1
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
2
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Graham B, Shaw MA, Hope IA. Single Amino Acid Changes in the Ryanodine Receptor in the Human Population Have Effects In Vivo on Caenorhabditis elegans Neuro-Muscular Function. Front Genet 2020; 11:37. [PMID: 32174957 PMCID: PMC7054344 DOI: 10.3389/fgene.2020.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
The ryanodine receptor mediates intracellular calcium ion release with excitation of nerve and muscle cells. Ryanodine receptor missense variants cause a number of myopathologies, such as malignant hyperthermia, and have been linked with various neuropathologies, including Alzheimer's disease. We characterized the consequences of ryanodine receptor variants in vivo. Eight Caenorhabditis elegans strains, with ryanodine receptor modifications equivalent to human myopathic RYR1 variants, were generated by genome editing. In humans, these variants are rare and confer sensitivity to the inhalational anaesthetic halothane when heterozygous. Increased sensitivity to halothane was found in both homozygous and heterozygous C. elegans. Close analysis revealed distinct subtle locomotion defects, due to the different single amino acid residue changes, even in the absence of the external triggering agent. Distinct pre- and postsynaptic consequences of the variants were characterized through the responses to cholinergic pharmacological agents. The range of phenotypes reflects the complexity of the regulatory inputs to the ryanodine receptor and the criticality of the calcium ion channel opening properties, in different cell types and with age. Ryanodine receptors with these single amino acid residue changes still function as calcium ion channels, but with altered properties which are likely to have subtle consequences for human carriers of such variants. The long-term consequences of subtly altered calcium ion signalling could be cumulative and may be focussed in the smaller nerve cells rather than the more robust muscle cells. It was important to assess phenotypes in vivo to properly appreciate consequences for a whole organism.
Collapse
Affiliation(s)
- Brittany Graham
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, United Kingdom
| | - Ian A. Hope
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Kaßmann M, Szijártó IA, García‐Prieto CF, Fan G, Schleifenbaum J, Anistan Y, Tabeling C, Shi Y, le Noble F, Witzenrath M, Huang Y, Markó L, Nelson MT, Gollasch M. Role of Ryanodine Type 2 Receptors in Elementary Ca 2+ Signaling in Arteries and Vascular Adaptive Responses. J Am Heart Assoc 2019; 8:e010090. [PMID: 31030596 PMCID: PMC6512102 DOI: 10.1161/jaha.118.010090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 12/29/2022]
Abstract
Background Hypertension is the major risk factor for cardiovascular disease, the most common cause of death worldwide. Resistance arteries are capable of adapting their diameter independently in response to pressure and flow-associated shear stress. Ryanodine receptors (RyRs) are major Ca2+-release channels in the sarcoplasmic reticulum membrane of myocytes that contribute to the regulation of contractility. Vascular smooth muscle cells exhibit 3 different RyR isoforms (RyR1, RyR2, and RyR3), but the impact of individual RyR isoforms on adaptive vascular responses is largely unknown. Herein, we generated tamoxifen-inducible smooth muscle cell-specific RyR2-deficient mice and tested the hypothesis that vascular smooth muscle cell RyR2s play a specific role in elementary Ca2+ signaling and adaptive vascular responses to vascular pressure and/or flow. Methods and Results Targeted deletion of the Ryr2 gene resulted in a complete loss of sarcoplasmic reticulum-mediated Ca2+-release events and associated Ca2+-activated, large-conductance K+ channel currents in peripheral arteries, leading to increased myogenic tone and systemic blood pressure. In the absence of RyR2, the pulmonary artery pressure response to sustained hypoxia was enhanced, but flow-dependent effects, including blood flow recovery in ischemic hind limbs, were unaffected. Conclusions Our results establish that RyR2-mediated Ca2+-release events in VSCM s specifically regulate myogenic tone (systemic circulation) and arterial adaptation in response to changes in pressure (hypoxic lung model), but not flow. They further suggest that vascular smooth muscle cell-expressed RyR2 deserves scrutiny as a therapeutic target for the treatment of vascular responses in hypertension and chronic vascular diseases.
Collapse
Affiliation(s)
- Mario Kaßmann
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | - István András Szijártó
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Concha F. García‐Prieto
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- Department of Pharmaceutical and Health SciencesFacultad de FarmaciaUniversidad CEU San PabloMadridSpain
| | - Gang Fan
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yoland‐Marie Anistan
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Christoph Tabeling
- Department of Infectious Diseases and Pulmonary MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yu Shi
- Medical Clinic for Hematology, Oncology and Tumor ImmunologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Ferdinand le Noble
- Department of Cell and Developmental BiologyITG (Institute of Toxicology and Genetics)Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical SciencesChinese University of Hong KongChina
| | - Lajos Markó
- Medical Clinic for Hematology, Oncology and Tumor ImmunologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mark T. Nelson
- Department of PharmacologyCollege of MedicineThe University of VermontBurlingtonVT
| | - Maik Gollasch
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
- Medical Clinic for Nephrology and Internal Intensive CareCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
6
|
Sun Z, Xu H. Ryanodine Receptors for Drugs and Insecticides: An Overview. Mini Rev Med Chem 2018; 19:22-33. [DOI: 10.2174/1389557518666180330112908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) are calcium channels located on the endo(sarco)plasmic reticulum
of muscle cells and neurons. They regulate the release of stored intracellular calcium and play a
critical role in muscle contraction. The N-terminal part of these receptors accounts for roughly 80%
and contains the binding sites for diverse RyRs modulators. The C-terminal domain contains the
transmembrane region. This review summarizes the current knowledge about the molecular biology of
insect RyRs, chemicals targeting mammal or insect RyRs, and the reasons for mammal RyR-related
diseases and diamides resistances. It may lay the foundation for effective management of mammal
RyR-related diseases and diamides resistances.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
7
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
8
|
Coburger J, Kapapa T, Wirtz CR, Jurkat-Rott K, Klingler W. High prevalence of rare ryanodine receptor type 1 variants in patients suffering from aneurysmatic subarachnoid hemorrhage: A pilot study. J Clin Neurosci 2017; 45:209-213. [PMID: 28750945 DOI: 10.1016/j.jocn.2017.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Subarachnoid hemorrhage (SAH) remains a challenging neurosurgical disease. The ryanodine receptor type 1 Ca2+ channel (RyR1) plays a crucial role in vasoconstriction and hemostasis. Mutations of the encoding gene, RYR1, are known to cause susceptibility to malignant hyperthermia (MH). Recently, a RYR1 mutation was found to be associated with abnormal bleeding times. Therefore, an assessment of the RYR1 gene might be of high relevance in patients with aneurysmatic SAH. In the presented pilot study, we screened 10 patients suffering from SAH for RYR1 variants and, for the first time in SAH, performed an assessment of pathogenicity of these variants using protein prediction software. Four of the patients showed a RYR1 variant. For three of the variants, p.Glu79Lys, p.Arg885C, p.Glu2635 Val, all three programs predicted pathogenicity. Their prevalence in the general population is very low i.e. under 0.005%. For the fourth variant, p.Pro4501Leu (RS73933023), the results of the prediction programs were discrepant and the prevalence in the general population was high, i.e. almost 0.5%, which is too frequent to be associated with the rare SAH phenotype. Clinical evaluation revealed that no differences concerning neurological outcome, presence of vasospasm, ischemic deficits and mean hospital stay between patients with and without variants were found. However, in our series SAH patients have an increased frequency of rare RYR1 variants. Hence, potentially contributing to the pathogenesis of SAH. Further data is needed to confirm this preliminary result.
