1
|
Bousch JF, Beyersdorf C, Schultz K, Windolf J, Suschek CV, Maus U. Proinflammatory Cytokines Enhance the Mineralization, Proliferation, and Metabolic Activity of Primary Human Osteoblast-like Cells. Int J Mol Sci 2024; 25:12358. [PMID: 39596421 PMCID: PMC11594863 DOI: 10.3390/ijms252212358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoporosis is a progressive metabolic bone disease characterized by decreased bone density and microarchitectural deterioration, leading to an increased risk of fracture, particularly in postmenopausal women and the elderly. Increasing evidence suggests that inflammatory processes play a key role in the pathogenesis of osteoporosis and are strongly associated with the activation of osteoclasts, the cells responsible for bone resorption. In the present study, we investigated, for the first time, the influence of proinflammatory cytokines on the osteogenic differentiation, proliferation, and metabolic activity of primary human osteoblast-like cells (OBs) derived from the femoral heads of elderly patients. We found that all the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and IL-8, enhanced the extracellular matrix mineralization of OBs under differentiation-induced cell culture conditions. In the cases of IL-1β and TNF-α, increased mineralization was correlated with increased osteoblast proliferation. Additionally, IL-1β- and TNF-α-increased osteogenesis was accompanied by a rise in energy metabolism due to improved glycolysis or mitochondrial respiration. In conclusion, we show here, for the first time, that, in contrast to findings obtained with cell lines, mesenchymal stem cells, or animal models, human OBs obtained from patients exhibited significantly enhanced osteogenesis upon exposure to proinflammatory cytokines, probably in part via a mechanism involving enhanced cellular energy metabolism. This study significantly contributes to the field of osteoimmunology by examining a clinically relevant cell model that can help to develop treatments for inflammation-related metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Uwe Maus
- Department for Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany; (J.F.B.); (C.B.); (K.S.); (J.W.); (C.V.S.)
| |
Collapse
|
2
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
3
|
Yu DH, Lin Q, Fan C, Skinner JT, Thiboutot JP, Yarmus LB, Johns RA. Resistin Pathway as Novel Mechanism of Post-lung Transplantation Bronchial Stenosis. J Bronchology Interv Pulmonol 2024; 31:30-38. [PMID: 37202855 DOI: 10.1097/lbr.0000000000000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/11/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bronchial stenosis remains a significant source of morbidity among lung transplant recipients. Though infection and anastomotic ischemia have been proposed etiologies of the development of bronchial stenosis, the pathophysiologic mechanism has not been well elucidated. METHODS In this single-centered prospective study, from January 2013 through September 2015, we prospectively collected bronchoalveolar lavage (BAL) and endobronchial epithelial brushings from the direct anastomotic site of bronchial stenosis of bilateral lung transplant recipients who developed unilateral post-transplant bronchial stenosis. Endobronchial epithelial brushings from the contralateral anastomotic site without bronchial stenosis and BAL from bilateral lung transplant recipients who did not develop post-transplant bronchial stenosis were used as controls. Total RNA was isolated from the endobronchial brushings and real-time polymerase chain reaction reactions were performed. Electrochemiluminescence biomarker assay was used to measure 10 cytokines from the BAL. RESULTS Out of 60 bilateral lung transplant recipients, 9 were found to have developed bronchial stenosis with 17 samples adequate for analysis. We observed a 1.56 to 70.8 mean-fold increase in human resistin gene expression in the anastomotic bronchial stenosis epithelial cells compared with nonstenotic airways. Furthermore, IL-1β (21.76±10.96 pg/mL; control 0.86±0.44 pg/mL; P <0.01) and IL-8 levels (990.56±326.60 pg/mL; control 20.33±1.17 pg/mL; P <0.01) were significantly elevated in the BAL of the lung transplant patients who developed anastomotic bronchial stenosis. CONCLUSION Our data suggest that the development of postlung transplantation bronchial stenosis may be in part mediated through the human resistin pathway by IL-1β induced transcription factor nuclear factor-κβ activation and downstream upregulation of IL-8 in alveolar macrophages. Further study is needed in the larger patient cohorts and to determine its potential therapeutic role in the management of post-transplant bronchial stenosis.
Collapse
Affiliation(s)
- Diana H Yu
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, CA
| | - Qing Lin
- Department of Anesthesiology and Critical Care
| | | | | | - Jeffrey P Thiboutot
- Division of Pulmonary and Critical Care Medicine, Section of Interventional Pulmonology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lonny B Yarmus
- Division of Pulmonary and Critical Care Medicine, Section of Interventional Pulmonology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
4
|
Roos K, Berkholz J. LDL Affects the Immunomodulatory Response of Endothelial Cells by Modulation of the Promyelocytic Leukemia Protein (PML) Expression via PKC. Int J Mol Sci 2023; 24:ijms24087306. [PMID: 37108469 PMCID: PMC10138343 DOI: 10.3390/ijms24087306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to its function as an intravascular lipid transporter, LDL also triggers signal transduction in endothelial cells (ECs), which, among other things, trigger immunomodulatory cascades, e.g., IL-6 upregulation. However, the molecular mechanisms of how these LDL-triggered immunological responses in ECs are realized are not fully understood. Since promyelocytic leukemia protein (PML) plays a role in promoting inflammatory processes, we examined the relationship between LDL, PML, and IL-6 in human ECs (HUVECs and EA.hy926 cells). RT-qPCR, immunoblotting, and immunofluorescence analyses showed that LDL but not HDL induced higher PML expression and higher numbers of PML-nuclear bodies (PML-NBs). Transfection of the ECs with a PML gene-encoding vector or PML-specific siRNAs demonstrated PML-regulated IL-6 and IL-8 expression and secretion after LDL exposure. Moreover, incubation with the PKC inhibitor sc-3088 or the PKC activator PMA showed that LDL-induced PKC activity leads to the upregulation of PML mRNA and PML protein. In summary, our experimental data suggest that high LDL concentrations trigger PKC activity in ECs to upregulate PML expression, which then increases production and secretion of IL-6 and IL-8. This molecular cascade represents a novel cellular signaling pathway with immunomodulatory effects in ECs in response to LDL exposure.
Collapse
Affiliation(s)
- Kerrin Roos
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Janine Berkholz
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| |
Collapse
|
5
|
Parupalli R, Akunuri R, Spandana A, Phanindranath R, Pyreddy S, Bazaz MR, Vadakattu M, Joshi SV, Bujji S, Gorre B, Yaddanapudi VM, Dandekar MP, Reddy VG, Nagesh N, Nanduri S. Synthesis and biological evaluation of 1-phenyl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-one/thiones as anticancer agents. Bioorg Chem 2023; 135:106478. [PMID: 36958121 DOI: 10.1016/j.bioorg.2023.106478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Cancer is associated with uncontrolled cell proliferation invading adjoining tissues and organs. Despite the availability of several chemotherapeutic agents, the constant search for newer approaches and drugs is necessitated owing to the ever-growing challenge of resistance. Over the years, DNA has emerged as an important druggable therapeutic drug due to its role in critical cellular processes such as cell division and maintenance. Further, evading apoptosis stands out as a hallmark of cancer. Hence, designing new compounds that would target DNA and induce apoptosis plays an important role in cancer therapy. In the current work, we carried out the synthesis and anticancer evaluation of 1-aryl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-ones/thiones (26 compounds) against selected human cancer cell lines. Among these, compounds 8ae, 8ad, 8cf, 10ad and Kenpaullone have shown good inhibitory properties against HeLa cells (IC50 < 2 µM) with good selectivity over the non-cancerous human embryonic kidney (Hek293T) cells. In cell cycle analysis, the compounds 8ad and 8cf have exhibited G2/M cell cycle arrest in HeLa cells. In addition, the compounds 8ad and 8cf induced apoptosis in a dose-dependent manner in the Annexin-V FITC staining assay. The DAPI staining clearly demonstrated the condensed and fragmented nuclei in 8ad, 8cf, 8ae and Kenpaullone-treated HeLa cells. In addition, these compounds strongly suppressed the healing after 48 h in in vitro cell migration assay. The DNA binding experiments indicated that compounds 8ae, 8cf, and 8ad as well as Kenpaullone interact with double-stranded DNA by binding in grooves which may interrupt the DNA replication and kill fast-growing cells. Molecular docking studies revealed the binding pose of 8ad and Kenpaullone at HT1 binding pocket of double-stranded DNA. Compounds 8ad and 8cf demonstrated moderate topo II inhibition which could be a possible reason for their anticancer properties. Compounds 8ad and 8cf may cause the topo II and DNA covalent complex, which leads to the inhibition of DNA replication and transcription. This eventually increases the DNA damage in cells and promotes cell apoptosis. With the above interesting biological profile, the new 1-aryl-2,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(4H)-one/thione derivatives have emerged as promising leads for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Ramulu Parupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India
| | - Ravikumar Akunuri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India
| | - Akella Spandana
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Suneela Pyreddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Mohd Rabi Bazaz
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manasa Vadakattu
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India
| | - Sushmitha Bujji
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India
| | - Balakishan Gorre
- Department of Chemistry, University College of Sciences, Main Campus, Telangana University, Dichpally, Nizamabad 503322, Telangana State, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721, AZ, USA.
