1
|
Liu Q, Lu X, Deng Y, Zhang H, Wei R, Li H, Feng Y, Wei J, Ma F, Zhang Y, Zou X. Global characterization of mouse testis O-glycoproteome landscape during spermatogenesis. Nat Commun 2025; 16:2676. [PMID: 40102425 PMCID: PMC11920050 DOI: 10.1038/s41467-025-57980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
Protein O-glycosylation plays critical roles in sperm formation and maturation. However, detailed knowledge on the mechanisms involved is limited due to lacking characterization of O-glycoproteome of testicular germ cells. Here, we performed a systematic analysis of site-specific O-glycosylation in mouse testis, and established an O-glycoproteome map with 349 O-glycoproteins and 799 unambiguous O-glycosites. Moreover, we comprehensively investigated the distribution properties of O-glycosylation in testis and identified a region near the N-terminal of peptidase S1 domain that is susceptible to O-glycosylation. Interestingly, we found dynamic changes with an increase Tn and a decrease T structure from early to mature developmental stages. Notably, the importance of O-glycosylation was supported by its effects on the stability, cleavage, and interaction of acrosomal proteins. Collectively, these data illustrate the global properties of O-glycosylation in testis, providing insights and resources for future functional studies targeting O-glycosylation dysregulation in male infertility.
Collapse
Affiliation(s)
- Qiannan Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Han Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Rumeng Wei
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Hongrui Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Juan Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Center for Chemical Glycobiology, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Enomoto T, Okada H, Tomita H, Iinuma K, Nakane K, Tobisawa Y, Hara A, Koie T. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol 2024; 11:1308879. [PMID: 38269087 PMCID: PMC10806140 DOI: 10.3389/fcell.2023.1308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: The abnormal glycocalyx (GCX) on the surface of cancer cells has been reported to be tall and aberrantly glycosylated and has been linked to the progression and spread of cancer-a finding also observed in bladder cancer. However, the characteristics of GCX in various types of human bladder cancer remain unknown, and herein, we aimed to provide information on the diversity of glycan components in the GCX of bladder cancers and to shed light on their characteristics. Methods: We used scanning electron microscopy and lanthanum staining to examine the surface GCX of human bladder carcinomas in three-dimensional images, showing the bulky GCX in some carcinomas. We also examined glycan alterations in early to progressive stages of bladder cancers using 20 distinct lectin stains on frozen sections from transurethral resection of bladder tumors. Results and discussion: Distinctive Vicia villosa lectin (VVL) staining was observed in invasive urothelial carcinomas, including those with muscle invasion and variant components. In the clinical setting, cancers with atypia of grades 2-3 had a significantly higher VVL scoring intensity than those with grade 1 atypia (p < 0.005). This study identified that a specific lectin, VVL, was more specific to invasive urothelial carcinomas. This lectin, which selectively binds to sites of cancer progression, is a promising target for drug delivery in future clinical investigations.
Collapse
Affiliation(s)
- Torai Enomoto
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Urology, Matsunami General Hospital, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Tobisawa
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
3
|
Burns L, Le Mauff F, Gruenheid S. Direct evidence of host-mediated glycosylation of NleA and its dependence on interaction with the COPII complex. Gut Microbes 2024; 16:2305477. [PMID: 38298145 PMCID: PMC10841024 DOI: 10.1080/19490976.2024.2305477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Non-LEE-encoded Effector A (NleA) is a type III secreted effector protein of enterohaemorrhagic and enteropathogenic Escherichia coli as well as the related mouse pathogen Citrobacter rodentium. NleA translocation into host cells is essential for virulence. We previously published several lines of evidence indicating that NleA is modified by host-mediated mucin-type O-linked glycosylation, the first example of a bacterial effector protein modified in this way. In this study, we use lectins to provide direct evidence for the modification of NleA by O-linked glycosylation and determine that the interaction of NleA with the COPII complex is necessary for this modification to occur.
Collapse
Affiliation(s)
- Lindsay Burns
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - François Le Mauff
- Infectious Disease and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Glyco-NET Integrated Services, Microbial Glycomic Node, Montreal, QC, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Vilen Z, Reeves AE, Huang ML. (Glycan Binding) Activity‐Based Protein Profiling in Cells Enabled by Mass Spectrometry‐Based Proteomics. Isr J Chem 2023; 63. [PMID: 37131487 PMCID: PMC10150848 DOI: 10.1002/ijch.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presence of glycan modifications at the cell surface and other locales positions them as key regulators of cell recognition and function. However, due to the complexity of glycosylation, the annotation of which proteins bear glycan modifications, which glycan patterns are present, and which proteins are capable of binding glycans is incomplete. Inspired by activity-based protein profiling to enrich for proteins in cells based on select characteristics, these endeavors have been greatly advanced by the development of appropriate glycan-binding and glycan-based probes. Here, we provide context for these three problems and describe how the capability of molecules to interact with glycans has enabled the assignment of proteins with specific glycan modifications or of proteins that bind glycans. Furthermore, we discuss how the integration of these probes with high resolution mass spectrometry-based technologies has greatly advanced glycoscience.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| | - Abigail E. Reeves
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| | - Mia L. Huang
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| |
Collapse
|
5
|
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022; 17:2993-3012. [PMID: 35084820 PMCID: PMC9679999 DOI: 10.1021/acschembio.1c00689] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology and Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden 405 30
| | - Lawrence Meche
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - William Eng
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - David F. Smith
- Department
of Biochemistry, Glycomics Center, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lara K. Mahal
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States,Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2,E-mail:
| |
Collapse
|
6
|
OUP accepted manuscript. Glycobiology 2022; 32:556-579. [DOI: 10.1093/glycob/cwac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
|
7
|
Aguirre LS, Cantón GJ, Morrell EL, Sandoval GV, Medina DM, Avellaneda-Cáceres A, Micheloud JF. Retrospective analysis of hairy vetch (Vicia villosa roth) poisoning in Argentina (2004-2019). Toxicon 2021; 200:134-139. [PMID: 34314765 DOI: 10.1016/j.toxicon.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Hairy vetch (Vicia villosa) poisoning in cattle is characterized by a systemic granulomatous inflammatory response that resembles a type-IV hypersensitivity reaction. Hairy vetch toxicity has been described in cattle worldwide. The aim of this paper was to describe 10 outbreaks of hairy vetch poisoning in cattle studied at INTA EEA Salta and INTA EEA Balcarce, Argentina, from 2004 to 2019. Clinical signs included weakness, pyrexia, dermatitis, alopecia, and progressive weight loss, which leads to death over a clinical course of approximately two weeks. A total of 12 necropsies were performed and tissue samples were collected for histopathology. The main gross changes were observed in skin, lymph nodes, liver, heart, spleen and kidneys. Other tissues, such as pancreas, thyroid, and adrenal glands, were also affected. Histological lesions consisted of multifocal to diffuse granulomatous inflammation in those organs. The toxicity of hairy vetch has been described in several countries of the world. In Argentina, the use of hairy vetch as a cover crop has become common in some regions during the past years. The data suggest that hairy vetch poisoning is an important disease in cattle. More studies are needed to contribute with further information.