Collapse
Affiliation(s)
- Jan Coburger
- Department of Neurosurgery, Ulm University, Germany.
| | | | | | | | | |
Collapse
|
9
|
Michelucci A, Paolini C, Boncompagni S, Canato M, Reggiani C, Protasi F. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia. FASEB J 2017; 31:3649-3662. [PMID: 28465322 DOI: 10.1096/fj.201601292r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/17/2017] [Indexed: 12/26/2022]
Abstract
In humans, hyperthermic episodes can be triggered by halogenated anesthetics [malignant hyperthermia (MH) susceptibility] and by high temperature [environmental heat stroke (HS)]. Correlation between MH susceptibility and HS is supported by extensive work in mouse models that carry a mutation in ryanodine receptor type-1 (RYR1Y522S/WT) and calsequestrin-1 knockout (CASQ1-null), 2 proteins that control Ca2+ release in skeletal muscle. As overheating episodes in humans have also been described during exertion, here we subjected RYR1Y522S/WT and CASQ1-null mice to an exertional-stress protocol (incremental running on a treadmill at 34°C and 40% humidity). The mortality rate was 80 and 78.6% in RYR1Y522S/WT and CASQ1-null mice, respectively, vs. 0% in wild-type mice. Lethal crises were characterized by hyperthermia and rhabdomyolysis, classic features of MH episodes. Of importance, pretreatment with azumolene, an analog of the drug used in humans to treat MH crises, reduced mortality to 0 and 12.5% in RYR1Y522S/WT and CASQ1-null mice, respectively, thanks to a striking reduction of hyperthermia and rhabdomyolysis. At the molecular level, azumolene strongly prevented Ca2+-dependent activation of calpains and NF-κB by lowering myoplasmic Ca2+ concentration and nitro-oxidative stress, parameters that were elevated in RYR1Y522S/WT and CASQ1-null mice. These results suggest that common molecular mechanisms underlie MH crises and exertional HS in mice.-Michelucci, A., Paolini, C., Boncompagni, S., Canato, M., Reggiani, C., Protasi, F. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia.
Collapse
Affiliation(s)
- Antonio Michelucci
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy
| | - Cecilia Paolini
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy
| | - Simona Boncompagni
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Feliciano Protasi
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), Department of Neuroscience, Imaging, and Clinical Sciences (DNICS), Università degli Studi G. d'Annunzio, Chieti, Italy; .,Department of Medicine and Aging Science, University G. d' Annunzio of Chieti, Chieti, Italy
| |
Collapse
|
10
|
Zhong W, Picca AJ, Lee AS, Darmani NA. Ca2+ signaling and emesis: Recent progress and new perspectives. Auton Neurosci 2017; 202:18-27. [DOI: 10.1016/j.autneu.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
|
11
|
Affiliation(s)
- Mark Phillippe
- Section of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois; Department of Obstetrics and Gynecology (MC2050), University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637
| | - Edward K. Chien
- Section of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Burrell C, Avalon NE, Siegel J, Pizzi M, Dutta T, Charlesworth MC, Freeman WD. Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia. Expert Rev Neurother 2016; 16:1251-1262. [PMID: 27314601 DOI: 10.1080/14737175.2016.1203257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Precision medicine provides individualized treatment of diseases through leveraging patient-to-patient variation. Aneurysmal subarachnoid hemorrhage carries tremendous morbidity and mortality with cerebral vasospasm and delayed cerebral ischemia proving devastating and unpredictable. Lack of treatment measures for these conditions could be improved through precision medicine. Areas covered: Discussed are the pathophysiology of CV and DCI, treatment guidelines, and evidence for precision medicine used for prediction and prevention of poor outcomes following aSAH. A PubMed search was performed using keywords cerebral vasospasm or delayed cerebral ischemia and either biomarkers, precision medicine, metabolomics, proteomics, or genomics. Over 200 peer-reviewed articles were evaluated. The studies presented cover biomarkers identified as predictive markers or therapeutic targets following aSAH. Expert commentary: The biomarkers reviewed here correlate with CV, DCI, and neurologic outcomes after aSAH. Though practical use in clinical management of aSAH is not well established, using these biomarkers as predictive tools or therapeutic targets demonstrates the potential of precision medicine.
Collapse
Affiliation(s)
| | - Nicole E Avalon
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Jason Siegel
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Michael Pizzi
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Tumpa Dutta
- b Endocrine Research Unit , Mayo Clinic , Rochester , MN , USA
| | | | | |
Collapse
|
13
|
Abstract
Cerebral vasospasm causes delayed ischemic neurologic deficits after aneurysmal subarachnoid hemorrhage. This is a well-established clinical entity with significant associated morbidity and mortality. The underlying patholphysiology is highly complex and poorly understood. Large-vessel vasospasm, autoregulatory dysfunction, inflammation, genetic predispositions, microcirculatory failure, and spreading cortical depolarization are aspects of delayed neurologic deterioration that have been described in the literature. This article presents a perspective on cerebral vasospasm, as guided by the literature to date, specifically examining the mechanism, diagnosis, and treatment of cerebral vasospasm.
Collapse
|
14
|
Yuan GR, Shi WZ, Yang WJ, Jiang XZ, Dou W, Wang JJ. Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS One 2014; 9:e95199. [PMID: 24740254 PMCID: PMC3989282 DOI: 10.1371/journal.pone.0095199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 01/13/2023] Open
Abstract
Ryanodine receptors (RyRs) are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR) was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97%) to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Zhi Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Dabertrand F, Nelson MT, Brayden JE. Ryanodine receptors, calcium signaling, and regulation of vascular tone in the cerebral parenchymal microcirculation. Microcirculation 2013; 20:307-16. [PMID: 23216877 PMCID: PMC3612564 DOI: 10.1111/micc.12027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/21/2012] [Indexed: 11/27/2022]
Abstract
The cerebral blood supply is delivered by a surface network of pial arteries and arterioles from which arise (parenchymal) arterioles that penetrate into the cortex and terminate in a rich capillary bed. The critical regulation of CBF, locally and globally, requires precise vasomotor regulation of the intracerebral microvasculature. This vascular region is anatomically unique as illustrated by the presence of astrocytic processes that envelope almost the entire basolateral surface of PAs. There are, moreover, notable functional differences between pial arteries and PAs. For example, in pial VSMCs, local calcium release events ("calcium sparks") through ryanodine receptor (RyR) channels in SR membrane activate large conductance, calcium-sensitive potassium channels to modulate vascular diameter. In contrast, VSMCs in PAs express functional RyR and BK channels, but under physiological conditions, these channels do not oppose pressure-induced vasoconstriction. Here, we summarize the roles of ryanodine receptors in the parenchymal microvasculature under physiologic and pathologic conditions, and discuss their importance in the control of CBF.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA.
| | | | | |
Collapse
|
16
|
Abstract
Cerebral vasospasm (CV) is a major source of morbidity and mortality in aneurysmal subarachnoid hemorrhage (aSAH). It is thought that an inflammatory cascade initiated by extravasated blood products precipitates CV, disrupting vascular smooth muscle cell function of major cerebral arteries, leading to vasoconstriction. Mechanisms of CV and modes of therapy are an active area of research. Understanding the genetic basis of CV holds promise for the recognition and treatment for this devastating neurovascular event. In our review, we summarize the most recent research involving key areas within the genetics and vasospasm discussion: (1) Prognostic role of genetics—risk stratification based on gene sequencing, biomarkers, and polymorphisms; (2) Signaling pathways—pinpointing key inflammatory molecules responsible for downstream cellular signaling and altering these mediators to provide therapeutic benefit; and (3) Gene therapy and gene delivery—using viral vectors or novel protein delivery methods to overexpress protective genes in the vasospasm cascade.
