cdc42 activation is regulated by tyrosine phosphorylation, which is regulated by neuronal activity. Last, in contrast to Ephexin5's role in negatively regulating synapse density, we show that, downstream of neuronal activity, Ephexin5 positively regulates synaptic growth and stabilization. Our results support a model in which plasticity-inducing neuronal activity regulates Ephexin5 tyrosine phosphorylation, driving Ephexin5-mediated activation of Cdc42 and the spine structural growth and stabilization vital for learning.
Collapse
Affiliation(s)
- Samuel Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Andrew M. Hamilton
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
3
|
ARHGEF3 regulates the stability of ACLY to promote the proliferation of lung cancer. Cell Death Dis 2022; 13:870. [PMID: 36241648 PMCID: PMC9568610 DOI: 10.1038/s41419-022-05297-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
Rho GTPases play an essential role in many cellular processes, including cell cycle progress, cell motility, invasion, migration, and transformation. Several studies indicated that the dysregulation of Rho GTPase signaling is closely related to tumorigenesis. Rho GEFs considered being positive regulators of Rho GTPase, promoting the dissociation of Rho protein from GDP and binding to GTP, thus activating the downstream signaling pathway. Herein, we demonstrated that ARHGEF3, a member of the Rho GEFs family, played an important role in non-small cell lung cancer (NSCLC). We found that ARHGEF3 was highly expressed in non-small cell lung cancer and facilitated cancer cell proliferation of NSCLC cells in vitro and in vivo. Further studies demonstrated that ARHGEF3 enhanced the protein homeostasis of ATP-citrate lyase (ACLY) by reducing its acetylation on Lys17 and Lys86, leading to the dissociation between ACLY and its E3 ligase-NEDD4. Interestingly, this function of ARHGEF3 on the protein homeostasis of ACLY was independent of its GEF activity. Taken together, our findings uncover a novel function of ARHGEF3, suggesting that ARHGEF3 is a promising therapeutic target in non-small cell lung cancer.
Collapse
|
4
|
Blaise AM, Corcoran EE, Wattenberg ES, Zhang YL, Cottrell JR, Koleske AJ. In vitro fluorescence assay to measure GDP/GTP exchange of guanine nucleotide exchange factors of Rho family GTPases. Biol Methods Protoc 2021; 7:bpab024. [PMID: 35087952 PMCID: PMC8789339 DOI: 10.1093/biomethods/bpab024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are enzymes that promote the activation of GTPases through GTP loading. Whole exome sequencing has identified rare variants in GEFs that are associated with disease, demonstrating that GEFs play critical roles in human development. However, the consequences of these rare variants can only be understood through measuring their effects on cellular activity. Here, we provide a detailed, user-friendly protocol for purification and fluorescence-based analysis of the two GEF domains within the protein, Trio. This analysis offers a straight-forward, quantitative tool to test the activity of GEF domains on their respective GTPases, as well as utilize high-throughput screening to identify regulators and inhibitors. This protocol can be adapted for characterization of other Rho family GEFs. Such analyses are crucial for the complete understanding of the roles of GEF genetic variants in human development and disease.
Collapse
Affiliation(s)
- Alyssa M Blaise
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| | - Ellen E Corcoran
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| | - Eve S Wattenberg
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anthony J Koleske
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| |
Collapse
|
5
|
Park S, Guo Y, Negre J, Preto J, Smithers CC, Azad AK, Overduin M, Murray AG, Eitzen G. Fgd5 is a Rac1-specific Rho GEF that is selectively inhibited by aurintricarboxylic acid. Small GTPases 2021; 12:147-160. [PMID: 31601145 PMCID: PMC7849785 DOI: 10.1080/21541248.2019.1674765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Rho proteins are signalling molecules that control cellular dynamics, movement and morphological changes. They are activated by Rho guanine-nucleotide exchange factors (Rho GEFs) that transduce upstream signals into Rho-mediated activation of downstream processes. Fgd5 is a Rho GEF involved in angiogenesis and its target Rho protein for this process has been linked to Cdc42 activation. Here, we examined the function of purified Fgd5, specifically, which Rho proteins it activates and pinpoint the structural domains required for enzymatic activity. Using a GEF enzyme assay, we found that purified Fgd5 showed preferential activation of Rac1 and direct binding of Rac1 in pull-down and co-immunoprecipitation assays. Structural comparisons showed that the Fgd5 DH domain is highly similar to the Rac1 GEF, TrioN, supporting a role for Fgd5 as a Rac1 GEF. Compounds that bind to purified Fgd5 DH-PH protein were identified by screening a small molecule library via surface plasmon resonance. The effects of eleven ligands were further examined for their ability to inhibit the Fgd5 GEF enzymatic activity and Rac1 interaction. From these studies, we found that the compound aurintricarboxylic acid, and to a lesser extent mitoxantrone dihydrochloride, inhibited both Fgd5 GEF activation of Rac1 and their interaction. Aurintricarboxylic acid had no effect on the activity or binding of the Rac1 GEF, TrioN, thus demonstrating the feasibility of selectively disrupting Rho GEF activators. Abbreviations: a.a.: amino acid; ATA: aurintricarboxylic acid; DH: Dbl homology; DOCK: dictator of cytokinesis; Fgd: faciogenital dysplasia; GEF: guanine-nucleotide exchange factor; GST: glutathione S-transferase; LOPAC: library of pharmacologically active compounds; PH: pleckstrin homology; PDB: protein data bank; s.e.m.: standard error of the mean; SPR: surface plasmon resonance.
Collapse
Affiliation(s)
- Sally Park
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Yitian Guo
- Department of Medicine-Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Judeah Negre
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Jordane Preto
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron C. Smithers
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abul Kalam Azad
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G. Murray
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine-Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Pickering KA, Gilroy K, Cassidy JW, Fey SK, Najumudeen AK, Zeiger LB, Vincent DF, Gay DM, Johansson J, Fordham RP, Miller B, Clark W, Hedley A, Unal EB, Kiel C, McGhee E, Machesky LM, Nixon C, Johnsson AE, Bain M, Strathdee D, van Hoof SR, Medema JP, Anderson KI, Brachmann SM, Stucke VM, Malliri A, Drysdale M, Turner M, Serrano L, Myant K, Campbell AD, Sansom OJ. A RAC-GEF network critical for early intestinal tumourigenesis. Nat Commun 2021; 12:56. [PMID: 33397922 PMCID: PMC7782582 DOI: 10.1038/s41467-020-20255-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.
Collapse
Affiliation(s)
- K A Pickering
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - K Gilroy
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - J W Cassidy
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - S K Fey
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - A K Najumudeen
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - L B Zeiger
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - D F Vincent
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - D M Gay
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - J Johansson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - R P Fordham
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - B Miller
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - W Clark
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - A Hedley
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - E B Unal
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - C Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
| | - E McGhee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - L M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - C Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - A E Johnsson
- The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB22 3AT, UK
| | - M Bain
- IBAHCM and School of Veterinary Medicine, 464 Bearsden Road, Bearsden, Glasgow, G61 1QH, UK
| | - D Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - S R van Hoof
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - J P Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - K I Anderson
- The Francis Crick Institute, Mill Hill Laboratory, London, NW7 1AA, UK
| | - S M Brachmann
- Novartis Institutes for BioMedical Research, Klybeckstrasse, 141, 4002, Basel, Switzerland
| | - V M Stucke
- Novartis Institutes for BioMedical Research, Klybeckstrasse, 141, 4002, Basel, Switzerland
| | - A Malliri
- CRUK Manchester Institute, 553 Wilmslow Road, Manchester, M20 4BX, UK
| | - M Drysdale
- Broad Institute, 415 Main St, Cambridge, MA, 02142, United States
| | - M Turner
- The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB22 3AT, UK
| | - L Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
| | - K Myant
- Edinburgh Research Centre, The Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, EH4 2XR, UK.