Collapse
Affiliation(s)
- Laura S Aguirre
- Facultad de Ciencias Agrarias y Veterinarias-UCASAL, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina; CONICET, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina.
| | - Germán J Cantón
- INTA-Balcarce, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina
| | - Eleonora L Morrell
- INTA-Balcarce, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina
| | - Gabriela V Sandoval
- Facultad de Ciencias Agrarias y Veterinarias-UCASAL, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina; CONICET, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina
| | - Diego M Medina
- Facultad de Ciencias Agrarias y Veterinarias-UCASAL, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina
| | - Agustín Avellaneda-Cáceres
- Facultad de Ciencias Agrarias y Veterinarias-UCASAL, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina; CONICET, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina
| | - Juan F Micheloud
- Facultad de Ciencias Agrarias y Veterinarias-UCASAL, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina; Grupo de Trabajo de Patología, Epidemiología e Investigación Diagnóstica. Área de Sanidad Animal-IIACS Salta/INTA, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina; CONICET, INTA EEA Salta, RN 68 Km 172, 4403 Cerrillos, Salta, Argentina
| |
Collapse
|
8
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Cavada BS, Pinto-Junior VR, Oliveira MV, Osterne VJS, Lossio CF, Nascimento KS. A review of Vicieae lectins studies: End of the book or a story in the writing? Int J Biol Macromol 2021; 181:1104-1123. [PMID: 33895178 DOI: 10.1016/j.ijbiomac.2021.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Vicieae tribe, Leguminosae family (Fabaceae), has been extensively studied. In particular, the study of lectins. The purification, physicochemical and structural characterizations of the various purified lectins and the analysis of their relevant biological activities are ongoing. In this review, several works already published about Vicieae lectins are addressed. Initially, we presented the purification protocols and the physicochemical aspects, such as specificity for carbohydrates, optimal activity in the face of variations in temperature and pH, as well metals-dependence. Following, structural characterization studies are highlighted and, finally, various biological activities already reported are summarized. Studies on lectins in almost all genera (Lathyrus, Lens, Pisum and Vicia) are considered, with the exception of Vavilovia which studies of lectins have not yet been reported. Like other leguminous lectins, Vicieae lectins present heterogeneous profiles of agglutination profiles for erythrocytes and other cells of the immune system, and glycoproteins. Most Vicieae lectins consist of two subunits, α and β, products of a single precursor protein derived from a single gene. The differences between the isoforms result from varying degrees of proteolytic processing. Along with the identification of these molecules and their characteristics, biological activities become very relevant and robust for both basic and applied research.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Nutrição, Universidade Estadual do Ceará, Fortaleza, Brazil
| | | | | |
Collapse
|
10
|
Elamine Y, Torres-Salas V, Messai A, Girón-Calle J, Alaiz M, Vioque J. Purification, Characterization, and Antiproliferative Activity of a Single-Chain Lectin from Vicia palaestina (Fabaceae) Seeds. Chem Biodivers 2021; 18:e2000827. [PMID: 33410600 DOI: 10.1002/cbdv.202000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022]
Abstract
Vicia palaestina Boiss. is an annual herb that grows in dry areas of eastern Mediterranean countries. It belongs to section Cracca subgenus Vicilla, which is characterized by having a high content in the non-protein amino acid canavanine. The seeds from some of these vetches are also rich in lectins. The purification and characterization of a single-chain lectin from the seeds of V. palaestina is described here. This lectin was the most abundant protein in albumin extracts. It has affinity for the glycoconjugate N-acetylgalactosamine and inhibits proliferation of the cancerous Caco-2 and THP-1 cell lines. In addition to their high nutritional value, the seeds from V. palaestina represent a source of lectins with health promoting and pharmacological potential because of their antiproliferative activity.
Collapse
Affiliation(s)
- Youssef Elamine
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Verenice Torres-Salas
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, 56230, Chapingo, Estado de México, Mexico
| | - Alima Messai
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Julio Girón-Calle
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Manuel Alaiz
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| | - Javier Vioque
- Food Phytochemistry Department, Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41089, Sevilla, Spain
| |
Collapse
|
11
|
Detarya M, Sawanyawisuth K, Aphivatanasiri C, Chuangchaiya S, Saranaruk P, Sukprasert L, Silsirivanit A, Araki N, Wongkham S, Wongkham C. The O-GalNAcylating enzyme GALNT5 mediates carcinogenesis and progression of cholangiocarcinoma via activation of AKT/ERK signaling. Glycobiology 2020; 30:312-324. [PMID: 31868214 DOI: 10.1093/glycob/cwz098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Mucin type O-glycosylation is a posttranslational modification of membrane and secretory proteins. Transferring of N-acetylgalactosamine, the first sugar of O-glycosylation, is catalyzed by one of the 20 isoforms of polypeptide N-acetylgalactosaminyltransferases (GALNTs). In this study, Vicia villosa lectin (VVL), a lectin that recognizes O-GalNAcylated glycans, was used to detect VVL-binding glycans (VBGs) in cholangiocarcinoma (CCA). The elevation of VBGs in tumor tissues of the liver fluke associated with CCA from hamsters and patients was noted. VBGs were detected in hyperplastic/dysplastic bile ducts and CCA but not in normal biliary epithelia and hepatocytes, indicating the association of VBGs with CCA development and progression. GALNT5 was shown to be the major isoform found in human CCA cell lines with high VBG expression. Suppression of GALNT5 expression using siRNA significantly reduced VBG expression, signifying the connection of GALNT5 and VBGs observed. Knocked-down GALNT5 expression considerably inhibited proliferation, migration and invasion of CCA cells. Increased expression of GALNT5 using pcDNA3.1-GALNT5 expression vector induced invasive phenotypes in CCA cells with low GALNT5 expression. Increasing of claudin-1 and decreasing of slug and vimentin expression together with inactivation of Akt/Erk signaling were noted in GALNT5 knocked-down cells. These observations were reversed in GALNT5 over-expressing cells. GALNT5-modulated progression of CCA cells was shown to be, in part, via GALNT5-mediated autocrine/paracrine factors that stimulated activations of Akt/Erk signaling and the epithelial to mesenchymal transition process. GALNT5 and its O-GalNAcylated products may have important roles in promoting progression of CCA and could possibly be novel targets for treatment of metastatic CCA.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Chaiwat Aphivatanasiri
- Department of Pathology, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Paksiree Saranaruk
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Lukkana Sukprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparb Rd., Muang, Khon Kaen 40002, Thailand
| |
Collapse
|
12
|
Tran ENH, Day CJ, McCartney E, Poole J, Tse E, Jennings MP, Morona R. Shigella flexneri Targets Human Colonic Goblet Cells by O Antigen Binding to Sialyl-Tn and Tn Antigens via Glycan-Glycan Interactions. ACS Infect Dis 2020; 6:2604-2615. [PMID: 32926786 DOI: 10.1021/acsinfecdis.0c00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Shigella flexneri targets colonic cells in humans to initiate invasive infection processes that lead to dysentery, and direct interactions between their lipopolysaccharide O antigens and blood group A related glycans are involved in the cell adherence interactions. Here, we show that treatment with Tn and sialyl-Tn glycans, monoclonal antibodies and lectins reactive to Tn/sialyl-Tn, and luteolin (a Tn antigen synthesis inhibitor) all significantly inhibited S. flexneri adherence and invasion of cells in vitro. Surface plasmon resonance analysis showed that lipopolysaccharide O antigen had a high affinity interaction with Tn/sialyl-Tn. Immunofluorescence probing of human colon tissue with antibodies detected expression of Tn/sialyl-Tn by MUC2 producing goblet cells (GCs), and S. flexneri incubated with human colon tissue colocalized with GCs. Our findings demonstrate that S. flexneri targets GCs in the human colonic crypts via glycan-glycan interactions, establishing new insight into the infection process in humans.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Erin McCartney
- Gastroenterological/Hepatological Biobank, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Edmund Tse
- Gastroenterological/Hepatological Biobank, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Renato Morona
- School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
13
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
14
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
15
|
Megías C, Cortés-Giraldo I, Girón-Calle J, Alaiz M, Vioque J. Characterization of Vicia
(Fabaceae
) seed water extracts with potential immunomodulatory and cell antiproliferative activities. J Food Biochem 2018. [DOI: 10.1111/jfbc.12578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Megías
- Food Phytochemistry Department; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera km 1; 41013-Sevilla Spain
| | - Isabel Cortés-Giraldo
- Food Phytochemistry Department; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera km 1; 41013-Sevilla Spain
| | - Julio Girón-Calle
- Food Phytochemistry Department; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera km 1; 41013-Sevilla Spain
| | - Manuel Alaiz
- Food Phytochemistry Department; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera km 1; 41013-Sevilla Spain
| | - Javier Vioque
- Food Phytochemistry Department; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Carretera de Utrera km 1; 41013-Sevilla Spain
| |
Collapse
|
16
|
Akasaka-Manya K, Kawamura M, Tsumoto H, Saito Y, Tachida Y, Kitazume S, Hatsuta H, Miura Y, Hisanaga SI, Murayama S, Hashimoto Y, Manya H, Endo T. Excess APPO-glycosylation by GalNAc-T6 decreases Aβ production. J Biochem 2016; 161:99-111. [DOI: 10.1093/jb/mvw056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
|
17
|
Wang K, Peng ED, Huang AS, Xia D, Vermont SJ, Lentini G, Lebrun M, Wastling JM, Bradley PJ. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography. PLoS One 2016; 11:e0150561. [PMID: 26950937 PMCID: PMC4780768 DOI: 10.1371/journal.pone.0150561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.
