1
|
Ichise N, Sato T, Fusagawa H, Yamazaki H, Kudo T, Ogon I, Tohse N. Ultrastructural Assessment and Proteomic Analysis in Myofibrillogenesis in the Heart Primordium After Heartbeat Initiation in Rats. Front Physiol 2022; 13:907924. [PMID: 35615667 PMCID: PMC9124805 DOI: 10.3389/fphys.2022.907924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Myofibrillogenesis is an essential process for cardiogenesis and is closely related to excitation-contraction coupling and the maintenance of heartbeat. It remains unclear whether the formation of myofibrils and sarcomeres is associated with heartbeat initiation in the early embryonic heart development. Here, we investigated the association between the ultrastructure of myofibrils assessed by transmission electron microscopy and their proteomic profiling assessed by data-independent acquisition mass spectrometry (DIA-MS) in the rat heart primordia before and after heartbeat initiation at embryonic day 10.0, when heartbeat begins in rats, and in the primitive heart tube at embryonic day 11.0. Bundles of myofilaments were scattered in a few cells of the heart primordium after heartbeat initiation, whereas there were no typical sarcomeres in the heart primordia both before and after heartbeat initiation. Sarcomeres with Z-lines were identified in cells of the primitive heart tube, though myofilaments were not aligned. DIA-MS proteome analysis revealed that only 43 proteins were significantly upregulated by more than 2.0 fold among a total of 7,762 detected proteins in the heart primordium after heartbeat initiation compared with that before heartbeat initiation. Indeed, of those upregulated proteins, 12 (27.9%) were constituent proteins of myofibrils and 10 (23.3%) were proteins that were accessories and regulators for myofibrillogenesis, suggesting that upregulated proteins that are associated with heartbeat initiation were enriched in myofibrillogenesis. Collectively, our results suggest that the establishment of heartbeat is induced by development of bundles of myofilaments with upregulated proteins associated with myofibrillogensis, whereas sarcomeres are not required for the initial heartbeat.
Collapse
Affiliation(s)
- Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Tatsuya Sato,
| | - Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Izaya Ogon
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Streese L, Demougin P, Iborra P, Kanitz A, Deiseroth A, Kröpfl JM, Schmidt-Trucksäss A, Zavolan M, Hanssen H. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population. Sci Rep 2022; 12:2991. [PMID: 35194110 PMCID: PMC8863825 DOI: 10.1038/s41598-022-06956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
We performed untargeted profiling of circulating microRNAs (miRNAs) in a well characterized cohort of older adults to verify associations of health and disease-related biomarkers with systemic miRNA expression. Differential expression analysis revealed 30 miRNAs that significantly differed between healthy active, healthy sedentary and sedentary cardiovascular risk patients. Increased expression of miRNAs miR-193b-5p, miR-122-5p, miR-885-3p, miR-193a-5p, miR-34a-5p, miR-505-3p, miR-194-5p, miR-27b-3p, miR-885-5p, miR-23b-5b, miR-365a-3p, miR-365b-3p, miR-22-5p was associated with a higher metabolic risk profile, unfavourable macro- and microvascular health, lower physical activity (PA) as well as cardiorespiratory fitness (CRF) levels. Increased expression of miR-342-3p, miR-1-3p, miR-92b-5p, miR-454-3p, miR-190a-5p and miR-375-3p was associated with a lower metabolic risk profile, favourable macro- and microvascular health as well as higher PA and CRF. Of note, the first two principal components explained as much as 20% and 11% of the data variance. miRNAs and their potential target genes appear to mediate disease- and health-related physiological and pathophysiological adaptations that need to be validated and supported by further downstream analysis in future studies. Clinical Trial Registration: ClinicalTrials.gov: NCT02796976 (https://clinicaltrials.gov/ct2/show/NCT02796976).
Collapse
Affiliation(s)
- Lukas Streese
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Philippe Demougin
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Life Sciences Training Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Paula Iborra
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Arne Deiseroth
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Julia M Kröpfl
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland.
| |
Collapse
|
3
|
The ATO/miRNA-885-5p/MTPN axis induces reversal of drug-resistance in cholangiocarcinoma. Cell Oncol (Dordr) 2021; 44:907-916. [PMID: 34170484 DOI: 10.1007/s13402-021-00610-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Cholangiocarcinoma (CCA) is the second most malignant tumor of the hepatobiliary system. Due to its cumbersome early diagnosis and rapid progression, chemotherapy has become the main treatment option. Primary drug resistance is a major cause of the poor efficacy of chemotherapeutic drugs. Therefore, it is considered urgent to explore new drugs to overcome primary drug resistance of CCA. METHODS Western blot and qRT-PCR assays were used to assess the expression of myotrophin (MTPN) and microRNA-885-5p (miR-885-5p) in CCA tissues and cells. The viability of CCA cells treated with arsenic trioxide (ATO), 5-fluorouracil (5-Fu) and cisplatin (CDDP) was analyzed using a CCK-8 assay. A luciferase reporter assay was used to assess the interaction between miR-885-5p and MTPN. Kaplan-Meier analyses were used for survival assessments. RESULT We found that ATO can reduce the resistance of CCA cells to 5-Fu and CDDP and promote the killing effect of 5-Fu and CDDP. Low-dose ATO showed an anti-drug-resistance effect through up-regulation of the expression of miR-885-5p. Combined with sequencing results and database predictions, we found that MTPN may serve as a direct target of miR-885-5p. After MTPN knockdown, the sensitivity of CCA cells to 5-FU and CDDP was increased. Finally, we found that ATO can reverse chemotherapy resistance induced by overexpression of MTPN. CONCLUSION Our data indicate that the ATO/miR-885-5p/MTPN axis may serve as a target for improving the sensitivity of CCA cells to chemotherapy.
Collapse
|
4
|
Bordbar F, Jensen J, Du M, Abied A, Guo W, Xu L, Gao H, Zhang L, Li J. Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing. Cell Prolif 2020; 53:e12870. [PMID: 32722873 PMCID: PMC7507581 DOI: 10.1111/cpr.12870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Genome‐wide association studies (GWAS) represent a powerful approach to detecting candidate genes for economically important traits in livestock. Our aim was to identify promising candidate muscle development genes that affect net meat weight (NMW) and validate these candidate genes in cattle. Materials and methods Using a next‐generation sequencing (NGS) dataset, we applied ~ 12 million imputed single nucleotide polymorphisms (SNPs) from 1,252 Simmental cattle to detect genes influencing net meat yield by way of a linear mixed model method. Haplotype and linkage disequilibrium (LD) blocks were employed to augment support for identified genes. To investigate the role of MTPN in bovine muscle development, we isolated myoblasts from the longissimus dorsi of a bovine foetus and treated the cells during proliferation, differentiation and hypertrophy. Results We identified one SNP (rs100670823) that exceeded our stringent significance threshold (P = 8.58 × 10−8) for a putative NMW‐related quantitative trait locus (QTL). We identified a promising candidate gene, myotrophin (MTPN), in the region around this SNP Myotrophin had a stimulatory effect on six muscle‐related markers that regulate differentiation and myoblast fusion. During hypertrophy, myotrophin promoted myotube hypertrophy and increased myotube diameters. Cell viability assay and flow cytometry showed that myotrophin inhibited myoblast proliferation. Conclusions The present experiments showed that myotrophin increases differentiation and hypertrophy of skeletal muscle cells, while inhibiting their proliferation. Our examination of GWAS results with in vitro biological studies provides new information regarding the potential application of myotrophin to increase meat yields in cattle and helpful information for further studies.
Collapse
Affiliation(s)
- Farhad Bordbar
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Adam Abied
- Animal Genetic Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Meat Science and Muscle Biology, Animal and Diary Science, University of Wisconsin-Madison, Madison, USA
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Li Y, Lv Z, Zhang J, Ma Q, Li Q, Song L, Gong L, Zhu Y, Li X, Hao Y, Yang Y. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients. Metab Brain Dis 2020; 35:201-213. [PMID: 31834549 DOI: 10.1007/s11011-019-00497-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
Expression of circular RNA (circRNA), a class of noncoding RNAs that regulates gene expression, is altered in Alzheimer's disease. This study profiled differentially expressed circRNAs in peripheral blood mononuclear cells (PBMCs) from five patients with Alzheimer's disease compared to healthy controls using circRNA microarrays. We identified a total of 4060 differentially expressed circRNAs (1990 upregulated and 2070 downregulated) in Alzheimer's disease patients. Among these circRNAs, 10 randomly selected circRNAs were verified using qRT-PCR. The top 10 upregulated and downregulated circRNAs were used to predict their target miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these differentially expressed circRNAs were strongly associated with inflammation, metabolism, and immune responses, which are all risk factors for Alzheimer's disease. The circRNA-miRNA-mRNA network was most involved in the MAPK, mTOR, AMPK, and WNT signaling pathways in Alzheimer's disease. In conclusion, the current study demonstrated the importance of circRNAs in Alzheimer's disease development. Future studies will evaluate some of these circRNAs as biomarkers for early disease detection and to develop therapeutic strategies to clinically control Alzheimer's disease progression.
Collapse
Affiliation(s)
- Yanxin Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhanyun Lv
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Jing Zhang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Qianqian Ma
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Qiuhua Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Li Song
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Li Gong
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Yunliang Zhu
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Xiangyuan Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Yanlei Hao
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Jining Medical University, Jining, 272067, China.