| | - A D Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - O J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
7
|
Schwager SC, Reinhart-King CA. Mechanobiology of microvesicle release, uptake, and microvesicle-mediated activation. CURRENT TOPICS IN MEMBRANES 2020; 86:255-278. [PMID: 33837695 DOI: 10.1016/bs.ctm.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvesicles are small, membrane-bound vesicles that are shed from the plasma membrane of cells into the extracellular space. Microvesicles contain a variety of cargo not typically thought to be released from cells, including receptor tyrosine kinases, cytosolic signaling proteins, and microRNAs, which are transferred from donor cells to recipient cells. The transfer of microvesicle cargo can result in the transformation of recipient cells thereby supporting disease progression, including modified fibroblast metabolism, epithelial cell contractility, vascular remodeling, and immune cell inflammatory signaling. Additionally, microvesicles are believed to play prominent roles in cell-cell communication and disease progression as they are detected at elevated concentrations in diseased tissues. As microvesicle uptake by recipient cells can modulate cell function to promote disease progression, understanding the mechanisms and mechanosensitivity of microvesicle release, internalization, and the resulting signaling is crucial to fully comprehend their functions in disease. Here, we review recent advances in the understanding of actomyosin-regulated microvesicle biogenesis, microvesicle uptake via pinocytosis, and the resulting cellular transformation. We discuss the effects of altered cell contractility, mode of cell migration, and extracellular matrix compliance on microvesicle signaling, with direct implications in disease progression and identifying future therapeutic targets.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
8
|
Morugán-Coronado A, García-Orenes F, McMillan M, Pereg L. The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:158-167. [PMID: 30469061 DOI: 10.1016/j.scitotenv.2018.11.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/23/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Water shortage and soil degradation are common environmental stressors encountered in the Mediterranean area. We evaluated how different soil moisture levels, dependent on distance from drip irrigation points, impact on the biological, chemical and physical properties of citrus soil under organic and inorganic fertilization. We measured soil physicochemical properties, basal soil respiration, soil microbial biomass carbon, soil microbial community structure (phospholipid fatty acid assay), bacterial load (16S rRNA gene abundance), enzymatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) and abundance of microbial nitrogen cyclers (quantitative PCR). A field experiment was established in an orange orchard (Citrus sinensis) in southeast Spain and eighteen soil samples were taken from each plot to compare the impacts of soil moisture: near (wet, w) or away (dry, d) from drip-irrigation points, in plots with inorganic fertilizers under intensive ploughing (PI) or organic fertilization (OA). The results showed that changes in microbial properties and soil microbial indexes were strongly associated with soil moisture content under both organic and inorganic fertilization, and with organic carbon content. Soil moisture influenced soil aggregation, basal soil respiration, phosphatase activity, bacterial and fungal load (PLFAs) and the abundances of bacterial N cycling genes, including nifH (nitrogen fixation) nirS/K and nosZ genes (denitrification) and amoA-B (bacterial nitrification). The potential for N fixation and denitrification, two microbial processes that are crucial for determining the amount of N in the soil, were improved by increased soil moisture in the proximity of the drip irrigation. Soil OC and total N, which are higher under organic fertilization than under inorganic fertilization, were also shown to be highly correlated with the abundance of the N cycling genes. By controlling irrigation doses and applying organic amendments, it may be possible to increase the microbial abundance and function in soil and support greater fertility of soils.
Collapse
Affiliation(s)
- Alicia Morugán-Coronado
- GEA - Environmental Soil Science Group, Department of Agrochemistry and Environment, University Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche, Alicante, Spain
| | - Fuensanta García-Orenes
- GEA - Environmental Soil Science Group, Department of Agrochemistry and Environment, University Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche, Alicante, Spain
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
9
|
Cai D, Choi PS, Gelbard M, Meyerson M. Identification and Characterization of Oncogenic SOS1 Mutations in Lung Adenocarcinoma. Mol Cancer Res 2019; 17:1002-1012. [PMID: 30635434 DOI: 10.1158/1541-7786.mcr-18-0316] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/18/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Lung adenocarcinomas are characterized by mutations in the receptor tyrosine kinase (RTK)/Ras/Raf pathway, with up to 75% of cases containing mutations in known driver genes. However, the driver alterations in the remaining cases are yet to be determined. Recent exome sequencing analysis has identified SOS1, encoding a guanine nucleotide exchange factor, as significantly mutated in lung adenocarcinomas lacking canonical oncogenic RTK/Ras/Raf pathway mutations. Here, we demonstrate that ectopic expression of lung adenocarcinoma-derived mutants of SOS1 induces anchorage-independent cell growth in vitro and tumor formation in vivo. Biochemical experiments suggest that these mutations lead to overactivation of the Ras pathway, which can be suppressed by mutations that disrupt either the Ras-GEF or putative Rac-GEF activity of SOS1. Transcriptional profiling reveals that the expression of mutant SOS1 leads to the upregulation of MYC target genes and genes associated with Ras transformation. Furthermore, we demonstrate that an AML cancer cell line harboring a lung adenocarcinoma-associated mutant SOS1 is dependent on SOS1 for survival and is also sensitive to MEK inhibition. Our work provides experimental evidence for the role of SOS1 as an oncogene and suggests a possible therapeutic strategy to target SOS1-mutated cancers. IMPLICATIONS: This study demonstrates that SOS1 mutations found in lung adenocarcinoma are oncogenic and that MEK inhibition may be a therapeutic avenue for the treatment of SOS1-mutant cancers.
Collapse
Affiliation(s)
- Diana Cai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Program in Genetics and Genomics, Harvard University, Boston, Massachusetts
| | - Peter S Choi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Maya Gelbard
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts. .,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Ikehata M, Yamada A, Fujita K, Yoshida Y, Kato T, Sakashita A, Ogata H, Iijima T, Kuroda M, Chikazu D, Kamijo R. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation. Biochem Biophys Res Commun 2018; 500:525-529. [DOI: 10.1016/j.bbrc.2018.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 01/14/2023]
|
11
|
Donnelly SK, Miskolci V, Garrastegui AM, Cox D, Hodgson L. Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases. Methods Mol Biol 2018; 1821:87-106. [PMID: 30062407 PMCID: PMC6104821 DOI: 10.1007/978-1-4939-8612-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Genetically encoded FRET-based biosensors are increasingly popular and useful tools for examining signaling pathways with high spatial and temporal resolution in living cells. Here, we show basic techniques used to characterize and to validate single-chain, genetically encoded Förster resonance energy transfer (FRET) biosensors of the Rho GTPase-family proteins. Methods described here are generally applicable to other genetically encoded FRET-based biosensors by modifying the tested conditions to include additional/different regulators and inhibitors, as appropriate for the specific protein of interest.
Collapse
Affiliation(s)
- Sara K Donnelly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alice M Garrastegui
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Wang H, Li M, Tao X, Qian Y, Chen L, Tao G. ARHGEF39 promotes gastric cancer cell proliferation and migration via Akt signaling pathway. Mol Cell Biochem 2017; 440:33-42. [PMID: 28871449 DOI: 10.1007/s11010-017-3153-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/05/2017] [Indexed: 10/18/2022]
Abstract
Dbl-family guanine nucleotide exchange factors (GEFs) can activate RhoGTPases by facilitating the exchange of GDP for GTP, the aberrant expression of which has been implicated in tumorigenicity and metastasis of human cancers. ARHGEF39, as a member of Dbl-family GEFs, was reported to be a potential oncogene in human hepatocellular carcinoma previously. However, the role of ARHGEF39 in gastric cancer (GC) remains unclear so far. In the current study, we demonstrated that ARHGEF39 expression was significantly upregulated in GC tissues compared with paired adjacent normal tissues by quantitative real-time PCR analysis. Functional analyses revealed that ARHGEF39 overexpression could promote proliferation, colony formation, and migration of GC cells in vitro, whereas ARHGEF39 knockdown markedly suppressed these phenotypes. Moreover, ARHGEF39 enhanced tumorigenicity and lung metastasis potential of GC cells in nude mice model. Mechanistically, we found that overexpressed ARHGEF39 significantly increased the phosphorylation level of Akt (p-Akt), and its effect on cell proliferation was attenuated by PI3K inhibitor LY294002. Thus, our findings suggest that ARHGEF39 may contribute to cell proliferation and migration in GC via a possible mechanism involving Akt signaling.