Collapse
Affiliation(s)
- Kevin Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095–1489, United States of America
| | - Eric D. Peng
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095–1489, United States of America
| | - Amy S. Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095–1489, United States of America
| | - Dong Xia
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sarah J. Vermont
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Gaelle Lentini
- UMR 5235 CNRS, Université de Montpellier 1 and 2, 34095, Montpellier, France
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 1 and 2, 34095, Montpellier, France
| | | | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095–1489, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wang ZQ, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Bachvarov D. Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation. Oncotarget 2014; 5:544-60. [PMID: 24504219 PMCID: PMC3964228 DOI: 10.18632/oncotarget.1652] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 12/22/2022] Open
Abstract
Previously, we have identified the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that GALNT3 is strongly overexpressed in HG serous EOC tumors as compared to normal ovarian tissue. Moreover, the GALNT3 expression significantly correlated with shorter progression-free survival (PFS) intervals in epithelial ovarian cancer (EOC) patients with advanced disease. Knockdown of the GALNT3 expression in EOC cells led to sharp decrease of cell proliferation and induced S-phase cell cycle arrest. Additionally, GALNT3 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon GALNT3 suppression, while some tumor suppressor genes were induced. Moreover, GALNT3 downregulation was associated with reduced MUC1 protein expression in EOC cells, probably related to destabilization of the MUC1 protein due to lack of GALNT3 glycosylation activity. GALNT3 knockdown was also accompanied with increase of the cell adhesion molecules β-catenin and E-cadherin, which are normally suppressed by MUC1 in cancer, thus supporting the role of the GALNT3-MUC1 axis in EOC invasion. Taken together, our data are indicative for a strong oncogenic potential of the GALNT3 gene in advanced EOC and identify this transferase as a novel EOC biomarker and putative EOC therapeutic target. Our findings also suggest that GALNT3 overexpression might contribute to EOC progression through aberrant mucin O-glycosylation.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| |
Collapse
|
19
|
Aydillo C, Navo CD, Busto JH, Corzana F, Zurbano MM, Avenoza A, Peregrina JM. A Double Diastereoselective Michael-Type Addition as an Entry to Conformationally Restricted Tn Antigen Mimics. J Org Chem 2013; 78:10968-77. [DOI: 10.1021/jo4019396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos Aydillo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Claudio D. Navo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús H. Busto
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - María M. Zurbano
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús M. Peregrina
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
20
|
Kurz S, Jin C, Hykollari A, Gregorich D, Giomarelli B, Vasta GR, Wilson IBH, Paschinger K. Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J Biol Chem 2013; 288:24410-28. [PMID: 23824194 DOI: 10.1074/jbc.m113.478933] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eastern oyster (Crassostrea virginica) has become a useful model system for glycan-dependent host-parasite interactions due to the hijacking of the oyster galectin CvGal1 for host entry by the protozoan parasite Perkinsus marinus, the causative agent of Dermo disease. In this study, we examined the N-glycans of both the hemocytes, which via CvGal1 are the target of the parasite, and the plasma of the oyster. In combination with HPLC fractionation, exoglycosidase digestion, and fragmentation of the glycans, mass spectrometry revealed that the major N-glycans of plasma are simple hybrid structures, sometimes methylated and core α1,6-fucosylated, with terminal β1,3-linked galactose; a remarkable high degree of sulfation of such glycans was observed. Hemocytes express a larger range of glycans, including core-difucosylated paucimannosidic forms, whereas bi- and triantennary glycans were found in both sources, including structures carrying sulfated and methylated variants of the histo-blood group A epitope. The primary features of the oyster whole hemocyte N-glycome were also found in dominin, the major plasma glycoprotein, which had also been identified as a CvGal1 glycoprotein ligand associated with hemocytes. The occurrence of terminal blood group moieties on oyster dominin and on hemocyte surfaces can account in part for their affinity for the endogenous CvGal1.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee CS, Muthusamy A, Abdul-Rahman PS, Bhavanandan VP, Hashim OH. An improved lectin-based method for the detection of mucin-type O-glycans in biological samples. Analyst 2013; 138:3522-9. [PMID: 23665615 DOI: 10.1039/c3an36258b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mucins and mucin-type glycoproteins, collectively referred to as mucin-type O-glycans, are implicated in many important biological functions and pathological conditions, including malignancy. Presently, there is no reliable method to measure the total mucin-type O-glycans of a sample, which may contain one or more of these macromolecules of unknown structures. We report the development of an improved microassay that is based on the binding of lectins to the unique and constant GalNAc-Ser/Thr structural feature of mucin-type O-glycans. Since the sugar-amino acid linkage in the mucin-type O-glycans is invariably cryptic, we first chemically removed the heterogeneous peripheral and core saccharides of model glycoconjugates before examining for their interactions using an enzyme-linked lectin assay (ELLA). Desialylation of the model glycoconjugates led to maximal binding of the lectins but additional treatments such as Smith degradation did not result in increased binding. Of the lectins tested for their ability to probe the desialylated O-glycans, jacalin showed the highest sensitivity followed by champedak galactose binding (CGB) lectin and Vicia villosa agglutinin. Further improvement in the sensitivity of ELLA was achieved by using microtiter plates that were pre-coated with the CGB lectin, which increased the specificity of the assay to mucin-type O-glycans. Finally, the applicability of the developed sandwich ELLA to crude samples was demonstrated by estimating trace quantities of the mucin-type O-glycans in the human serum.