Collapse
|
17
|
FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 2013; 700:181-93. [DOI: 10.1016/j.ejphar.2012.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
|
18
|
Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol 2012; 590:1849-69. [PMID: 22331418 DOI: 10.1113/jphysiol.2011.222083] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca(2+) imaging of smooth muscle cells (SMCs) revealed Ca(2+) sparks and Ca(2+) waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca(2+) and myogenic tone. In arterioles, SMCs exhibited only Ca(2+) waves that were insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca(2+)-activated K(+) channels (BK(Ca)) in SMCs of arteries, whereas BK(Ca) appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca(2+) waves, global Ca(2+) and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP(3)R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP(3)R1>>IP(3)R2>IP(3)R3. Despite similar expression of IP(3)Rs and dependence of Ca(2+) waves on IP(3)Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
19
|
Fois G, Wittekindt O, Zheng X, Felder ET, Miklavc P, Frick M, Dietl P, Felder E. An ultra fast detection method reveals strain-induced Ca(2+) entry via TRPV2 in alveolar type II cells. Biomech Model Mechanobiol 2011; 11:959-71. [PMID: 22190268 DOI: 10.1007/s10237-011-0365-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
Abstract
A commonly used technique to investigate strain-induced responses of adherent cells is culturing them on an elastic membrane and globally stretching the membrane. However, it is virtually impossible to acquire microscopic images immediately after the stretch with this method. Using a newly developed technique, we recorded the strain-induced increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in rat primary alveolar type II (ATII) cells at an acquisition rate of 30ms and without any temporal delay. We can show that the onset of the mechanically induced rise in [Ca(2+)](c) was very fast (<30 ms), and Ca(2+) entry was immediately abrogated when the stimulus was withdrawn. This points at a direct mechanical activation of an ion channel. RT-PCR revealed high expression of TRPV2 in ATII cells, and silencing TRPV2, as well as blocking TRPV channels with ruthenium red, significantly reduced the strain-induced Ca(2+) response. Moreover, the usually homogenous pattern of the strain-induced [Ca(2+)](c) increase was converted into a point-like response after both treatments. Also interfering with actin/myosin and integrin binding inhibited the strain-induced increase of [Ca(2)](c). We conclude that TRPV2 participates in strain-induced Ca(2+) entry in ATII cells and suggest a direct mechanical activation of the channel that depends on FAs and actin/myosin. Furthermore, our results underline the importance of cell strain systems that allow high temporal resolution.
Collapse
Affiliation(s)
- Giorgio Fois
- Institute for General Physiology / M-25, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lobo PA, Kimlicka L, Tung CC, Van Petegem F. The deletion of exon 3 in the cardiac ryanodine receptor is rescued by β strand switching. Structure 2011; 19:790-8. [PMID: 21645850 DOI: 10.1016/j.str.2011.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/17/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022]
Abstract
Mutations in the cardiac Ryanodine Receptor (RYR2) are linked to triggered arrhythmias. Removal of exon 3 results in a severe form of catecholaminergic polymorphic ventricular tachycardia (CPVT). This exon encodes secondary structure elements that are crucial for folding of the N-terminal domain (NTD), raising the question of why the deletion is neither lethal nor confers a loss of function. We determined the 2.3 Å crystal structure of the NTD lacking exon 3. The removal causes a structural rescue whereby a flexible loop inserts itself into the β trefoil domain and increases thermal stability. The exon 3 deletion is not tolerated in the corresponding RYR1 domain. The rescue shows a novel mechanism by which RYR2 channels can adjust their Ca²⁺ release properties through altering the structure of the NTD. Despite the rescue, the deletion affects interfaces with other RYR2 domains. We propose that relative movement of the NTD is allosterically coupled to the pore region.
Collapse
Affiliation(s)
- Paolo A Lobo
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, room 2.320, Vancouver, BC V6T1Z3, Canada
| | | | | | | |
Collapse
|
21
|
Yamaguchi N, Prosser BL, Ghassemi F, Xu L, Pasek DA, Eu JP, Hernández-Ochoa EO, Cannon BR, Wilder PT, Lovering RM, Weber D, Melzer W, Schneider MF, Meissner G. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. Am J Physiol Cell Physiol 2011; 300:C998-C1012. [PMID: 21289290 DOI: 10.1152/ajpcell.00370.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Dept. of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee EH. Ca2+ channels and skeletal muscle diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:35-43. [DOI: 10.1016/j.pbiomolbio.2010.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/09/2010] [Accepted: 05/19/2010] [Indexed: 11/29/2022]
|
23
|
Kampfer AJ, Balog EM. S-Adenosyl-l-methionine Regulation of the Cardiac Ryanodine Receptor Involves Multiple Mechanisms. Biochemistry 2010; 49:7600-14. [DOI: 10.1021/bi100599b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela J. Kampfer
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Edward M. Balog
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
24
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
25
|
Role of ryanodine receptor subtypes in initiation and formation of calcium sparks in arterial smooth muscle: comparison with striated muscle. J Biomed Biotechnol 2009; 2009:135249. [PMID: 20029633 PMCID: PMC2793424 DOI: 10.1155/2009/135249] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/22/2009] [Indexed: 11/17/2022] Open
Abstract
Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs), calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular [Ca2+] and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spatial and temporal summation of calcium sparks leads to global increases in intracellular [Ca2+] and myocyte contraction. We summarize the present data on local RyR calcium signaling in arterial SMCs in comparison to striated muscle and muscle-specific differences in coupling between L-type calcium channels and RyRs. Accordingly, arterial SMC Ca(v)1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux though RyRs. Downregulation of RyR2 up to a certain degree is compensated by increased SR calcium content to normalize calcium sparks. This indirect coupling between Ca(v)1.2 and RyR in arterial SMCs is opposite to striated muscle, where triggering of calcium sparks is controlled by rapid and direct cross-talk between Ca(v)1.1/Ca(v)1.2 L-type channels and RyRs. We discuss the role of RyR isoforms in initiation and formation of calcium sparks in SMCs and their possible molecular binding partners and regulators, which differ compared to striated muscle.