Collapse
Affiliation(s)
- Haixiao Wang
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Miaomiao Li
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xiaobao Tao
- Department of Psychiatry, Huai'an Third People's Hospital, Huai'an, 223001, Jiangsu, China
| | - Yan Qian
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Linfang Chen
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| | - Guoquan Tao
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
13
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
14
|
Cerione RA. The experiences of a biochemist in the evolving world of G protein-dependent signaling. Cell Signal 2017; 41:2-8. [PMID: 28214588 DOI: 10.1016/j.cellsig.2017.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022]
Abstract
This review describes how a biochemist and basic researcher (i.e. myself) came to make a career in the area of receptor-coupled signal transduction and the roles cellular signaling activities play both in normal physiology and in disease. Much of what has been the best part of this research life is due to the time I spent with Bob Lefkowitz (1982-1985), during an extraordinary period in the emerging field of G-protein-coupled receptors. Among my laboratory colleagues were some truly outstanding scientists including Marc Caron, the late Jeffrey Stadel, Berta Strulovici, Jeff Benovic, Brian Kobilka, and Henrik Dohlman, as well as many more. I came to Bob's laboratory after being trained as a physical biochemist and enzymologist. Bob and his laboratory exposed me to a research style that made it possible to connect the kinds of fundamental biochemical and mechanistic questions that I loved to think about with a direct relevance to disease. Indeed, I owe Bob a great deal for having imparted a research style and philosophy that has remained with me throughout my career. Below, I describe how this has taken me on an interesting journey through various areas of cellular signaling, which have a direct relevance to the actions of one or another type of G-protein.
Collapse
Affiliation(s)
- Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853-6401, US.
| |
Collapse
|
15
|
Zhang C, Wang HJ, Bao QC, Wang L, Guo TK, Chen WL, Xu LL, Zhou HS, Bian JL, Yang YR, Sun HP, Xu XL, You QD. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 2016; 7:73593-73606. [PMID: 27713154 PMCID: PMC5342001 DOI: 10.18632/oncotarget.12435] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022] Open
Abstract
Nuclear factor erythroid 2-related factor (NRF2) is an important transcription factor in oxidative stress regulation. Overexpression of NRF2 is associated with human breast carcinogenesis, and increased NRF2 mRNA levels predict poor patient outcome for breast cancer. However, the mechanisms linking gain of NRF2 expression and poor prognosis in breast cancer are still unclear. Here, we provide evidence that NRF2 deletion inhibits proliferation and metastasis of breast cancer cells by down-regulating RhoA. Restoration of RhoA in MCF7 and MDA-MB-231 cells induced NRF2 knockdown-suppressed cell growth and metastasis in vitro, and NRF2 silencing suppressed stress fiber and focal adhesion formation leading to decreased cell migration and invasion. Mechanistic studies showed that NRF2 binds to the promoter region of estrogen-related receptor α (ERR1) and may function as a silencer. This may enhance RhoA protein stability and lead to RhoA overexpression in breast cancer cell. Our findings indicate that NRF2 silencing-mediated reduction of RhoA expression contributes, at least in part, to the poor outcome of breast cancer patients with high NRF2 expression.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui-Jie Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Chao Bao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Kun Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei-Lin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hai-Shan Zhou
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Lei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Rui Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
16
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Li Y, Erickson JW, Stalnecker CA, Katt WP, Huang Q, Cerione RA, Ramachandran S. Mechanistic Basis of Glutaminase Activation: A KEY ENZYME THAT PROMOTES GLUTAMINE METABOLISM IN CANCER CELLS. J Biol Chem 2016; 291:20900-20910. [PMID: 27542409 DOI: 10.1074/jbc.m116.720268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
Glutamine-derived carbon becomes available for anabolic biosynthesis in cancer cells via the hydrolysis of glutamine to glutamate, as catalyzed by GAC, a splice variant of kidney-type glutaminase (GLS). Thus, there is significant interest in understanding the regulation of GAC activity, with the suggestion being that higher order oligomerization is required for its activation. We used x-ray crystallography, together with site-directed mutagenesis, to determine the minimal enzymatic unit capable of robust catalytic activity. Mutagenesis of the helical interface between the two pairs of dimers comprising a GAC tetramer yielded a non-active, GAC dimer whose x-ray structure displays a stationary loop ("activation loop") essential for coupling the binding of allosteric activators like inorganic phosphate to catalytic activity. Further mutagenesis that removed constraints on the activation loop yielded a constitutively active dimer, providing clues regarding how the activation loop communicates with the active site, as well as with a peptide segment that serves as a "lid" to close off the active site following substrate binding. Our studies show that the formation of large GAC oligomers is not a pre-requisite for full enzymatic activity. They also offer a mechanism by which the binding of activators like inorganic phosphate enables the activation loop to communicate with the active site to ensure maximal rates of catalysis, and promotes the opening of the lid to achieve optimal product release. Moreover, these findings provide new insights into how other regulatory events might induce GAC activation within cancer cells.
Collapse
Affiliation(s)
- Yunxing Li
- From the Departments of Chemistry and Chemical Biology and
| | - Jon W Erickson
- From the Departments of Chemistry and Chemical Biology and
| | | | | | - Qingqiu Huang
- Cornell Lab for Accelerator-based Science, Cornell University, Ithaca, New York 14853
| | - Richard A Cerione
- From the Departments of Chemistry and Chemical Biology and Molecular Medicine,
| | | |
Collapse
|
18
|
Cdc42p-interacting protein Bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2014; 35:417-36. [PMID: 25384973 DOI: 10.1128/mcb.00850-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response.
Collapse
|
19
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
20
|
Gupta M, Qi X, Thakur V, Manor D. Tyrosine phosphorylation of Dbl regulates GTPase signaling. J Biol Chem 2014; 289:17195-202. [PMID: 24778185 DOI: 10.1074/jbc.m114.573782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular "switches" that cycle between "on" (GTP-bound) and "off" (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.
Collapse
Affiliation(s)
- Meghana Gupta
- From the Departments of Pharmacology, and Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Xiaojun Qi
- Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Varsha Thakur
- Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Danny Manor
- From the Departments of Pharmacology, and Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
21
|
Sck1 negatively regulates Gpa2-mediated glucose signaling in Schizosaccharomyces pombe. EUKARYOTIC CELL 2013; 13:202-8. [PMID: 24297439 DOI: 10.1128/ec.00277-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizosaccharomyces pombe detects extracellular glucose via a G protein-mediated cyclic AMP (cAMP)-signaling pathway activating protein kinase A (PKA) and regulating transcription of genes involved in metabolism and sexual development. In this pathway, Gpa2 Gα binds to and activates adenylyl cyclase in response to glucose detection by the Git3 G protein-coupled receptor. Using a two-hybrid screen to identify extrinsic regulators of Gpa2, we isolated a clone that expresses codons 471 to 696 of the Sck1 kinase, which appears to display a higher affinity for Gpa2(K270E)-activated Gα relative to Gpa2(+) Gα. Deletion of sck1(+) or mutational inactivation of the Sck1 kinase produces phenotypes reflecting increased PKA activity in strains expressing Gpa2(+) or Gpa2(K270E), suggesting that Sck1 negatively regulates PKA activation through Gpa2. In contrast to the Gpa2(K270E) GDP-GTP exchange rate mutant, GTPase-defective Gpa2(R176H) weakly binds Sck1 in the two-hybrid screen and a deletion of sck1(+) in a Gpa2(R176H) strain confers phenotypes consistent with a slight reduction in PKA activity. Finally, deleting sck1(+) in a gpa2Δ strain results in phenotypes consistent with a second role for Sck1 acting in parallel with PKA. In addition to this parallel role with PKA, our data suggest that Sck1 negatively regulates Gpa2, possibly targeting the nucleotide-free form of the protein that may expose the one and only AKT/PKB consensus site in Gpa2 for Sck1 to bind. This dual role for Sck1 may allow S. pombe to produce distinct biological responses to glucose and nitrogen starvation signals that both activate the Wis1-Spc1/StyI stress-activated protein kinase (SAPK) pathway.