Collapse
Affiliation(s)
- Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
22
|
Blosa M, Sonntag M, Brückner G, Jäger C, Seeger G, Matthews RT, Rübsamen R, Arendt T, Morawski M. Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body--implications for physiological functions. Neuroscience 2012; 228:215-34. [PMID: 23069754 DOI: 10.1016/j.neuroscience.2012.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/12/2022]
Abstract
The medial nucleus of the trapezoid body (MNTB) is a vital structure of sound localization circuits in the auditory brainstem. Each principal cell of MNTB is contacted by a very large presynaptic glutamatergic terminal, the calyx of Held. The MNTB principal cells themselves are surrounded by extracellular matrix components forming prominent perineuronal nets (PNs). Throughout the CNS, PNs, which form lattice-like structures around the somata and proximal dendrites, are associated with distinct types of neurons. PNs are highly enriched in hyaluronan and chondroitin sulfate proteoglycans therefore providing a charged surface structure surrounding the cell body and proximal neurites of these neurons. The localization and composition of PNs have lead investigators to a number of hypotheses about their functions including: creating a specific extracellular ionic milieu around these neurons, stabilizing synapses, and influencing the outgrowth of axons. However, presently the precise functions of PNs are still quite unclear primarily due to the lack of an ideal experimental model system that is highly enriched in PNs and in which the synaptic transmission properties can be precisely measured. The MNTB principal cells could offer such a model, since they have been extensively characterized electrophysiologically. However, extracellular matrix (ECM) in these neurons has not yet been precisely detailed. The present study gives a detailed examination of the ECM organization and structural differences in PNs of the mouse MNTB. The different PN components and their distribution pattern are scrutinized throughout the MNTB. The data are complemented by electron microscopic investigations of the unique ultrastructural localization of PN-components and their interrelation with distinct pre- and postsynaptic MNTB cell structures. Therefore, we believe this work identifies the MNTB as an ideal system for studying PN function.
Collapse
Affiliation(s)
- M Blosa
- Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Godula K, Bertozzi CR. Density variant glycan microarray for evaluating cross-linking of mucin-like glycoconjugates by lectins. J Am Chem Soc 2012; 134:15732-42. [PMID: 22967056 PMCID: PMC3458438 DOI: 10.1021/ja302193u] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Interactions of mucin glycoproteins with cognate receptors
are
dictated by the structures and spatial organization of glycans that
decorate the mucin polypeptide backbone. The glycan-binding proteins,
or lectins, that interact with mucins are often oligomeric receptors
with multiple ligand binding domains. In this work, we employed a
microarray platform comprising synthetic glycopolymers that emulate
natural mucins arrayed at different surface densities to evaluate
how glycan valency and spatial separation affect the preferential
binding mode of a particular lectin. We evaluated a panel of four
lectins (Soybean agglutinin (SBA), Wisteria floribunda lectin (WFL), Vicia villosa-B-4 agglutinin (VVA),
and Helix pomatia agglutin (HPA)) with specificity
for α-N-acetylgalactosamine (α-GalNAc),
an epitope displayed on mucins overexpressed in many adenocarcinomas.
While these lectins possess the ability to agglutinate A1-blood cells carrying the α-GalNAc epitope and cross-link low
valency glycoconjugates, only SBA showed a tendency to form intermolecular
cross-links among the arrayed polyvalent mucin mimetics. These results
suggest that glycopolymer microarrays can reveal discrete higher-order
binding preferences beyond the recognition of individual glycan epitopes.
Our findings indicate that glycan valency can set thresholds for cross-linking
by lectins. More broadly, well-defined synthetic glycopolymers enable
the integration of glycoconjugate structural and spatial diversity
in a single microarray screening platform.
Collapse
Affiliation(s)
- Kamil Godula
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | |
Collapse
|
24
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
25
|
THERKILDSEN MARIANNEHAMILTON. Epithelial salivary gland tumours. An immunohistological and prognostic investigation. APMIS 2011. [DOI: 10.1111/j.1600-0463.1999.tb05379.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Gerlach JQ, Kilcoyne M, Eaton S, Bhavanandan V, Joshi L. Non-carbohydrate-mediated interaction of lectins with plant proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:257-69. [PMID: 21618112 DOI: 10.1007/978-1-4419-7877-6_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
27
|
Rougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, Wu AM. Glycotope structures and intramolecular affinity factors of plant lectins for Tn/T antigens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:143-54. [PMID: 21618108 DOI: 10.1007/978-1-4419-7877-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pierre Rougé
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR UPS-CNRS 5546, Pôle de Biotechnologie végétale, 24 Chemin de Borde Rouge, 31326 Castanet Tolosan, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kaszowska M, Norgren AS, Arvidson PI, Sandström C. Studies on the interactions between glycosylated β3-peptides and the lectin Vicia villosa by saturation transfer difference NMR spectroscopy. Carbohydr Res 2009; 344:2577-80. [DOI: 10.1016/j.carres.2009.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/24/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
29
|
Miller D, Jones C, Aplin J, Nardo L. Altered glycosylation in peri-implantation phase endometrium in women with stages III and IV endometriosis. Hum Reprod 2009; 25:406-11. [DOI: 10.1093/humrep/dep401] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Herbst R, Iskratsch T, Unger E, Bittner RE. Aberrant development of neuromuscular junctions in glycosylation-defective Large(myd) mice. Neuromuscul Disord 2009; 19:366-78. [PMID: 19346129 DOI: 10.1016/j.nmd.2009.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/17/2009] [Accepted: 02/27/2009] [Indexed: 01/13/2023]
Abstract
Mice deficient in the glycosyltransferase Large are characterized by severe muscle and central nervous system abnormalities. In this study, we show that the formation and maintenance of neuromuscular junctions in Large(myd) mice are greatly compromised. Neuromuscular junctions are not confined to the muscle endplate zone but are widely spread and are frequently accompanied by exuberant nerve sprouting. Nerve terminals are highly fragmented and binding of alpha-bungarotoxin to postsynaptic acetylcholine receptors (AChRs) is greatly reduced. In vitro, Large(myd) myotubes are responsive to agrin but produce aberrant AChR clusters, which are larger in area and less densely packed with AChRs. In addition, AChR expression on the cell surface is diminished suggesting that AChR assembly or transport is defective. These results together with the finding that O-linked glycosylation at neuromuscular junctions of Large(myd) mice is compromised indicate that the action of Large is necessary for proper neuromuscular junction development.
Collapse
Affiliation(s)
- Ruth Herbst
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
31
|
|
32
|
Sondej M, Denny PA, Xie Y, Ramachandran P, Si Y, Takashima J, Shi W, Wong DT, Loo JA, Denny PC. Glycoprofiling of the Human Salivary Proteome. Clin Proteomics 2008; 5:52-68. [PMID: 20161393 DOI: 10.1007/s12014-008-9021-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glycosylation is important for a number of biological processes and is perhaps the most abundant and complicated of the known post-translational modifications found on proteins. This work combines two-dimensional polyacrylamide gel electrophoresis (2-DE) and lectin blotting to map the salivary glycome, and mass spectrometry to identity the proteins that are associated with the glycome map. A panel of 15 lectins that recognize six sugar-specific categories was used to visualize the type and extent of glycosylation in saliva from two healthy male individuals. Lectin blots were compared to 2-D gels stained either with Sypro Ruby (protein stain) or Pro-Q Emerald 488 (glycoprotein stain). Each lectin shows a distinct pattern, even those belonging to the same sugar-specific category. In addition, the glycosylation profiles generated from the lectin blots show that most of the salivary proteins are glycosylated and that the pattern is more widespread than is demonstrated by the glycoprotein stained gel. Finally, the co-reactivity between two lectins was measured to determine the glycan structures that are most and least often associated with one another along with the population variation of the lectin reactivity for 66 individuals.