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India.
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana State, India.
| |
Collapse
|
6
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
7
|
Matsushima K, Shichino S, Ueha S. Thirty-five years since the discovery of chemotactic cytokines, interleukin-8 and MCAF: A historical overview. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:213-226. [PMID: 37518010 DOI: 10.2183/pjab.99.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Inflammation is a host defense response to various invading stimuli, but an excessive and persistent inflammatory response can cause tissue injury, which can lead to irreversible organ damage and dysfunction. Excessive inflammatory responses are believed to link to most human diseases. A specific type of leukocyte infiltration into invaded tissues is required for inflammation. Historically, the underlying molecular mechanisms of this process during inflammation were an enigma, compromising research in the fields of inflammation, immunology, and pathology. However, the pioneering discovery of chemotactic cytokines (chemokines), monocyte-derived neutrophil chemotactic factor (MDNCF; interleukin [IL]-8, CXCL8) and monocyte chemotactic and activating factor (MCAF; monocyte chemotactic factor 1 [MCP-1], CCL2) in the late 1980s finally enabled us to address this issue. In this review, we provide a historical overview of chemokine research over the last 35 years.
Collapse
Affiliation(s)
- Kouji Matsushima
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammation and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science
| |
Collapse
|
8
|
Barter MJ, Butcher A, Wang H, Tsompani D, Galler M, Rumsby EL, Culley KL, Clark IM, Young DA. HDAC6 regulates NF-κB signalling to control chondrocyte IL-1-induced MMP and inflammatory gene expression. Sci Rep 2022; 12:6640. [PMID: 35459919 PMCID: PMC9033835 DOI: 10.1038/s41598-022-10518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated pro-inflammatory signalling coupled with catabolic metalloproteinase expression is a common feature of arthritis, leading to cartilage damage, deterioration of the joint architecture and the associated pain and immobility. Countering these processes, histone deacetylase inhibitors (HDACi) have been shown to suppress matrix metalloproteinase (MMP) expression, block cytokine-induced signalling and reduce the cartilage degradation in animal models of the arthritis. In order to establish which specific HDACs account for these chondro-protective effects an HDAC1-11 RNAi screen was performed. HDAC6 was required for both the interleukin (IL)-1 induction of MMP expression and pro-inflammatory interleukin expression in chondrocytes, implicating an effect on NF-κB signalling. Depletion of HDAC6 post-transcriptionally up-regulated inhibitor of κB (IκB), prevented the nuclear translocation of NF-κB subunits and down-regulated NF-κB reporter activation. The pharmacological inhibition of HDAC6 reduced MMP expression in chondrocytes and cartilage collagen release. This work highlights the important role of HDAC6 in pro-inflammatory signalling and metalloproteinase gene expression, and identifies a part for HDAC6 in the NF-κB signalling pathway. By confirming the protection of cartilage this work supports the inhibition of HDAC6 as a possible therapeutic strategy in arthritis.
Collapse
Affiliation(s)
- Matt J Barter
- Biosciences Institute, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Andrew Butcher
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Dimitra Tsompani
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Martin Galler
- Biosciences Institute, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ellen L Rumsby
- Northern Care Alliance NHS Foundation Trust, Mayo Building, Salford Royal, Stott Lane, Salford, M6 8HD, UK
| | - Kirsty L Culley
- Anglia Innovation Partnership LLP, Centrum, Norwich Research Park, Norwich, UK
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David A Young
- Biosciences Institute, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
9
|
Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022; 153:155828. [PMID: 35247648 DOI: 10.1016/j.cyto.2022.155828] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Early in the 1980s several laboratories mistakenly reported that partially purified interleukin-1 (IL-1) was chemotactic for neutrophils. However, further investigations by us, revealed that our purified IL-1 did not have neutrophil chemotactic activity and this activity in the LPS-stimulated human monocyte conditioned media could clearly be separated from IL-1 activity on HPLC gel filtration. This motivated Teizo Yoshimura and Kouji Matsushima to purify the monocyte-derived neutrophil chemotactic factor (MDNCF), present in LPS conditioned media and molecularly clone the cDNA for MDNCF. They found that MDNCF protein (later renamed IL-8, and finally termed CXCL8) is first translated as a precursor form consisting of 99 amino acid residues and the signal peptide is then removed, leading to the secretion and processing of biologically active IL-8 of 72 amino acid form (residues 28-99). There are four cysteine residues forming two disulfide linkage and 14 basic amino acid residues which result in a very basic property for the binding of IL-8 to heparan sulfate-proteoglycan. The IL-8 gene consists of 4 exons and 3 introns. IL-8 is produced by various types of cells in inflammation. The 5'-flanking region of IL-8 gene contains several nuclear factor binding sites, and NF-κB in combination with AP-1 or C/EBP synergistically activates IL-8 gene in response to IL-1 and TNFα. Two receptors exist for IL-8, CXCR1 and CXCR2 in humans, which belong to γ subfamily of GTP binding protein (G-protein) coupled rhodopsin-like 7 transmembrane domain receptors. Rodents express CXCR2 and do not produce IL-8, but produce numerous homologues instead. Once IL-8 binds to the receptor, β and γ subunits of G-protein are released from Gα (Gαi2 in neutrophils) and activate PI3Kγ, PLCβ2/β3, PLA2 and PLD. Gαi2 inhibits adenyl cyclase to decrease cAMP levels. Small GTPases Ras/Rac/Rho/cdc42/Rap1, PKC and AKT (PKB) exist down-stream of β and γ subunits and regulate cell adhesion, actin polymerization, membrane protrusion, and eventually cell migration. PLCβ activation generates IP3 and induces Ca++ mobilization, DAG generation to activate protein kinase C to lead granule exocytosis and respiratory burst. MDNCF was renamed interleukin 8 (IL-8) at the International Symposium on Novel Neutrophil Chemotactic Activating Polypeptides, London, UK in 1989. The discovery of IL-8 prompted us to also purify and molecularly clone the cDNA of MCAF/MCP-1 responsible for monocyte chemotaxis, and other groups to identify a large family of chemotactic cytokines capable of attracting other types of leukocytes. In 1992, most of the investigators contributing to the discovery of this new family of chemotactic cytokines gathered in Baden, Austria and agreed to name this family "chemokines" and subsequently established the CXCL/CCL and CXCR/CCR nomenclature. The discovery of chemokines resulted in solving the long-time enigma concerning the mechanism of cell type specific leukocyte infiltration into inflamed tissues and provided a molecular basis for immune and hematopoietic cell migration and interactions under physiological as well as pathological conditions. To our surprise based on its recently identified multifunctional activities, IL-8 has evolved from a neutrophil chemoattractant to a promising therapeutic target for a wide range of inflammatory and neoplastic diseases. IL-8 was initially characterized as a chemoattractant of neutrophils engaged in acute inflammation and then discovered to also be chemotactic for endothelial cells with a major role in angiogenesis. These two activities of IL-8 foster its stimulatory effect on tumor growth. This is abetted by recent additional discoveries showing that IL-8 has stimulatory effects on stem cells and can therefore directly promote the growth of receptor expressing cancer stem cells. IL-8 by interacting with bone marrow stem/progenitor cells has also the capacity to mobilize and release hematopoietic cells into the peripheral circulation. This includes the mobilization of neutrophilic myeloid-derived suppressor cells (N-MDSC) to infiltrate into tumors and thus further promotes the immune escape of tumors. Finally, the capacity of IL-8 to induce trans-differentiation of epithelial cancer cells into mesenchymal phenotype (EMT) increases the malignancy of tumors by promoting their metastatic spread and resistance to chemotherapeutics and cytotoxic immune cells. These observations have stimulated considerable current efforts to develop receptor antagonists for IL-8 and humanized anti-IL-8 antibody for the therapy of cancer, particularly in combination with immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies.