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Jining Medical University, Jining, 272067, China.
| |
Collapse
|
6
|
Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, Zhang P, Wang W, Guan W, Ma Y. MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med 2017; 11:3457-3468. [DOI: 10.1002/term.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/28/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chunyu Bai
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuhua Gao
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Xiangchen Li
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Kunfu Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Hui Xiong
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Zhiqiang Shan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Ping Zhang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Wenjie Wang
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Weijun Guan
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Yuehui Ma
- Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| |
Collapse
|
7
|
Wang Y, Chen J, Song W, Wang Y, Chen Y, Nie Y, Hui R. The Human Myotrophin Variant Attenuates MicroRNA-Let-7 Binding Ability but Not Risk of Left Ventricular Hypertrophy in Human Essential Hypertension. PLoS One 2015; 10:e0135526. [PMID: 26274321 PMCID: PMC4537090 DOI: 10.1371/journal.pone.0135526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
Myotrophin, known as a myocardial hypertrophy-inducing factor, is responsible for the initiation of cardiac hypertrophy that transits to heart failure. MicroRNAs are small noncoding RNAs that down-regulate posttranscriptional expression of target molecules. We investigated the role of variants of the microRNA-binding site in myotrophin in affecting its expression and any association with cardiac hypertrophy. Bioinformatics demonstrated that variant rs17168525 was identified to be located in the let-7/miR-98-binding site of myotrophin. We further experimentally test to effects of the identified variant on myotrophin translation using luciferase reporter assay and Western blotting. We found that the C allele of rs17168525 suppressed myotrophin translation by facilitating let-7c binding, but not the T allele. Let-7c overexpression caused a significant decrease in the level of myotrophin protein. Next, we investigated the association of the variant with cardiac hypertrophy in 1614 hypertensive patients, including 552 with left ventricular hypertrophy and 1062 without left ventricular hypertrophy, as well as 591 healthy control subjects from a Han Chinese population. No significant association between the variant rs17168525 and left ventricular hypertrophy in hypertensive patients in a Han Chinese population (P>0.05). In conclusion, our experimental results provide evidence that the T allele of rs17168525 in the 3'-UTR of myotrophin might influence the level of myotrophin protein by interfering with let-7/miR-98 binding.
Collapse
Affiliation(s)
- Yuyao Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (YYW); (RTH)
| | - Jingzhou Chen
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Song
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, Shanxi Dayi Hospital, Taiyuan, China
| | - Yu Chen
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Nie
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (YYW); (RTH)
| |
Collapse
|
8
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
10
|
Wang L, Wang Y. Molecular characterization, expression patterns and subcellular localization of Myotrophin (MTPN) gene in porcine skeletal muscle. Mol Biol Rep 2011; 39:2733-8. [PMID: 21667249 DOI: 10.1007/s11033-011-1028-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/03/2011] [Indexed: 11/24/2022]
Abstract
Myotrophin (MTPN) is an effective growth factor in promoting skeletal muscle growth in vitro and vivo and has been purified from porcine skeletal muscle. However, in pigs, the information on MTPN gene is very limited. In this study, we cloned cDNA sequences and analyzed the genomic structure of porcine MTPN gene. The deduced amino acid sequence of porcine MTPN contains two the ankyrin repeat domains. RT-PCR analysis revealed that porcine MTPN gene was widely expressed in many tissues, a high expression level was observed in the spleen, liver and uterus, and transient transfection indicated that porcine MTPN proteins was located in cytoplasms within Pig Kidney Epithelial cells (PK15). Quantitative real-time PCR (qRT-PCR) analyses showed that MTPN expression peaked at embryonic 65 day post conception (dpc). During postnatal muscle development, MTPN expression was down-regulated from the 3 day to the 180 day in Yorkshire pigs. This result suggests that the MTPN gene may be important gene for skeletal muscle growth and provides useful information for further studies on its roles in porcine skeletal muscle.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | | |
Collapse
|
11
|
Faccin M, Bruscolini P, Pelizzola A. Analysis of the equilibrium and kinetics of the ankyrin repeat protein myotrophin. J Chem Phys 2011; 134:075102. [PMID: 21341874 DOI: 10.1063/1.3535562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We apply the Wako-Saito-Muñoz-Eaton model to the study of myotrophin, a small ankyrin repeat protein, whose folding equilibrium and kinetics have been recently characterized experimentally. The model, which is a native-centric with binary variables, provides a finer microscopic detail than the Ising model that has been recently applied to some different repeat proteins, while being still amenable for an exact solution. In partial agreement with the experiments, our results reveal a weakly three-state equilibrium and a two-state-like kinetics of the wild-type protein despite the presence of a nontrivial free-energy profile. These features appear to be related to a careful "design" of the free-energy landscape, so that mutations can alter this picture, stabilizing some intermediates and changing the position of the rate-limiting step. Also, the experimental findings of two alternative pathways, an N-terminal and a C-terminal one, are qualitatively confirmed, even if the variations in the rates upon the experimental mutations cannot be quantitatively reproduced. Interestingly, the folding and unfolding pathways appear to be different, even if closely related: a property that is not generally considered in the phenomenological interpretation of the experimental data.
Collapse
Affiliation(s)
- Mauro Faccin
- Departamento de Física Teórica & Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
12
|
Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010; 45:318-30. [PMID: 20515317 PMCID: PMC2942773 DOI: 10.3109/10409238.2010.488217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute for Developmental Biology and Stem Cell Research-University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Takeda S, Minakata S, Koike R, Kawahata I, Narita A, Kitazawa M, Ota M, Yamakuni T, Maéda Y, Nitanai Y. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition. PLoS Biol 2010; 8:e1000416. [PMID: 20625546 PMCID: PMC2897767 DOI: 10.1371/journal.pbio.1000416] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the regulation of the barbed end elongation in cells.
Collapse
Affiliation(s)
- Shuichi Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency c/o RIKEN SPring-8 Center, Hyogo, Japan
- * E-mail: (ST); (YM)
| | - Shiho Minakata
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency c/o RIKEN SPring-8 Center, Hyogo, Japan
| | - Ryotaro Koike
- Graduate School of Information Science, Nagoya University, Nagoya, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo, Japan
| | - Ichiro Kawahata
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency c/o RIKEN SPring-8 Center, Hyogo, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masashi Kitazawa
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Motonori Ota
- Graduate School of Information Science, Nagoya University, Nagoya, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo, Japan
| | - Tohru Yamakuni
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuichiro Maéda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency c/o RIKEN SPring-8 Center, Hyogo, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail: (ST); (YM)
| | - Yasushi Nitanai
- ERATO Actin Filament Dynamics Project, Japan Science and Technology Agency c/o RIKEN SPring-8 Center, Hyogo, Japan
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Hyogo, Japan
| |
Collapse
|
14
|
Das B, Young D, Vasanji A, Gupta S, Sarkar S, Sen S. Influence of p53 in the transition of myotrophin-induced cardiac hypertrophy to heart failure. Cardiovasc Res 2010; 87:524-34. [PMID: 20202977 DOI: 10.1093/cvr/cvq068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Cardiac-specific overexpression of myotrophin (myo) protein in transgenic (myo-Tg) mice results in hypertrophy at 4 weeks that progresses to heart failure (HF) by 36 weeks. Gene profiling showed that p53 expression increases as hypertrophy worsens to HF, suggesting that p53 may influence myo-induced HF. We aimed to define how the p53 signalling cascade affects the spectrum of cardiac hypertrophy (CH)/HF. METHODS AND RESULTS Immunoblot analysis showed that in myo-Tg mice (Mus musculus), upregulation of p53 occurs only when hypertrophy transitions to HF (16 weeks onward). To elucidate the role of p53, a double-Tg mouse line (p53(-/-)/myo(+/+)) was developed by crossing myo-Tg mice with p53-null mice. A significant reduction in cardiac mass with improved cardiac function was observed in p53(-/-)/myo(+/+) mice, suggesting that absence of p53 prevents hypertrophy from turning into HF. Analysis via real-time reverse-transcription PCR revealed changes in transcripts of the p53 pathway in p53(-/-)/myo(+/+) mice. Ingenuity Pathway Analysis indicated that cross-talk among several key nodal molecules (e.g. cyclin-dependent kinase inhibitor 1A, caspase-3, nuclear factor kappa-light-chain enhancer of activated B cells etc.) may play a regulatory role in the transition of CH to HF. CONCLUSION Our data provide evidence, for the first time, that the coherence of p53 with myo plays an active role during the transition of CH to HF in a model of HF induced by myo overexpression. Transition from CH to HF can be prevented in the absence of p53 in myo-induced hypertrophy. Therefore, deletion/inhibition of p53 could be a therapeutic strategy to prevent CH from transitioning to HF.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Molecular Cardiology-NB50, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
15
|
Xia HQ, Pan Y, Peng J, Lu GX. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells. Mol Biol Rep 2010; 38:3061-5. [PMID: 20221699 DOI: 10.1007/s11033-010-9973-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/19/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are 19- to 25-nt fragments cleaved from 70- to 100-nt hairpin precursors. These molecules participate in essential biological processes. It was estimated that 30% of all protein-coding genes are miRNA targets. Thousands of miRNAs have already been identified in plants and animals, but little is known about their biological roles. MicroRNA375 (miR375) is highly expressed in pancreatic islets of humans and mice and regulates insulin secretion in isolated pancreatic cells. To improve our understanding of the biological roles of miR375, we constructed the plasmid pAAV-miR375 and transfected it into mouse Nit-1 cells. Real-time PCR and Northern blot analysis showed that the Nit-1 cells transfected with pAAV-miR375 over-expressed the mature miR375 compared with Nit-1 cells transfected with control plasmid or untransfected cells. The expression of myotrophin (Mtpn) decreased and insulin secretion was reduced in Nit-1 cells transfected with pAAV-miR375. In this study, we successfully established an over-expression system for miR375 and a technique to study the biological function of miRNAs by over-expression. We verified that miR375 reduced glucose-induced insulin secretion by down-regulating the expression of Mtpn in Nit-1 cells in vitro, suggesting that miR375 has potential therapeutic applications in type II diabetes.