Collapse
Affiliation(s)
- Melissa Sondej
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Takahashi K, Hiki Y, Odani H, Shimozato S, Iwase H, Sugiyama S, Usuda N. Structural analyses of O-glycan sugar chains on IgA1 hinge region using SELDI-TOFMS with various lectins. Biochem Biophys Res Commun 2006; 350:580-7. [PMID: 17022936 DOI: 10.1016/j.bbrc.2006.09.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/17/2006] [Indexed: 11/19/2022]
Abstract
The aim of the study was to develop a simple and precise method for identifying glycosylation of the IgA hinge region using surface-enhanced laser desorption/ionization (SELDI)-TOFMS with a lectin-coupled ProteinChip array. Serum IgA was isolated using an anti-IgA antibody column. Following reduction, alkylation, and trypsin digestion, the IgA fragments were applied on the ProteinChip coupled with jacalin, peanut agglutinin (PNA), or Vilsa villosa lectin (VVL). The SELDI-TOFMS peaks corresponding to the fragments containing IgA1 hinge glycopeptides trapped by each lectin were compared. The jacalin-, PNA-, and VVL-immobilized ProteinChips detected 13, 4, and 2 peaks, respectively. One major peak was confirmed as a glycopeptide by MS/MS analysis. These results suggest that a lectin-immobilized ProteinChip assay can be used to simplify the procedures for the analyses of the O-glycans in IgA1 hinge. This method potentially makes it possible to identify a disease-specific glycoform by selecting the appropriate ligand-coupled ProteinChip array.
Collapse
Affiliation(s)
- Kazuo Takahashi
- Department of Anatomy, Fujita Health University, School of Medicine, 1-98 Denngakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kawaguchi T, Takazawa H, Imai S, Morimoto J, Watanabe T, Kanno M, Igarashi S. Expression of Vicia villosa agglutinin (VVA)-binding glycoprotein in primary breast cancer cells in relation to lymphatic metastasis: is atypical MUC1 bearing Tn antigen a receptor of VVA? Breast Cancer Res Treat 2006; 98:31-43. [PMID: 16752227 DOI: 10.1007/s10549-005-9115-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/01/2005] [Indexed: 10/24/2022]
Abstract
Aberrant carbohydrate expression frequently occurs in breast cancer and may endow cells with metastatic potential. Here we first studied the relationship between expression of Vicia villosa agglutinin (lectin) (VVA)-binding carbohydrates and aggressive breast cancer. We then investigated the molecular characteristics of these glycoproteins and compared them with those of glycoproteins recognized by the mouse anti-Tn monoclonal antibody (MAb) HB-Tn1. Histochemical studies of samples from 322 cases of invasive ductal carcinoma demonstrated that VVA-binding carbohydrate expression correlated with tumor stage, lymphatic invasion, and lymph node metastasis (p=0.0385, p=0.0019, and p=0.0430. respectively). Western blotting analysis of frozen materials from 39 cases, under denaturing and reducing conditions, revealed that the major cancer cell-specific VVA-binding proteins were molecules of about 30, 33, and >200 kDa. Cases expressing the approximately 33 kDa molecule had significant lymphatic invasion more frequently than did cases not expressing this molecule (p=0.0076). Binding of VVA to the approximately 30 and approximately 33 kDa molecules was completely lost by preincubation of VVA with 1 mM Tn antigen (N-acetylgalactosamine alpha1-O-serine). The VVA-binding molecules appeared to react with VU-3C6 anti-MUC1 MAb. Expression of HB-Tn1 in breast cancer cells showed significant correlation with expression of VVA-binding carbohydrate(s) (p<0.0001) but HB-Tn1 reactivity was not clearly related to breast cancer aggressiveness. Because anti-Tn MAbs bound to Tn antigen clusters, we concluded that atypical MUC1 bearing the noncluster form of Tn antigen is implicated in aggressive growth of primary breast cancer cells, particularly in lymphatic metastasis.
Collapse
Affiliation(s)
- Takanori Kawaguchi
- Second Department of Pathology, School of Medicine, Fukushima Medical University, Fukushima, and Department of Pathology, Chiba National Hospital, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Singh T, Wu J, Peumans W, Rougé P, Van Damme E, Alvarez R, Blixt O, Wu A. Carbohydrate specificity of an insecticidal lectin isolated from the leaves of Glechoma hederacea (ground ivy) towards mammalian glycoconjugates. Biochem J 2006; 393:331-41. [PMID: 16156719 PMCID: PMC1383692 DOI: 10.1042/bj20051162] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preliminary studies indicated that the potent insecticidal lectin, Gleheda, from the leaves of Glechoma hederacea (ground ivy) preferentially agglutinates human erythrocytes carrying the Tn (GalNAcalpha1-Ser/Thr) antigen. However, no details have been reported yet with respect to the fine specificity of the lectin. To corroborate the molecular basis of the insecticidal activity and physiological function of Gleheda, it is necessary to identify the recognition factors that are involved in the Gleheda-glycotope interaction. In the present study, the requirement of high-density multivalent carbohydrate structural units for Gleheda binding and a fine-affinity profile were evaluated using ELLSA (enzyme-linked lectinosorbent assay) with our extended glycan/ligand collections, a glycan array and molecular modelling. From the results, we concluded that a high-density of exposed multivalent Tn-containing glycoproteins (natural armadillo and asialo ovine salivary glycoproteins) were the most potent factors for Gleheda binding. They were, on a nanogram basis, 6.5x10(5), 1.5x10(4) and 3.1x10(3) times more active than univalent Gal (galactose), GalNAc (N-acetylgalactosamine) and Tn respectively. Among mono- and oligo-saccharides examined, simple clustered Tn (molecular mass <3000 Da) from ovine salivary glycoprotein was the best, being 37.5 and 1.7x10(3) times better than GalNAc and Gal respectively. GalNAc glycosides were significantly more active than Gal glycosides, indicating that the N-acetamido group at C-2 plays an important role in Gleheda binding. The results of glycan array support the conclusions drawn with respect to the specificity of Gleheda based on the ELLSA assays. These findings combined with the results of the molecular modelling and docking indicate the occurrence of a primary GalNAcalpha1-binding site in the Gleheda monomer. However, the extraordinary binding feature of Gleheda for glycoproteins demonstrates the importance of affinity enhancement by high-density multivalent glycotopes in the ligand-lectin interactions in biological processes.
Collapse
Affiliation(s)
- Tanuja Singh
- *Glyco-immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan, 333, Taiwan
| | - June H. Wu
- †Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan, 333, Taiwan
| | - Willy J. Peumans
- ‡Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Pierre Rougé
- §Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie végétale, Chemin de Borde-Rouge, 31326 Castanet Tolosan, France
| | - Els J. M. Van Damme
- ‡Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Richard A. Alvarez
- ∥Department of Biochemistry and Molecular Biology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, U.S.A
| | - Ola Blixt
- ¶Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Albert M. Wu
- *Glyco-immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan, 333, Taiwan
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Wu AM. Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAcα1→Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea. J Biomed Sci 2005; 12:167-84. [PMID: 15864748 DOI: 10.1007/s11373-004-8180-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The lectin extracted from the seeds of Salvia sclarea (SSL) recognizes the Tn antigen (GalNAc alpha1-->Ser/Thr) expressed in certain human carcinomas. In previous studies, knowledge of the binding properties of SSL was restricted to GalNAcalpha1--> related oligosaccharides and glycopeptides. Thus, the requirements of functional groups in monosaccharide and high-density polyvalent carbohydrate structural units for SSL binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested for interaction, a high density of exposed Tn-containing glycoproteins such as in the armadillo salivary Tn glycoprotein and asialo ovine salivary glycoprotein reacted best with SSL. When the gps were tested for inhibition of SSL binding, which was expressed as 50% nanogram inhibition, the high density polyvalent Tn present in macromolecules was the most potent inhibitor. Among the monosaccharide and carbohydrate structural units studied, which were expressed as nanomole inhibition, GalNAc alpha1-->3GalNAc beta1-->3Gal alpha1-->4Gal beta1-->4Glc (Fp), GalNAc alpha1-->3Gal beta1-->4Glc (A(L)), GalNAc alpha1-->3GalNAc beta1-->Me (F beta), GalNAc alpha1-->3GalNAc alpha1-->Me (F alpha) and GalNAc alpha1--> Ser/Thr (Tn) were the most active ligands, being 2.5-5.0 x 10(3) and 1.25-2.5 times more active than Gal and GalNAc, respectively. From the results, it is suggested that the combining site of SSL is a shallow groove type, recognizing the monosaccharide of GalNAc as the major binding site or Tn up to the Forssman pentasaccharide (Fp). It can be concluded that the three critical factors for SSL binding are the -NH CH(3)CO at carbon-2 in Gal, the configuration of carbon-3 in GalNAc, and the polyvalent Tn (GalNAc alpha1-->Ser/Thr) present in macromolecules. These results should assist in understanding the glyco-recognition factors involved in carbohydrate-lectin interactions in biological processes. The effect of the polyvalent F alpha, F beta and GalNAc beta1-->3Gal alpha1--> (P alpha) glycotopes on binding should be examined. However, this is hampered by the lack of availability of suitable reagents.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kweishan, Taoyuan 333, Taiwan.