Collapse
Affiliation(s)
- Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joost J Oppenheim
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
10
|
Yoo J, Kim H, Lim YM, Yoon BI, Kim P, Eom IC, Shim I. Pulmonary toxicity of sodium dichloroisocyanurate after intratracheal instillation in sprague-dawley rats. Hum Exp Toxicol 2022; 41:9603271221106336. [PMID: 35675544 DOI: 10.1177/09603271221106336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In water, sodium dichloroisocyanurate (NaDCC), a source for chlorine gas generation, releases free available chlorine in the form of hypochlorous acid, a strong oxidizing agent. NaDCC has been used as a disinfectant in humidifiers; however, its inhalation toxicity is a concern. Seven-week-old rats were exposed to NaDCC doses of 100, 500, and 2500 μg·kg-1 body weight by intratracheal instillation (ITI) to investigate pulmonary toxicity. The rats were sacrificed at 1 d (exposure group) or 14 d (recovery group) after ITI. Despite a slight decrease in body weight after exposure, there was no statistically significant difference between the control and NaDCC-treated groups. A significant increase in the total protein level of the bronchoalveolar lavage fluid (BALF) was observed in the exposure groups. Lactate dehydrogenase leakage into the BALF increased significantly (p < 0.01) in the exposure groups; however, recovery was observed after 14 d. The measurement of cytokines in the BALF samples indicated a significant increase in interleukin (IL)-6 in the exposure group and IL-8 in the recovery group. Histopathological examination revealed inflammatory foci and pulmonary edema around the terminal bronchioles and alveoli. This study demonstrated that ITI of NaDCC induced reversible pulmonary edema and inflammation without hepatic involvement in rats.
Collapse
Affiliation(s)
- Jean Yoo
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Haewon Kim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, 34962Kangwon National University, Chuncheon, Korea
| | - Pilje Kim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Ilseob Shim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| |
Collapse
|
11
|
Li X, Tang X, Wang Y, Chai C, Zhao Z, Zhang H, Peng Y, Wu L. CS-semi5 Inhibits NF-κB Activation to Block Synovial Inflammation, Cartilage Loss and Bone Erosion Associated With Collagen-Induced Arthritis. Front Pharmacol 2021; 12:655101. [PMID: 34305585 PMCID: PMC8298759 DOI: 10.3389/fphar.2021.655101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects 1% of the population. CS-semi5 is a semisynthetic chondroitin sulfate. In this study, CS-semi5 was shown to have positive effects on a model of collagen-induced arthritis (CIA). CS-semi5 treatment had obvious effects on weight loss and paw swelling in CIA mice. Post-treatment analysis revealed that CS-semi5 alleviated three main pathologies (i.e., synovial inflammation, cartilage erosion and bone loss) in a dose-dependent manner. Further study showed that CS-semi5 could effectively reduce TNF-α and IL-1β production in activated macrophages via the NF-κB pathway. CS-semi5 also blocked RANKL-trigged osteoclast differentiation from macrophages. Therefore, CS-semi5 may effectively ameliorate synovial inflammation, cartilage erosion and bone loss in RA through NF-κB deactivation.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaonan Tang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufei Wang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changwei Chai
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhehui Zhao
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haijing Zhang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Peng
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianqiu Wu
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Nozaki Y. Iguratimod: Novel Molecular Insights and a New csDMARD for Rheumatoid Arthritis, from Japan to the World. Life (Basel) 2021; 11:life11050457. [PMID: 34065413 PMCID: PMC8160848 DOI: 10.3390/life11050457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Iguratimod (IGU) is a conventional synthetic disease-modifying anti-rheumatic drug (csDMARD) routinely prescribed in Japan since 2012 to patients with rheumatoid arthritis (RA). Iguratimod acts directly on B cells by inhibiting the production of inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, IL-17), thereby suppressing the production of immunoglobulin and inhibiting the activity of nuclear factor kappa-light chain enhancer of activated B cells. In Japan, it is one of the most used csDMARDs in daily practice, but it is not recommended as a treatment for RA due to the lack of large-scale evidence established overseas. However, recent reports on the novel pharmacological effects of IGU on lymphocytes and synovial fibroblasts, as well as its efficacy in daily practice, have increased its importance as a drug for the treatment of RA. In this review, we highlighted the basic and clinical studies in IGU and discuss its potential as a new therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
13
|
Akunuri R, Vadakattu M, Bujji S, Veerareddy V, Madhavi YV, Nanduri S. Fused-azepinones: Emerging scaffolds of medicinal importance. Eur J Med Chem 2021; 220:113445. [PMID: 33901899 DOI: 10.1016/j.ejmech.2021.113445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Hymenialdisine an alkaloid of oroidin class has drawn the attention of researchers owing to its unique structural features and interesting biological properties. Hymenialdisine exhibited promising inhibitory activity against a number of therapeutically important kinases viz., CDKs, GSK-3β etc., and showed anti-cancer, anti-inflammatory, anti-HIV, neuroprotective, anti-fouling, anti-plasmodium properties. Hymenialdisine and other structurally related oroidin alkaloids such as dibromo-hymenialdisine, stevensine, hymenin, axinohydantoin, spongicidines A-D, latonduines and callyspongisines contain pyrrolo[2,3-c] azepin-8-one core in common. Keeping in view of the interesting structural and therapeutic features of HMD, several structural modifications were carried around the fused-azepinone core which resulted in a number of diverse structural motifs like indolo-azepinones, paullones, aza-paullones, darpones and 5,7-dihydro-6H-benzo[b]pyrimido[4,5-d] azepin-6-one. In this review, an attempt is made to collate and review the structures of diverse hymenialdisine and related fused-azepinones of synthetic/natural origin and their biological properties.
Collapse
Affiliation(s)
- Ravikumar Akunuri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Manasa Vadakattu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sushmitha Bujji
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Vaishnavi Veerareddy
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
14
|
Lee AJ, Lim JW, Kim H. Ascorbic Acid Suppresses House Dust Mite-Induced Expression of Interleukin-8 in Human Respiratory Epithelial Cells. J Cancer Prev 2021; 26:64-70. [PMID: 33842407 PMCID: PMC8020177 DOI: 10.15430/jcp.2021.26.1.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
House dust mite (HDM) is one of the significant causes for airway inflammation such as asthma. It induces oxidative stress and an inflammatory response in the lungs through the release of chemokines such as interleukin-8 (IL-8). Reactive oxygen species (ROS) activate inflammatory signaling mediators such as mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors including NF-κB and AP-1. Ascorbic acid shows an antioxidant and anti-inflammatory activities in various cells. It ameliorated the symptoms of HDM-induced rhinitis. The present study was aimed to investigate whether HDM could induce IL-8 expression through activation of MAPKs, NF-κB, and AP-1 and whether ascorbic acid could inhibit HDM-stimulated IL-8 expression by reducing ROS and suppressing activation of MAPKs, NF-κB, and AP-1 in respiratory epithelial H292 cells. H292 cells were treated with HDM (5 μg/mL) in the absence or presence of ascorbic acid (100 or 200 μM). HDM treatment increased ROS levels, and activated MAPKs, NF-κB, and AP-1 and thus, induced IL-8 expression in H292 cells. Ascorbic acid reduced ROS levels and inhibited activation of MAPKs, NF-κB and AP-1 and L-8 expression in H292 cells. In conclusion, consumption of ascorbic acid-rich foods may be beneficial for prevention of HDM-mediated respiratory inflammation by suppressing oxidative stress-mediated MAPK signaling pathways and activation of NF-kB and AP-1.