Collapse
|
26
|
Abstract
Calcium-induced calcium release (CICR) was first discovered in skeletal muscle. CICR is defined as Ca2+ release by the action of Ca2+ alone without the simultaneous action of other activating processes. CICR is biphasically dependent on Ca2+ concentration; is inhibited by Mg2+, procaine, and tetracaine; and is potentiated by ATP, other adenine compounds, and caffeine. With depolarization of the sarcoplasmic reticulum (SR), a potential change of the SR membrane in which the luminal side becomes more negative, CICR is activated for several seconds and is then inactivated. All three types of ryanodine receptors (RyRs) show CICR activity. At least one RyR, RyR1, also shows non-CICR Ca2+ release, such as that triggered by the t-tubule voltage sensor, by clofibric acid, and by SR depolarization. Maximum rates of CICR, at the optimal Ca2+ concentration in the presence of physiological levels of ATP and Mg2+ determined in skinned fibers and fragmented SR, are much lower than the rate of physiological Ca2+ release. The primary event of physiological Ca2+ release, the Ca2+ spark, is the simultaneous opening of multiple channels, the coordinating mechanism of which does not appear to be CICR because of the low probability of CICR opening under physiological conditions. The coordination may require Ca2+, but in that case, some other stimulus or stimuli must be provided simultaneously, which is not CICR by definition. Thus CICR does not appear to contribute significantly to physiological Ca2+ release. On the other hand, CICR appears to play a key role in caffeine contracture and malignant hyperthermia. The potentiation of voltage-activated Ca2+ release by caffeine, however, does not seem to occur through secondary CICR, although the site where caffeine potentiates voltage-activated Ca2+ release might be the same site where caffeine potentiates CICR.
Collapse
|
27
|
A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc Natl Acad Sci U S A 2009; 106:8513-8. [PMID: 19433796 DOI: 10.1073/pnas.0902873106] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ASC-2, a multifunctional coactivator, forms a steady-state complex, named ASCOM (for ASC-2 COMplex), that contains the histone H3-lysine-4 (H3K4)-methyltransferase MLL3 or its paralogue MLL4. Somewhat surprisingly, given prior indications of redundancy between MLL3 and MLL4, targeted inactivation of the MLL3 H3K4-methylation activity in mice is found to result in ureter epithelial tumors. Interestingly, this phenotype is exacerbated in a p53(+/-) background and the tumorigenic cells are heavily immunostained for gammaH2AX, indicating a contribution of MLL3 to the DNA damage response pathway through p53. Consistent with the in vivo observations, and the demonstration of a direct interaction between p53 and ASCOM, cell-based assays have revealed that ASCOM, through ASC-2 and MLL3/4, acts as a p53 coactivator and is required for H3K4-trimethyation and expression of endogenous p53-target genes in response to the DNA damaging agent doxorubicin. In support of redundant functions for MLL3 and MLL4 for some events, siRNA-mediated down-regulation of both MLL3 and MLL4 is required to suppress doxorubicin-inducible expression of several p53-target genes. Importantly, this study identifies a specific H3K4 methytransferase complex, ASCOM, as a physiologically relevant coactivator for p53 and implicates ASCOM in the p53 tumor suppression pathway in vivo.
Collapse
|
28
|
Shirokova N, Niggli E. Studies of RyR function in situ. Methods 2008; 46:183-93. [PMID: 18848990 DOI: 10.1016/j.ymeth.2008.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022] Open
Abstract
The ryanodine receptors (RyRs) are intracellular Ca2+ release channels of the sarcoplasmic reticulum (SR) involved in many cellular responses, including muscle excitation-contraction coupling. Multiple biochemical and biophysical methods are available to study RyR functions. However, most of them are somewhat limited because they can only be used to examine channels which are purified from the SR and no longer in their natural environment. In this review we discuss optical methods for studying RyR functions in situ. We describe several techniques for the investigation of local (microscopic) intracellular Ca2+ signals (a.k.a Ca2+ sparks) by means of confocal microscopy and flash photolysis of caged compounds. We discuss how these studies can and will continue to contribute to our understanding of RyR function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Natalia Shirokova
- Department of Pharmacology & Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | |
Collapse
|
29
|
Sattelle DB, Cordova D, Cheek TR. Insect ryanodine receptors: molecular targets for novel pest control chemicals. INVERTEBRATE NEUROSCIENCE 2008; 8:107-19. [PMID: 18696132 DOI: 10.1007/s10158-008-0076-4] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/21/2008] [Indexed: 11/29/2022]
Abstract
Ryanodine receptors (RyRs) are a distinct class of ligand-gated calcium channels controlling the release of calcium from intracellular stores. They are located on the sarcoplasmic reticulum of muscle and the endoplasmic reticulum of neurons and many other cell types. Ryanodine, a plant alkaloid and an important ligand used to characterize and purify the receptor, has served as a natural botanical insecticide, but attempts to generate synthetic commercial analogues of ryanodine have proved unsuccessful. Recently two classes of synthetic chemicals have emerged resulting in commercial insecticides that target insect RyRs. The phthalic acid diamide class has yielded flubendiamide, the first synthetic ryanodine receptor insecticide to be commercialized. Shortly after the discovery of the phthalic diamides, the anthranilic diamides were discovered. This class has produced the insecticides Rynaxypyr and Cyazypyr. Here we review the structure and functions of insect RyRs and address the modes of action of phthalic acid diamides and anthranilic diamides on insect ryanodine receptors. Particularly intersting is the inherent selectivity both chemical classes exhibit for insect RyRs over their mammalian counterparts. The future prospects for RyRs as a commercially-validated target site for insect control chemicals are also considered.
Collapse
Affiliation(s)
- David B Sattelle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
30
|
Li LA, Xia D, Wei S, Li X, Parvizi N, Zhao RQ. Diminished expression of ACTH signaling proteins and steroidogenic limiting factors in adrenocortical cells isolated from halothane nn pigs. Domest Anim Endocrinol 2008; 35:1-7. [PMID: 18304776 DOI: 10.1016/j.domaniend.2007.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Previous studies demonstrated significantly lower plasma cortisol level in homozygous halothane-positive (Hal nn) pigs, as compared with homozygous halothane-negative (Hal NN) pigs. To determine whether such difference is attributed to the fundamental alterations in adrenocortical function, F1 offsprings from Pietrain (Hal nn)xErhualian (Hal NN) were intercrossed to produce F2 sibling pigs with segregated genotypes. Adrenocortical cells were isolated from the Hal nn and Hal NN F2 pigs, respectively, and cultured with or without ACTH challenge. Cortisol levels in culture medium, as well as the content of MC2R, cAMP, CREB, phosphorylated CREB (pCREB), StAR and P450scc in adrenocortical cell lysates, were determined. Cortisol, cAMP, StAR and P450scc levels were significantly lower in Hal nn adrenocortical cells under basal condition without ACTH challenge. ACTH significantly increased cortisol level in the medium and the protein content of MC2R, StAR, P450scc in adrenocortical cell lysates, regardless of genotypes. Total CREB protein content was not different between genotypes and treatments, whereas pCREB content exhibited significant effects of genotype and treatment, being higher in Hal NN than in Hal nn under basal condition and in response to ACTH challenge. These results indicate that the compromised cAMP/PKA/pCREB signaling pathway of ACTH and diminished expression of limiting factors in adrenocortical steroidogenesis (StAR and P450scc) may contribute to the significantly lower plasma cortisol levels in Hal nn pigs.