Collapse
Affiliation(s)
- Hua-Qiang Xia
- Institute of Reproduction and Stem Cell Engineering, Central South University, 110 Xiangya Road, Changsha 410078, China
| | | | | | | |
Collapse
|
16
|
Das B, Gupta S, Vasanji A, Xu Z, Misra S, Sen S. Nuclear co-translocation of myotrophin and p65 stimulates myocyte growth. Regulation by myotrophin hairpin loops. J Biol Chem 2008; 283:27947-27956. [PMID: 18693253 DOI: 10.1074/jbc.m801210200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotrophin, a 12-kDa ankyrin repeat protein, stimulates protein synthesis and cardiomyocyte growth to initiate cardiac hypertrophy by activating the NF-kappaB signaling cascade. We found that, after internalization into myocytes, myotrophin cotranslocates into the nucleus with p65 to stimulate myocyte growth. We used structure-based mutations on the hairpin loops of myotrophin to determine the effect of the loops on myotrophin and p65 localization, induction of protein synthesis, and cardiac hypertrophy. Loop mutants, most prominently glutamic acid 33-->alanine (E33A), stimulated protein synthesis much less than wild type. Myotrophin-E33A internalized into myocytes but did not translocate into the nucleus and failed to promote nuclear translocation of p65. In addition, two cardiac hypertrophy marker genes, atrial natriuretic factor and beta-myosin heavy chain, were not up-regulated in E33A-treated cells. Myotrophin-induced myocyte growth and initiation of hypertrophy thus require nuclear co-translocation of myotrophin and p65, in a manner that depends crucially on the myotrophin hairpin loops.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sudhiranjan Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Amit Vasanji
- Image Processing and Analysis Center, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Zhen Xu
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Saurav Misra
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Subha Sen
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
17
|
|
18
|
Young D, Popovic ZB, Jones WK, Gupta S. Blockade of NF-kappaB using IkappaB alpha dominant-negative mice ameliorates cardiac hypertrophy in myotrophin-overexpressed transgenic mice. J Mol Biol 2008; 381:559-68. [PMID: 18620706 DOI: 10.1016/j.jmb.2008.05.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/23/2008] [Accepted: 05/29/2008] [Indexed: 01/11/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a ubiquitous transcription factor that regulates various kinds of genes including inflammatory molecules, macrophage infiltration factors, cell adhesion molecules, and so forth, in various disease processes including cardiac hypertrophy and heart failure. Previously, we have demonstrated that activation of NF-kappaB was required in myotrophin-induced cardiac hypertrophy, in spontaneously hypertensive rats, and in dilated cardiomyopathy human hearts. Moreover, our recent study using the myotrophin-overexpressed transgenic mouse (Myo-Tg) model showed that short hairpin RNA-mediated knockdown of NF-kappaB significantly attenuated cardiac mass associated with improved cardiac function. Although it has been shown that NF-kappaB is substantially involved in cardiovascular remodeling, it is not clear whether the continuous blockade of NF-kappaB is effective in cardiovascular remodeling. To address this question, we took a genetic approach using IkappaB alpha triple mutant mice (3M) bred with Myo-Tg mice (a progressive hypertrophy/heart failure model). The double transgenic mice (Myo-3M) displayed an attenuated cardiac hypertrophy (9.8+/-0.62 versus 5.4+/-0.34, p<0.001) and improved cardiac function associated with significant inhibition of the NF-kappaB signaling cascade, hypertrophy marker gene expression, and inflammatory and macrophage gene expression at 24 weeks of age compared to Myo-Tg mice. NF-kappaB-targeted gene array profiling displayed several important genes that were significantly downregulated in Myo-3M mice compared to Myo-Tg mice. Furthermore, Myo-3M did not show any changes of apoptotic gene expression, indicating that significant inhibition of NF-kappaB activation reduces further proinflammatory reactions without affecting susceptibility to apoptosis. Therefore, development of therapeutic strategies targeting NF-kappaB may provide an effective approach to prevent adverse cardiac pathophysiological consequences.
Collapse
Affiliation(s)
- David Young
- Department of Molecular Cardiology, NB 50, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
19
|
Reddy KB, Fox JEB, Price MG, Kulkarni S, Gupta S, Das B, Smith DM. Nuclear localization of Myomesin-1: possible functions. J Muscle Res Cell Motil 2008; 29:1-8. [PMID: 18521710 DOI: 10.1007/s10974-008-9137-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/06/2008] [Indexed: 01/07/2023]
Abstract
Myomesin-I (also known as Skelemin) is a approximately 185 kDa protein, which is highly expressed in striated muscle. It contains the prototypic class-I (type-III fibronectin) and class-II (C2-immunoglobulin) motifs. Previous studies have shown the presence of Myomesin-I at the M-line of the sarcomere, where it is thought to interact with thick filament constituents. As reported previously, Myomesin-I was localized to the M-line in the adult cardiac myocytes (adult-myocytes). However, we found that Myomesin-I was also present exclusively in the nucleus of myocytes isolated from new born pups (neonatal-myocytes). In addition, the ectopically expressed Myomesin-I was primarily targeted to the nucleus, similar to the neonatal myocytes. Further investigations revealed that the nuclear-targeting signals were present within the N-terminal 256 residues. A strong consensus sequence for sumoylation is present within the N-terminal 256 residues and is implicated in the shuttling of Myomesin-I between nucleus and cytoplasm. Gene array analysis showed that the presence of Myomesin-I in the nucleus led to the differential expression of more than 42 genes. These studies show a novel and previously unknown localization and function for Myomesin-I.
Collapse
Affiliation(s)
- Kumar B Reddy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue #NB5, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S. Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB. J Mol Biol 2007; 375:637-49. [PMID: 18037434 DOI: 10.1016/j.jmb.2007.10.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 01/01/2023]
Abstract
Activation of the nuclear factor (NF)-kappaB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-kappaB activity. Using this mouse model and an NF-kappaB-targeted gene array, we first determined the components of NF-kappaB signaling cascade and the NF-kappaB-linked genes that are expressed during the progression to cardiac hypertrophy and HF. Second, we explored the effects of inhibition of NF-kappaB signaling events by using a gene knockdown approach: RNA interference through delivery of a short hairpin RNA against NF-kappaB p65 using a lentiviral vector (L-sh-p65). When the short hairpin RNA was delivered directly into the hearts of 10-week-old Myo-Tg mice, there was a significant regression of cardiac hypertrophy, associated with a significant reduction in NF-kappaB activation and atrial natriuretic factor expression. Our data suggest, for the first time, that inhibition of NF-kappaB using direct gene delivery of sh-p65 RNA results in regression of cardiac hypertrophy. These data validate NF-kappaB as a therapeutic target to prevent hypertrophy/HF.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, NB50, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lovis P, Regazzi R. Noncoding miRNAs as key controllers of pancreatic β-cell functions. Expert Rev Endocrinol Metab 2007; 2:461-468. [PMID: 30290418 DOI: 10.1586/17446651.2.4.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
miRNAs, a recently discovered family of small noncoding RNAs, are emerging as major controllers of gene expression and key determinants of pancreatic β-cell function. These 19-22-nucleotide molecules govern gene expression by partially pairing to 3´-untranslated regions of target mRNAs and by inhibiting their translation. The elucidation of the role of miRNAs promises to unravel new aspects of β-cell biology and to clarify the mechanisms leading to defective insulin secretion in diabetes mellitus. This information is expected to favor the design of new approaches for preserving functional β-cells in prediabetic stages and the development of strategies for engineering insulin-secreting cells capable of replacing endogenous β-cells in diabetic patients.