| |
Collapse
|
37
|
Medeiros A, Berois N, Balter H, Robles A, Perez-Payá E, Gimenez A, Calvete JJ, Osinaga E. Monoclonal antibodies against the Tn-specific isolectin B4 from Vicia villosa seeds: characterization of the epitope of the blocking antibody VV34. HYBRIDOMA AND HYBRIDOMICS 2004; 23:39-44. [PMID: 15000847 DOI: 10.1089/153685904322772015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vicia villosa isolectin B4 (VVLB4) recognizes the Tn antigen (GalNAc-O-Ser/Thr) exposed in certain human carcinomas. We have produced anti-VVLB4 monoclonal antibodies (MAbs), and their lectin recognition selectivity was assessed by ELISA and Western blot against the purified Gal/GalNAc-specific lectins from Vicia villosa, Salvia sclarea, Helix pomatia, Arachis hypogaea, Glycine max, and Dolichos biflorus. The antibodies were also tested for their ability to block the binding of VVLB4 to the Tn antigen expressed on immobilized asialo ovine submaxillary mucin. Two MAbs, VV34 and VV2, specifically recognized VVLB4 and impaired the binding of the lectin to the Tn antigen by 98% and 21%, respectively. On the other hand, MAbs VV1 and VV22 cross-reacted with other purified lectins. The four antibodies recognized native and periodate-oxidized nonreduced as well as reduced VVLB4 after SDS-PAGE and Western blot, suggesting that they were recognizing continuous polypeptide epitopes. The VV34 antibody recognized two tryptic peptides (7-29 and 96-106) from VVLB4, which are contiguous in the three-dimensional structure of the lectin. The minimum structural determinant of the epitope was mapped to the polypeptide stretch (18)LILQED(23) using a set of overlapping synthetic peptides. This region of the molecule encompasses the C-terminal part of the loop joining strands beta1 and beta2 and the N-terminal part of beta2, and is located about 20-25 A away from the center of the Tn-combining site.
Collapse
Affiliation(s)
- Andrea Medeiros
- Dept. de Bioquímica, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu AM. Polyvalency of Tn (GalNAcα1→Ser/Thr) glycotope as a critical factor forVicia villosaB4and glycoprotein interactions. FEBS Lett 2004; 562:51-8. [PMID: 15044001 DOI: 10.1016/s0014-5793(04)00180-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/28/2004] [Accepted: 01/29/2004] [Indexed: 11/28/2022]
Abstract
Vicia villosa B(4) (VVL-B(4)) is an important lectin for detecting exposed Tn (GalNAcalpha1-Ser/Thr) determinants on cancer cells. In order to elucidate the binding factors involved in VVL-B(4) and glycotope interaction, the binding properties of this lectin were analyzed by enzyme-linked lectinosorbent and inhibition assays. From the results, it is concluded that the most critical factor affecting VVL-B(4) binding is polyvalency at the alpha anomer of Gal with -NH CH(3)CO at carbon-2 (Tn epitope), which enhances the reactivity by 3.3x10(5) times over monovalent Gal. The reactivities of glycotopes can be ranked as follows: high density Tn cluster >>Tn glycopeptides (MW<3.0x10(3) >> monomeric Tn to tri- Tn glycopeptides >>> other GalNAcalpha/beta-related structural units>Gal and Galalpha- or beta-linked ligands, demonstrating the essential role of the polyvalency of Tn glycotopes in the enhancement of the binding.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Kwei-San, Tao-Yuan 333, Taiwan.
| |
Collapse
|
39
|
Babino A, Tello D, Rojas A, Bay S, Osinaga E, Alzari PM. The crystal structure of a plant lectin in complex with the Tn antigen. FEBS Lett 2003; 536:106-10. [PMID: 12586347 DOI: 10.1016/s0014-5793(03)00037-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the tetrameric Vicia villosa isolectin B4 (VVLB4) in complex with a cancer antigen, the Tn glycopeptide (GalNAc-O-Ser), was determined at 2.7 A resolution. The N-acetylgalactoside moiety of the ligand binds to the primary combining site of VVLB4 in a similar way as observed for other Gal/GalNAc-specific plant lectins. The amino acid moiety of the Tn antigen is largely exposed to the solvent and makes few contacts with the protein. The structure of the complex provides a framework to understand the differences in the strength of VVLB4 binding to different sugars and emphasizes the role of a single protein residue, Tyr127, as a structural determinant of Tn-binding specificity.
Collapse
Affiliation(s)
- Alvaro Babino
- Departamento de Bioquimica, Facultad de Medicina, Av. Gral Flores 2125, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
40
|
Oetke C, Brossmer R, Mantey LR, Hinderlich S, Isecke R, Reutter W, Keppler OT, Pawlita M. Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J Biol Chem 2002; 277:6688-95. [PMID: 11751912 DOI: 10.1074/jbc.m109973200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acids are critical components of many glycoconjugates involved in biologically important ligand-receptor interactions. Quantitative and structural variations of sialic acid residues can profoundly affect specific cell-cell, pathogen-cell, or drug-cell interactions, but manipulation of sialic acids in mammalian cells has been technically limited. We describe the finding of a previously unrecognized and efficient uptake and incorporation of sialic acid analogues in mammalian cells. We added 16 synthetic sialic acid analogues carrying distinct C-1, C-5, or C-9 substitutions individually to cell cultures of which 10 were readily taken up and incorporated. Uptake of C-5- and C-9-substituted sialic acids resulted in the structural modification of up to 95% of sialic acids on the cell surface. Functionally, binding of murine sialic acid-binding immunoglobulin-like lectin-2 (Siglec-2, CD22) to cells increased after N-glycolylneuraminic acid treatment, whereas 9-iodo-N-acetylneuraminic acid abolished binding. Furthermore, susceptibility to infection by the B-lymphotropic papovavirus via a sialylated receptor was markedly enhanced following pretreatment of host cells with selected sialic acid analogues including 9-iodo-N-acetylneuraminic acid. This novel experimental strategy allows for an efficient biosynthetic engineering of surface sialylation in living cells. It is versatile, extending the repertoire of modification sites at least to C-9 and enables detailed structure-function studies of sialic acid-dependent ligand-receptor interactions in their native context.