Collapse
Affiliation(s)
- Liu-An Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
AIM Functional evidence suggests the presence of two types of intracellular Ca(2+) channels responsible for the release of Ca(2+) from Ca(2+)-stores, i.e. inositol-1,4,5-trisphosphate (IP(3)R) and ryanodine receptors (RyR), in rat colonic epithelium. Generally, three ryanodine receptor isoforms (RyR1-RyR3) are known; however, the type of RyR at this epithelium is unknown and was the focus of the present study. METHODS RyRs were characterized by molecular biological and immunohistochemical methods in the rat colon. RESULTS A transcript of RyR1 was found in mRNA from colonic crypts. In contrast, RyR2 and RyR3 were found in their corresponding reference tissues, but not in the cDNA from colonic crypts suggesting a predominant expression of the RyR1 isoform in this epithelium. In order to characterize the subcellular localization of RyR1, immunohistochemical experiments were performed. They showed that RyR1 is present in the lamina epithelialis mucosae and smooth muscle cells and is distributed equally along the whole crypt axis with no difference between surface and crypt cells. A double staining with IP(3)R3, the dominant cytoplasmic isoform of IP3Rs in this epithelium, revealed that there is only little colocalization of the two receptor subtypes within the epithelial cells. Furthermore, the epithelium is equipped with the enzyme CD38 responsible for the production of cyclic adenosine diphosphate ribose, the physiological agonist of RyR. RyRs are known to be activated by changes in the redox state. The oxidant, monochloramine evoked a ruthenium red-sensitive Ca(2+) release all over the crypt axis. This release was unaffected by prior stimulation of IP(3) receptors with ATP (and vice versa). CONCLUSION The present data suggest a functional separation of IP(3)- and ryanodine receptor-carrying Ca(2+) stores in the colonic epithelium.
Collapse
Affiliation(s)
- G Prinz
- Institute for Veterinary Physiology, University of Giessen, Giessen, Germany
| | | |
Collapse
|
32
|
Kampfer AJ, Balog EM. S-Adenosyl-l-methionine activates the cardiac ryanodine receptor. Biochem Biophys Res Commun 2008; 371:606-9. [PMID: 18402770 DOI: 10.1016/j.bbrc.2008.03.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [(3)H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.
Collapse
Affiliation(s)
- Angela J Kampfer
- School of Applied Physiology, Georgia Institute of Technology, 113 Weber Building, 281 Ferst Drive, Atlanta, GA 30332, USA
| | | |
Collapse
|
33
|
Boschek CB, Jones TE, Smallwood HS, Squier TC, Bigelow DJ. Loss of the Calmodulin-Dependent Inhibition of the RyR1 Calcium Release Channel upon Oxidation of Methionines in Calmodulin. Biochemistry 2007; 47:131-42. [DOI: 10.1021/bi701352w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Curt B. Boschek
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Terry E. Jones
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Heather S. Smallwood
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Thomas C. Squier
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Diana J. Bigelow
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
34
|
Klegeris A, Choi HB, McLarnon JG, McGeer PL. Functional ryanodine receptors are expressed by human microglia and THP-1 cells: Their possible involvement in modulation of neurotoxicity. J Neurosci Res 2007; 85:2207-15. [PMID: 17526017 DOI: 10.1002/jnr.21361] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ryanodine receptors (RyRs) are intracellular Ca(2+) channels that mediate the release of calcium from internal stores and therefore play an important role in Ca(2+) signaling and homeostasis. Three RyR isoforms have been described thus far, and various areas of brain are known to express each of them. It is well established that neurons can express different RyR isoforms, but it is not known whether microglial cells do so. In the present study we showed that cultured human microglia from both fetal and adult brain specimens express mRNA for RyR1 and RyR2, whereas RyR3 mRNA can be detected only in fetal microglial cells. Calcium spectrofluorometry showed that high levels of the RyR agonist 4-chloro-m-cresol (4-CmC, 1-5 mM) induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in both types of cultured human microglial cells. This effect was attenuated by the RyR antagonist 1,1'-diheptyl-4,4'-bipyridinium dibromide (DHBP, 10 microM). Neurotoxicity of conditioned medium from human microglia and THP-1 monocytic cells stimulated with a combination of interferon-gamma (IFN-gamma) with either lipopolysaccharide (LPS) or alpha-synuclein was diminished by DHBP. It was also diminished by 4-CmC at concentrations approximately 100-fold lower than those used to stimulate intracellular Ca(2+) release. These data indicate that human microglial cells express functional RyRs and that selective RyR ligands exert antineurotoxic action on this cell type. Therefore, RyR ligands may represent a novel class of compounds that have utility in reducing microglial-mediated inflammation, which is believed to contribute to the pathogenesis of a number of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Andis Klegeris
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
35
|
Uemura Y, Liu TY, Narita Y, Suzuki M, Ohshima S, Mizukami S, Ichihara Y, Kikuchi H, Matsushita S. Identification of functional type 1 ryanodine receptors in human dendritic cells. Biochem Biophys Res Commun 2007; 362:510-5. [PMID: 17707769 DOI: 10.1016/j.bbrc.2007.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/06/2007] [Indexed: 02/02/2023]
Abstract
Ryanodine receptor (RyR) is a Ca(2+) channel that mediates Ca(2+) release from intracellular stores. Altered Ca(2+) homeostasis in skeletal muscle which usually occurs as a result of point mutations in type 1 RyR1 (RyR1) is a key molecular event triggering malignant hyperthermia (MH). There are three RyR isoforms, and we herein show, for the first time, that human dendritic cells (DCs) preferentially express RyR1 mRNA among them. The RyR activator, 4-chloro-m-cresol (4CmC), induced Ca(2+) release in DCs, and this response was eliminated by dantrolene, an inhibitor of the RyR1, and was unaffected by xestospongin C, a selective inhibitor of IP(3) receptor. Activation of RyR1 reduced LPS-induced IL-10 production, promoted the expression of HLA-DR and CD86, and thereby exhibited an improved capacity to stimulate allogeneic T cells. These findings demonstrate that RyR1-mediated calcium signaling modifies diverse DC responses and suggest the feasibility of using DC preparations for the diagnosis of MH.
Collapse
Affiliation(s)
- Yasushi Uemura
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee S, Lee DK, Dou Y, Lee J, Lee B, Kwak E, Kong YY, Lee SK, Roeder RG, Lee JW. Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases. Proc Natl Acad Sci U S A 2006; 103:15392-7. [PMID: 17021013 PMCID: PMC1622834 DOI: 10.1073/pnas.0607313103] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activating signal cointegrator-2 (ASC-2), a coactivator of multiple transcription factors that include retinoic acid receptor (RAR), associates with histone H3-K4 methyltranferases (H3K4MTs) MLL3 and MLL4 in mixed-lineage leukemia. Here, we show that mice expressing a SET domain mutant of MLL3 share phenotypes with isogenic ASC2+/- mice and that expression and H3-K4 trimethylation of RAR target gene RAR-beta2 are impaired in ASC-2-null mouse embryo fibroblasts (MEFs) or in MEFs expressing siRNAs against both MLL3 and MLL4. We also show that MLL3 and MLL4 are found in distinct ASC-2-containing complexes rather than in a common ASC-2 complex, and they are recruited to RAR-beta2 by ASC-2. In contrast, RAR-beta2 expression is intact in MEFs devoid of menin, a component of MLL1 and MLL2 H3K4MT complexes. These results suggest that ASC-2 confers target gene specificity to MLL3 and MLL4 H3K4MT complexes and that recruitment of H3K4MTs to their target genes generally involves interactions between integral components of H3K4MT complexes and transcription factors.