Collapse
Affiliation(s)
- Pascal Lovis
- a Department of Cell Biology & Morphology, Faculty of Biology & Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | - Romano Regazzi
- b Department of Cell Biology & Morphology, Faculty of Biology & Medicine, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| |
Collapse
|
22
|
Abstract
Cardiac hypertrophy and heart failure are major causes of morbidity and mortality in Western societies. Many factors have been implicated in cardiac remodeling, including alterations in gene expression in myocytes, cardiomyocytes apoptosis, cytokines and growth factors that influence cardiac dynamics, and deficits in energy metabolism as well as alterations in cardiac extracellular matrix composition. Many therapeutic means have been shown to prevent or reverse cardiac hypertrophy. New concepts for characterizing the pathophysiology of cardiac hypertrophy have been drawn from various aspects, including medical therapy and gene therapy, or use of stem cells for tissue regeneration. In this review, we focus on various types of cardiac hypertrophy, defining the causes of hypertrophy, describing available animal models of hypertrophy, discussing the mechanisms for development of hypertrophy and its transition to heart failure, and presenting the potential use of novel promising therapeutic strategies derived from new advances in basic scientific research.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
23
|
Khan SQ, Kelly D, Quinn P, Davies JE, Ng LL. Myotrophin is a more powerful predictor of major adverse cardiac events following acute coronary syndrome than N-terminal pro-B-type natriuretic peptide. Clin Sci (Lond) 2007; 112:251-6. [PMID: 17014419 DOI: 10.1042/cs20060191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myotrophin is a 12 kDa protein initially isolated from hypertrophied hearts of spontaneously hypertensive rats and acts by modulating NF-kappaB (nuclear factor kappaB) activity. We have reported previously the presence of myotrophin in patients with human systolic heart failure; however, its role as a predictor of MACE (major adverse cardiac events) in patients with ACS (acute coronary syndrome) is unclear. In the present study, we sought to investigate this and compared myotrophin with NTproBNP (N-terminal pro-B-type natriuretic peptide), a marker of MACE. We studied 356 patients with ACS {276 men; mean age, 63.0+/-12.8 years; 80.6% STEMI [ST segment elevation MI (myocardial infarction)]; and 19.4% NSTEMI (non-STEMI)}. Blood measurement was made at 25-48 h after the onset of chest pain. The plasma concentration of myotrophin and NTproBNP was determined using in-house non-competitive immunoassays. Patients were followed-up for the combined end point of death, MI or need for urgent revascularization. Over the median follow-up period of 355 (range 0-645) days, there were 28 deaths, 27 non-fatal MIs and 73 patients required urgent revascularization. Myotrophin was raised in patients with MACE compared with survivors [510.7 (116.0-7445.6) fmol/ml compared with 371.5 (51.8-6990.4) fmol/ml respectively; P=0.001; values are medians (range)]. Using a Cox proportional hazards model, myotrophin {HR (hazard ratio), 1.64 [95% CI (confidence interval), 0.97-2.76]; P=0.05} and Killip class above 1 [HR, 1.52 (95% CI, 0.93-2.42); P=0.10] were the only independent predictors of MACE. A Kaplan-Meier survival curve revealed a significantly better clinical outcome in patients with myotrophin below the median compared with those with myotrophin above the median (log rank, 7.63; P=0.006). In conclusion, after an ACS, levels of myotrophin are more informative at predicting MACE than NTproBNP and may be useful to risk stratify patients.
Collapse
Affiliation(s)
- Sohail Q Khan
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| | | | | | | | | |
Collapse
|
24
|
Lowe AR, Itzhaki LS. Biophysical Characterisation of the Small Ankyrin Repeat Protein Myotrophin. J Mol Biol 2007; 365:1245-55. [PMID: 17113103 DOI: 10.1016/j.jmb.2006.10.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/03/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
The 118 residue protein myotrophin is composed of four ankyrin repeats that stack linearly to form an elongated, predominantly alpha-helical structure. The protein folds via a two-state mechanism at equilibrium. The free energy change of unfolding in water (DeltaG(U-N)(H(2)O)) is 5.8 kcal.mol(-1). The chevron plot reveals that the folding reaction has a broad energy barrier and that it conforms to a two-state mechanism. The rate of folding in water (k(f)(H(2)O)) of 95 s(-1) is several orders of magnitude slower than the value predicted by topological calculations. Proline mutants were used to show that the minor kinetic phases observed for myotrophin arise from heterogeneity of the ground states due to cis-trans isomerisation of prolyl as well as non-prolyl peptide bonds. Myotrophin is the first example of a naturally occurring ankyrin repeat protein that conforms to an apparent two-state mechanism at equilibrium and under kinetic conditions, making it highly suitable for high resolution protein folding studies.
Collapse
Affiliation(s)
- Alan R Lowe
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
25
|
Bhattacharya N, Ghosh S, Sept D, Cooper JA. Binding of myotrophin/V-1 to actin-capping protein: implications for how capping protein binds to the filament barbed end. J Biol Chem 2006; 281:31021-30. [PMID: 16895918 PMCID: PMC2277501 DOI: 10.1074/jbc.m606278200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric actin-capping protein (CP) regulates actin assembly and cell motility by binding tightly to the barbed end of the actin filament. Here we demonstrate that myotrophin/V-1 binds directly to CP in a 1:1 molar ratio with a Kd of 10-50 nm. V-1 binding inhibited the ability of CP to cap the barbed ends of actin filaments. The actin-binding COOH-terminal region, the "tentacle," of the CP beta subunit was important for binding V-1, with lesser contributions from the alpha subunit COOH-terminal region and the body of the protein. V-1 appears to be unable to bind to CP that is on the barbed end, based on the observations that V-1 had no activity in an uncapping assay and that the V-1.CP complex had no capping activity. Two loops of V-1, which extend out from the alpha-helical backbone of this ankyrin repeat protein, were necessary for V-1 to bind CP. Parallel computational studies determined a bound conformation of the beta tentacle with V-1 that is consistent with these findings, and they offered insight into experimentally observed differences between the alpha1 and alpha2 isoforms as well as the mutant lacking the alpha tentacle. These results support and extend our "wobble" model for CP binding to the actin filament, in which the two COOH-terminal regions of CP bind independently to the actin filament, and bound CP is able to wobble when attached only via its mobile beta-subunit tentacle. This model is also supported by molecular dynamics simulations of CP reported here. The existence of the wobble state may be important for actin dynamics in cells.
Collapse
Affiliation(s)
- Nandini Bhattacharya
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| | - Shatadal Ghosh
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, Missouri 63110
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, Missouri 63110
| | - John A. Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
26
|
Abstract
Sponges are considered the oldest living animal group and provide important insights into the earliest evolutionary processes in the Metazoa. This paper reviews the evidence that sponge stem cells have essential roles in cellular specialization, embryogenesis and Bauplan formation. Data indicate that sponge archaeocytes not only represent germ cells but also totipotent stem cells. Marker genes have been identified which are expressed in totipotent stem cells and gemmule cells. Furthermore, genes are described for the three main cell lineages in sponge, which share a common origin from archaeocytes and result in the differentiation of skeletal, epithelial, and contractile cells.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| |
Collapse
|
27
|
Shiraishi S, Nakamura YN, Iwamoto H, Haruno A, Sato Y, Mori S, Ikeuchi Y, Chikushi J, Hayashi T, Sato M, Cassens RG, Ito T. S-myotrophin promotes the hypertrophy of skeletal muscle of mice in vivo. Int J Biochem Cell Biol 2005; 38:1114-22. [PMID: 16531094 DOI: 10.1016/j.biocel.2005.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/22/2005] [Accepted: 11/27/2005] [Indexed: 11/16/2022]
Abstract
S-myotrophin is a newly discovered muscle growth factor. Effects of crude S-myotrophin injection on the growth and morphology of skeletal muscle of normal, ScN and mdx mice were investigated in the present study. Total dose of crude S-myotrophin was 100 microg (100 microg protein/ml x 50 microl x 20 times). In the case of normal mice (Sea:ddY), body weight and the weight of M. gluteus major of crude S-myotrophin injected mice was significantly heavier than that of control (PBS-injected) mice after 5 weeks' feeding. Antibody staining of laminin and dystrophin showed clear sarcolemmal and basement membrane structure surrounding each muscle fibre. The numbers of muscle fibres per 100 microm(2) was less in crude S-myotrophin-injected normal mice than in PBS-injected mice. Quite similar observations as in the case of normal mice were obtained in the case of ScN mice having heterogeneous gene of dystrophin. In the case of mdx mice, body weight and the weight of M. gluteus major of crude S-myotrophin injected mdx mice was significantly heavier than that of PBS-injected mdx mice. Antibody staining of laminin showed almost intact structure of the basement membrane containing laminin even in skeletal muscle of mdx mice subjected to crude S-myotrophin injection, while irregular and incompletely developed structure of muscle fibres or necrosis were observed in muscle fibres of PBS-injected mdx mice. In spite of crudeness of the preparation, the present animal experiments indicate that S-myotrophin has a strong growth promoting activity of muscle cells of normal and dystrophic mice.