Collapse
|
22
|
Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS. Mol Cell Biol 2013; 33:2470-84. [DOI: 10.1128/mcb.01593-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.
Collapse
|
23
|
Gupta M, Kamynina E, Morley S, Chung S, Muakkassa N, Wang H, Brathwaite S, Sharma G, Manor D. Plekhg4 is a novel Dbl family guanine nucleotide exchange factor protein for rho family GTPases. J Biol Chem 2013; 288:14522-14530. [PMID: 23572525 DOI: 10.1074/jbc.m112.430371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the PLEKHG4 (puratrophin-1) gene are associated with the heritable neurological disorder autosomal dominant spinocerebellar ataxia. However, the biochemical functions of this gene product have not been described. We report here that expression of Plekhg4 in the murine brain is developmentally regulated, with pronounced expression in the newborn midbrain and brainstem that wanes with age and maximal expression in the cerebellar Purkinje neurons in adulthood. We show that Plekhg4 is subject to ubiquitination and proteasomal degradation, and its steady-state expression levels are regulated by the chaperones Hsc70 and Hsp90 and by the ubiquitin ligase CHIP. On the functional level, we demonstrate that Plekhg4 functions as a bona fide guanine nucleotide exchange factor (GEF) that facilitates activation of the small GTPases Rac1, Cdc42, and RhoA. Overexpression of Plekhg4 in NIH3T3 cells induces rearrangements of the actin cytoskeleton, specifically enhanced formation of lamellopodia and fillopodia. These findings indicate that Plekhg4 is an aggregation-prone member of the Dbl family GEFs and that regulation of GTPase signaling is critical for proper cerebellar function.
Collapse
Affiliation(s)
- Meghana Gupta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Samantha Morley
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stacey Chung
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Hong Wang
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shayna Brathwaite
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Danny Manor
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
24
|
Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. Proc Natl Acad Sci U S A 2013; 110:3155-60. [PMID: 23382194 DOI: 10.1073/pnas.1212324110] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The G-protein-mediated Rho guanine nucleotide exchange factor (GEF)-Rho GTPase signaling axis has been implicated in human pathophysiology and is a potential therapeutic target. By virtual screening of chemicals that fit into a surface groove of the DH-PH domain of LARG, a G-protein-regulated Rho GEF involved in RhoA activation, and subsequent validations in biochemical assays, we have identified a class of chemical inhibitors represented by Y16 that are active in specifically inhibiting LARG binding to RhoA. Y16 binds to the junction site of the DH-PH domains of LARG with a ∼80 nM K(d) and suppresses LARG catalyzed RhoA activation dose dependently. It is active in blocking the interaction of LARG and related G-protein-coupled Rho GEFs with RhoA without a detectable effect on other DBL family Rho GEFs, Rho effectors, or a RhoGAP. In cells, Y16 selectively inhibits serum-induced RhoA activity and RhoA-mediated signaling, effects that can be rescued by a constitutively active RhoA or ROCK mutant. By suppressing RhoA activity, Y16 inhibits mammary sphere formation of MCF7 breast cancer cells but does not affect the nontransforming MCF10A cells. Significantly, Y16 works synergistically with Rhosin/G04, a Rho GTPase activation site inhibitor, in inhibiting LARG-RhoA interaction, RhoA activation, and RhoA-mediated signaling functions. Thus, our studies show that Rho GEFs can serve as selective targets of small chemicals and present a strategy of dual inhibition of the enzyme-substrate pair of GEF-RhoA at their binding interface that leads to enhanced efficacy and specificity.
Collapse
|
25
|
Cheadle L, Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. ACTA ACUST UNITED AC 2012; 199:985-1001. [PMID: 23209303 PMCID: PMC3518221 DOI: 10.1083/jcb.201205041] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synaptic adhesion organizes synapses, yet the signaling pathways that drive and integrate synapse development remain incompletely understood. We screened for regulators of these processes by proteomically analyzing synaptic membranes lacking the synaptogenic adhesion molecule SynCAM 1. This identified FERM, Rho/ArhGEF, and Pleckstrin domain protein 1 (Farp1) as strongly reduced in SynCAM 1 knockout mice. Farp1 regulates dendritic filopodial dynamics in immature neurons, indicating roles in synapse formation. Later in development, Farp1 is postsynaptic and its 4.1 protein/ezrin/radixin/moesin (FERM) domain binds SynCAM 1, assembling a synaptic complex. Farp1 increases synapse number and modulates spine morphology, and SynCAM 1 requires Farp1 for promoting spines. In turn, SynCAM 1 loss reduces the ability of Farp1 to elevate spine density. Mechanistically, Farp1 activates the GTPase Rac1 in spines downstream of SynCAM 1 clustering, and promotes F-actin assembly. Farp1 furthermore triggers a retrograde signal regulating active zone composition via SynCAM 1. These results reveal a postsynaptic signaling pathway that engages transsynaptic interactions to coordinate synapse development.