Collapse
Affiliation(s)
- An Jun Lee
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
15
|
Di Martile M, Farini V, Consonni FM, Trisciuoglio D, Desideri M, Valentini E, D'Aguanno S, Tupone MG, Buglioni S, Ercolani C, Gallo E, Amadio B, Terrenato I, Foddai ML, Sica A, Del Bufalo D. Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages. J Immunother Cancer 2021; 8:jitc-2019-000489. [PMID: 32269145 PMCID: PMC7254128 DOI: 10.1136/jitc-2019-000489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background A bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression. Methods THP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice. Results Higher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+ and CD8+IFNγ+ effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+ macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment. Conclusions Taken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Farini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Tupone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Amadio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics and Bioinformatic Unit-Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Foddai
- Immunohematology and Transfusional Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Sica
- Molecular Immunology Lab, Humanitas Clinical and Research Center, Milan, Italy .,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
16
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
17
|
Kim J, Jung KH, Yoo J, Park JH, Yan HH, Fang Z, Lim JH, Kwon SR, Kim MK, Park HJ, Hong SS. PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis. Biomol Ther (Seoul) 2020; 28:172-183. [PMID: 31739383 PMCID: PMC7059814 DOI: 10.4062/biomolther.2019.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/ AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Jaeho Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Hee Park
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Hong Hua Yan
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Zhenghuan Fang
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Seong-Ryul Kwon
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Myung Ku Kim
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| |
Collapse
|
18
|
B-Cell Activating Factor Enhances Hepatocyte-Driven Angiogenesis via B-Cell CLL/Lymphoma 10/Nuclear Factor-KappaB Signaling during Liver Regeneration. Int J Mol Sci 2019; 20:ijms20205022. [PMID: 31658764 PMCID: PMC6829427 DOI: 10.3390/ijms20205022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
B-cell activating factor (BAFF) is found to be associated with the histological severity of nonalcoholic steatohepatitis (NASH). BAFF was also found to have a protective role in hepatic steatosis via down regulating the expression of steatogenesis genes and enhancing steatosis in hepatocytes through BAFF-R. However, the roles of BAFF during liver regeneration are not well defined. In this study, C57/B6 mice with 70% partial hepatectomy were used as a liver regeneration model. BAFF expression was determined by enzyme immunoassay, and anti-BAFF-neutralizing antibodies were administered to confirm the effects of BAFF on liver regeneration. Western blotting, immunohistochemistry, and florescence staining determined the expression of B-cell CCL/lymphoma 10 (BCL10). The angiogenesis promoting capability was evaluated after the transfection of cells with siRNA targeting BCL10 expression, and the role of NF-κB was assessed. The results revealed that the BAFF and BCL10 levels were upregulated after partial hepatectomy. Treatment with anti-BAFF-neutralizing antibodies caused death in mice that were subjected to 70% partial hepatectomy within 72 h. In vitro, recombinant BAFF protein did not enhance hepatocyte proliferation; however, transfection with BCL10 siRNA arrested hepatocytes at the G2/M phase. Interestingly, conditioned medium from BAFF-treated hepatocytes enhanced angiogenesis and endothelial cell proliferation. Moreover, Matrix metalloproteinase-9 (MMP-9), Fibroblast growth factor 4 (FGF4), and Interleukin-8 (IL-8) proteins were upregulated by BAFF through BCL10/NF-κB signaling. In mice that were treated with anti-BAFF-neutralizing antibodies, the microvessel density (MVD) of the remaining liver tissues and liver regeneration were both reduced. Taken together, our study demonstrated that an increased expression of BAFF and activation of BCL10/NF-κB signaling were involved in hepatocyte-driven angiogenesis and survival during liver regeneration.
Collapse
|
19
|
Morita T, Shima Y, Fujimoto K, Tsuboi H, Saeki Y, Narazaki M, Ogata A, Kumanogoh A. Anti-receptor activator of nuclear factor κB ligand antibody treatment increases osteoclastogenesis-promoting IL-8 in patients with rheumatoid arthritis. Int Immunol 2019; 31:277-285. [PMID: 30753461 PMCID: PMC6484893 DOI: 10.1093/intimm/dxz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/29/2019] [Indexed: 11/14/2022] Open
Abstract
The receptor activator of nuclear factor κB ligand (RANKL) is an important factor for osteoclastogenesis and contributes to the pathology of rheumatoid arthritis (RA); thus, the anti-RANKL antibody (Ab) has been expected to protect joint destruction in RA patients. IL-8 also has osteoclastogenic activity; however, the role of IL-8 in the bone pathology of RA as well as the relation between IL-8 and RANKL remain unclear. In the present study, clinical observation revealed serum IL-8 levels of 611 pg ml-1 in RA patients with anti-RANKL Ab and 266 pg ml-1 in the same patients without anti-RANKL Ab. In vitro assay showed that anti-RANKL Ab induced production of IL-8 from pre-osteoclast-like cells (OCLs), and IL-8 promoted the formation of OCLs from peripheral monocytes even without RANKL activity. We further showed that treatment with FK506 (tacrolimus) possibly inhibits the increase in IL-8 levels in RA patients with anti-RANKL Ab, and in vitro assay confirmed that FK506 suppressed IL-8 production in pre-OCLs. These results suggest that inhibition of RANKL induces the change in osteoclastogenesis-promoting factor from RANKL to IL-8, and FK506 may be a valuable combination drug to support the use of anti-RANKL Ab in treatment of RA.
Collapse
Affiliation(s)
- Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Kosuke Fujimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka City, Japan
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, Japan
| | - Hideki Tsuboi
- Department of Orthopedic Surgery, Osaka Rosai Hospital, Sakai City, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka Minami Medical Center, Kawachinagano City, Osaka, Japan
| | - Yukihiko Saeki
- Department of Clinical Research, National Hospital Organization Osaka Minami Medical Center, Kawachinagano City, Osaka, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
| | - Atsushi Ogata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
- Division of Allergy, Rheumatology and Connective Tissue Disease, NTT West Osaka Hospital, Osaka City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| |
Collapse
|
20
|
Groepper C, Rufinatscha K, Schröder N, Stindt S, Ehlting C, Albrecht U, Bock HH, Bartenschlager R, Häussinger D, Bode JG. HCV modifies EGF signalling and upregulates production of CXCR2 ligands: Role in inflammation and antiviral immune response. J Hepatol 2018; 69:594-602. [PMID: 29705238 DOI: 10.1016/j.jhep.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS To affect immune response and inflammation, the hepatitis C virus (HCV) substantially influences intercellular communication pathways that are decisive for immune cell recruitment. The present study investigates mechanisms by which HCV modulates chemokine-mediated intercellular communication from infected cells. METHODS Chemokine expression was studied in HCVcc-infected cell lines or cell lines harbouring a subgenomic replicon, as well as in serum samples from patients. Expression or activity of mediators and signalling intermediates was manipulated using knockdown approaches or specific inhibitors. RESULTS HCV enhances expression of CXCR2 ligands in its host cell via the induction of epidermal growth factor (EGF) production. Knockdown of EGF or of the p65 subunit of the NF-κB complex results in a substantial downregulation of HCV-induced CXCR2 ligand expression, supporting the involvement of an EGF-dependent mechanism as well as activation of NF-κB. Furthermore, HCV upregulates expression of CXCR2 ligands in response to EGF stimulation via downregulation of the T-cell protein tyrosine phosphatase (TC-PTP [PTPN2]), activation of NF-κB, and enhancement of EGF-inducible signal transduction via MEK1 (MAP2K1). This results in the production of a cytokine/chemokine pattern by the HCV-infected cell that can recruit neutrophils but not monocytes. CONCLUSIONS These data reveal a novel EGF-dependent mechanism by which HCV influences chemokine-mediated intercellular communication. We propose that this mechanism contributes to modulation of the HCV-induced inflammation and the antiviral immune response. LAY SUMMARY In most cases hepatitis C virus (HCV) results in chronic infection and persistent viral replication, taking decades until development of overt disease. To achieve such a course, the respective virus must have developed mechanisms to circumvent antiviral response, to modulate the inflammatory response and to utilise the infrastructure of its host with moderate effect on its viability. The present study provides novel data indicating that HCV induces epidermal growth factor production in its host cell, enhancing epidermal growth factor-inducible expression of chemokines that bind to the CXCR2 receptor and recruit neutrophile granulocytes. Importantly, chemokines are critical mediators determining the pattern of immune cells recruited to the site of injury and thereby the local inflammatory and immunological milieu. These data strongly suggest that HCV triggers mechanisms that enable the virus to influence the inflammatory and immunological processes of its host.
Collapse
Affiliation(s)
- Christina Groepper
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadja Schröder
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ute Albrecht
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
21
|
Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy. PLoS One 2018; 13:e0201858. [PMID: 30089134 PMCID: PMC6082561 DOI: 10.1371/journal.pone.0201858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) cells express increased levels of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which promotes their proliferation and migration. Because TNBC patients are unresponsive to current targeted therapies, new therapeutic strategies are urgently needed. While proteasome inhibition by bortezomib (BZ) or carfilzomib (CZ) has been effective in treating hematological malignancies, it has been less effective in solid tumors, including TNBC, but the mechanisms are incompletely understood. Here we report that proteasome inhibition significantly increases expression of IL-8, and its receptors CXCR1 and CXCR2, in TNBC cells. Suppression or neutralization of the BZ-induced IL-8 potentiates the BZ cytotoxic and anti-proliferative effect in TNBC cells. The IL-8 expression induced by proteasome inhibition in TNBC cells is mediated by IκB kinase (IKK), increased nuclear accumulation of p65 NFκB, and by IKK-dependent p65 recruitment to IL-8 promoter. Importantly, inhibition of IKK activity significantly decreases proliferation, migration, and invasion of BZ-treated TNBC cells. These data provide the first evidence demonstrating that proteasome inhibition increases the IL-8 signaling in TNBC cells, and suggesting that IKK inhibitors may increase effectiveness of proteasome inhibitors in treating TNBC.
