1
|
Nweke AB, Nagasato D, Matsuoka K. Secreted arabinogalactan protein from salt-adapted tobacco BY-2 cells appears to be glycosylphosphatidyl inositol-anchored and associated with lipophilic moieties. Biosci Biotechnol Biochem 2023; 87:1274-1284. [PMID: 37573142 DOI: 10.1093/bbb/zbad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are plant extracellular proteoglycans associated with the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. This moiety is thought to be cleaved by phospholipase for secretion. Salt-adapted tobacco BY-2 cells were reported to secrete large amounts of AGPs into the medium. To investigate this mechanism, we expressed a fusion protein of tobacco sweet potato sporamin and AGP (SPO-AGP) in BY-2 cells and analyzed its fate after salt-adapting the cells. A two-phase separation analysis using Triton X-114 indicated that a significant proportion of SPO-AGP in the medium was recovered in the detergent phase, suggesting that this protein is GPI-anchored. Differential ultracentrifugation and a gradient density fractionation implicated extracellular vesicles or particles with SPO-AGP in the medium. Endogenous AGP secreted from salt-adapted and nontransgenic BY-2 cells behaved similarly to SPO-AGP. These results suggest that a part of the secreted AGPs from salt-adapted tobacco BY-2 cells are GPI-anchored and associated with particles or vesicles.
Collapse
Affiliation(s)
- Arinze Boniface Nweke
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Nagasato
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Oda Y, Asatsuma S, Nakasone H, Matsuoka K. Sucrose starvation induces the degradation of proteins in trans-Golgi network and secretory vesicle cluster in tobacco BY-2 cells. Biosci Biotechnol Biochem 2020; 84:1652-1666. [PMID: 32338160 DOI: 10.1080/09168451.2020.1756736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Endomembrane transport system begins at the endoplasmic reticulum (ER), continues to the Golgi apparatus and subsequent compartment called trans-Golgi network (TGN). We found that SUT2, a tobacco sucrose-transporter ortholog and was localized in the TGN, decreased significantly under a sucrose-starvation condition. The tobacco SNARE protein SYP41, localized in the TGN and secretory vesicle cluster (SVC), also decreased under the starvation. Similarly, the SCAMP2-RFP fusion protein, which is localized in TGN, SVC, and plasma membrane (PM), was distributed solely in the PM under the starvation. Under the same starvation condition, protein secretion was not arrested but pectin deposition to cell wall was suppressed. These data indicated that the protein composition in TGN and existence of the SVC are regulated by sugar availability. Furthermore, our findings as well as the involvement of SVC in pectin secretion suggested that synthesis and transport of pectin are regulated by the level of extracellular sugars. ABBREVIATIONS ER: endoplasmic reticulum; GI-TGN: Golgi-released independent TGN; GFP: green fluorescent protein; mRFP: monomeric red fluorescent protein; P4H1.1: prolyl 4-hydroxylase 1.1; PM: plasma membrane; SCAMP2: secretory carrier membrane protein 2; SUT2: sucrose transporter 2; SVC: secretory vesicle cluster; SYP41: syntaxin of plant 41; TGN: trans-Golgi network; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Yamato Oda
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Satoru Asatsuma
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
- RIKEN Plant Science Center , Yokohama, Japan
| | - Hiroaki Nakasone
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Ken Matsuoka
- Department of Bioscience and Biotechnology, Graduate School of Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
- RIKEN Plant Science Center , Yokohama, Japan
| |
Collapse
|
3
|
Al-Mohanna T, Ahsan N, Bokros NT, Dimlioglu G, Reddy KR, Shankle M, Popescu GV, Popescu SC. Proteomics and Proteogenomics Analysis of Sweetpotato (Ipomoea batatas) Leaf and Root. J Proteome Res 2019; 18:2719-2734. [DOI: 10.1021/acs.jproteome.8b00943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thualfeqar Al-Mohanna
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island, USA Hospital, Providence, Rhode Island 02903, United States
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02903, United States
| | - Norbert T. Bokros
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Gizem Dimlioglu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi 39759, United States