Collapse
Affiliation(s)
| | - Dong-Kee Lee
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and
| | - Yali Dou
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, NY 10021; and
| | - Jeongkyung Lee
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and
| | - Bora Lee
- *Deparment of Molecular and Cellular Biology
| | - Eunyee Kwak
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Young-Yun Kong
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Soo-Kyung Lee
- *Deparment of Molecular and Cellular Biology
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Robert G. Roeder
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, NY 10021; and
- To whom correspondence may be addressed. E-mail:
| | - Jae W. Lee
- *Deparment of Molecular and Cellular Biology
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and
- **To whom correspondence may be addressed at: Department of Medicine, Baylor College of Medicine, Houston, TX 77030. E-mail:
| |
Collapse
|
37
|
Ta TA, Pessah IN. Ryanodine receptor type 1 (RyR1) possessing malignant hyperthermia mutation R615C exhibits heightened sensitivity to dysregulation by non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95). Neurotoxicology 2006; 28:770-9. [PMID: 17023049 PMCID: PMC2274001 DOI: 10.1016/j.neuro.2006.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 07/29/2006] [Accepted: 08/23/2006] [Indexed: 11/22/2022]
Abstract
Malignant hyperthermia (MH) susceptibility is conferred by inheriting one of >60 missense mutations within the highly regulated microsomal Ca(2+) channel known as ryanodine receptor type 1 (RyR1). Although MH susceptible patients lack overt clinical signs, a potentially lethal MH syndrome can be triggered by exposure to halogenated alkane anesthetics. This study compares how non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95), a congener identified in environmental and human samples, alters the binding properties of [(3)H]ryanodine to RyR1 in vitro. Junctional sarcoplasmic reticulum (SR) was isolated from skeletal muscle dissected from wild type pigs ((Wt)RyR1) and pigs homozygous for MH mutation R615C ((MH)RyR1), a mutation also found in humans. Although the level of (Wt)RyR1 and (MH)RyR1 expression is the same, (MH)RyR1 shows heightened sensitivity to activation and altered regulation by physiological cations. We report here that (MH)RyR1 shows more pronounced activation by Ca(2+), and is less sensitive to channel inhibition by Ca(2+) and Mg(2+), compared to (Wt)RyR1. In a buffer containing 100nM free Ca(2+), conditions typically found in resting cells, PCB 95 (50-1000nM) enhances the activity of (MH)RyR1 whereas it has no detectable effect on (Wt)RyR1. PCB 95 (2microM) decreases channel inhibition by Mg(2+) to a greater extent in (MH)RyR1 (IC(50) increased nine-fold) compared to (Wt)RyR1 (IC(50) increased by 2.5-fold). PCB95 reduces inhibition by Ca(2+) two-fold more with (MH)RyR1 than (Wt)RyR1. Our data suggest that non-coplanar PCBs are more potent and efficacious toward (MH)RyR1 than (Wt)RyR1, and have more profound effects on its cation regulation. Considering the important roles of Ca(2+) and Mg(2+) in regulating Ca(2+) signals involving RyR channels, these data provide the first mechanistic evidence that a genetic mutation known to confer susceptibility to pharmacological agents also enhances sensitivity to an environmental contaminant.
Collapse
Affiliation(s)
- Tram Anh Ta
- UC Davis, Center for Children's Environmental Health, Davis, CA 95616, USA
| | | |
Collapse
|
38
|
Yamaguchi N, Xu L, Pasek DA, Evans KE, Chen SRW, Meissner G. Calmodulin regulation and identification of calmodulin binding region of type-3 ryanodine receptor calcium release channel. Biochemistry 2006; 44:15074-81. [PMID: 16274254 DOI: 10.1021/bi051251t] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are a family of intracellular Ca(2+) channels that are regulated by calmodulin (CaM). At low Ca(2+) concentrations (<1 microM), CaM activates RyR1 and RyR3 and inhibits RyR2. At elevated Ca(2+) concentrations (>1 microM), CaM inhibits all three RyR isoforms. Here we report that the regulation of recombinant RyR3 by CaM is sensitive to redox regulation. RyR3 in the presence of reduced glutathione binds CaM with 10-15-fold higher affinity, at low and high Ca(2+) concentrations, compared to in the presence of oxidized glutathione. However, compared to RyR1 assayed at low Ca(2+) concentrations under both reducing and oxidizing conditions, CaM binds RyR3 with reduced affinity but activates RyR3 to a greater extent. Under reducing conditions, RyR1 and RyR3 activities are inhibited with a similar affinity at [Ca(2+)] > 1 microM. Mutagenesis studies demonstrate that RyR3 contains a single conserved CaM binding site. Corresponding amino acid substitutions in the CaM binding site differentially affect CaM binding and CaM regulation of RyR3 and those of the two other isoforms. The results support the suggestion that other isoform dependent regions have a major role in the regulation of RyRs by CaM [Yamaguchi et al. (2004) J. Biol. Chem. 279, 36433-36439].