Collapse
|
22
|
Cystathionine-γ-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol 2018; 16:694-705. [PMID: 29844591 DOI: 10.1038/s41423-018-0037-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022] Open
Abstract
Cystathionine-γ-lyase (CSE), an enzyme associated with hydrogen sulfide (H2S) production, is an important endogenous regulator of inflammation. Jumonji domain-containing protein 3 (JMJD3) is implicated in the immune response and inflammation. Here, we investigated the potential contribution of JMJD3 to endogenous CSE-mediated inflammation in rheumatoid arthritis (RA). Upregulated CSE and JMJD3 were identified in synovial fibroblasts (SFs) from RA patients as well as in the joints of arthritic mice. Knocking down CSE augmented inflammation in IL-1β-induced SFs by increasing JMJD3 expression. In addition, CSE-/- mice with collagen-induced arthritis (CIA) developed severe joint inflammation and bone erosion. Conversely, overexpressing CSE inhibited JMJD3 expression by the transcription factor Sp-1 and was accompanied by reduced inflammation in IL-1β-treated SFs. Furthermore, JMJD3 silencing or the administration of the JMJD3 inhibitor GSK-J4 significantly decreased the inflammatory response in IL-1β-treated SFs, mainly by controlling the methylation status of H3K27me3 at the promoter of its target genes. GSK-J4 markedly attenuated the severity of arthritis in CIA mice. In conclusion, suppressing JMJD3 expression by the transcription factor Sp-1 is likely responsible for the ability of CSE to negatively modulate the inflammatory response and reduce the progression of RA.
Collapse
|
23
|
Ji S, Zhang W, Zhang X, Hao C, Hao A, Gao Q, Zhang H, Sun J, Hao J. Sohlh2 suppresses epithelial to mesenchymal transition in breast cancer via downregulation of IL-8. Oncotarget 2018; 7:49411-49424. [PMID: 27384482 PMCID: PMC5226517 DOI: 10.18632/oncotarget.10355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the deadliest cancers worldwide due to its strong metastasis to other organs. Metastasis of breast cancer involves a complex set of events, including epithelial-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. We previously identified sohlh2 is a tumor suppressor in the pathogenesis of ovarian cancer. However, the functions of sohlh2 in breast cancer cell migration and invasion remain unknown. Here we report a novel sohlh2/IL-8 signaling pathway in the invasive breast cancer. We observed sohlh2 expression was downregulated in the metastatic breast cancer. Ectopic sohlh2 expression in breast cancer cells reduced EMT and inhibited cell migration and invasion in vitro, and metastasis in vivo. Moreover, the depletion of sohlh2 induced the opposite effects to ectopic sohlh2 expression. RNA-Seq data from a sohlh2 knockdown breast cancer cell line showed that after sohlh2 depletion, the mRNA level of interleukin 8 (IL-8) was significantly increased in these cancer cells, which consequently increased secretion of IL-8 protein. Using chromatin immunoprecipitation and reporter assays, we demonstrated that sohlh2 bound to IL-8 promoter and repressed its activities. The enhanced migration and invasion in sohlh2 -ablated MCF-7 cells were blocked by knockdown of IL-8 expression, while exogenous IL-8 neutralized the anti-migratory and invasive activities of sohlh2 in MDA-MB-231cells. Overall, these results demonstrate that sohlh2 functions as a tumor metastasis suppressor via suppressing IL-8 expression in breast cancer.
Collapse
Affiliation(s)
- Shufang Ji
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenfang Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Chunyan Hao
- Department of Pathology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Aijun Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Qing Gao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongying Zhang
- Department of Biology, Jinan Vocational College of Nursing, Jinan 250000, PR China
| | - Jinhao Sun
- Department of Human Anatomy, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| |
Collapse
|
24
|
Lee H, Lee K. Dimerized translationally controlled tumor protein increases interleukin-8 expression through MAPK and NF-κB pathways in a human bronchial epithelial cell line. Cell Biosci 2018; 8:13. [PMID: 29484169 PMCID: PMC5819651 DOI: 10.1186/s13578-018-0214-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Histamine releasing factor (HRF) is a unique cytokine known to regulate a variety of immune cells in late allergic reactions. In the previous study, we revealed that the biologically active form of HRF is the dimerized translationally controlled tumor protein (dTCTP) for the first time, and confirmed the secretion of IL-8 cytokine by dTCTP in human bronchial epithelial cells. However, the signaling pathway by which dTCTP promotes the secretion of IL-8 is not known. Results When the cells were stimulated with dTCTP, the canonical NF-κB pathway and ERK, JNK and p38 MAPK become activated. dTCTP promoted transcription of IL-8, which involved NF-κB and AP-1 transcription factors. NF-κB was found to be essential for the transcriptional activation of IL-8, while AP-1 was partially responsible for the transcriptional activation by dTCTP. p38 MAPK was found to be involved in post-transcriptional regulation of dTCTP by stabilizing IL-8 mRNA. Conclusions This study demonstrated that dTCTP induces IL-8 secretion in BEAS-2B cells through transcriptional and post-transcriptional regulation of MAPK and NF-κB pathways. This study provides insight into the mechanism by which dTCTP induces inflammation.
Collapse
Affiliation(s)
- Heewon Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750 Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750 Korea
| |
Collapse
|
25
|
Wu CY, Cherng JY, Yang YH, Lin CL, Kuan FC, Lin YY, Lin YS, Shu LH, Cheng YC, Liu HT, Lu MC, Lung J, Chen PC, Lin HK, Lee KD, Tsai YH. Danshen improves survival of patients with advanced lung cancer and targeting the relationship between macrophages and lung cancer cells. Oncotarget 2017; 8:90925-90947. [PMID: 29207614 PMCID: PMC5710895 DOI: 10.18632/oncotarget.18767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/10/2017] [Indexed: 01/29/2023] Open
Abstract
In traditional Chinese medicine, Salvia miltiorrhiza Bunge (danshen) is widely used in the treatment of numerous cancers. However, its clinical effort and mechanism in the treatment of advanced lung cancer are unclear. In our study, the in vivo protective effort of danshen in patients with advanced lung cancer were validated using data from the National Health Insurance Research Database in Taiwan. We observed in vitro that dihydroisotanshinone I (DT), a bioactive compound in danshen, exerts anticancer effects through many pathways. First, 10 μM DT substantially inhibited the migration ability of lung cancer cells in both macrophage and macrophage/lung cancer direct mixed coculture media. Second, 10 μM DT repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), the protein expression of S-phase kinase associated protein-2 (Skp2), and the mRNA levels of STAT3-related genes, including chemokine (C–C motif) ligand 2 (CCL2). In addition, 10 μM DT suppressed the macrophage recruitment ability of lung cancer cells by reducing CCL2 secretion from both macrophages and lung cancer cells. Third, 20 μM DT induced apoptosis in lung cancer cells. Furthermore, DT treatment significantly inhibited the final tumor volume in a xenograft nude mouse model. In conclusion, danshen exerts protective efforts in patients with advanced lung cancer. These effects can be attributed to DT-mediated interruption of the cross talk between lung cancer cells and macrophages and blocking of lung cancer cell proliferation.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jong-Yuh Cherng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chun-Liang Lin
- Departments of Nephrology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chu Lu
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jthau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, USA.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Kuan-Der Lee
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan, Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan.,Chang-Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
26
|
Sueyama Y, Kaneko T, Ito T, Kaneko R, Okiji T. Implantation of Endothelial Cells with Mesenchymal Stem Cells Accelerates Dental Pulp Tissue Regeneration/Healing in Pulpotomized Rat Molars. J Endod 2017; 43:943-948. [DOI: 10.1016/j.joen.2017.01.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/10/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
|
27
|
Smith SM, Freeley M, Moynagh PN, Kelleher DP. Differential modulation of Helicobacter pylori lipopolysaccharide-mediated TLR2 signaling by individual Pellino proteins. Helicobacter 2017; 22. [PMID: 27302665 DOI: 10.1111/hel.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eradication rates for current H. pylori therapies have fallen in recent years, in line with the emergence of antibiotic resistant infections. The development of therapeutic alternatives to antibiotics, such as immunomodulatory therapy and vaccines, requires a more lucid understanding of host-pathogen interactions, including the relationships between the organism and the innate immune response. Pellino proteins are emerging as key regulators of immune signaling, including the Toll-like receptor pathways known to be regulated by H. pylori. The aim of this study was to characterize the role of Pellino proteins in the innate immune response to H. pylori lipopolysaccharide. MATERIALS AND METHODS Gain-of-function and loss-of-function approaches were utilized to elucidate the role of individual Pellino proteins in the Toll-like receptor 2-mediated response to H. pylori LPS by monitoring NF-ĸB activation and the induction of proinflammatory chemokines. Expression of Pellino family members was investigated in gastric epithelial cells and gastric tissue biopsy material. RESULTS Pellino1 and Pellino2 positively regulated Toll-like receptor 2-driven responses to H. pylori LPS, whereas Pellino3 exerted a negative modulatory role. Expression of Pellino1 was significantly higher than Pellino3 in gastric epithelial cells and gastric tissue. Furthermore, Pellino1 expression was further augmented in gastric epithelial cells in response to infection with H. pylori or stimulation with H. pylori LPS. CONCLUSIONS The combination of low Pellino3 levels together with high and inducible Pellino1 expression may be an important determinant of the degree of inflammation triggered upon Toll-like receptor 2 engagement by H. pylori and/or its components, contributing to H. pylori-associated pathogenesis by directing the incoming signal toward an NF-kB-mediated proinflammatory response.