Collapse
Affiliation(s)
- Lucas Cheadle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
26
|
Murayama K, Kato-Murayama M, Akasaka R, Terada T, Yokoyama S, Shirouzu M. Structure of the Rho-specific guanine nucleotide-exchange factor Xpln. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1455-9. [PMID: 23192023 PMCID: PMC3509964 DOI: 10.1107/s1744309112045265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/01/2012] [Indexed: 11/10/2022]
Abstract
Xpln is a guanine nucleotide-exchange factor (GEF) for Rho GTPases. A Dbl homology (DH) domain followed by a pleckstrin homology (PH) domain is a widely adopted GEF-domain architecture. The Xpln structure solely comprises these two domains. Xpln activates RhoA and RhoB, but not RhoC, although their GTPase sequences are highly conserved. The molecular mechanism of the selectivity of Xpln for Rho GTPases is still unclear. In this study, the crystal structure of the tandemly arranged DH-PH domains of mouse Xpln, with a single molecule in the asymmetric unit, was determined at 1.79 Å resolution by the multiwavelength anomalous dispersion method. The DH-PH domains of Xpln share high structural similarity with those from neuroepithelial cell-transforming gene 1 protein, PDZ-RhoGEF, leukaemia-associated RhoGEF and intersectins 1 and 2. The crystal structure indicated that the α4-α5 loop in the DH domain is flexible and that the DH and PH domains interact with each other intramolecularly, thus suggesting that PH-domain rearrangement occurs upon RhoA binding.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai 980-8575, Japan
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Miyuki Kato-Murayama
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Ryogo Akasaka
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
27
|
Humphreys D, Liu T, Davidson AC, Hume PJ, Koronakis V. The Drosophila Arf1 homologue Arf79F is essential for lamellipodium formation. J Cell Sci 2012; 125:5630-5. [PMID: 22992458 DOI: 10.1242/jcs.108092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The WAVE regulatory complex (WRC) drives the polymerisation of actin filaments located beneath the plasma membrane to generate lamellipodia that are pivotal to cell architecture and movement. By reconstituting WRC-dependent actin assembly at the membrane, we recently discovered that several classes of Arf family GTPases directly recruit and activate WRC in cell extracts, and that Arf cooperates with Rac1 to trigger actin polymerisation. Here, we demonstrate that the Class 1 Arf1 homologue Arf79F colocalises with the WRC at dynamic lamellipodia. We report that Arf79F is required for lamellipodium formation in Drosophila S2R+ cells, which only express one Arf isoform for each class. Impeding Arf function either by dominant-negative Arf expression or by Arf double-stranded RNA interference (dsRNAi)-mediated knockdown uncovered that Arf-dependent lamellipodium formation was specific to Arf79F, establishing that Class 1 Arfs, but not Class 2 or Class 3 Arfs, are crucial for lamellipodia. Lamellipodium formation in Arf79F-silenced cells was restored by expressing mammalian Arf1, but not by constitutively active Rac1, showing that Arf79F does not act via Rac1. Abolition of lamellipodium formation in Arf79F-silenced cells was not due to Golgi disruption. Blocking Arf79F activation with guanine nucleotide exchange factor inhibitors impaired WRC localisation to the plasma membrane and concomitant generation of lamellipodia. Our data indicate that the Class I Arf GTPase is a central component in WRC-driven lamellipodium formation.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
28
|
Abstract
A novel form of cell-to-cell communication involving the formation and shedding of large vesicular structures, called microvesicles (MVs), from the surfaces of highly aggressive forms of human cancer cells has been attracting increasing amounts of attention. This is in large part due to the fact that MVs contain a variety of cargo that is not typically thought to be released from cells including cell-surface receptor tyrosine kinases, cytosolic and nuclear signaling proteins and RNA transcripts. MVs, by sharing their contents with other cells, can greatly impact cancer progression by increasing primary tumor growth,1–3 as well as by promoting the development of the pre-metastatic niche.4 We have recently shown that the small GTPase RhoA is critical for MV biogenesis in human cancer cells. Moreover, we have now obtained evidence that implicates the highly related small GTPases, Rac and Cdc42, in regulating the loading of specific cargo into MVs, as well as in the shedding of MVs from cancer cells. Thus, linking the Rho family of small GTPases to MV biogenesis has begun to shed some light on a new and unexpected way that these signaling proteins contribute to human cancer progression.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
29
|
Jaiswal M, Gremer L, Dvorsky R, Haeusler LC, Cirstea IC, Uhlenbrock K, Ahmadian MR. Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). J Biol Chem 2011; 286:18202-12. [PMID: 21454492 DOI: 10.1074/jbc.m111.226431] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.
Collapse
Affiliation(s)
- Mamta Jaiswal
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Abdeen SJ, Swett RJ, Feig AL. Peptide inhibitors targeting Clostridium difficile toxins A and B. ACS Chem Biol 2010; 5:1097-103. [PMID: 20863124 DOI: 10.1021/cb100209b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridium difficile causes severe hospital-acquired antibiotic-associated diarrhea due to the activity of two large protein toxins. Current treatments suffer from a high relapse rate and are generating resistant strains; thus new methods of dealing with these infections that target the virulence factors directly are of interest. Phage display was used to identify peptides that bind to the catalytic domain of C. difficile Toxin A. Library screening and subsequent quantitative binding and inhibition studies showed that several of these peptides are potent inhibitors. Fragment-based computational docking of these peptides elucidated the binding modes within the active site. These antitoxin peptides may serve as potential lead compounds to further engineer peptidomimetic inhibitors of the clostridial toxins.
Collapse
Affiliation(s)
- Sanofar J. Abdeen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Rebecca J. Swett
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Andrew L. Feig
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2010; 23:969-79. [PMID: 21044680 DOI: 10.1016/j.cellsig.2010.10.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.
Collapse
|
32
|
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio ALB, Dias SMG, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18:207-19. [PMID: 20832749 PMCID: PMC3078749 DOI: 10.1016/j.ccr.2010.08.009] [Citation(s) in RCA: 665] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/20/2010] [Accepted: 07/19/2010] [Indexed: 12/18/2022]
Abstract
Rho GTPases impact a number of activities important for oncogenesis. We describe a small molecule inhibitor that blocks oncogenic transformation induced by various Rho GTPases in fibroblasts, and the growth of human breast cancer and B lymphoma cells, without affecting normal cells. We identify the target of this inhibitor to be the metabolic enzyme glutaminase, which catalyzes the hydrolysis of glutamine to glutamate. We show that transformed fibroblasts and breast cancer cells exhibit elevated glutaminase activity that is dependent on Rho GTPases and NF-κB activity, and is blocked by the small molecule inhibitor. These findings highlight a previously unappreciated connection between Rho GTPase activation and cellular metabolism and demonstrate that targeting glutaminase activity can inhibit oncogenic transformation.
Collapse
Affiliation(s)
- Jian-Bin Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jon W. Erickson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Reina Fuji
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sekar Ramachandran
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ping Gao
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ramani Dinavahi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristin F. Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Sandra M. G. Dias
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chi V. Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Ahmad KF, Lim WA. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin. PLoS One 2010; 5:e11291. [PMID: 20585582 PMCID: PMC2892021 DOI: 10.1371/journal.pone.0011291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/02/2010] [Indexed: 01/21/2023] Open
Abstract
Intersectin-1L is a member of the Dbl homology (DH) domain guanine nucleotide exchange factors (GEF) which control Rho-family GTPase signaling. Intersectin-1L is a GEF that is specific for Cdc42. It plays an important role in endocytosis, and is regulated by several partners including the actin regulator N-WASP. Intact intersectin-1L shows low Cdc42 exchange activity, although the isolated catalytic DH domain shows high activity. This finding suggests that the molecule is autoinhibited. To investigate the mechanism of autoinhibition we have constructed a series of domain deletions. We find that the five SH3 domains of intersectin are important for autoinhibition, with the fifth domain (SH3(E)) being sufficient for the bulk of the autoinhibitory effect. This SH3 domain appears to primarily interact with the DH domain. We have determined the crystal structure of the SH3(E)-DH domain construct, which shows a domain swapped arrangement in which the SH3 from one monomer interacts with the DH domain of the other monomer. Analytical ultracentrifugation and gel filtration, however, show that under biochemical concentrations, the construct is fully monomeric. Thus we propose that the actual autoinhibited structure contains the related intramolecular SH3(E)-DH interaction. We propose a model in which this intramolecular interaction may block or distort the GTPase binding region of the DH domain.
Collapse
Affiliation(s)
- K. Farid Ahmad
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Yeung WWS, Wong YH. The RhoA-specific guanine nucleotide exchange factor p63RhoGEF binds to activated Galpha(16) and inhibits the canonical phospholipase Cbeta pathway. Cell Signal 2009; 21:1317-25. [PMID: 19332116 DOI: 10.1016/j.cellsig.2009.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
Abstract
Heterotrimeric G proteins regulate diverse physiological processes by modulating the activities of intracellular effectors. Members of the Galpha(q) family link G protein-coupled receptor activation to phospholipase Cbeta (PLCbeta) activity and intracellular calcium signaling cascades. However, they differ markedly in biochemical properties as well as tissue distribution. Recent findings have shown that some of the cellular activities of Galpha(q) family members are independent of PLCbeta activation. A guanine nucleotide exchange factor, p63RhoGEF, has been shown to interact with Galpha(q) proteins and thus provides linkage to RhoA activation. However, it is not known if p63RhoGEF can associate with other Galpha(q) family members such as Galpha(16). In the present study, we employed co-immunoprecipitation studies in HEK293 cells to demonstrate that p63RhoGEF can form a stable complex with the constitutively active mutant of Galpha(16) (Galpha(16)QL). Interestingly, overexpression of p63RhoGEF inhibited Galpha(16)QL-induced IP(3) production in a concentration-dependent manner. The binding of PLCbeta(2) to Galpha(16)QL could be displaced by p63RhoGEF. Similarly, p63RhoGEF inhibited the binding of tetratricopeptide repeat 1 to Galpha(16)QL, leading to a suppression of Galpha(16)QL-induced Ras activation. In the presence of p63RhoGEF, Galpha(16)QL-induced STAT3 phosphorylation was significantly reduced and Galpha(16)QL-mediated SRE transcriptional activation was attenuated. Taken together, these results suggest that p63RhoGEF binds to activated Galpha(16) and inhibits its signaling pathways.