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. ACTA ACUST UNITED AC 2005; 125:427-40. [PMID: 15795312 PMCID: PMC2217508 DOI: 10.1085/jgp.200409232] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl− currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3−/−) mice, hypoxia-induced, but not submaximal noradrenaline–induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3−/− mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline–induced Ca2+ and contractile responses in PASMCs.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Neuroscience, and Neuropharmacology, Albany Medical College, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Du W, Stiber JA, Rosenberg PB, Meissner G, Eu JP. Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction. J Biol Chem 2005; 280:26287-94. [PMID: 15894801 DOI: 10.1074/jbc.m502905200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ryanodine receptors (RyRs), intracellular calcium release channels essential for skeletal and cardiac muscle contraction, are also expressed in various types of smooth muscle cells. In particular, recent studies have suggested that in airway smooth muscle cells (ASMCs) provoked by spasmogens, stored calcium release by the cardiac isoform of RyR (RyR2) contributes to the calcium response that leads to airway constriction (bronchoconstriction). Here we report that mouse ASMCs also express the skeletal muscle and brain isoforms of RyRs (RyR1 and RyR3, respectively). In these cells, RyR1 is localized to the periphery near the cell membrane, whereas RyR3 is more centrally localized. Moreover, RyR1 and/or RyR3 in mouse airway smooth muscle also appear to mediate bronchoconstriction caused by the muscarinic receptor agonist carbachol. Inhibiting all RyR isoforms with > or = 200 microM ryanodine attenuated the graded carbachol-induced contractile responses of mouse bronchial rings and calcium responses of ASMCs throughout the range of carbachol used (50 nM to > or = 3 microM). In contrast, inhibiting only RyR1 and RyR3 with 25 microM dantrolene attenuated these responses caused by high (>500 nM) but not by low concentrations of carbachol. These data suggest that, as the stimulation of muscarinic receptor in the airway smooth muscle increases, RyR1 and/or RyR3 also mediate the calcium response and thus bronchoconstriction. Our findings provide new insights into the complex calcium signaling in ASMCs and suggest that RyRs are potential therapeutic targets in bronchospastic disorders such as asthma.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Bronchi/metabolism
- Bronchi/pathology
- Bronchi/physiology
- Calcium/metabolism
- Carbachol/metabolism
- Carbachol/pharmacology
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- Cholinergic Agonists/pharmacology
- Dantrolene/pharmacology
- Dose-Response Relationship, Drug
- Immunoblotting
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Biological
- Muscle Contraction
- Muscle Relaxants, Central/pharmacology
- Muscle, Skeletal/metabolism
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Protein Isoforms
- Receptors, Muscarinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel/biosynthesis
- Ryanodine Receptor Calcium Release Channel/chemistry
- Ryanodine Receptor Calcium Release Channel/metabolism
- Signal Transduction
- Tissue Distribution
Collapse
Affiliation(s)
- Wanglei Du
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | | | |
Collapse
|
41
|
Conrad DM, Hanniman EA, Watson CL, Mader JS, Hoskin DW. Ryanodine receptor signaling is required for anti-CD3-induced T cell proliferation, interleukin-2 synthesis, and interleukin-2 receptor signaling. J Cell Biochem 2005; 92:387-99. [PMID: 15108363 DOI: 10.1002/jcb.20064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ryanodine receptors (RyR) are involved in regulating intracellular Ca(++) mobilization in T lymphocytes. However, the importance of RyR signaling during T cell activation has not yet been determined. In this study, we have used the RyR-selective antagonists, ruthenium red and dantrolene, to determine the effect of RyR blockade on T cell receptor-mediated activation events and cytokine-dependent T cell proliferation. Both ruthenium red and dantrolene inhibited DNA synthesis and cell division, as well as the synthesis of interleukin (IL)-2 by T lymphocytes responding to mitogenic anti-CD3 antibody. Blockade of RyR at initiation of culture or as late as 24 h after T cell receptor stimulation inhibited T cell proliferation, suggesting a requirement for sustained RyR signaling during cell cycle progression. Although flow cytometry revealed that RyR blockade had little effect on activation-induced expression of the alpha chain (CD25) of the high affinity IL-2 receptor, the inhibitory effect of RyR antagonists could not be reversed by the addition of exogenous IL-2 at initiation of culture. In addition, both ruthenium red and dantrolene had a strong inhibitory effect on IL-2-dependent proliferation of CTLL-2 T cells. These data indicate that RyR are involved in regulating IL-2 receptor signaling that drives T cell progression through the cell cycle. We conclude that RyR-associated Ca(++) signaling regulates T cell proliferation by promoting both IL-2 synthesis and IL-2-dependent cell cycle progression.
Collapse
Affiliation(s)
- David M Conrad
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 1X5 Canada
| | | | | | | | | |
Collapse
|
42
|
Lee S, Lee DK, Choi E, Lee JW. Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes. Mol Endocrinol 2004; 19:399-408. [PMID: 15528275 DOI: 10.1210/me.2004-0324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin-induced gene-1 (Insig-1) and its homolog Insig-2 encode closely related proteins of the endoplasmic reticulum that block proteolytic activation of sterol regulatory element binding proteins, membrane-bound transcription factors that activate synthesis of cholesterol and fatty acids in animal cells. These proteins also restrict lipogenesis in mature adipocytes and block differentiation of preadipocytes. Herein, we identified a novel 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] response element in the promoter region of Insig-2 gene, which specifically binds to the heterodimer of retinoid X receptor and vitamin D receptor (VDR) and directs VDR-mediated transcriptional activation in a 1,25-(OH)2D3-dependent manner. Interestingly, 1,25-(OH)2D3 is known to directly suppress the expression of peroxisome proliferator-activated receptor gamma2 protein and inhibits adipocyte differentiation of 3T3-L1 preadipocytes and murine bone marrow stromal cells. Consistent with an idea that the antiadipogenic action of 1,25-(OH)2D3 may also involve up-regulation of Insig-2, we found that 1,25-(OH)2D3 transiently but strongly induces Insig-2 expression in 3T3-L1 cells. This novel regulatory circuit may also play important roles in other lipogenic cell types that express VDR, and collectively our results suggest an intriguing, new linkage between 1,25-(OH)2D3 and lipogenesis.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Ji G, Feldman ME, Greene KS, Sorrentino V, Xin HB, Kotlikoff MI. RYR2 proteins contribute to the formation of Ca(2+) sparks in smooth muscle. ACTA ACUST UNITED AC 2004; 123:377-86. [PMID: 15024040 PMCID: PMC2217466 DOI: 10.1085/jgp.200308999] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium release through ryanodine receptors (RYR) activates calcium-dependent membrane conductances and plays an important role in excitation-contraction coupling in smooth muscle. The specific RYR isoforms associated with this release in smooth muscle, and the role of RYR-associated proteins such as FK506 binding proteins (FKBPs), has not been clearly established, however. FKBP12.6 proteins interact with RYR2 Ca2+ release channels and the absence of these proteins predictably alters the amplitude and kinetics of RYR2 unitary Ca2+ release events (Ca2+ sparks). To evaluate the role of specific RYR2 and FBKP12.6 proteins in Ca2+ release processes in smooth muscle, we compared spontaneous transient outward currents (STOCs), Ca2+ sparks, Ca2+-induced Ca2+ release, and Ca2+ waves in smooth muscle cells freshly isolated from wild-type, FKBP12.6−/−, and RYR3−/− mouse bladders. Consistent with a role of FKBP12.6 and RYR2 proteins in spontaneous Ca2+ sparks, we show that the frequency, amplitude, and kinetics of spontaneous, transient outward currents (STOCs) and spontaneous Ca2+ sparks are altered in FKBP12.6 deficient myocytes relative to wild-type and RYR3 null cells, which were not significantly different from each other. Ca2+ -induced Ca2+ release was similarly augmented in FKBP12.6−/−, but not in RYR3 null cells relative to wild-type. Finally, Ca2+ wave speed evoked by CICR was not different in RYR3 cells relative to control, indicating that these proteins are not necessary for normal Ca2+ wave propagation. The effect of FKBP12.6 deletion on the frequency, amplitude, and kinetics of spontaneous and evoked Ca2+ sparks in smooth muscle, and the finding of normal Ca2+ sparks and CICR in RYR3 null mice, indicate that Ca2+ release through RYR2 molecules contributes to the formation of spontaneous and evoked Ca2+ sparks, and associated STOCs, in smooth muscle.
Collapse
Affiliation(s)
- Guangju Ji
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
An impressive array of cytosolic calcium ([Ca2+](i)) signals exert control over a broad range of physiological processes. The specificity and fidelity of these [Ca2+](i) signals is encoded by the frequency, amplitude, and sub-cellular localization of the response. It is believed that the distinct characteristics of [Ca2+](i) signals underlies the differential activation of effectors and ultimately cellular events. This "shaping" of [Ca2+](i) signals can be achieved by the influence of additional signaling pathways modulating the molecular machinery responsible for generating [Ca2+](i) signals. There is a particularly rich source of potential sites of crosstalk between the cAMP and the [Ca2+](i) signaling pathways. This review will focus on the predominant molecular loci at which these classical signaling systems interact to impact the spatio-temporal pattern of [Ca2+](i) signaling in non-excitable cells.