Collapse
Affiliation(s)
- Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Michael Freeley
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Paul N Moynagh
- Institute of Immunology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Dermot P Kelleher
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Lin CH, Wang YH, Chen YW, Lin YL, Chen BC, Chen MC. Transcriptional and posttranscriptional regulation of CXCL8/IL-8 gene expression induced by connective tissue growth factor. Immunol Res 2016; 64:369-84. [PMID: 26071024 DOI: 10.1007/s12026-015-8670-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Connective tissue growth factor (CTGF), a CCN family member, is a secreted protein regulating cellular functions, including fibrosis, apoptosis, adhesion, migration, differentiation, proliferation, angiogenesis, and chondrogenesis. CTGF increases proinflammatory factor production; however, inflammatory cytokine regulation by CTGF is poorly understood. The aim of this study was to identify novel biological functions and elucidate the functional mechanisms of CTGF. Specifically, the study focused on the ability of CTGF-primed monocytes to secrete interleukin 8 (CXCL8/IL-8) and determined the signaling pathways involved in CTGF-induced CXCL8/IL-8 gene regulation during inflammation. We transfected wild-type or mutant CXCL8/IL-8 promoter-derived luciferase reporter constructs into 293T cells to examine the effect of CTGF on the CXCL8/IL-8 promoter. The results showed that the activator protein-1 and nuclear factor κB binding sites of the CXCL8/IL-8 promoter are essential for CTGF-induced CXCL8/IL-8 transcription. Moreover, the CTGF-induced activation of p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase, and extracellular signal-regulated kinase (ERK) is involved in this process. In addition, adenosine-uridine-rich elements (AREs) of the CXCL8/IL-8 3'-untranslated region (3'-UTR) reduce CXCL8/IL-8 mRNA stability. To investigate whether CTGF regulates CXCL8/IL-8 gene expression at the posttranscriptional level, we transfected 293 cells with serial luciferase constructs containing different segments of the CXCL8/IL-8 3'-UTR and then stimulated the cells with CTGF. The results suggested that CTGF stabilized luciferase mRNA and increased luciferase activity by regulating the CXCL8/IL-8 3'-UTR. Moreover, the p38 MAPK pathway may contribute to CTGF-induced CXCL8/IL-8 mRNA stabilization.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Wen Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Liang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chieh Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
29
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Cooperation of erythrocytes with leukocytes in immune response of a teleost Oplegnathus fasciatus. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Tao L, Qiu J, Jiang M, Song W, Yeh S, Yu H, Zang L, Xia S, Chang C. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals. Mol Cancer Ther 2016; 15:1943-1951. [PMID: 27196763 PMCID: PMC5055306 DOI: 10.1158/1535-7163.mct-15-0306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/12/2016] [Indexed: 01/10/2023]
Abstract
The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR.
Collapse
Affiliation(s)
- Le Tao
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jianxin Qiu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Ming Jiang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Wenbin Song
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hong Yu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Lijuan Zang
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shujie Xia
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Finn A, Rebuck N, Strobel S, Moat N, Elliott M. Systemic inflammation during paediatric cardiopulmonary bypass: changes in neutrophil adhesive properties. Perfusion 2016. [DOI: 10.1177/026765919300800105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Adam Finn
- Division of Cell and Molecular Biology, Institute of Child Health
| | - Naomi Rebuck
- Division of Cell and Molecular Biology, Institute of Child Health
| | - Stephan Strobel
- Division of Cell and Molecular Biology, Institute of Child Health
| | - Neil Moat
- Royal Brompton National Heart and Lung Hospital
| | - Martin Elliott
- Cardiothoracic Unit, Hospital for Sick Children, Great Ormond Street, London
| |
Collapse
|
33
|
Chitforoushzadeh Z, Ye Z, Sheng Z, LaRue S, Fry RC, Lauffenburger DA, Janes KA. TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors. Sci Signal 2016; 9:ra59. [PMID: 27273097 DOI: 10.1126/scisignal.aad3373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signal transduction networks coordinate transcriptional programs activated by diverse extracellular stimuli, such as growth factors and cytokines. Cells receive multiple stimuli simultaneously, and mapping how activation of the integrated signaling network affects gene expression is a challenge. We stimulated colon adenocarcinoma cells with various combinations of the cytokine tumor necrosis factor (TNF) and the growth factors insulin and epidermal growth factor (EGF) to investigate signal integration and transcriptional crosstalk. We quantitatively linked the proteomic and transcriptomic data sets by implementing a structured computational approach called tensor partial least squares regression. This statistical model accurately predicted transcriptional signatures from signaling arising from single and combined stimuli and also predicted time-dependent contributions of signaling events. Specifically, the model predicted that an early-phase, AKT-associated signal downstream of insulin repressed a set of transcripts induced by TNF. Through bioinformatics and cell-based experiments, we identified the AKT-repressed signal as glycogen synthase kinase 3 (GSK3)-catalyzed phosphorylation of Ser(37) on the long form of the transcription factor GATA6. Phosphorylation of GATA6 on Ser(37) promoted its degradation, thereby preventing GATA6 from repressing transcripts that are induced by TNF and attenuated by insulin. Our analysis showed that predictive tensor modeling of proteomic and transcriptomic data sets can uncover pathway crosstalk that produces specific patterns of gene expression in cells receiving multiple stimuli.
Collapse
Affiliation(s)
- Zeinab Chitforoushzadeh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Zi Ye
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Ziran Sheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Silvia LaRue
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
34
|
Sekine T, Hirata T, Mine T, Fukano Y. Activation of transcription factors in human bronchial epithelial cells exposed to aqueous extracts of mainstream cigarette smoke in vitro. Toxicol Mech Methods 2016; 26:22-31. [DOI: 10.3109/15376516.2015.1123788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Jia Q, Cheng W, Yue Y, Hu Y, Zhang J, Pan X, Xu Z, Zhang P. Cucurbitacin E inhibits TNF-α-induced inflammatory cytokine production in human synoviocyte MH7A cells via suppression of PI3K/Akt/NF-κB pathways. Int Immunopharmacol 2015; 29:884-890. [DOI: 10.1016/j.intimp.2015.08.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/29/2023]
|
36
|
Zhang L, Wang H, Yang T, Su Z, Fang D, Wang Y, Fang J, Hou X, Le Y, Chen K, Wang JM, Su SB, Lin Q, Zhou Q. Formylpeptide receptor 1 mediates the tumorigenicity of human hepatocellular carcinoma cells. Oncoimmunology 2015; 5:e1078055. [PMID: 27057451 DOI: 10.1080/2162402x.2015.1078055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled chemoattractant receptors (GPCRs) have been implicated in cancer progression. Formylpeptide receptor 1 (FPR1) was originally identified as a GPCR mediating anti-microbial host defense. However, the role of FPR1 in tumorigenesis remains poorly understood. The current study aims to investigate the potential of FPR1 to regulate human hepatoma growth and invasion. We found the FPR1 gene and protein expression in human intratumoral and peritumoral tissues of hepatocellular carcinoma (HCC) specimens and in human hepatoma cell lines. FPR1 activation mediated the migration, calcium mobilization and ERK-dependent IL-8 production by hepatic cancer cells. FPR1 knockdown substantially reduced the tumorigenicity of hepatoma cells in nude mice. Necrotic hepatic tumor cells released factor(s) that activated FPR1 in live tumor cells. Our results indicate a critical role of FPR1 in the progression of malignant human hepatic cancer. FPR1 thus may represent a molecular target for the development of novel anti-hepatoma therapeutics.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Image Guided Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, China
| | - Huanyu Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Zhifeng Su
- School of Materials and Engineering, South China University of Technology , Guangzhou, China
| | - Dan Fang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Yafeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| | - Jiazhu Fang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xinwei Hou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yingying Le
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, National Cancer Institute , Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, National Cancer Institute , Frederick, MD, USA
| | - Shao Bo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Qing Lin
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
37
|
Shan SJ, Liu DZ, Wang L, Zhu YY, Zhang FM, Li T, An LG, Yang GW. Identification and expression analysis of irak1 gene in common carp Cyprinus carpio L.: indications for a role of antibacterial and antiviral immunity. JOURNAL OF FISH BIOLOGY 2015; 87:241-255. [PMID: 26099328 DOI: 10.1111/jfb.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
In this study, the full-length complementary (c)DNA of interleukin-1 receptor-associated kinase 1 gene (irak1) was cloned from common carp Cyprinus carpio. The complete open reading frame of irak1 contained 2109 bp encoding a protein of 702 amino acid residues that comprised a death domain, a ProST region, a serine-threonine-specific protein kinase catalytic domain and a C-terminal domain. The amino-acid sequence of C. carpio Irak1 protein shared sequence homology with grass carp Ctenopharyngodon idellus (84.5%). The phylogenetic tree of IRAKs separated the polypeptides into four clades, comprising IRAK1s, IRAK2s, IRAK3s and IRAK4s. Cyprinus carpio Irak1 fell into the cluster with previously reported IRAK1s including teleost Irak1s. The irak1 gene was highly expressed in gills, followed by brain, skin, hindgut, buccal epithelium, spleen, foregut, head kidney and liver, and was expressed at lowest levels in gonad and muscle. The irak1 messenger (m)RNA expression was up-regulated in liver, spleen, head kidney, foregut, hindgut, gills and skin after stimulation with Vibrio anguillarum and poly(I:C), and significantly high up-regulated expression was observed in liver and spleen. These results implied that irak1 might participate in antibacterial and antiviral innate immunity. These findings gave the indications that irak1 may participate in antibacterial and antiviral immunity.