Collapse
Affiliation(s)
- Shohei Shiraishi
- Laboratory of Chemistry and Technology of Animal Products, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-Ward, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Adhikary G, Gupta S, Sil P, Saad Y, Sen S. Characterization and functional significance of myotrophin: a gene with multiple transcripts. Gene 2005; 353:31-40. [PMID: 15946807 DOI: 10.1016/j.gene.2005.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/07/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The underlying mechanism for the development of cardiac hypertrophy that advances to heart failure is not known. Many factors have been implied to play a role in this process. Among others, we have isolated and identified myotrophin, a factor that stimulates myocytes growth, from spontaneously hypertensive rat (SHR) heart and patients with dilated cardiomyopathy. The gene encoding myotrophin has been cloned and expressed in E. coli. Recently, myotrophin gene has been mapped and shown to be a novel gene localized in human chromosome 7q-33. To define the characteristics of each transcript and its pathophysiological significance, we examined transcripts of myotrophin in SHR heart during progression of hypertrophy. Northern blot analysis of myotrophin mRNA showed multiple transcripts. We isolated and characterized various myotrophin cDNA clones corresponding to the multiple transcripts by 5' "stretch plus" rat heart cDNA library screening. Sequence analysis of these cDNA clones indicates that each clone has a unique 5' UTR and multiple 3' UTR with varying lengths, repeated ATTTA motifs and many polyadenylation signals. In vitro transcripts generated from all these myotrophin-specific cDNA clones translate in vitro to a 12-kD protein. Among pathophysiological significance, we determined mRNA expression in 9 days old, 3 weeks old and 31 weeks old and observed a linear increased during the progression of hypertrophy. In WKY, this mRNA level remained the same throughout the growth and development of hypertrophy. Our data strongly suggest that myotrophin appears to be a candidate gene for cardiac hypertrophy and heart failure.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cardiomegaly/genetics
- Cardiomegaly/physiopathology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Female
- Gene Expression
- Genes/genetics
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Introns
- Male
- Molecular Sequence Data
- Myocardium/metabolism
- Polymorphism, Single Nucleotide
- Pregnancy
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Sequence Analysis, DNA
- Time Factors
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Molecular Cardiology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | |
Collapse
|
29
|
Müller WEG, Thakur NL, Ushijima H, Thakur AN, Krasko A, Le Pennec G, Indap MM, Perovic-Ottstadt S, Schröder HC, Lang G, Bringmann G. Matrix-mediated canal formation in primmorphs from the sponge Suberites domuncula involves the expression of a CD36 receptor-ligand system. J Cell Sci 2004; 117:2579-90. [PMID: 15159453 DOI: 10.1242/jcs.01083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sponges (Porifera), represent the phylogenetically oldest metazoan phylum still extant today. Recently, molecular biological studies provided compelling evidence that these animals share basic receptor/ligand systems, especially those involved in bodyplan formation and in immune recognition, with the higher metazoan phyla. An in vitro cell/organ-like culture system, the primmorphs, has been established that consists of proliferating and differentiating cells, but no canals of the aquiferous system. We show that after the transfer of primmorphs from the demosponge Suberites domuncula to a homologous matrix (galectin), canal-like structures are formed in these 3D-cell aggregates. In parallel with the formation of these structures a gene is expressed whose deduced protein falls into the CD36/LIMPII receptor family. The receptor was cloned and found to be strongly expressed after adhesion to the galectin matrix. This process was suppressed if primmorphs were co-incubated with a homologous polypeptide containing the CSVTCG domain, as found in thrombospondin-1 (and related) molecules of vertebrates. In situ hybridization studies revealed that the S. domuncula CD36/LIMPII receptor is localized in the pinacocytes that surround the canals of the sponge. Furthermore, a secondary metabolite from a sponge-associated bacterium was isolated and characterized, the 2-methylthio-1,4-naphthoquinone (MTN). MTN causes inhibition of cell proliferation of vertebrate tumor cells at concentrations of >80 ng/ml. However, doses of only 2 ng are required to potently inhibit angiogenesis in the chick chorio-allantoic membrane assay. At concentrations of 10 ng/ml this compound was also found to suppress the expression of the S. domuncula CD36/LIMPII; this result is a first indication that this secondary metabolite has a conserved functional activity: the suppression of the formation of the circulation system, from sponges to vertebrates.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie und Pathobiochemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sarkar S, Chawla-Sarkar M, Young D, Nishiyama K, Rayborn ME, Hollyfield JG, Sen S. Myocardial cell death and regeneration during progression of cardiac hypertrophy to heart failure. J Biol Chem 2004; 279:52630-42. [PMID: 15385543 DOI: 10.1074/jbc.m402037200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac hypertrophy and ensuing heart failure are among the most common causes of mortality worldwide, yet the triggering mechanisms for progression of hypertrophy to failure are not fully understood. Tissue homeostasis depends on proper relationships between cell proliferation, differentiation, and death and any imbalance between them results in compromised cardiac function. Recently, we developed a transgenic (Tg) mouse model that overexpress myotrophin (a 12-kDa protein that stimulates myocyte growth) in heart resulting in hypertrophy that progresses to heart failure. This provided us an appropriate model to study the disease process at any point from initiation of hypertrophy end-stage heart failure. We studied detailed apoptotic signaling and regenerative pathways and found that the Tg mouse heart undergoes myocyte loss and regeneration, but only at a late stage (during transition to heart failure). Several apoptotic genes were up-regulated in 9-month-old Tg hearts compared with age-matched wild type or 4-week-old Tg hearts. Cardiac cell death during heart failure involved activation of Fas, tumor necrosis factor-alpha, and caspases 9, 8, and 3 and poly(ADP-ribose) polymerase cleavage. Tg mice with hypertrophy associated with compromised function showed significant up-regulation of cyclins,cyclin-dependent kinases (Cdks), and cell regeneration markers in myocytes. Furthermore, in human failing and nonfailing hearts, similar observations were documented including induction of active caspase 3 and Ki-67 proteins in dilated cardiomyopathic myocytes. Taken together, our data suggest that the stress of extensive myocardial damage from longstanding hypertrophy may cause myocytes to reenter the cell cycle. We demonstrate, for the first time in an animal model, that cell death and regeneration occur simultaneously in myocytes during end-stage heart failure, a phenomenon not observed at the onset of the disease process.
Collapse
Affiliation(s)
- Sagartirtha Sarkar
- Department of Molecular Cardiology, Lerner Research Institute, Taussig Cancer Center, and Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sarkar S, Leaman DW, Gupta S, Sil P, Young D, Morehead A, Mukherjee D, Ratliff N, Sun Y, Rayborn M, Hollyfield J, Sen S. Cardiac overexpression of myotrophin triggers myocardial hypertrophy and heart failure in transgenic mice. J Biol Chem 2004; 279:20422-34. [PMID: 14970239 DOI: 10.1074/jbc.m308488200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac hypertrophy and heart failure remain leading causes of death in the United States. Many studies have suggested that, under stress, myocardium releases factors triggering protein synthesis and stimulating myocyte growth. We identified and cloned myotrophin, a 12-kDa protein from hypertrophied human and rat hearts. Myotrophin (whose gene is localized on human chromosome 7q33) stimulates myocyte growth and participates in cellular interaction that initiates cardiac hypertrophy in vitro. In this report, we present data on the pathophysiological significance of myotrophin in vivo, showing the effects of overexpression of cardio-specific myotrophin in transgenic mice in which cardiac hypertrophy occurred by 4 weeks of age and progressed to heart failure by 9-12 months. This hypertrophy was associated with increased expression of proto-oncogenes, hypertrophy marker genes, growth factors, and cytokines, with symptoms that mimicked those of human cardiomyopathy, functionally and morphologically. This model provided a unique opportunity to analyze gene clusters that are differentially up-regulated during initiation of hypertrophy versus transition of hypertrophy to heart failure. Importantly, changes in gene expression observed during initiation of hypertrophy were significantly different from those seen during its transition to heart failure. Our data show that overexpression of myotrophin results in initiation of cardiac hypertrophy that progresses to heart failure, similar to changes in human heart failure. Knowledge of the changes that take place as a result of overexpression of myotrophin at both the cellular and molecular levels will suggest novel strategies for treatment to prevent hypertrophy and its progression to heart failure.
Collapse
Affiliation(s)
- Sagartirtha Sarkar
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
OBJECTIVES The goal of this study was to investigate plasma levels of myotrophin in heart failure (HF) and their relationship to gender and disease severity. BACKGROUND Myotrophin is a myocardial hypertrophy-inducing factor initially demonstrated in hypertrophied and cardiomyopathic hearts. Recent evidence suggests an interaction with the transcription factor nuclear factor kappa B (NFkappaB), which is activated in HF and modulates myocardial protein expression. It is unknown whether this peptide has an endocrine/paracrine role in man. We hypothesized that it may have a role in HF and would be raised in plasma. METHODS We developed a competitive binding assay specific for human myotrophin. Myotrophin was measured in plasma extracts of 120 HF patients and 130 age- and gender-matched normal controls. RESULTS Myotrophin in plasma existed as the full-length 12 kD form with also a 2.7 kD form (possibly a degradation product). Log normalized myotrophin levels were significantly elevated in HF patients (mean +/- SEM [geometric mean, range], 2.402 +/- 0.021 [252, 72 to 933] vs. 2.268 +/- 0.021 [185, 28 to 501] fmol/ml, p < 0.0005). There was no relationship between myotrophin and age or gender in controls. However, males with HF had higher levels of myotrophin than females (p < 0.001). There was an inverse relationship of myotrophin levels with New York Heart Association class in patients with no gender difference in the relationship. CONCLUSIONS There is evidence of early activation of the myotrophin system in HF, which is more evident in males. This response is attenuated in more severe disease. The contribution of myotrophin to NFkappaB-mediated gene transcription and preservation of cardiac muscle mass remains to be investigated further.