Collapse
Affiliation(s)
- Cornelia Oetke
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Villanueva MA. Elimination of artifacts on native western blots arising from endogenous lectin activity. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2002; 50:141-9. [PMID: 11741703 DOI: 10.1016/s0165-022x(01)00232-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While studying the behavior of profilin from Phaseolus vulgaris seeds under native conditions, a high molecular weight species suggesting a complex of profilin and associated proteins was observed by Western immunoblotting. This putative complex was also observed when enzyme-linked secondary antibodies alone were used, and this apparently resulted from antibody association, through its glycosyl moieties, with the endogenous carbohydrate-binding activity from the seed extracts. This endogenous activity corresponded to that of purified phytohemagglutinin (PHA). In addition, the P. vulgaris lectin activity was very stable and was observed when the extracts were pretreated with varying concentrations of sodium dodecyl sulfate, Triton X-100, urea and beta-mercaptoethanol, or when membrane blots were boiled in water before incubation with antibody. The activity was abolished only if the membrane was boiled in 1% sodium dodecyl sulfate. This finding could also be useful to implement assays for carbohydrate-binding activity from cell or tissue extracts using different visualizable reagents bearing particular glycosyl moieties.
Collapse
Affiliation(s)
- Marco A Villanueva
- Instituto de Biotecnología, U.N.A.M., PO Box 510-3, Cuernavaca, Morelos 62250, Mexico.
| |
Collapse
|
42
|
Sano T, Hiki Y, Kokubo T, Iwase H, Shigematsu H, Kobayashi Y. Enzymatically deglycosylated human IgA1 molecules accumulate and induce inflammatory cell reaction in rat glomeruli. Nephrol Dial Transplant 2002; 17:50-6. [PMID: 11773462 DOI: 10.1093/ndt/17.1.50] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previously, we have been able to isolate IgA1 from IgA nephropathy (IgAN) patients, that could accumulate in rat glomeruli (glomerulophilic IgA1). The 'glomerulophilic IgA1' was determined to be under-O-glycosylated in its hinge region, suggesting that under-O-glycosylation in the IgA1 hinge region plays a role in its glomerular deposition in IgAN. To confirm this, the accumulation of enzymatically under-glycosylated IgA1 in rat kidney was examined. METHODS Human IgA1 was isolated from healthy individuals by Jacalin-affinity chromatography. Desialylated (deS IgA1) or further degalactosylated IgA1 (deS/deGal IgA1) molecules were then prepared using neuraminidase and beta-galactosidase. Two or five mg of IgA1 were injected into the left renal artery of Wistar rats. The rats were sacrificed at various time intervals (3, 9, 24 h) and the perfused part of the renal cortex was removed for immunofluorescence and for light and electron microscopy. RESULTS Distinct amounts of deS IgA1 and deS/deGal IgA1 were observed in rat glomeruli. On the other hand, untreated IgA1 molecules (native IgA1) did not show any obvious accumulation. In rats injected with under-glycosylated IgA1, accumulation of polymorphonuclear cells (PMN) was also observed. CONCLUSIONS These results confirmed that under-glycosylation of IgA1 played an important role in the glomerular accumulation of IgA1, which was followed by infiltration of PMN into glomeruli.
Collapse
Affiliation(s)
- Takashi Sano
- School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara-city, Kanagawa 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Oetke C, Hinderlich S, Brossmer R, Reutter W, Pawlita M, Keppler OT. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4553-61. [PMID: 11502217 DOI: 10.1046/j.1432-1327.2001.02379.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sialic acids are the most abundant terminal carbohydrate moiety on cell surface glycoconjugates in eukaryotic cells and are of functional importance for many biological ligand-receptor interactions. It is a widely accepted view that sialic acids cannot be efficiently taken up from the extracellular space by eukaryotic cells. To test this assumption, we cultivated two recently identified human hematopoetic cell lines which are hyposialylated due to a deficiency in de novo sialic acid biosynthesis in the presence of N-acetylneuraminic acid (NeuAc), the most frequently found sialic acid. Surprisingly, NeuAc medium supplementation rapidly and potently compensated for the endogenous hyposialylation in a concentration-dependent manner, resulting in the presentation of cell surface sialoglycans involved in cell adhesion, virus infection and signal transduction. We provide several lines of experimental evidence that all suggest that NeuAc was neither extracellularly incorporated nor degraded to a less complex sugar before uptake. Importantly, NeuAc induced a marked increase in intracellular CMP-NeuAc levels in both human cell lines and in primary cells regardless of the prior sialylation status of the cells. Studies employing 9-[3H]NeuAc revealed an uptake consistent with the observed incorporation of unlabeled NeuAc. We propose the existence of an efficient uptake mechanism for NeuAc in eukaryotic cells.
Collapse
Affiliation(s)
- C Oetke
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Allen AC, Bailey EM, Barratt J, Buck KS, Feehally J. Analysis of IgA1 O-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J Am Soc Nephrol 1999; 10:1763-71. [PMID: 10446944 DOI: 10.1681/asn.v1081763] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abnormal O-glycosylation of IgA1 may contribute to pathogenic mechanisms in IgA nephropathy (IgAN). Observations of altered lectin binding to IgA1 in IgAN suggest that the O-glycan chains may be undergalactosylated, but precise structural definition of the defect has proved technically difficult, and it remains unconfirmed. This is the first study using fluorophore-assisted carbohydrate electrophoresis (FACE) to analyze IgA1 O-glycans in IgAN and controls. IgA1 was purified from serum, and the intact O-glycans were released by hydrazinolysis at 60 degrees C. After re-N-acetylation, the glycans were fluorophore-labeled and separated by polyacrylamide gel electrophoresis. Sequential exoglycosidase digestions of IgA1 allowed identification of the different O-glycan bands on FACE gels, and their relative frequencies in IgA1 samples were measured by ultraviolet densitometry. Lectin binding of the IgA1 samples was also measured. In some patients with IgAN, FACE analysis demonstrated a significant increase in the percentage of IgA1 O-glycan chains consisting of single N-acetyl galactosamine (GalNAc) units rather than the more usual galactosylated and sialylated forms. This finding was confirmed using both desialylated IgA1 and enzymatically released O-glycans. Good correlation was also found between O-glycan agalactosylation on FACE analysis and IgA1 lectin binding in IgAN, supporting the value of lectins as tools for detection of this abnormality. This is the first study in which all of the predicted O-glycan forms of IgA1 have been analyzed simultaneously, and demonstrates that in IgAN, the IgA1 Oglycan chains are truncated, with increased terminal GalNAc. This abnormality has the potential to significantly affect IgA1 behavior and handling with pathogenic consequences in IgAN.
Collapse
Affiliation(s)
- A C Allen
- Department of Nephrology, Leicester General Hospital, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Gebhard A, Gebert A. Brush cells of the mouse intestine possess a specialized glycocalyx as revealed by quantitative lectin histochemistry. Further evidence for a sensory function. J Histochem Cytochem 1999; 47:799-808. [PMID: 10330456 DOI: 10.1177/002215549904700609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brush cells occur in the epithelium of the small intestine and in various other epithelia of endodermal origin. Ultrastructural and histochemical characteristics suggest that they represent sensory cells. Because the apical membrane of brush cells might be involved in and specialized for (chemo-)receptive functions, we investigated the composition of the glycocalyx and compared it with that of enterocytes. Ultrathin sections of murine small intestine were labeled with a panel of eight lectins. Their binding sites in the brush border and on vesicles of the apical cytoplasm were detected by colloidal gold and quantified using image analysis. The glycocalyx of brush cells contained significantly higher amounts of l-fucose residues than that of enterocytes, as detected by the lectins UEA-I and LTA. In contrast, most of the other lectins bound more avidly to the glycocalyx of enterocytes. The cytoplasmic vesicles closely resembled the apical membrane in their labeling pattern. Quantitation of the brush cells' distribution revealed that the epithelia of the Peyer's patches contained 10-fold higher numbers of brush cells than the small intestinal mucosa distant from lymphoid tissue. We conclude that brush cells possess a glycocalyx with a specialized composition and differ significantly from enterocytes. Because similar peculiarities of the apical membrane have previously been described for sensory cells of the olfactory and gustatory organs, this study provides further evidence in favor of a sensory function of brush cells.