Collapse
Affiliation(s)
- Wendy W S Yeung
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
35
|
Zhao S, Xu C, Qian H, Lv L, Ji C, Chen C, Zhao X, Zheng D, Gu S, Xie Y, Mao Y. Cellular retinaldehyde-binding protein-like (CRALBPL), a novel human Sec14p-like gene that is upregulated in human hepatocellular carcinomas, may be used as a marker for human hepatocellular carcinomas. DNA Cell Biol 2008; 27:159-63. [PMID: 18271718 DOI: 10.1089/dna.2007.0634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sec14p-like lipid-binding domain (SEC14 domain) is an evolutionarily conserved protein domain often found in secretory proteins, such as Saccharomyces cerevisiae phosphatidylinositol transfer protein Sec14p, and in lipid-regulated proteins, such as GTPase-activating proteins, guanine nucleotide exchange factors, and neurofibromin. We have cloned a novel human gene, cellular retinaldehyde-binding protein-like (CRALBPL), containing SEC14 domain from the cDNA library of human fetal brain. The RT-PCR expression pattern of 16 adult human tissues indicated that CRALBPL was only expressed in brain, while it was expressed in all of seven human carcinoma cell lines we used, especially in human gastric adenocarcinoma cell line, human rhabdomyoma cell line, human hepatocellular carcinoma (HCC) cell line, and human prostatic carcinoma cell line. Further, we found that CRALBPL has a remarkably more abundant RT-PCR expression pattern in human HCC cell lines than in normal human liver cell line, and the same result was gained when RT-PCR expression patterns between human HCC specimens and normal human liver specimens were compared. We also found that CRALBPL is located mainly in cytoplasm in human liver cell line L-02, which is consistent with the common function of Sec14p-like domain family. Our results show that CRALBPL may be used as a marker for human HCCs.
Collapse
Affiliation(s)
- Shuo Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sinha S, Yang W. Cellular signaling for activation of Rho GTPase Cdc42. Cell Signal 2008; 20:1927-34. [PMID: 18558478 DOI: 10.1016/j.cellsig.2008.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/11/2008] [Indexed: 12/20/2022]
Abstract
The Rho family GTPase Cdc42 regulates cytoskeletal organization and membrane trafficking in physiological processes such as cell proliferation, motility and polarity. Aberrant activation of Cdc42 results in pathogenesis, such as tumorigenesis and tumor progression, cardiovascular diseases, diabetes, and neuronal degenerative diseases. The activation of Cdc42 in response to upstream signals is mediated by guanine nucleotide exchange factors (GEFs), which converse GDP-bound inactive form to the GTP-bound active form of Cdc42. The activated Cdc42 transduces signals to downstream effectors and generates cellular effects. This review will discuss the molecular mechanism of activation of Cdc42 and postulate that signaling specificity of Cdc42 is conferred by the GEF/GTPase/Effector (GGE) complexes in response to external stimuli.
Collapse
Affiliation(s)
- Soniya Sinha
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
37
|
Soh UJK, Low BC. BNIP2 extra long inhibits RhoA and cellular transformation by Lbc RhoGEF via its BCH domain. J Cell Sci 2008; 121:1739-49. [DOI: 10.1242/jcs.021774] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased expression of BCH-motif-containing molecule at the C-terminal region 1 (BMCC1) correlates with a favourable prognosis in neuroblastoma, but the underlying mechanism remains unknown. We here isolated BNIPXL (BNIP2 Extra Long) as a single contig of the extended, in-vitro-assembled BMCC1. Here, we show that in addition to homophilic interactions, the BNIP2 and Cdc42GAP homology (BCH) domain of BNIPXL interacts with specific conformers of RhoA and also mediates association with the catalytic DH-PH domains of Lbc, a RhoA-specific guanine nucleotide exchange factor (RhoGEF). BNIPXL does not recognize the constitutive active G14V and Q63L mutants of RhoA but targets the fast-cycling F30L and the dominant-negative T19N mutants. A second region at the N-terminus of BNIPXL also targets the proline-rich region of Lbc. Whereas overexpression of BNIPXL reduces active RhoA levels, knockdown of BNIPXL expression has the reverse effect. Consequently, BNIPXL inhibits Lbc-induced oncogenic transformation. Interestingly, BNIPXL can also interact with RhoC, but not with RhoB. Given the importance of RhoA and RhoGEF signaling in tumorigenesis, BNIPXL could suppress cellular transformation by preventing sustained Rho activation in concert with restricting RhoA and Lbc binding via its BCH domain. This could provide a general mechanism for regulating RhoGEFs and their target GTPases.
Collapse
Affiliation(s)
- Unice J. K. Soh
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Boon Chuan Low
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| |
Collapse
|
38
|
Matsuda C, Kameyama K, Suzuki A, Mishima W, Yamaji S, Okamoto H, Nishino I, Hayashi YK. Affixin activates Rac1 via βPIX in C2C12 myoblast. FEBS Lett 2008; 582:1189-96. [DOI: 10.1016/j.febslet.2008.01.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/31/2008] [Indexed: 01/15/2023]
|
39
|
Yano H, Kobayashi I, Onodera Y, Luton F, Franco M, Mazaki Y, Hashimoto S, Iwai K, Ronai Z, Sabe H. Fbx8 makes Arf6 refractory to function via ubiquitination. Mol Biol Cell 2007; 19:822-32. [PMID: 18094045 DOI: 10.1091/mbc.e07-08-0763] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The small GTP-binding protein Arf6 regulates membrane remodeling at cell peripheries and plays crucial roles in higher orders of cellular functions including tumor invasion. Here we show that Fbx8, an F-box protein bearing the Sec7 domain, mediates ubiquitination of Arf6. This ubiquitination did not appear to be linked to immediate proteasomal degradation of Arf6, whereas Fbx8 knockdown caused hyperactivation of Arf6. Expression of Fbx8 protein was substantially lost in several breast tumor cell lines, in which Arf6 activity is pivotal for their invasion. Forced expression of Fbx8 in these cells suppressed their Arf6 activities and invasive activities, in which the F-box and Sec7 domains of Fbx8 are required. Together with the possible mechanism as to how Fbx8-mediated ubiquitination interferes with the functions of Arf6, we propose that Fbx8 provides a novel suppressive control of Arf6 activity through noncanonical ubiquitination. Our results indicate that dysfunction of Fbx8 expression may contribute to the invasiveness of some breast cancer cells.
Collapse
Affiliation(s)
- Hajime Yano
- Department of Molecular Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chhatriwala MK, Betts L, Worthylake DK, Sondek J. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 2007; 368:1307-20. [PMID: 17391702 PMCID: PMC1890047 DOI: 10.1016/j.jmb.2007.02.060] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 12/20/2022]
Abstract
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.