Collapse
Affiliation(s)
- S J Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - D Z Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - L Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Y Y Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - F M Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - T Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - L G An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - G W Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
38
|
Baudiß K, Ayata CK, Lazar Z, Cicko S, Beckert J, Meyer A, Zech A, Vieira RP, Bittman R, Gómez-Muñoz A, Merfort I, Idzko M. Ceramide-1-phosphate inhibits cigarette smoke-induced airway inflammation. Eur Respir J 2015; 45:1669-80. [PMID: 25614161 DOI: 10.1183/09031936.00080014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/06/2014] [Indexed: 11/05/2022]
Abstract
Sphingolipids are involved in the pathogenesis of inflammatory diseases. The central molecule is ceramide, which can be converted into ceramide-1-phosphate (C1P). Although C1P can exert anti- and pro-inflammatory effects, its influence on cigarette smoke (CS)-induced lung inflammation is unknown. We aimed to clarify the role of C1P in the pathogenesis of CS-triggered pulmonary inflammation and emphysema in humans and mice. The effects of C1P were addressed on CS-induced lung inflammation in C57BL/6 mice, CS extract-triggered activation of human airway epithelial cells (AECs) and neutrophils from patients with chronic obstructive pulmonary disease. Differential cell counts in bronchoalveolar lavage fluid were determined by flow cytometry and pro-inflammatory cytokines were measured by ELISA. Expression and DNA binding of nuclear factor (NF)-κB and neutral sphingomyelinase (nSMase) were quantified by PCR, electrophoretic mobility shift and fluorometric assays. C1P reduced CS-induced acute and chronic lung inflammation and development of emphysema in mice, which was associated with a reduction in nSMase and NF-κB activity in the lungs. nSMase activity in human serum correlated negatively with forced expiratory volume in 1 s % predicted. In human AECs and neutrophils, C1P inhibited CS-induced activation of NF-κB and nSMase, and reduced pro-inflammatory cytokine release. Our results suggest that C1P is a potential target for anti-inflammatory treatment in CS-induced lung inflammation.
Collapse
Affiliation(s)
- Kristin Baudiß
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Zsofia Lazar
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Sanja Cicko
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Jessica Beckert
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Anja Meyer
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Zech
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Rodolfo Paula Vieira
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany
| | - Robert Bittman
- Dept of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY, USA
| | - Antonio Gómez-Muñoz
- Dept of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Irmgard Merfort
- Dept of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Marco Idzko
- Dept of Pneumology, COPD and Asthma Research Group, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Chen WT, Ebelt ND, Stracker TH, Xhemalce B, Van Den Berg CL, Miller KM. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion. eLife 2015; 4:e07270. [PMID: 26030852 PMCID: PMC4463759 DOI: 10.7554/elife.07270] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/31/2015] [Indexed: 12/22/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.
Collapse
Affiliation(s)
- Wei-Ta Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Nancy D Ebelt
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, University of Texas at Austin, Austin, United States
| | - Travis H Stracker
- Oncology Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Blerta Xhemalce
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Carla L Van Den Berg
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, University of Texas at Austin, Austin, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| |
Collapse
|
40
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|
41
|
Zante MD, Borchel A, Brunner RM, Goldammer T, Rebl A. Cloning and characterization of the proximal promoter region of rainbow trout (Oncorhynchus mykiss) interleukin-6 gene. FISH & SHELLFISH IMMUNOLOGY 2015; 43:249-256. [PMID: 25549935 DOI: 10.1016/j.fsi.2014.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Interleukin-6 (IL6) is a pleiotropic cytokine with important immunoregulatory functions. Its expression is inducible in immune cells and tissues of several fish species. We also found that IL6 mRNA abundance was significantly increased in spleen, liver, and gill of rainbow trout after experimental infection with Aeromonas salmonicida. Genomic DNA sequences of IL6 orthologs from three salmonid species revealed a conserved exon/intron structure and a high overall nucleotide identity of >88%. To uncover key mechanisms regulating IL6 expression in salmonid fish, we amplified a fragment of the proximal IL6 promoter from rainbow trout and identified in-silico conserved binding sites for NF-κB and CEBP. The activity of this IL6 promoter fragment was analyzed in the established human embryonic kidney line HEK-293. Luciferase- and GFP-based reporter systems revealed that the proximal IL6 promoter is activated by Escherichia coli. Essentially, both reporter systems proved that NF-κB p50, but not NF-κB p65 or CEBP, activates the IL6 promoter fragment. Truncation of this fragment caused a significant decrease in IL6 promoter activation. This characterization of the proximal promoter of the IL6-encoding gene provides basic knowledge about the IL6 gene expression in rainbow trout.
Collapse
Affiliation(s)
- Merle D Zante
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Andreas Borchel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Ronald M Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
42
|
Kelly FJ, Fussell JC. Linking ambient particulate matter pollution effects with oxidative biology and immune responses. Ann N Y Acad Sci 2015; 1340:84-94. [DOI: 10.1111/nyas.12720] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Frank J. Kelly
- MRC-PHE Centre for Environment and Health; Facility of Life Sciences and Medicine; King's College; London United Kingdom
| | - Julia C. Fussell
- MRC-PHE Centre for Environment and Health; Facility of Life Sciences and Medicine; King's College; London United Kingdom
| |
Collapse
|
43
|
Rebl A, Rebl H, Korytář T, Goldammer T, Seyfert HM. The proximal promoter of a novel interleukin-8-encoding gene in rainbow trout (Oncorhynchus mykiss) is strongly induced by CEBPA, but not NF-κB p65. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:155-164. [PMID: 24721762 DOI: 10.1016/j.dci.2014.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Interleukin-8 (IL8) is an immediate-early chemokine that has been well characterized in several fish species. Ten IL8 gene variants have already been described in rainbow trout, but none of their promoters has structurally been defined or functionally characterized in teleost fish. To uncover key factors regulating IL8 expression, we intended to functionally characterize an IL8 promoter from rainbow trout. Incidentally, we isolated a novel IL8 gene variant (IL8-G). It is structurally highly similar to the other trout IL8 gene variants and its mRNA concentration increased significantly in secondary lymphoid tissues after infecting healthy fish with Aeromonas salmonicida. The proximal promoter sequence of the IL8-G-encoding gene features in close proximity two consensus elements for CEBP attachment. The proximal site overlaps with a NF-κB-binding site. Cotransfection of an IL8-G promoter-driven reporter gene together with vectors expressing various mammalian CEBP or NF-κB factors revealed in human HEK-293 cells that CEBPA and NF-κB p50, but not NF-κB p65 activate this promoter. The stimulatory effect of NF-κB p50 is likely conveyed by synergizing with CEBPA. Deletion or mutation of either the distal or the proximal CEBP-binding site, respectively, caused a significant decrease in IL8-G promoter activation. We confirmed the significance of the CEBPA factor for IL8-G expression by comparing the stimulatory capacity of the trout CEBPA and -B factors, thereby reducing the evolutionary distance in the inter-species expression assays. Similar promoter induction potential and intracellular localization of the mammalian and teleostean CEBPA and -B factors suggests their functional conservation throughout evolution.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
44
|
Abstract
ABSTRACT
The inflammatory response is an integral part of host defense against enterohemorrhagic
Escherichia coli
(EHEC) infection and also contributes to disease pathology. In this article we explore the factors leading to inflammation during EHEC infection and the mechanisms EHEC and other attaching and effacing (A/E) pathogens have evolved to suppress inflammatory signaling. EHEC stimulates an inflammatory response in the intestine through host recognition of bacterial components such as flagellin and lipopolysaccharide. In addition, the activity of Shiga toxin and some type III secretion system effectors leads to increased tissue inflammation. Various infection models of EHEC and other A/E pathogens have revealed many of the immune factors that mediate this response. In particular, the outcome of infection is greatly influenced by the ability of an infected epithelial cell to mount an effective host inflammatory response. The inflammatory response of infected enterocytes is counterbalanced by the activity of type III secretion system effectors such as NleE and NleC that modify and inhibit components of the signaling pathways that lead to proinflammatory cytokine production. Overall, A/E pathogens have taught us that innate mucosal immune responses in the gastrointestinal tract during infection with A/E pathogens are highly complex and ultimate clearance of the pathogen depends on multiple factors, including inflammatory mediators, bacterial burden, and the function and integrity of resident intestinal epithelial cells.