Collapse
Affiliation(s)
- A Gebhard
- Center of Anatomy, Medical School of Hannover, Hannover, Germany
| | | |
Collapse
|
46
|
Keppler OT, Peter ME, Hinderlich S, Moldenhauer G, Stehling P, Schmitz I, Schwartz-Albiez R, Reutter W, Pawlita M. Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 1999; 9:557-69. [PMID: 10336988 DOI: 10.1093/glycob/9.6.557] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sialic acid, as a terminal saccharide residue on cell surface glycoconjugates, plays an important role in a variety of biological processes. In this study, we investigated subclones of the human B lymphoma cell line BJA-B for differences in the glycosylation of cell surface glycoconjugates, and studied the functional implications of such differences. With respect to the expression level of most of the tested B cell-associated antigens, as well as the presence of penultimate saccharide moieties on oligosaccharide chains, subclones were phenotypically indistinguishable. Marked differences among subclones, however, were found in the overall level of glycoconjugate sialylation, involving both alpha-2,6 and alpha-2,3-linked sialic acid residues. Accordingly, subclones were classified as highly- (group I) or hyposialylated (group II). The function of two sialic acid-dependent receptor-mediated processes is correlated with the sialylation status of BJA-B subclones. Susceptibility to and binding of the B lymphotropic papovavirus (LPV) was dependent on a high sialylation status of host cells, suggesting that differential sialylation in BJA-B cells can modulate LPV infection via its alpha-2,6-sialylated glycoprotein receptor. CD95-mediated apoptosis, induced by either the human CD95 ligand or a cytotoxic anti-CD95 monoclonal antibody, was drastically enhanced in hyposialylated group II cells. An increase in endogenous sialylation may be one antiapoptotic mechanism that converts tumor cells to a more malignant phenotype. To our knowledge, this is the first report demonstrating that differential sialylation in a clonal cell line may regulate the function of virus and signal-transducing receptors.
Collapse
Affiliation(s)
- O T Keppler
- Angewandte Tumorvirologie and Tumorimmunologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takeya A, Hosomi O, Kogure T. Vicia villosa B4 lectin inhibits nucleotide pyrophosphatase activity toward UDP-GalNAc specifically. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:215-23. [PMID: 9813334 DOI: 10.1016/s0304-4165(98)00074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant seed lectins play a defense role against plant-eating animals. Here, GalNAc-specific Vicia villosa B4 lectin was found to inhibit hydrolysis of UDP-GalNAc by animal nucleotide pyrophosphatases, which are suggested to regulate local levels of nucleotide sugars in cells. Inhibition was marked at low concentrations of UDP-GalNAc, and was reversed largely by the addition of GalNAc to the reaction mixture. In contrast, lectin inhibited enzymatic hydrolysis of other nucleotide sugars, such as UDP-Gal and UDP-GlcNAc, only to a small extent, and GalNAc did not affect such an inhibition. The binding constant of the lectin for UDP-GalNAc was as high as 2.8 x 10(5) M-1 at 4 degrees C, whereas that for GalNAcalpha-1-phosphate was 1.3 x 10(5) M-1. These findings indicate that lectin inhibition of pyrophosphatase activity toward low concentrations of UDP-GalNAc arises mainly from competition between lectin and enzyme molecules for UDP-GalNAc. This type of inhibition was also observed to a lesser extent with GalNAc-specific Wistaria floribunda lectin, but not apparently with GalNAc-specific soybean or Dolichos biflorus lectin. Thus, V. villosa B4 lectin shows unique binding specificity for UDP-GalNAc and has the capacity to modulate UDP-GalNAc metabolism in animal cells.
Collapse
Affiliation(s)
- A Takeya
- Department of Legal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan.
| | | | | |
Collapse
|
48
|
Pérez G. Isolation and characterization of a novel lectin from Dioclea lehmanni (Fabaceae) seeds. Int J Biochem Cell Biol 1998; 30:843-53. [PMID: 9722989 DOI: 10.1016/s1357-2725(98)00045-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dioclea lehmanni seeds are known to contain two lectins [G. Pérez, M. Hernández, E. Mora, Isolation and characterization of a lectin from the seeds of Dioclea lehmanni, Phytochemistry 29 (1990) 1745-1749]. Taking advantage of the strong bond shown by one of them (Dioclea lehmanni lectin I) to Sephacryl S-200, it has been purified and characterized as a Glc/Man lectin very similar to Concanavalin A. In order to compare the properties of the two lectins, we purified the second one (Dioclea lehmanni lectin II) to homogeneity by gel filtration and hydrophobic chromatography. Dioclea lehmanni lectin II is a dimeric protein (58.4 kDa) with identical subunits with M(r) = 29,000. Its molecular properties, carbohydrate specificity, human and animal erythroagglutination pattern, amino acid composition and N-terminal sequence (27 residues) were determined. These features clearly distinguish lectin II from lectin I; therefore a second novel lectin is present in the seeds of Dioclea lehmanni.
Collapse
Affiliation(s)
- G Pérez
- Department of Chemistry, Universidad Nacional, Bogotá, Colombia.
| |
Collapse
|
49
|
Osinaga E, Tello D, Batthyany C, Bianchet M, Tavares G, Durán R, Cerveñansky C, Camoin L, Roseto A, Alzari PM. Amino acid sequence and three-dimensional structure of the Tn-specific isolectin B4 from Vicia villosa. FEBS Lett 1997; 412:190-6. [PMID: 9257718 DOI: 10.1016/s0014-5793(97)00677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The partial amino acid sequence of the tetrameric isolectin B4 from Vicia villosa seeds has been determined by peptide analysis, and its three-dimensional structure solved by molecular replacement techniques and refined at 2.9 A resolution to a crystallographic R-factor of 21%. Each subunit displays the thirteen-stranded beta-barrel topology characteristic of legume lectins. The amino acid residues involved in metal- and sugar-binding are similar to those of other GalNAc-specific lectins, indicating that residues outside the carbohydrate-binding pocket modulate the affinity for the Tn glycopeptide. Isolectin B4 displays an unusual quaternary structure, probably due to protein glycosylation.
Collapse
Affiliation(s)
- E Osinaga
- Dept de Bioquímica, Facultad de Medicina, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vinter-Jensen L, Smerup M, Jørgensen PE, Juhl CO, Orntoft T, Poulsen SS, Nexø E. Chronic treatment with epidermal growth factor stimulates growth of the urinary tract in the rat. UROLOGICAL RESEARCH 1996; 24:15-21. [PMID: 8966836 DOI: 10.1007/bf00296727] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Twenty-four male Wistar rats, 8 weeks old, were allocated into three groups and treated with human recombinant epidermal growth factor (EGF) administered subcutaneously in doses of 0, 30, and 150 micrograms/kg per day for 4 weeks. Blood sampling was done every 2nd week and urine sampling was done for 2 consecutive days every week. The most striking finding was that the ureters were dose dependently enlarged, due to growth of all layers of the ureteric wall. The urothelium of the bladder showed considerable hyperplasticity with a widening of the basal proliferative compartment and a normal differentiation pattern as observed by the expression of carbohydrate epitopes, characterized with lectinohistochemistry. Blood examination revealed a decrease in blood haemoglobin concentration and a slight increase in serum creatinine concentration in the high-dose group. There were no effects of EGF on the urinary excretion of electrolytes, proteins, and endogenous EGF.
Collapse
Affiliation(s)
- L Vinter-Jensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | | | | | | | | | | |
Collapse
|