| | - Mark Shankle
- Pontotoc Experimental Station, Mississippi State University, Pontotoc, Mississippi 38863, United States
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi 39759, United States
- The National Institute for Laser, Plasma and Radiation Physics, Bucharest RO-077125, Romania
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi 39759, United States
| |
Collapse
|
4
|
Bajaj L, Lotfi P, Pal R, di Ronza A, Sharma J, Sardiello M. Lysosome biogenesis in health and disease. J Neurochem 2019; 148:573-589. [PMID: 30092616 PMCID: PMC6368902 DOI: 10.1111/jnc.14564] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
This review focuses on the pathways that regulate lysosome biogenesis and that are implicated in numerous degenerative storage diseases, including lysosomal storage disorders and late-onset neurodegenerative diseases. Lysosomal proteins are synthesized in the endoplasmic reticulum and trafficked to the endolysosomal system through the secretory route. Several receptors have been characterized that execute post-Golgi trafficking of lysosomal proteins. Some of them recognize their cargo proteins based on specific amino acid signatures, others based on a particular glycan modification that is exclusively found on lysosomal proteins. Nearly all receptors serving lysosome biogenesis are under the transcriptional control of transcription factor EB (TFEB), a master regulator of the lysosomal system. TFEB coordinates the expression of lysosomal hydrolases, lysosomal membrane proteins, and autophagy proteins in response to pathways sensing lysosomal stress and the nutritional conditions of the cell among other stimuli. TFEB is primed for activation in lysosomal storage disorders but surprisingly its function is impaired in some late-onset neurodegenerative storage diseases like Alzheimer's and Parkinson's, because of specific detrimental interactions that limit TFEB expression or activation. Thus, disrupted TFEB function presumably plays a role in the pathogenesis of these diseases. Multiple studies in animal models of degenerative storage diseases have shown that exogenous expression of TFEB and pharmacological activation of endogenous TFEB attenuate disease phenotypes. These results highlight TFEB-mediated enhancement of lysosomal biogenesis and function as a candidate strategy to counteract the progression of these diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Rituraj Pal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| |
Collapse
|
5
|
AtNHX5 and AtNHX6 Are Required for the Subcellular Localization of the SNARE Complex That Mediates the Trafficking of Seed Storage Proteins in Arabidopsis. PLoS One 2016; 11:e0151658. [PMID: 26986836 PMCID: PMC4795774 DOI: 10.1371/journal.pone.0151658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/02/2016] [Indexed: 12/02/2022] Open
Abstract
The SNARE complex composed of VAMP727, SYP22, VTI11 and SYP51 is critical for protein trafficking and PSV biogenesis in Arabidopsis. This SNARE complex directs the fusion between the prevacuolar compartment (PVC) and the vacuole, and thus mediates protein trafficking to the vacuole. In this study, we examined the role of AtNHX5 and AtNHX6 in regulating this SNARE complex and its function in protein trafficking. We found that AtNHX5 and AtNHX6 were required for seed production, protein trafficking and PSV biogenesis. We further found that the nhx5 nhx6 syp22 triple mutant showed severe defects in seedling growth and seed development. The triple mutant had short siliques and reduced seed sets, but larger seeds. In addition, the triple mutant had numerous smaller protein storage vacuoles (PSVs) and accumulated precursors of the seed storage proteins in seeds. The PVC localization of SYP22 and VAMP727 was repressed in nhx5 nhx6, while a significant amount of SYP22 and VAMP727 was trapped in the Golgi or TGN in nhx5 nhx6. AtNHX5 and AtNHX6 were co-localized with SYP22 and VAMP727. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for the transport of the storage proteins, indicating the importance of exchange activity in protein transport. AtNHX5 or AtNHX6 did not interact physically with the SNARE complex. Taken together, AtNHX5 and AtNHX6 are required for the PVC localization of the SNARE complex and hence its function in protein transport. AtNHX5 and AtNHX6 may regulate the subcellular localization of the SNARE complex by their transport activity.