Collapse
Affiliation(s)
- Mariya K Chhatriwala
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
41
|
Morley S, Wagner J, Kauppinen K, Sherman M, Manor D. Requirement for Akt-mediated survival in cell transformation by the dbl oncogene. Cell Signal 2007; 19:211-8. [PMID: 16916597 DOI: 10.1016/j.cellsig.2006.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/29/2006] [Indexed: 01/20/2023]
Abstract
The dbl oncogene product is the founding member of a large family of oncogenic proteins that function by activating the small GTP-binding proteins Cdc42, Rac and Rho. Through its substrate GTPases, Dbl transduces proliferative signals from cell-surface receptors to diverse cellular effectors and signaling pathways. The mechanisms by which these multiple signals are integrated, as well as their relative contribution to Dbl-induced cell transformation, are presently poorly understood. We investigated the role of the survival regulators PI3-kinase and Akt in Dbl-induced cell transformation. We found that Dbl induced the phosphorylation of Akt on threonine 308, through the GTPases Rac and Cdc42 and in a PI3-kinase dependent manner. Pharmacological or biochemical interference with this pathway lead to a marked, dose-dependent inhibition of the focus formation activity exhibited by Dbl-expressing cells. Dbl expression stimulated the phosphorylation of the anti-apoptotic Akt substrate Bad, and caused a marked decrease in basal levels of apoptosis. Finally, we found that activated Cdc42 existed in cells in complex with phosphoionositide-dependent kinase-1 (PDK1), the downstream mediator of PI3-kinase action. The data indicate that Dbl signaling stimulate the formation of a novel survival complex, through which anti-apoptotic signals are generated and propagated.
Collapse
Affiliation(s)
- S Morley
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
42
|
Kamynina E, Kauppinen K, Duan F, Muakkassa N, Manor D. Regulation of proto-oncogenic dbl by chaperone-controlled, ubiquitin-mediated degradation. Mol Cell Biol 2006; 27:1809-22. [PMID: 17178836 PMCID: PMC1820456 DOI: 10.1128/mcb.01051-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbl's amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto-Dbl is regulated by interactions with the chaperones Hsc70 and Hsp90 and the protein-ubiquitin ligase CHIP, and these interactions are mediated by the spectrin domain of proto-Dbl. We show that CHIP is the E3 ligase responsible for ubiquitination and proteasomal degradation of proto-Dbl, while Hsp90 functions to stabilize the protein. Onco-Dbl, lacking the spectrin homology domain, cannot bind these regulators and therefore accumulates in cells at high levels, leading to persistent stimulation of its downstream signaling pathways.
Collapse
Affiliation(s)
- Elena Kamynina
- Case School of Medicine, WG-48, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
43
|
Baumeister M, Rossman K, Sondek J, Lemmon M. The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 2006; 400:563-72. [PMID: 17007612 PMCID: PMC1698603 DOI: 10.1042/bj20061020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 01/17/2023]
Abstract
Dbl family GEFs (guanine nucleotide-exchange factors) for the Rho GTPases almost invariably contain a PH (pleckstrin homology) domain adjacent to their DH (Dbl homology) domain. The DH domain is responsible for GEF activity, and the PH domain plays a regulatory role that remains poorly understood. We demonstrated previously that Dbl family PH domains bind phosphoinositides with low affinity and cannot function as independent membrane targeting modules. In the present study, we show that dimerization of a Dbs (Dbl's big sister) DH/PH domain fragment is sufficient to drive it to the plasma membrane through a mechanism involving PH domain-phosphoinositide interactions. Thus, the Dbs PH domain could play a significant role in membrane targeting if it co-operates with other domains in the protein. We also show that mutations that prevent phosphoinositide binding by the Dbs PH domain significantly impair cellular GEF activity even in chimaeric proteins that are robustly membrane targeted by farnesylation or by the PH domain of phospholipase C-delta1. This finding argues that the Dbs PH domain plays a regulatory role that is independent of its ability to aid membrane targeting. Thus, we suggest that the PH domain plays dual roles, contributing independently to membrane localization of Dbs (as part of a multi-domain interaction) and allosteric regulation of the DH domain.
Collapse
Key Words
- dbl's big sister (dbs)
- guanine nucleotide exchange factor (gef)
- membrane targeting
- pleckstrin homology (ph) domain
- phosphoinositide
- rho
- bs3, bis(sulfosuccinimidyl) suberate
- dbs, dbl's big sister
- dh, dbl homology
- dmem, dulbecco's modified eagle's medium
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- fkbp, fk506-binding protein
- gef, guanine nucleotide-exchange factor
- gst, glutathione s-transferase
- h-ras, harvey-ras
- pak1, p21-activated protein kinase
- pbd, p21-binding domain
- ph, pleckstrin homology
- plc, phospholipase-c
- ptdins3p, phosphatidylinositol-3-phosphate
- ptdins(4,5)p2, phosphatidylinositol-4,5-bisphosphate
- ras-grf, ras guanine-nucleotide releasing factor
- rbd, rho-binding domain
- sh3, src homology 3
- spr, surface plasmon resonance
- ttbs, tris-buffered saline containing 0.1% triton x-100
Collapse
Affiliation(s)
- Mark A. Baumeister
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- †Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Kent L. Rossman
- ‡Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - John Sondek
- §Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Mark A. Lemmon
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
44
|
Otani T, Ichii T, Aono S, Takeichi M. Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. ACTA ACUST UNITED AC 2006; 175:135-46. [PMID: 17015620 PMCID: PMC2064505 DOI: 10.1083/jcb.200605012] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epithelial cells are typically arranged in a honeycomb-like pattern, minimizing their cell–cell contact areas, which suggests that some tension operates for shaping of the cell boundaries. However, the molecular mechanisms that generate such tension remain unknown. We found that Tuba, which is a Cdc42-specific GEF, was concentrated at the apical-most region of cell junctions in simple epithelia via its interaction with ZO-1. RNAi–mediated depletion of Tuba altered the geometrical configuration of cell junctions, resulting in a curved and slack appearance. At the subcellular level, Tuba inactivation modified the assembly pattern of junctional F-actin and E-cadherin. Tuba RNAi also retarded cell junction formation in calcium-switch experiments. Suppression of Cdc42 activity or depletion of N-WASP, which is an effector of Cdc42, mimicked the effects of Tuba depletion. Conversely, overexpression of dominant-active Cdc42 or N-WASP enhanced the junction formation of Tuba-depleted cells. These results suggest that Tuba controls the shaping of cell junctions through the local activation of Cdc42 and its effectors.
Collapse
Affiliation(s)
- Tetsuhisa Otani
- Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
45
|
Kostenko EV, Olabisi OO, Sahay S, Rodriguez PL, Whitehead IP. Ccpg1, a novel scaffold protein that regulates the activity of the Rho guanine nucleotide exchange factor Dbs. Mol Cell Biol 2006; 26:8964-75. [PMID: 17000758 PMCID: PMC1636807 DOI: 10.1128/mcb.00670-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) with in vitro exchange activity specific for RhoA and Cdc42. Like many RhoGEF family members, the in vivo exchange activity of Dbs is restricted in a cell-specific manner. Here we report the characterization of a novel scaffold protein (designated cell cycle progression protein 1 [Ccpg1]) that interacts with Dbs and modulates its in vivo exchange specificity. When coexpressed in mammalian cells, Ccpg1 binds to the Dbl homology/pleckstrin homology domain tandem motif of Dbs and inhibits its exchange activity toward RhoA, but not Cdc42. Expression of Ccpg1 correlates with the ability of Dbs to activate endogenous RhoA in cultured cells, and suppression of endogenous Ccpg1 expression potentiates Dbs exchange activity toward RhoA. The isolated Dbs binding domain of Ccpg1 is not sufficient to suppress Dbs exchange activity on RhoA, thus suggesting a regulatory interaction. Ccpg1 mediates recruitment of endogenous Src kinase into Dbs-containing complexes and interacts with the Rho family member Cdc42. Collectively, our studies suggest that Ccpg1 represents a new class of regulatory scaffold protein that can function as both an assembly platform for Rho protein signaling complexes and a regulatory protein which can restrict the substrate utilization of a promiscuous RhoGEF family member.