Collapse
Affiliation(s)
- Russell J O'Brien
- Department of Medicine and Therapeutics, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Müller WEG, Korzhev M, Le Pennec G, Müller IM, Schröder HC. Origin of metazoan stem cell system in sponges: first approach to establish the model (Suberites domuncula). BIOMOLECULAR ENGINEERING 2003; 20:369-79. [PMID: 12919822 DOI: 10.1016/s1389-0344(03)00055-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is established that Porifera (sponges) represent the earliest phylum which branched off from the common ancestor of all multicellular animals, the Urmetazoa. In the present study, the hypothesis is tested if, during this transition, pluripotent stem cells were formed which are provided-similar to the totipotent cells (archaeocytes/germ cells)-with a self-renewal capacity. As a model system, primmorphs from the sponge Suberites domuncula were used. These 3D-cell aggregates were cultivated in medium (RPMI 1640/seawater) either lacking silicate and ferric iron or in medium which was supplemented with these 'morphogenetic' factors. As molecular markers for the potential existence of stem cells in primmorphs, two genes which encode proteins found in stem cells of higher metazoan species, were cloned from S. domuncula. First, the noggin gene, which is present in the Spemann organizer of amphibians and whose translation product acts during the formation of dorsal mesoderm derivatives. The second gene encodes the mesenchymal stem cell-like protein. Both cDNAs were used to study their expression in primmorphs in dependence on the incubation conditions. It was found that noggin expression is strongly upregulated in primmorphs kept in the presence of silicate and ferric iron, while the expression of the mesenchymal stem cell-like protein was downregulated. These data are discussed with respect to the existence of stem cells in sponges.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
35
|
Perović S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Stifanić M, Müller IM, Müller WEG. Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 2003; 5:240-50. [PMID: 12752763 DOI: 10.1046/j.1525-142x.2003.03023.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sponges (Porifera) represent the evolutionary oldest multicellular animals. They are provided with the basic molecules involved in cell-cell and cell-matrix interactions. We report here the isolation and characterization of a complementary DNA from the sponge Suberites domuncula coding for the sponge homeobox gene, SUBDOIRX-a. The deduced polypeptide with a predicted Mr of 44,375 possesses the highly conserved Iroquois-homeodomain. We applied in situ hybridization to localize Iroquois in the sponge. The expression of this gene is highest in cells adjacent to the canals of the sponge in the medulla region. To study the expression of Iroquois during development, the in vitro primmorph system from S. domuncula was used. During the formation of these three-dimensional aggregates composed of proliferating cells, the expression of Iroquois depends on ferric iron and water current. An increased expression in response to water current is paralleled with the formation of canal-like pores in the primmorphs. It is suggested that Iroquois expression is involved in the formation of the aquiferous system, the canals in sponges and the canal-like structures in primmorphs.
Collapse
Affiliation(s)
- Sanja Perović
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Furukawa Y, Hashimoto N, Yamakuni T, Ishida Y, Kato C, Ogashiwa M, Kobayashi M, Kobayashi T, Nonaka I, Mizusawa H, Song SY. Down-regulation of an ankyrin repeat-containing protein, V-1, during skeletal muscle differentiation and its re-expression in the regenerative process of muscular dystrophy. Neuromuscul Disord 2003; 13:32-41. [PMID: 12467730 DOI: 10.1016/s0960-8966(02)00185-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using Western blot analysis and immunohistochemical methods, we examined the expression of V-1, a member of the ankyrin repeat-containing protein family, during differentiation and regeneration of skeletal muscle. The expression of V-1 was high in cultured myoblasts and decreased during their differentiation into myotubes, while high expression was maintained when muscle differentiation was inhibited by treatment with basic fibroblast growth factor. Down-regulation of V-1 also occurred during in vivo muscle differentiation from embryonic to postnatal stages, reaching an undetectable level in mature skeletal muscle. In contrast, strong V-1 immunoreactivity was detected again in myoblasts and regenerating muscle fibers with a small diameter, which were observed in Duchenne muscular dystrophy and its animal model, mdx mouse. Thus, it seems that V-1 is a good marker for early stage of muscle regeneration and changes of its expression suggest that V-1 plays a role in prenatal muscle differentiation and postnatal muscle regeneration.
Collapse
Affiliation(s)
- Yuko Furukawa
- Mitsubishi Kagaku Institute of Life Sciences, Minamiooya 11, Machida, 194-8511, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Müller WEG, Wiens M, Müller IM, Schröder HC. The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:103-43. [PMID: 14979666 DOI: 10.1007/978-3-642-18670-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation. In sponges (with the model Suberites domuncula and Geodia cydonium), the main mediators of the immune responses are the chemokines. Since sponges lack a vascular system and consequently blood cells (in the narrow sense), we have used the term chemokines (in a broad sense) to highlight that the complex network of intercellular mediators initiates besides differentiation processes also cell movement. In the present review, the cDNAs encoding the following chemokines were described and the roles of their deduced proteins during self-self and nonself recognition outlined: the allograft inflammatory factor, the glutathione peroxidase, the endothelial-monocyte-activating polypeptide, the pre-B-cell colony-enhancing factor and the myotrophin as well as an enzyme, the (2-5)A synthetase, which is involved in cytokine response in vertebrates. A further step required to reach the evolutionary step of the integrated stage of the Urmetazoa was the acquisition of a stem cell system. In this review, first markers for stem cells (mesenchymal stem cell-like protein) as well as for chemokines involved in the maintenance of stem cells (noggin and glia maturation factor) are described at the molecular level, and a first functional analysis is approached. Taken together, it is outlined that the chemokine network was essential for the establishment of metazoans, which evolved approximately 600 to 800 million years ago.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Gupta S, Purcell NH, Lin A, Sen S. Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 2002; 159:1019-28. [PMID: 12486112 PMCID: PMC2173971 DOI: 10.1083/jcb.200207149] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spontaneously hypertensive rat heart and cardiomyopathic human hearts. Myotrophin treatment stimulated NF-kappaB nuclear translocation and transcriptional activity, accompanied by IkappaB-alpha phosphorylation and degradation. Consistently, myotrophin-induced NF-kappaB activation was enhanced by wild-type IkappaB kinase (IKK) beta and abolished by the dominant-negative IKKbeta or a general PKC inhibitor, calphostin C. Importantly, myotrophin-induced expression of two hypertrophic genes (atrial natriuretic factor [ANF] and c-myc) and also enhanced protein synthesis were partially inhibited by a potent NF-kappaB inhibitor, pyrrolidine dithio-carbamate (PDTC), and calphostin C. Expression of the dominant-negative form of IkappaB-alpha or IKKbeta also partially inhibited the transcriptional activity of ANF induced by myotrophin. These findings suggest that the PKC-IKK-NF-kappaB pathway may play a critical role in mediating the myotrophin-induced hypertrophic response in cardiomyocytes.
Collapse
MESH Headings
- Alkaloids
- Animals
- Animals, Newborn
- Benzophenanthridines
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Genes, Dominant
- Growth Substances/metabolism
- Hypertrophy
- I-kappa B Proteins/metabolism
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myocardium/cytology
- Myocardium/pathology
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Naphthalenes/metabolism
- Phenanthridines/metabolism
- Phosphorylation
- Protein Binding
- Protein Kinase C/metabolism
- Protein Transport
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
39
|
Yamakuni T, Hashimoto M, Sakagami H, Yamamoto T, Kobayashi M, Fujii Y, Yamamoto H, Rohra DK, Hiwatashi Y, Honma T, Kondo H, Shido O, Ohizumi Y. Expression of V-1, a novel catecholamine biosynthesis regulatory protein, is enhanced by hypertension in atrial myocytes of Dahl salt-sensitive rats. Biochem Biophys Res Commun 2002; 298:793-7. [PMID: 12419325 DOI: 10.1016/s0006-291x(02)02529-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
V-1 positively controls catecholamine synthetic gene transcription to promote catecholamine production in PC12D cells. In this study, immunohistochemical analysis revealed that in Wistar rats, V-1 immunoreactivity was localized not only in sympathetic axons but also in the cytoplasm of cardiomyocytes, and that the immunoreactivity in atrial myocytes was more intense than that in ventricular myocytes. Western blot analysis also showed that V-1 expression level in the atrium was higher than that in the ventricle of Wistar rat hearts. When Dahl salt-sensitive (DS) rats were fed an 8% NaCl diet after the age of 6 weeks, blood pressure was raised 230mm Hg at 18 weeks. V-1 expression was shown to be increased in the atrial myocytes of these DS rats, but not in the sympathetic axons, when assayed by immunohistochemistry. These results suggest that in normotensive rats, V-1 is preferentially expressed in the cytoplasm of cardiomyocytes in the atrium rather than in the ventricle. It is also suggested that V-1 expression is increased by hypertension in DS rat atrium.
Collapse
Affiliation(s)
- Tohru Yamakuni
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mosavi LK, Williams S, Peng Zy ZY. Equilibrium folding and stability of myotrophin: a model ankyrin repeat protein. J Mol Biol 2002; 320:165-70. [PMID: 12079376 DOI: 10.1016/s0022-2836(02)00441-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteins containing stretches of repeating amino acid sequences are prevalent throughout nature, yet little is known about the general folding and assembly mechanisms of these systems. Here we propose myotrophin as a model system to study the folding of ankyrin repeat proteins. Myotrophin is folded over a large pH range and is soluble at high concentrations. Thermal and urea denaturation studies show that the protein displays cooperative two-state folding properties despite its modular nature. Taken together with previous studies on other ankyrin repeat proteins, our data suggest that the two-state folding pathway may be characteristic of ankyrin repeat proteins and other integrated alpha-helical repeat proteins in general.