Collapse
|
6
|
Chen HJ, Liang SH, Huang GJ, Lin YH. Sweet potato cysteine proteases SPAE and SPCP2 participate in sporamin degradation during storage root sprouting. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:39-49. [PMID: 26363719 DOI: 10.1016/j.jplph.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 05/04/2023]
Abstract
Sweet potato sporamins are trypsin inhibitors and exhibit strong resistance to digestion by pepsin, trypsin and chymotrypsin. In addition, they constitute the major storage proteins in the sweet potato and, after degradation, provide nitrogen as a nutrient for seedling regrowth in sprouting storage roots. In this report, four cysteine proteases-one asparaginyl endopeptidase (SPAE), two papain-like cysteine proteases (SPCP1 and SPCP2), and one granulin-containing cysteine protease (SPCP3)-were studied to determine their association with sporamin degradation in sprouting storage roots. Sporamin degradation became significant in the flesh of storage roots starting from week 4 after sprouting and this correlated with expression levels of SPAE and SPCP2, but not of SPCP1 and SPCP3. In the outer flesh near the skin, sporamin degradation was more evident and occurred earlier than in the inner flesh of storage roots. Degradation of sporamins in the outer flesh was inversely correlated with the distance of the storage root from the sprout. Exogenous application of SPAE and SPCP2, but not SPCP3, fusion proteins to crude extracts of the outer flesh (i.e., extracted from a depth of 0.3cm and within 2cm of one-week-old sprouts) promoted in vitro sporamin degradation in a dose-dependent manner. Pre-treatment of SPAE and SPCP2 fusion proteins at 95°C for 5min prior to their application to the crude extracts reduced sporamin degradation. These data show that sweet potato asparaginyl endopeptidase SPAE and papain-like cysteine protease SPCP2 participate in sporamin degradation during storage root sprouting.
Collapse
Affiliation(s)
- Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan.
| | - Shu-Hao Liang
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Guan-Jhong Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Yaw-Huei Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, 115 Taipei, Taiwan.
| |
Collapse
|
7
|
Lin Y, Liu J, Liu X, Ou Y, Li M, Zhang H, Song B, Xie C. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:237-44. [PMID: 24161651 DOI: 10.1016/j.plaphy.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/18/2013] [Indexed: 05/19/2023]
Abstract
The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated.
Collapse
Affiliation(s)
- Yuan Lin
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China; Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, People's Republic of China; Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Martinière A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H, Blumwald E, Paris N. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. THE PLANT CELL 2013; 25:4028-43. [PMID: 24104564 PMCID: PMC3877828 DOI: 10.1105/tpc.113.116897] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 07/30/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.
Collapse
Affiliation(s)
- Alexandre Martinière
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elodie Jublanc
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 866, Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Carine Alcon
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hervé Sentenac
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| |
Collapse
|
9
|
Rakkhumkaew N, Shibatani S, Kawasaki T, Fujie M, Yamada T. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: cytological studies. Biotechnol Bioeng 2013; 110:1174-9. [PMID: 23404209 DOI: 10.1002/bit.24783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 11/06/2022]
Abstract
Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA.
Collapse
Affiliation(s)
- Numfon Rakkhumkaew
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
10
|
Senthilkumar R, Yeh KW. Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol Adv 2012; 30:1309-17. [PMID: 22306516 DOI: 10.1016/j.biotechadv.2012.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/22/2011] [Accepted: 01/20/2012] [Indexed: 12/27/2022]
Abstract
The initial investigation of the nature of the proteins in the tuber of sweet potato (Ipomoea batatas Lam.) revealed a globulin-designated "ipomoein," which was reported by Jones and Gersdorff, (1931). Later, "ipomoein" was renamed "sporamin" and was found to be a major storage protein that accounted for over 80% of the total protein in the tuberous root. To date, sporamin has been studied by a series of biochemical and molecular approaches. The first purification of sporamin into two major fractions, A and B, was successfully completed in 1985. Several characteristics of the protein, such as the diversification of the nucleotide sequences in the gene family, the protein structure, the biological functions of storage, defense, inhibitory activity and ROS scavenging, were identified. In the past decade, sporamin was classified as a Kunitz-type trypsin inhibitor, and its insect-resistance capability has been examined in transgenic tobacco and cauliflower plants, indicating the multiple functions of this protein has evolved to facilitate the growth and development of sweet potato. Sporamin is constitutively expressed in the tuberous root and is not normally expressed in the stem or leaves. However, this protein is expressed systemically in response to wounding and other abiotic stresses. These dual expression patterns at the transcriptional level revealed that the complex regulatory mechanism of sporamin was modulated by environmental stresses. The versatile functions of sporamin make this storage protein a good research model to study molecular evolution, regulatory mechanisms and physiological functions in plants. This review summarizes and discusses recent approaches and future perspectives in agricultural biotechnology.