Collapse
Affiliation(s)
- Jason I E Bruce
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
45
|
Kotlikoff MI. Calcium-induced calcium release in smooth muscle: the case for loose coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:171-91. [PMID: 12887979 DOI: 10.1016/s0079-6107(03)00056-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article reviews the key experiments demonstrating calcium-induced calcium release (CICR) in smooth muscle and contrasts the biophysical and molecular features of coupling between the sarcolemmal (L-type Ca(2+) channel) and sarcoplasmic reticulum (ryanodine receptor) Ca(2+) channels in smooth and cardiac muscle. Loose coupling refers to the coupling process in smooth muscle in which gating of ryanodine receptors is non-obligate and may occur with a variable delay following opening of the sarcolemmal Ca(2+) channels. These features have been observed in the earliest studies of CICR in smooth muscle and are in marked contrast to cardiac CICR, where a close coupling between T-tubular and SR membranes results in tight coupling between the gating events. The relationship between this "loose coupling" and distinct subcellular release sites within smooth muscle cells, termed frequent discharge sites, is discussed.
Collapse
Affiliation(s)
- Michael I Kotlikoff
- College of Veterinary Medicine, Cornell University, T4 018 VRT, Box 11, Ithaca, NY 14853-6401, USA.
| |
Collapse
|
46
|
Thorne GD, Paul RJ. Effects of organ culture on arterial gene expression and hypoxic relaxation: role of the ryanodine receptor. Am J Physiol Cell Physiol 2003; 284:C999-C1005. [PMID: 12477664 DOI: 10.1152/ajpcell.00158.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organ culture specifically inhibits vasorelaxation to acute hypoxia and preferentially decreases specific voltage-dependent K(+) channel expression over other K(+) and Ca(2+) channel subtypes. To isolate further potential oxygen-sensing mechanisms correlated with altered gene expression, we performed differential display analysis on RNA isolated from control and cultured coronary arterial rings. We hypothesize that organ culture results in altered gene expression important for vascular smooth muscle contractility important to the mechanism of hypoxia-induced relaxation. Our results indicate a milieu of changes suggesting both up- and downregulation of several genes. The altered expression pattern of two positive clones was verified by Northern analysis. Subsequent screening of a porcine cDNA library indicated homology to the ryanodine receptor (RyR). RT-PCR using specific primers to the three subtypes of RyR shows an upregulation of RyR2 and RyR3 after organ culture. Additionally, the caffeine- and/or ryanodine-sensitive intracellular Ca(2+) store was significantly more responsive to caffeine activation after organ culture. Our data indicate that organ culture increases expression of specific RyR subtypes and inhibits hypoxic vasorelaxation. Importantly, ryanodine blunted hypoxic relaxation in control coronary arteries, suggesting that upregulated RyR might play a novel role in altered intracellular Ca(2+) handling during hypoxia.
Collapse
Affiliation(s)
- George D Thorne
- Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0576, USA.
| | | |
Collapse
|
47
|
Mitchell KJ, Lai FA, Rutter GA. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 2003; 278:11057-64. [PMID: 12538591 DOI: 10.1074/jbc.m210257200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated recently (Mitchell, K. J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2001) J. Cell Biol. 155, 41-51) that ryanodine receptors (RyR) are present on insulin-containing secretory vesicles. Here we show that pancreatic islets and derived beta-cell lines express type I and II, but not type III, RyRs. Purified by subcellular fractionation and membrane immuno-isolation, dense core secretory vesicles were found to possess a similar level of type I RyR immunoreactivity as Golgi/endoplasmic reticulum (ER) membranes but substantially less RyR II than the latter. Monitored in cells expressing appropriately targeted aequorins, dantrolene, an inhibitor of RyR I channels, elevated free Ca(2+) concentrations in the secretory vesicle compartment from 40.1 +/- 6.7 to 90.4 +/- 14.8 microm (n = 4, p < 0.01), while having no effect on ER Ca(2+) concentrations. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca(2+)-mobilizing agent, decreased dense core secretory vesicle but not ER free Ca(2+) concentrations in permeabilized MIN6 beta-cells, and flash photolysis of caged NAADP released Ca(2+) from a thapsigargin-insensitive Ca(2+) store in single MIN6 cells. Because dantrolene strongly inhibited glucose-stimulated insulin secretion (from 3.07 +/- 0.51-fold stimulation to no significant glucose effect; n = 3, p < 0.01), we conclude that RyR I-mediated Ca(2+)-induced Ca(2+) release from secretory vesicles, possibly potentiated by NAADP, is essential for the activation of insulin secretion.
Collapse
Affiliation(s)
- Kathryn J Mitchell
- Henry Wellcome Laboratories of Integrated Cell Signaling and Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
48
|
Abstract
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Siena, Italy
| | | |
Collapse
|
49
|
Abstract
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary pathway for Ca2+ release during the excitation-contraction coupling process. In general, the signals that activate the RyR channels are known (e.g., sarcolemmal Ca2+ influx or depolarization), but the specific mechanisms involved are still being debated. The signals that modulate and/or turn off the RyR channels remain ambiguous and the mechanisms involved unclear. Over the last decade, studies of RyR-mediated Ca2+ release have taken many forms and have steadily advanced our knowledge. This robust field, however, is not without controversial ideas and contradictory results. Controversies surrounding the complex Ca2+ regulation of single RyR channels receive particular attention here. In addition, a large body of information is synthesized into a focused perspective of single RyR channel function. The present status of the single RyR channel field and its likely future directions are also discussed.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
50
|
Ohta T, Wakade AR, Yonekubo K, Ito S. Functional relation between caffeine- and muscarine-sensitive Ca2+ stores and no Ca2+ releasing action of cyclic adenosine diphosphate-ribose in guinea-pig adrenal chromaffin cells. Neurosci Lett 2002; 326:167-70. [PMID: 12095648 DOI: 10.1016/s0304-3940(02)00333-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In voltage-clamped guinea-pig chromaffin cells, muscarine (50 microM) or caffeine (30 mM) produced a transient intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, catecholamine release and an outward K(+) current mediated through Ca(2+) released from internal Ca(2+) stores at a holding potential of -40 mV. Caffeine followed by muscarine failed to evoke these responses, while muscarine followed by caffeine was effective in producing about 30% of [Ca(2+)](i) increase and catecholamine secretion. In cells dialyzed with inositol 1,4,5-trisphosphate (IP(3)), caffeine failed to produce the [Ca(2+)](i) increase. Intracellular application of cyclic adenosine 5'-diphosphate-ribose (cADP-ribose) or 8-bromo cADP-ribose exerted no effect on the resting [Ca(2+)](i) and the caffeine-induced [Ca(2+)](i) increase. These results suggest that IP(3)-sensitive stores are functionally divided into two subpopulations, sensitive and insensitive to caffeine, and it is unlikely that cADP-ribose plays a role as a Ca(2+) releaser in guinea-pig adrenal chromaffin cells.
Collapse
Affiliation(s)
- Toshio Ohta
- Laboratory of Pharmacology, Department of Biomedical Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | |
Collapse
|