Collapse
Affiliation(s)
- Leila K Mosavi
- Department of Biochemistry, University of Connecticut Health Center, MC-3305, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
41
|
Knuefermann P, Chen P, Misra A, Shi SP, Abdellatif M, Sivasubramanian N. Myotrophin/V-1, a protein up-regulated in the failing human heart and in postnatal cerebellum, converts NFkappa B p50-p65 heterodimers to p50-p50 and p65-p65 homodimers. J Biol Chem 2002; 277:23888-97. [PMID: 11971907 DOI: 10.1074/jbc.m202937200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotrophin/V-1 is a cytosolic protein found at elevated levels in failing human hearts and in postnatal cerebellum. We have previously shown that it disrupts nuclear factor of kappaB (NFkappaB)-DNA complexes in vitro. In this study, we demonstrated that in HeLa cells native myotrophin/V-1 is predominantly present in the cytoplasm and translocates to the nucleus during sustained NFkappaB activation. Three-dimensional alignment studies indicate that myotrophin/V-1 resembles a truncated IkappaBalpha without the signal response domain (SRD) and PEST domains. Co-immunoprecipitation studies reveal that myotrophin/V-1 interacts with NFkappaB proteins in vitro; however, it remains physically associated only with p65 and c-Rel proteins in vivo during NFkappaB activation. In vitro studies indicate that myotrophin/V-1 can promote the formation of p50-p50 homodimers from monomeric p50 proteins and can convert the preformed p50-p65 heterodimers into p50-p50 and p65-p65 homodimers. Furthermore, adenovirus-mediated overexpression of myotrophin/V-1 resulted in elevated levels of both p50-p50 and p65-p65 homodimers exceeding the levels of p50-p65 heterodimers compared with Adbetagal-infected cells, where the levels of p50-p65 heterodimers exceeded the levels of p50-p50 and p65-p65 homodimers. Thus, overexpression of myotrophin/V-1 during NFkappaB activation resulted in a qualitative shift by quantitatively reducing the level of transactivating heterodimers while elevating the levels of repressive p50-p50 homodimers. Correspondingly, overexpression of myotrophin/V-1 resulted in significantly reduced kappaB-luciferase reporter activity. Because myotrophin/V-1 is found at elevated levels during NFkappaB activation in postnatal cerebellum and in failing human hearts, this study cumulatively suggests that myotrophin/V-1 is a regulatory protein for modulating the levels of activated NFkappaB dimers during this period.
Collapse
Affiliation(s)
- Pascal Knuefermann
- Winters Center For Heart Failure Research, Molecular Cardiology Unit, Cardiology Section of Department of Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gupta S, Sen S. Myotrophin-kappaB DNA interaction in the initiation process of cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:247-60. [PMID: 12031792 DOI: 10.1016/s0167-4889(02)00178-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To investigate how cardiac hypertrophy and heart failure develop, we isolated and characterized a candidate initiator, the soluble 12-kDa protein myotrophin, from rat and human hearts. Myotrophin stimulates protein synthesis and myocardial cell growth associated with increased levels of hypertrophy marker genes. Recombinant myotrophin from the cloned gene showed structural/functional motifs, including ankyrin repeats and putative phosphorylation sites for protein kinase C (PKC) and casein kinase II. One repeat, homologous with I kappaB, interacts with rel/NF-kappaB in vitro. We analyzed the interaction of recombinant myotrophin and nuclear extracts prepared from neonatal and adult cardiomyocytes; gel mobility shift assay showed that myotrophin bound to kappaB DNA. To define PKC's role in myotrophin-induced myocyte growth, we incubated neonatal rat myocytes (normal and stretch) with specific inhibitors and found that myotrophin inhibits [3H]leucine incorporation into myocytes and different hypertrophic gene expression in neonatal myocytes. Using confocal microscopy, we observed that a basal level of myotrophin was present in both cytoplasm and nucleus under normal conditions, but under cyclic stretch, myotrophin levels became elevated in the nucleus. Myotrophin gene levels were upregulated when myocytes underwent cyclic stretch or were treated with tumor necrosis factor-alpha (TNF-alpha) or interleukin-1beta and also when excised beating hearts were exposed to high pressure. Our data showed that the myotrophin-kappaB interaction was increased with age in spontaneously hypertensive rats (SHRs) only. Our data provide evidence that myotrophin-kappaB DNA interaction may be an important step in initiating cardiac hypertrophy.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology (NB 50), Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, OH 44195, USA
| | | |
Collapse
|
43
|
Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG. Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 2002; 21:67-80. [PMID: 11879581 DOI: 10.1089/10445490252810320] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dissociated cells from marine demosponges retain their proliferation capacity if they are allowed to form special aggregates, the primmorphs. On the basis of incorporation studies and septin gene expression, we show that Fe3+ ions are required for the proliferation of cells in primmorphs from Suberites domuncula. In parallel, Fe3+ induced the expression of ferritin and strongly stimulated the synthesis of spicules. This result is supported by the finding that the enzymatic activity of silicatein, converting organosilicon to silicic acid, depends on Fe3+. Moreover, the expression of a scavenger receptor molecule, possibly involved in the morphology of spicules, depends on the presence of Fe3+. We conclude that iron is an essential factor in proliferative and morphogenetic processes in primmorphs.
Collapse
Affiliation(s)
- Anatoli Krasko
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WE. Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 2000; 14:2022-31. [PMID: 11023986 DOI: 10.1096/fj.00-0043com] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The body wall of sponges (Porifera), the lowest metazoan phylum, is formed by two epithelial cell layers of exopinacocytes and endopinacocytes, both of which are associated with collagen fibrils. Here we show that a myotrophin-like polypeptide from the sponge Suberites domuncula causes the expression of collagen in cells from the same sponge in vitro. The cDNA of the sponge myotrophin was isolated; the potential open reading frame of 360 nt encodes a 120 aa long protein (Mr of 12,837). The sequence SUBDOMYOL shares high similarity with the known metazoan myotrophin sequences. The expression of SUBDOMYOL is low in single cells but high after formation of primmorph aggregates as well as in intact animals. Recombinant myotrophin was found to stimulate protein synthesis by fivefold, as analyzed by incorporation studies using [3H] lysine. In addition, it is shown that after incubation of single cells with myotrophin, the primmorphs show an unusual elongated, oval-shaped appearance. It is demonstrated that in the presence of recombinant myotrophin, the cells up-regulate the expression of the collagen gene. The cDNA for S. domuncula collagen was isolated; the deduced aa sequence shows that the collagenous internal domain is rather short, with only 24 G-x-y collagen triplets. We conclude that the sponge myotrophin causes in homologous cells the same/similar effect as the cardiac myotrophin in mammalian cells, where it is involved in initiation of cardial ventricular hypertrophy. We assume that an understanding of sponge molecular cell biology will also contribute to a further elucidation of human diseases, here of the cardiovascular system.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Takenouchi T, Fujimoto M, Shimamoto A, Munekata E. Isolation and characterization of Cox17p from porcine heart by determining its survival-promoting activity in NIH3T3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:498-508. [PMID: 10564764 DOI: 10.1016/s0304-4165(99)00158-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have found that the gel filtration fraction of porcine heart extract clearly promoted the survival of NIH3T3 fibroblast cells in the serum-free medium condition. A structural analysis showed that the active fraction contained a novel peptide, porcine Cox17p (p-Cox17p), which was recently reported by Chen et al. as dopuin (Z. W. Chen et al., Eur. J. Biochem. 249 (1997) 518-522). Porcine Cox17p/dopuin possesses high sequence homology to the product of human COX17 gene (h-Cox17p). Although Cox17p has been implied to be involved in copper recruitment to mitochondria and in the functional assembly of cytochrome oxidase in yeast, its role in mammalian cells is unknown. In this study, we chemically synthesized p-Cox17p to investigate its biological effects. Refolding experiments of synthesized linear p-Cox17p revealed the existence of mostly one pattern of three intrachain disulfide bridges similar to that of native p-Cox17p, because the main oxidized p-Cox17p was completely co-eluted with the natural product. The addition of heavy metal ions such as copper, zinc and cadmium significantly inhibited the formation of the oxidized form, suggesting that reduced p-Cox17p may interact directly with these metal ions. The reduced and oxidized forms of p-Cox17p were also confirmed to promote the survival of NIH3T3 cells in serum-free medium as observed with the natural product, indicating that Cox17p may be a bioactive peptide.
Collapse
Affiliation(s)
- T Takenouchi
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
46
|
Koudssi F, López JE, Villegas S, Long CS. Cardiac fibroblasts arrest at the G1/S restriction point in response to interleukin (IL)-1beta. Evidence for IL-1beta-induced hypophosphorylation of the retinoblastoma protein. J Biol Chem 1998; 273:25796-803. [PMID: 9748252 DOI: 10.1074/jbc.273.40.25796] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although responsible for only approximately one-third of the overall myocardial mass, the interstitial fibroblasts of the heart serve a fundamental role in establishing the functional integrity of myocardium and are the major source of myocardial extracellular matrix production. Their importance in clinical medicine is underscored by the observation that fibroblast numbers increase in response to several pathologic circumstances that are associated with an increase in extracellular matrix production, such as long standing hypertension and myocardial injury/infarction. Up to the present time, however, there has been little information available on either the kinetics of the cardiac fibroblast cell cycle, or the fundamental mechanisms that regulate its entry into and exit from the cell cycle. Previous work from our laboratory examining the effects of interleukin (IL)-1beta on myocardial growth and gene expression in culture indicated that cardiac fibroblasts have a diminished capacity to synthesize DNA in response to mitogen in the presence of this cytokine. The mechanism of IL-1beta action was not clear, however, and could have resulted from action at several different points in the cell cycle. The investigations described in this report indicate that IL-1beta exerts its effect on the fibroblast cell cycle at multiple levels through altering the expression of cardiac fibroblast cyclins, cyclin-dependent kinases, and their inhibitors, which ultimately affect the phosphorylation of the retinoblastoma gene product.