Collapse
|
45
|
Lee CY, Tsai YT, Loh SH, Liu JC, Chen TH, Chao HH, Cheng TH, Chen JJ. Urotensin II induces interleukin 8 expression in human umbilical vein endothelial cells. PLoS One 2014; 9:e90278. [PMID: 24587311 PMCID: PMC3931834 DOI: 10.1371/journal.pone.0090278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Abstract
Background Urotensin II (U-II), an 11-amino acid peptide, exerts a wide range of actions in cardiovascular systems. Interleukin-8 (IL-8) is secreted by endothelial cells, thereby enhancing endothelial cell survival, proliferation, and angiogenesis. However, the interrelationship between U-II and IL-8 as well as the detailed intracellular mechanism of U-II in vascular endothelial cells remain unclear. The aim of this study was to investigate the effect of U-II on IL-8 expression and to explore its intracellular mechanism in human umbilical vein endothelial cells. Methods/Principal Findings Primary human umbilical vein endothelial cells were used. Expression of IL-8 was determined by real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and luciferase reporter assay. Western blot analyses and experiments with specific inhibitors were performed to reveal the downstream signaling pathways as concerned. U-II increased the mRNA/protein levels of IL-8 in human umbilical vein endothelial cells. The U-II effects were significantly inhibited by its receptor antagonist [Orn5]-URP. Western blot analyses and experiments with specific inhibitors indicated the involvement of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase in U-II-induced IL-8 expression. Luciferase reporter assay further revealed that U-II induces the transcriptional activity of IL-8. The site-directed mutagenesis indicated that the mutation of AP-1 and NF-kB binding sites reduced U-II-increased IL-8 promoter activities. Proliferation of human umbilical vein endothelial cells induced by U-II could be inhibited significantly by IL-8 RNA interference. Conclusion/Significance The results show that U-II induces IL-8 expression in human umbilical vein endothelial cells via p38 mitogen-activated protein kinase and extracellular signal-regulated kinase signaling pathways and IL-8 is involved in the U-II-induced proliferation of human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Chung-Yi Lee
- Department of Cardiovascular Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Yi-Tin Tsai
- Department of Cardiovascular Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Shih-Hurng Loh
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ju-Chi Liu
- Department of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Tso-Hsiao Chen
- Department of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Hung-Hsing Chao
- Department of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail:
| | - Jin-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
46
|
Singha B, Phyo SA, Gatla HR, Vancurova I. Quantitative analysis of bortezomib-induced IL-8 gene expression in ovarian cancer cells. Methods Mol Biol 2014; 1172:295-304. [PMID: 24908316 DOI: 10.1007/978-1-4939-0928-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-8 (IL-8), originally discovered as the neutrophil chemoattractant and inducer of leukocyte-mediated inflammation, contributes to cancer progression through its induction of tumor cell proliferation, survival, and migration. IL-8 expression is increased in many types of advanced cancers, including ovarian cancer, and correlates with poor prognosis. Bortezomib (BZ) is the first FDA-approved proteasome inhibitor that has shown remarkable antitumor activity in multiple myeloma and other hematological malignancies. In solid tumors, including ovarian carcinoma, BZ has been less effective as a single agent; however, the mechanisms remain unknown. We have recently shown that in ovarian cancer cells, BZ greatly increases IL-8 expression, while expression of other NFκB-regulated cytokines, IL-6 and TNF, is unchanged. In this chapter, we describe a protocol that uses real-time qRT-PCR to quantitatively analyze mRNA levels of IL-8 and IL-6 in BZ-treated ovarian cancer cells. The protocol can be easily modified and used for analysis of other cytokines in different cell types.
Collapse
Affiliation(s)
- Bipradeb Singha
- Department of Biology, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | | | | | | |
Collapse
|
47
|
Kang MS, Kim JH, Shin BA, Lee HC, Kim YS, Lim HS, Oh JS. Inhibitory effect of chlorophyllin on the Propionibacterium acnes-induced chemokine expression. J Microbiol 2013; 51:844-9. [DOI: 10.1007/s12275-013-3015-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
|
48
|
Li W, Wu X, Yan F, Liu J, Tang Y, Ma K, Li S. Effects of pulmonary artery perfusion with urinary trypsin inhibitor as a lung protective strategy under hypothermic low-flow cardiopulmonary bypass in an infant piglet model. Perfusion 2013; 29:434-42. [PMID: 24335190 DOI: 10.1177/0267659113517286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of pulmonary artery perfusion with a urinary trypsin inhibitor (UTI) as a lung protective strategy in order to provide an experimental basis for immature lung clinical protective strategies on deep hypothermia with low-flow (DHLF) cardiopulmonary bypass (CPB)-induced pulmonary injury in an infant piglet model. METHODS The piglets (n=15), aged 18.7±0.3 days, weight 4.48±0.21kg, were randomly divided into 3 groups, with 5 piglets in each group: the control group, the pulmonary artery perfusion without UTI group (Group P) and the pulmonary artery perfusion with UTI group (Group U). The levels of the cytokines tumour necrosis factor-α, myeloperoxidase, malondialdehyde and interleukin-10 (TNF-α, MPO, MDA and IL-10) in pulmonary venous serum and lung tissue and the activity of NF-kappa B in lung tissue were measured by enzyme-linked immunosorbent assay (ELISA) and electrophoresis mobility shift assay (EMSA), respectively. RESULTS After DHLF-CPB, all of the piglets demonstrated a state of lung injury as a deterioration of lung function indices, lung injury scores, pulmonary ultrastructure changes, expression of TNF-α, MPO, MDA and IL-10 and the activities of nuclear factor-kappa B (NF-κB), while pulmonary artery perfusion with UTI significantly ameliorated lung function and histopathological changes, with greatly decreased serum levels of TNF-α and MPO compared to the other two groups. Also, we found an increase in the level of IL-10 in Group U lungs compared with that in Group P lungs, which correlated with a strong inhibition in the activity of NF-κB. CONCLUSION Pulmonary artery perfusion with UTI ameliorated the DHLF-induced immature pulmonary injury in the lungs via a reduction of pro-inflammatory cytokine expression and up-regulated levels of IL-10 by inhibiting the activity of NF-κB.
Collapse
Affiliation(s)
- W Li
- Center of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - X Wu
- Center of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - F Yan
- Center of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - J Liu
- Center of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Y Tang
- Center of Animals for Experiment, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - K Ma
- Center of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - S Li
- Center of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
49
|
Singha B, Gatla HR, Manna S, Chang TP, Sanacora S, Poltoratsky V, Vancura A, Vancurova I. Proteasome inhibition increases recruitment of IκB kinase β (IKKβ), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells. J Biol Chem 2013; 289:2687-700. [PMID: 24337575 DOI: 10.1074/jbc.m113.502641] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive. Here, we show that proteasome inhibition dramatically increases the IL-8 expression and release in ovarian cancer cells. The responsible mechanism involves an increased nuclear accumulation of IκB kinase β (IKKβ) and an increased recruitment of the nuclear IKKβ, p65-phosphorylated at Ser-536, and the transcription factor early growth response-1 (EGR-1) to the endogenous IL-8 promoter. Coimmunoprecipitation studies identified the nuclear EGR-1 associated with IKKβ and with p65, with preferential binding to S536P-p65. Both IKKβ activity and EGR-1 expression are required for the increased IL-8 expression induced by proteasome inhibition in ovarian cancer cells. Interestingly, in multiple myeloma cells the IL-8 release is not increased by bortezomib. Together, these data indicate that the increased IL-8 release may represent one of the underlying mechanisms responsible for the decreased effectiveness of proteasome inhibition in ovarian cancer treatment and identify IKKβ and EGR-1 as potential new targets in ovarian cancer combination therapies.
Collapse
|
50
|
COMMD1 modulates noxious inflammation in cystic fibrosis. Int J Biochem Cell Biol 2013; 45:2402-9. [DOI: 10.1016/j.biocel.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022]
|