Collapse
Affiliation(s)
- Elena V Kostenko
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|
46
|
Nahm M, Lee M, Baek SH, Yoon JH, Kim HH, Lee ZH, Lee S. Drosophila RhoGEF4 encodes a novel RhoA-specific guanine exchange factor that is highly expressed in the embryonic central nervous system. Gene 2006; 384:139-44. [PMID: 17011730 DOI: 10.1016/j.gene.2006.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/17/2006] [Accepted: 07/21/2006] [Indexed: 11/28/2022]
Abstract
Rho family small GTPases act as molecular switches that regulate neuronal morphogenesis, including axon growth and guidance, dendritic spine formation, and synapse formation. These proteins are positively regulated by guanine nucleotide exchange factors (GEFs) of the Dbl family. This study describes the identification and characterization of Drosophila RhoGEF4 (DRhoGEF4), a novel Dbl family protein that is specifically expressed in the central nervous system during Drosophila embryogenesis. The predicted amino acid sequence of DRhoGEF4 contains a Dbl homology (DH) domain and an adjacent C-terminal pleckstrin homology (PH) domain, which are most closely related to those of mammalian frabins. In this study, the DH-PH motif is shown to enhance the dissociation of GDP from either RhoA or Rac1 but not from Cdc42 in vitro. In addition, p21-binding domain pull-down assays demonstrate that DRhoGEF4 activates RhoA, but neither Rac1 nor Cdc42 in HEK293 cells. Finally, overexpression of DRhoGEF4 is able to induce assembly of stress fibers in cultured NIH3T3 cells. Taken together, these findings suggest that DRhoGEF4 may participate in cytoskeleton-related cellular events by specifically activating RhoA in neuronal morphogenesis.
Collapse
Affiliation(s)
- Minyeop Nahm
- Interdisciplinary Program in Brain Science, School of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Mohl M, Winkler S, Wieland T, Lutz S. Gef10--the third member of a Rho-specific guanine nucleotide exchange factor subfamily with unusual protein architecture. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:333-41. [PMID: 16896804 DOI: 10.1007/s00210-006-0083-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
According to cDNA sequence homologies, Gef10 is related to the Rho-specific guanine nucleotide exchange factors GrinchGEF and p164-RhoGEF. Like these GEFs, Gef10 exhibits only weak homology to known pleckstrin homology domains, but contains a putative WD40-like domain. As detected by RT-PCR, Gef10 is transcribed in at least two splice variants in different human tissues. Although the Gef10 sequence contains two putative transmembrane segments, recombinantly expressed Gef10 displays a cytosolic localisation. As detected by guanine nucleotide exchange activity assay, precipitation assay of GTP-bound Rho proteins and serum response element dependent gene transcription Gef10 activates RhoA-C, but not Rac1 or Cdc42. In the reporter gene assay, Gef10 preferentially activated RhoB. When expressed in NIH3T3 cells, Gef10 induced actin stress fibre, but not lamellipodia or filopodia formation. We conclude that Gef10 is the third member of a Rho-specific GEF family with unusual protein architecture.
Collapse
Affiliation(s)
- M Mohl
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Heidelberg, Maybachstr 14, D-68169 Mannheim, Germany
| | | | | | | |
Collapse
|
48
|
Longhurst DM, Watanabe M, Rothstein JD, Jackson M. Interaction of PDZRhoGEF with Microtubule-associated Protein 1 Light Chains. J Biol Chem 2006; 281:12030-40. [PMID: 16478718 DOI: 10.1074/jbc.m513756200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rat (r) PDZRhoGEF, initially identified as a glutamate transporter EAAT4-associated protein, is a member of a novel RhoGEF subfamily. The N terminus of the protein contains a PDZ and a proline-rich domain, two motifs known to be involved in protein-protein interactions. By using the yeast two-hybrid approach, we screened for proteins that interact with the N terminus of rPDZRhoGEF. The light chain 2 of microtubule-associated protein 1 (LC2) was the only protein identified from the screen that does not contain a type I PDZ-binding motif at its extreme C terminus (-(S/T)Xphi-COOH, where phi is a hydrophobic amino acid). However, the C terminus does conform to a type II-binding motif (-phiXphi). We report here that rPDZRhoGEF interacts with LC2 via the PDZ domain, and the interaction is abolished by mutations in the carboxylate-binding loop. The specificity of the interaction was confirmed using GST fusion protein pull-down assays and coimmunoprecipitations. Expression of rPDZRhoGEF mutants that are unable to interact with proteins via the carboxylate-binding loop induced changes in cell morphology and actin organization. These mutants alter the activation of RhoGTPases, and coexpression of dominant-negative RhoGTPases prevent the morphological changes. Furthermore, in cells expressing wild type rPDZRhoGEF, drug-induced microtubule depolymerization produces changes in cell morphology that are similar to those induced by rPDZRhoGEF mutants. These results indicate that modulation of the guanine nucleotide exchange activity of rPDZRhoGEF through interaction with microtubule-associated protein light chains may coordinate microtubule integrity and the reorganization of actin cytoskeleton. This coordinated action of the actin and microtubular cytoskeletons is essential for the development and maintenance of neuronal polarity.
Collapse
Affiliation(s)
- David M Longhurst
- Centre for Neuroscience Research, the University of Edinburgh, Edinburgh EH9 1QH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
49
|
Barale S, McCusker D, Arkowitz RA. Cdc42p GDP/GTP cycling is necessary for efficient cell fusion during yeast mating. Mol Biol Cell 2006; 17:2824-38. [PMID: 16571678 PMCID: PMC1475363 DOI: 10.1091/mbc.e05-11-1040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.
Collapse
Affiliation(s)
- Sophie Barale
- *Institute of Signaling, Developmental Biology, and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France; and
| | - Derek McCusker
- Department of Biology, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064
| | - Robert A. Arkowitz
- *Institute of Signaling, Developmental Biology, and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France; and
| |
Collapse
|
50
|
Hashimoto S, Hashimoto A, Yamada A, Onodera Y, Sabe H. Assays and properties of the ArfGAPs, AMAP1 and AMAP2, in Arf6 function. Methods Enzymol 2006; 404:216-31. [PMID: 16413272 DOI: 10.1016/s0076-6879(05)04021-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The GTPase-activating protein (GAP) domain for Arfs primarily consists of a zinc-finger structure, which is not present in known GAPs for the other Ras-superfamily GTPases. More than 20 genes have been found to encode proteins bearing the ArfGAP domain in the human genome: a number that is much larger than that of the Arf isoforms. Several Arf isoforms, such as Arf1 and Arf6, indeed have been shown to each employ multiple different ArfGAPs for their regulation and function. We have found that two ArfGAPs, namely AMAP1 and AMAP2, exhibit a novel biochemical property of directly and selectively binding to GTP-Arf6 without immediate GAPing activity, while they were previously shown to exhibit efficient catalytic GAPing activities to Arf isoforms except Arf6 in vitro. Such property of AMAPs appears to be important for AMAPs-mediated recruitment of auxiliary molecules, including paxillin, cortactin, amphiphysin, and intersectin, to sites of Arf6 activation. AMAPs thus appear to act as "effectors" rather than simple GAPs in some aspects of Arf6 function. This article presents methods and protocols developed for the functional characterization of AMAPs in Arf6 function. These methods may be applied to other types of ArfGAPs to further clarify the cellular functions of ArfGAPs as well as Arfs.
Collapse
|