Collapse
Affiliation(s)
- F Koudssi
- Division of Cardiology and the Research Service, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
47
|
Hayashi T, Takeshita K, Tsuchida N, Kitano K, Kawabata S, Iwanaga S, Ito T. Purification of a novel muscle cell growth factor S-myotrophin from porcine skeletal muscle. Int J Biochem Cell Biol 1998; 30:897-908. [PMID: 9744081 DOI: 10.1016/s1357-2725(98)00052-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A comparison of muscle weight between denerved and control rabbit hind legs revealed that a water-soluble 12 kDa substance was reduced in atrophied muscles after denervation. We hypothesised that a water-soluble growth factor exists which mediates a signal from motor nerves to muscles. To isolate this factor we modified the purification procedures of Sen et al. [S. Sen, G. Kundu, N. Mekhail, J. Castel, K. Misono, B. Healy, Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth, J. Biol. Chem. 265 (1990) 16635-16643.], who originally purified a water-soluble growth factor from cardiac muscles. Four additional purification steps were added to the method. Using this technique, a novel muscle cell growth factor, named s-myotrophin, was purified from porcine skeletal muscle (M. longissimus thoracis). Purified s-myotrophin appeared as a single band (12 kDa) on SDS-PAGE and had a strong growth promoting activity (increase of protein synthesis) of cultured primary skeletal muscle cells. Almost no loss of growth promoting activity was observed after trypsin and chymotrypsin digestion. No fragmentation of s-myotrophin was observed after exposure to lysylendopeptidase, thermolysin, trypsin and chymotrypsin. Crude preparation of this molecule could be detected by periodic acid/Schiff (PAS) staining. Deglycosylation of s-myotrophin produced a smaller molecule having an approximately 7 kDa mass. These data indicate a novel 12 kDa protein has been isolated which has growth promoting properties on skeletal muscle cells.
Collapse
Affiliation(s)
- T Hayashi
- Laboratory of Chemistry and Technology of Animal Products, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Myotrophin, a novel protein that has been shown to stimulate myocyte growth, has been isolated, purified, and sequenced from the hearts of spontaneously hypertensive rats and dilated cardiomyopathic human tissue. Recently, the cDNA clones encoding myotrophin have been isolated and expressed in Escherichia coli, and the recombinant myotrophin was found to be as biologically and immunologically active as natural myotrophin. The mechanism by which myotrophin stimulates protein synthesis and initiates myocardial hypertrophy is not known. To evaluate the involvement of protein kinase C (PKC) in myotrophin-induced hypertrophy, PKC activity and its distribution in the subcellular fraction were determined in cultured neonatal and adult myocytes. PKC activity was determined by measuring the incorporation of 32P into histone type III-S and PKCepsilon substrate peptide (epsilon(pep)) from [gamma-32P]ATP in neonatal myocytes. Myotrophin significantly stimulated PKC activity in neonatal myocytes and was associated with a significant increase in protein synthesis. The effect of myotrophin on the stimulation of PKC activity and [3H]leucine incorporation was abolished by pretreatment with either staurosporine or H-7, two selective, pharmacological PKC inhibitors. Pretreatment of myocytes with staurosporine also reduced the myotrophin-induced mRNA levels of c-fos and beta-myosin heavy chain. To evaluate the subcellular events whose occurrence was due to myotrophin and translocation of PKC, we studied the effect of genistein, a tyrosine kinase inhibitor, on myotrophin-induced neonatal myocyte growth. Genistein attenuated the [3H]leucine incorporation induced by myotrophin. To define the specificity of the PKC isoform(s) involved in myotrophin-stimulated myocyte growth, both neonatal and adult myocytes were treated with myotrophin, and Western blot analyses were performed by using the antibodies of different PKC isoforms. Results showed that both PKCalpha and PKCepsilon isoforms participated in the myotrophin-induced neonatal myocyte growth, whereas only the PKCepsilon isoform was involved in myotrophin-induced adult myocyte hypertrophy. PKCdelta and PKCzeta do not seem to participate in either neonatal or adult myocyte growth induced by myotrophin. Treatment with antisense oligonucleotides specific for PKCalpha and PKCepsilon isoforms further supported this result. PKCalpha is the major PKC isoform in neonatal myocytes and needs Ca2+ and phospholipids for its activation, and PKCepsilon (the Ca2+-independent PKC isoform) is present in both neonatal and adult myocytes; the 15-mer antisense oligodeoxynucleotides of each were used for this study. Treatment of neonatal myocytes with the PKCalpha and PKCepsilon antisense oligodeoxynucleotides for 5 days significantly reduced Ca2+-dependent and Ca2+-independent PKC activity, respectively, as well as the [3H]leucine incorporation induced by myotrophin. Furthermore, myotrophin-induced PKC activity was primarily located in the particulate fraction and did not result in a concomitant decrease in the cytosolic fraction. Myotrophin does not change PKC isoform expression (both Ca2+ dependent and independent PKC isoforms used in this study) in rat neonatal cardiac fibroblasts. Our data suggest that myotrophin exerts its action on protein synthesis, possibly through a tyrosine kinase-coupled pathway and translocation of PKC from the cytosol to the cell membrane.
Collapse
Affiliation(s)
- P Sil
- Department of Molecular Cardiology, The Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
49
|
Yang Y, Nanduri S, Sen S, Qin J. The structural basis of ankyrin-like repeat function as revealed by the solution structure of myotrophin. Structure 1998; 6:619-26. [PMID: 9634699 DOI: 10.1016/s0969-2126(98)00063-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myotrophin is a 12.5 kDa protein that appears to have a key role in the initiation of cardiac hypertrophy, a central process in many heart diseases. Myotrophin primarily comprises ankyrin-like (ANK) repeats, the 33 amino acid motifs involved in a wide range of protein-protein interactions. As a first step in the structure-based search for cardiac hypertrophy antagonists and in order to gain insight into the molecular basis of action of the ubiquitous and multifunctional ANK repeat motif, we have determined the solution structure of myotrophin using multidimensional heteronuclear NMR spectroscopy. RESULTS The myotrophin structure determination was based on 2786 experimental NMR restraints, and the precision of the coordinates for the final 45 simulated-annealing structures is 0.43 A for the backbone atoms and 0.87 A for all atoms. The structure of myotrophin is well defined and is ellipsoidal: approximately 46 A long and 21 A wide. The ANK repeats, which constitute the main part of the myotrophin structure, are characteristic of a hairpin-like protruding tip followed by a helix-turn-helix motif. The V-shaped helix-turn-helix of the ANK repeats stack sequentially in bundles and are stabilized by compact hydrophobic cores, whereas the protruding tips are less ordered. This arrangement is quite different to the continuous beta-sheet topology observed in the corresponding regions of another ANK protein, 53BP2, the structure of which was determined in complex with p53. CONCLUSIONS The solution structure of myotrophin provides important insights into the structural and dynamic features of the ANK motif, and suggests that the protruding tips with highly variable sequences may be critical to facilitate diverse protein-protein recognition. The present structure also provides a molecular basis for the further functional characterization of myotrophin and the development of therapeutics for hypertrophy-related heart diseases.
Collapse
Affiliation(s)
- Y Yang
- Structural Biology Program, Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | |
Collapse
|
50
|
Nakano M, Knowlton AA, Dibbs Z, Mann DL. Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998; 97:1392-400. [PMID: 9577951 DOI: 10.1161/01.cir.97.14.1392] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous studies in isolated cardiac myocytes have shown that tumor necrosis factor (TNF)-alpha provokes increased expression of 27- and 70-kD stress proteins as well as manganese superoxide dismutase, suggesting that TNF-alpha might play a role in mediating stress responses in the heart. METHODS AND RESULTS To determine whether TNF-alpha stimulation would protect isolated cardiac myocytes against environmental stress, myocyte cultures were pretreated with TNF-alpha for 12 hours and then subjected to continuous hypoxic injury (O2 content, 3 to 5 ppm) for 12 hours, followed by reoxygenation. Cell injury was assessed in terms of lactic dehydrogenase (LDH) release, 45Ca2+ uptake, and MTT metabolism. Pretreatment with TNF-alpha concentrations > or = 50 U/mL significantly attenuated LDH release by hypoxic cells compared with diluent-treated hypoxic cells. Similar findings were observed with respect to 45Ca2+ uptake and MTT metabolism in TNF-alpha-pretreated cells that were subjected to prolonged hypoxia. To determine the mechanism for the TNF-alpha-induced protective effect, the cells were pretreated with heat shock protein (HSP) 72 antisense oligonucleotides. These studies showed that the protective effect of TNF-alpha was not inhibited by antisense oligonucleotides, despite use of a concentration of antisense that was sufficient to attenuate the TNF-alpha-induced increase in HSP 72 expression. Subsequent studies using mutated TNF ligands showed that activation of both types 1 and 2 TNF receptors was sufficient to confer a protective response in isolated cardiac myocytes through an as yet unknown pathway(s). CONCLUSIONS Taken together, the above observations demonstrate that TNF-alpha pretreatment confers resistance to hypoxic stress in the adult cardiac myocyte through a novel mechanism that appears to be different from but not necessarily exclusive of the protective response conferred by HSP 72 expression.
Collapse
Affiliation(s)
- M Nakano
- Department of Medicine, Veterans Administration Medical Center, Baylor College of Medicine, Houston, Tex 77030, USA
| | | | | | | |
Collapse
|