Collapse
|
11
|
Moriguchi R, Matsuoka C, Suyama A, Matsuoka K. Reduction of plant-specific arabinogalactan-type O-glycosylation by treating tobacco plants with ferrous chelator 2,2'-dipyridyl. Biosci Biotechnol Biochem 2011; 75:994-6. [PMID: 21597170 DOI: 10.1271/bbb.100884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plant specific O-glycosylation of proteins includes the attachment of arabinogalactan to hydroxyproline (Hyp) residues. These Hyp residues are generated from peptidyl proline residues by the action of prolyl 4-hydroxylase which requires the ferrous ion. We investigated the effect of the ferrous chelator, 2,2'-dipyridyl on tobacco plants, and found that such treatment reduced the arabinogalactosylation of proteins.
Collapse
Affiliation(s)
- Ryo Moriguchi
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
12
|
Scientific Opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1700] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Valueva TA, Speranskaia AS, Revina TA, Shevelev AB. [Molecular cloning and expression of genes of Kunitz-type C protease inhibitors from potato]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:344-52. [PMID: 18672683 DOI: 10.1134/s1068162008030102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We cloned the products of polymerase chain reaction of the genome DNA of potato (Solanum tuberosum L., Istrinskii cultivar) and isolated 35 clones, which represent copies of eight genes encoding Kunitz type C proteases. Their nucleotide sequences were established. All the genes were found for the first time and designated as PKPI-C1-PKPI-N8. The gene PKPI-C2, which we had earlier presumed to encode the subtilisin PKSI inhibitor, was cloned into pQE30 vector and then expressed in Escherichia coli cells. The recombinant protein PKPI-C2 underwent spontaneous folding and transformation into a soluble state. We purified it to homogeneity by affinity chromatography. The PKPI-C2 protein efficiently inhibited subtilisin Carlsberg activity and did not act on trypsin, chymotrypsin, or papain.
Collapse
|
14
|
Speranskaya AS, Krinitsina AA, Revina TA, Gerasimova NG, Keruchen'ko YS, Shevelev AB, Valueva TA. Heterologous expression, purification, and properties of a potato protein inhibitor of serine proteinases. BIOCHEMISTRY (MOSCOW) 2007; 71:1176-82. [PMID: 17140378 DOI: 10.1134/s0006297906110022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene PKPI-B10 [AF536175] encoding in potato (Solanum tuberosum L., cv. Istrinskii) a Kunitz-type protein inhibitor of proteinases (PKPI) has been cloned into the pET23a vector and then expressed in Escherichia coli. The recombinant protein PKPI-B10 obtained as inclusion bodies was denatured, separated from admixtures by ion-exchange fast protein liquid chromatography (FPLC) on MonoQ under denaturing conditions, and renatured. The native protein was additionally purified by ion-exchange FPLC on DEAE-Toyopearl. The PKPI-B10 protein effectively inhibits the activity of trypsin, significantly weaker suppresses the activity of chymotrypsin, and has no effect on other serine proteinases: human leukocyte elastase, subtilisin Carlsberg, and proteinase K, and also the plant cysteine proteinase papain.
Collapse
Affiliation(s)
- A S Speranskaya
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
15
|
Park M, Lee D, Lee GJ, Hwang I. AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. ACTA ACUST UNITED AC 2005; 170:757-67. [PMID: 16115960 PMCID: PMC2171354 DOI: 10.1083/jcb.200504112] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organellar proteins are sorted by cargo receptors on the way to their final destination. However, receptors for proteins that are destined for the protein storage vacuole (PSV) are largely unknown. In this study, we investigated the biological role that Arabidopsis thaliana receptor homology region transmembrane domain ring H2 motif protein (AtRMR) 1 plays in protein trafficking to the PSV. AtRMR1 mainly colocalized to the prevacuolar compartment of the PSV, but a minor portion also localized to the Golgi complex. The coexpression of AtRMR1 mutants that were localized to the Golgi complex strongly inhibited the trafficking of phaseolin to the PSV and caused accumulation of phaseolin in the Golgi complex or its secretion. Coimmunoprecipitation and in vitro binding assays revealed that the lumenal domain of AtRMR1 interacts with the COOH-terminal sorting signal of phaseolin at acidic pH. Furthermore, phaseolin colocalized with AtRMR1 on its way to the PSV. Based on these results, we propose that AtRMR1 functions as the sorting receptor of phaseolin for its trafficking to the PSV.
Collapse
Affiliation(s)
- Misoon Park
- Division of Molecular and Life Sciences, Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
16
|
Yang J, Barr LA, Fahnestock SR, Liu ZB. High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 2005; 14:313-24. [PMID: 16145839 DOI: 10.1007/s11248-005-0272-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DP1B is a synthetic analogue of spider dragline silk protein. It can be spun to form silk fiber. Previously, it had been expressed in transgenic plants, showing the general feasibility of the plant-based DP1B production. However, success of such a plant-based platform requires a great increase of DP1B productivity in plant cells to reduce production cost. This report describes a protein targeting approach to accumulate DP1B in apoplast, ER lumen, and vacuole in Arabidopsis cells, by utilizing appropriate combinations of sporamin-targeting determinant peptides and ER retention peptide. The approach has dramatically enhanced DP1B accumulation, resulting in high production yield. The accumulation can be as high as 8.5 and 6.7% total soluble protein in leaf tissue by targeting to apoplast and ER lumen, respectively, or as high as 18 and 8.2% total soluble protein in seeds by targeting to ER lumen and vacuole, respectively. However, the vacuole targeting in leaves and the apoplast targeting in seeds have failed to accumulate full length DP1B molecules or any DP1B at all, respectively, suggesting that they may not be suitable for applications in leaf tissues and seeds. Data in this study recommend a combination of seed-specific expression and ER-targeting as one of the best strategies for yield enhancement of plant-based DP1B production.
Collapse
Affiliation(s)
- Jianjun Yang
- Central Research and Development, EI DuPont de Nemours & Co, Experimental Station, Wilmington, DE 19880, USA.
| | | | | | | |
Collapse
|
17
|
Yano K, Matsui S, Tsuchiya T, Maeshima M, Kutsuna N, Hasezawa S, Moriyasu Y. Contribution of the plasma membrane and central vacuole in the formation of autolysosomes in cultured tobacco cells. PLANT & CELL PHYSIOLOGY 2004; 45:951-7. [PMID: 15295079 DOI: 10.1093/pcp/pch105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Autolysosomes accumulate in tobacco cells cultured under sucrose starvation conditions in the presence of a cysteine protease inhibitor. We characterized these plant autolysosomes using fluorescent dyes and green fluorescent protein (GFP). Observation using the endocytosis markers, FM4-64 and Lucifer Yellow CH, suggested that there is a membrane flow from the plasma membrane to autolysosomes. Using these dyes as well as GFP-AtVam3p, sporamin-GFP and gamma-VM23-GFP fusion proteins as markers of the central vacuole, we found transport of components of the central vacuole to autolysosomes. Thus endocytosis and the supply from the central vacuole may contribute to the formation of autolysosomes.
Collapse
Affiliation(s)
- Kanako Yano
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T. C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. PLANT PHYSIOLOGY 2003; 132:1892-900. [PMID: 12913146 PMCID: PMC181275 DOI: 10.1104/pp.103.021147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 02/26/2003] [Accepted: 04/29/2003] [Indexed: 05/18/2023]
Abstract
Sulfhydryl-endopeptidase (SH-EP) is a papain-type vacuolar proteinase expressed in cotyledons of germinated Vigna mungo seeds, and the enzyme possesses a C-terminal propeptide containing KDEL tail, an endoplasmic reticulum retention signal for soluble proteins. SH-EP is transported to vacuoles via a KDEL vesicle (KV) through a Golgi complex-independent route. To see the function of the KDEL sequence of SH-EP, wild-type SH-EP and its KDEL deletion mutant (SH-EPDeltaKDEL) were heterologously expressed in Arabidopsis and in cultured tobacco Bright Yellow 2 cells, and their intracellular transport pathways and localizations were analyzed. A combination of the results from analyses for transformed Arabidopsis and tobacco (Nicotiana tabacum) cells indicated that wild-type SH-EP is packed into KV-like vesicles through the KDEL sequence and is transported to vacuoles in the cells of transformants. In contrast, KV was not formed/induced in the cells expressing SH-EPDeltaKDEL, and the mutant protein was mainly secreted. Therefore, the C-terminal KDEL sequence of the KDEL-tailed cysteine proteinase is thought to be involved in the formation of KV, and in the efficient vacuolar transport of the proteins through KV.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397 Japan.
| | | | | | | | | |
Collapse
|
19
|
Heibges A, Glaczinski H, Ballvora A, Salamini F, Gebhardt C. Structural diversity and organization of three gene families for Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Mol Genet Genomics 2003; 269:526-34. [PMID: 12783302 DOI: 10.1007/s00438-003-0860-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 04/30/2003] [Indexed: 10/26/2022]
Abstract
In the potato, Kunitz-type enzyme inhibitors are abundant and highly polymorphic small proteins found in tubers. DNA sequence analysis of 1596 unselected ESTs (expressed sequence tags) from mature tubers of the cultivars Provita and Saturna resulted in the identification of 55 different DNA sequences with high sequence similarity to Kunitz-type enzyme inhibitors. The frequency of Kunitz-type inhibitor ESTs in Provita was four times higher than in Saturna tubers, and none of the Provita ESTs was identical to any of the Saturna ESTs. A phenogram constructed from the deduced amino acid sequences of the inhibitors revealed three major homology groups-A, B and C. Group A inhibitors were all derived from Provita ESTs. Inhibitor groups A and B were more similar to each other than to group C inhibitors, and for most members within-group similarity was at least 90%. Non-conservative amino acid substitutions and insertion/deletion polymorphisms suggest functional differentiation between members of the gene family. A minimum of 21 genes for Kunitz-type enzyme inhibitors (six for group A, nine for group B and six for group C) was estimated to exist in the potato genome. Genetic mapping and the identification of BAC (bacterial artificial chromosome) clones containing more than one member of the gene family indicated that most inhibitor genes of groups A, B and C are organized in a cluster that maps to a single region on potato chromosome III.
Collapse
Affiliation(s)
- A Heibges
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | | | | | |
Collapse
|
20
|
Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, Kim DH, Lee KH, Hwang I. ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:1507-20. [PMID: 12177464 PMCID: PMC166739 DOI: 10.1104/pp.003624] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
ADP-ribosylation factors (Arf), a family of small GTP-binding proteins, play important roles in intracellular trafficking in animal and yeast cells. Here, we investigated the roles of two Arf homologs, Arf1 and Arf3 of Arabidopsis, in intracellular trafficking in plant cells. We generated dominant negative mutant forms of Arf 1 and Arf3 and examined their effect on trafficking of reporter proteins in protoplasts. Arf1[T31N] inhibited trafficking of H(+)-ATPase:green fluorescent protein (GFP) and sialyltransferase (ST):GFP to the plasma membrane and the Golgi apparatus. In addition, Arf1[T31N] caused relocalization of the Golgi reporter protein ST:GFP to the endoplasmic reticulum (ER). In protoplasts expressing Arf1[T31N], ST:red fluorescent protein remained in the ER, whereas H(+)-ATPase:GFP was mistargeted to another organelle. Also, expression of Arf1[T31N] in protoplasts resulted in profound changes in the morphology of the ER. The treatment of protoplasts with brefeldin A had exactly the same effect as Arf1[T31N] on various intracellular trafficking pathways. In contrast, Arf3[T31N] did not affect trafficking of any of these reporter proteins. Inhibition experiments using mutants with various domains swapped between Arf1 and Arf3 revealed that the N-terminal domain is interchangeable for trafficking inhibition. However, in addition to the T31N mutation, motifs in domains II, III, and IV of Arf1 were necessary for inhibition of trafficking of H(+)-ATPase:GFP. Together, these results strongly suggest that Arf1 plays a role in the intracellular trafficking of cargo proteins in Arabidopsis, and that Arf1 functions through a brefeldin A-sensitive factor.
Collapse
Affiliation(s)
- Mi Hee Lee
- Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yamada K, Matsushima R, Nishimura M, Hara-Nishimura I. A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. PLANT PHYSIOLOGY 2001. [PMID: 11743107 DOI: 10.1104/pp.010551] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis RD21 is a cysteine protease of the papain family. Unlike other members of the papain family, RD21 has a C-terminal extension sequence composed of two domains, a 2-kD proline-rich domain and a 10-kD domain homologous to animal epithelin/granulin family proteins. The RD21 protein was accumulated as 38- and 33-kD proteins in Arabidopsis leaves. An immunoblot showed that the 38-kD protein had the granulin domain, whereas the 33-kD protein did not. A pulse-chase experiment with Bright-Yellow 2 transformant cells expressing RD21 showed that RD21 was synthesized as a 57-kD precursor and was then slowly processed to make the 33-kD mature protein via the 38-kD intermediate. After a 12-h chase, the 38-kD intermediate was still detected in the cells. These results indicate that the N-terminal propeptide was first removed from the 57-kD precursor, and the C-terminal granulin domain was then slowly removed to yield the 33-kD mature protein. Subcellular fractionation of the Bright-Yellow 2 transformant showed that the intermediate and mature forms of RD21 were localized in the vacuoles. Under the acidic conditions of the vacuolar interior, the intermediate was found to be easily aggregated. The intermediate and the mature protein were accumulated in association with leaf senescence. Taken together, these results indicate that the intermediate of RD21 was accumulated in the vacuoles as an aggregate, and then slowly matured to make a soluble protease by removing the granulin domain during leaf senescence.
Collapse
Affiliation(s)
- K Yamada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
22
|
Bassham DC, Raikhel NV. The pre-vacuolar t-SNARE AtPEP12p forms a 20S complex that dissociates in the presence of ATP. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:599-603. [PMID: 10504581 DOI: 10.1046/j.1365-313x.1999.00552.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many proteins are transported to the plant vacuole through the secretory pathway in small transport vesicles by a series of vesicle budding and fusion reactions. Vesicles carrying vacuolar cargo bud from the trans-Golgi network are thought to fuse with a pre-vacuolar compartment before being finally transported to the vacuole. In mammals and yeast, the fusion of a vesicle with its target organelle is mediated by a 20S protein complex containing membrane and soluble proteins that appear to be conserved between different species. A number of membrane proteins have been identified in plants that show sequence similarity with a family of integral membrane proteins (t-SNAREs) on target organelles that are required for the fusion of transport vesicles with that organelle. However, the biochemical function of these proteins has remained elusive. Here, we demonstrate for the first time the formation of a 20S complex in plants that has characteristics of complexes involved in vesicle fusion. This complex contains AtPEP12p, an Arabidopsis protein thought to be involved in protein transport to the prevacuolar compartment. In addition, we have shown that AtPEP12p can bind to alpha-SNAP, indicating that AtPEP12p does indeed function as a SNAP receptor or SNARE. These preliminary data suggest that AtPEP12p may function jointly with alpha-SNAP and NSF in the fusion of transport vesicles containing vacuolar cargo proteins with the pre-vacuolar compartment.
Collapse
Affiliation(s)
- D C Bassham
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312, USA
| | | |
Collapse
|
23
|
Does MP, Houterman PM, Dekker HL, Cornelissen BJ. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. PLANT PHYSIOLOGY 1999; 120:421-32. [PMID: 10364393 PMCID: PMC59280 DOI: 10.1104/pp.120.2.421] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 02/23/1999] [Indexed: 05/20/2023]
Abstract
The gene encoding the precursor to stinging nettle (Urtica dioica L. ) isolectin I was introduced into tobacco (Nicotiana tabacum). In transgenic plants this precursor was processed to mature-sized lectin. The mature isolectin is deposited intracellularly, most likely in the vacuoles. A gene construct lacking the C-terminal 25 amino acids was also introduced in tobacco to study the role of the C terminus in subcellular trafficking. In tobacco plants that expressed this construct, the mutant precursor was correctly processed and the mature isolectin was targeted to the intercellular space. These results indicate the presence of a C-terminal signal for intracellular retention of stinging nettle lectin and most likely for sorting of the lectin to the vacuoles. In addition, correct processing of this lectin did not depend on vacuolar deposition. Isolectin I purified from tobacco displayed identical biological activities as isolectin I isolated from stinging nettle. In vitro antifungal assays on germinated spores of the fungi Botrytis cinerea, Trichoderma viride, and Colletotrichum lindemuthianum revealed that growth inhibition by stinging nettle isolectin I occurs at a specific phase of fungal growth and is temporal, suggesting that the fungi had an adaptation mechanism.
Collapse
Affiliation(s)
- M P Does
- Section for Plant Pathology, Institute for Molecular Cell Biology, BioCentrum Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Abstract
Plants store amino acids for longer periods in the form of specific storage proteins. These are deposited in seeds, in root and shoot tubers, in the wood and bark parenchyma of trees and in other vegetative organs. Storage proteins are protected against uncontrolled premature degradation by several mechanisms. The major one is to deposit the storage proteins into specialized membrane-bounded storage organelles, called protein bodies (PB). In the endosperm cells of maize and rice prolamins are sequestered into PBs which are derived from the endoplasmic reticulum (ER). Globulins, the typical storage proteins of dicotyledonous plants, and prolamins of some cereals are transported from the ER through the Golgi apparatus and then into protein storage vacuoles (PSV) which later become transformed into PBs. Sorting and targeting of storage proteins begins during their biosynthesis on membrane-bound polysomes where an N-terminal signal peptide mediates their segregation into the lumen of the ER. After cleavage of the signal peptide, the polypeptides are glycosylated and folded with the aid of chaperones. While still in the ER, disulfide bridges are formed which stabilize the structure and several polypeptides are joined to form an oligomer which has the proper conformation to be either deposited in ER-derived PB or to be further transferred to the PSV. At the trans-Golgi cisternae transport vesicles are sequestered which carry the storage proteins to the PSV. Several storage proteins are also processed after arriving in the PSVs in order to generate a conformation that is capable of final deposition. Some storage protein precursors have short N- or C-terminal targeting sequences which are detached after arrival in the PSV. Others have been shown to have internal sequence regions which could act as targeting information. In some cases positive targeting information is known to mediate sorting into the PSV whereas in other cases aggregation and membrane association seem to be major sorting mechanisms.
Collapse
Affiliation(s)
- K Müntz
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| |
Collapse
|
25
|
Neuhaus JM, Rogers JC. Sorting of proteins to vacuoles in plant cells. PLANT MOLECULAR BIOLOGY 1998; 38:127-144. [PMID: 9738964 DOI: 10.1007/978-94-011-5298-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An individual plant cell may contain at least two functionally and structurally distinct types of vacuoles: protein storage vacuoles and lytic vacuoles. Presumably a cell that stores proteins in vacuoles must maintain these separate compartments to prevent exposure of the storage proteins to an acidified environment with active hydrolytic enzymes where they would be degraded. Thus, the organization of the secretory pathway in plant cells, which includes the vacuoles, has a fascinating complexity not anticipated from the extensive genetic and biochemical studies of the secretory pathway in yeast. Plant cells must generate the membranes to form two separate types of tonoplast, maintain them as separate organelles, and direct soluble proteins from the secretory flow specifically to one or the other via separate vesicular pathways. Individual soluble and membrane proteins must be recognized and sorted into one or the other pathway by distinct, specific mechanisms. Here we review the emerging picture of how separate plant vacuoles are organized structurally and how proteins are recognized and sorted to each type.
Collapse
Affiliation(s)
- J M Neuhaus
- Laboratoire de Biochimie, Institut de Botanique, Université de Neuchâtel, Switzerland
| | | |
Collapse
|
26
|
|
27
|
D'Hondt K, Bosch D, Van Damme J, Goethals M, Vandekerckhove J, Krebbers E. An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36869-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Abstract
The secretory system of plant cells sorts a large number of soluble proteins that either are secreted or accumulate in vacuoles. Secretion is a bulk-flow process that requires no information beyond the presence of a signal peptide necessary to enter the endoplasmic reticulum. Many vacuolar proteins are glycoproteins and the glycans are often modified as the proteins pass through the Golgi complex. Vacuolar targeting information is not contained in glycans as it is in animal cells; rather, targeting information is in polypeptide domains as it is in yeast cells. Several such domains have now been identified, but these show little or no amino acid sequence homology. We discuss the possibilities that targeting of protein to plant vacuoles may involve receptors as well as aggregation of protein at low pH.
Collapse
Affiliation(s)
- A Vitale
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | |
Collapse
|