1
|
Wu J, Jonniya NA, Hirakis SP, Olivieri C, Veglia G, Kornev AP, Taylor SS. Protein Kinase Structure and Dynamics: Role of the αC-β4 Loop. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555822. [PMID: 37693538 PMCID: PMC10491255 DOI: 10.1101/2023.08.31.555822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, Local Spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Nisha A. Jonniya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
- Department of Chemistry, University of Minnesota, MN 55455, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037-0654, USA
| |
Collapse
|
2
|
Taylor SS, Herberg FW, Veglia G, Wu J. Edmond Fischer's kinase legacy: History of the protein kinase inhibitor and protein kinase A. IUBMB Life 2023; 75:311-323. [PMID: 36855225 PMCID: PMC10050139 DOI: 10.1002/iub.2714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Although Fischer's extraordinary career came to focus mostly on the protein phosphatases, after his co-discovery of Phosphorylase Kinase with Ed Krebs he was clearly intrigued not only by cAMP-dependent protein kinase (PKA), but also by the heat-stable, high-affinity protein kinase inhibitor (PKI). PKI is an intrinsically disordered protein that contains at its N-terminus a pseudo-substrate motif that binds synergistically and with high-affinity to the PKA catalytic (C) subunit. The sequencing and characterization of this inhibitor peptide (IP20) were validated by the structure of the PKA C-subunit solved first as a binary complex with IP20 and then as a ternary complex with ATP and two magnesium ions. A second motif, nuclear export signal (NES), was later discovered in PKI. Both motifs correspond to amphipathic helices that convey high-affinity binding. The dynamic features of full-length PKI, recently captured by NMR, confirmed that the IP20 motif becomes dynamically and sequentially ordered only in the presence of the C-subunit. The type I PKA regulatory (R) subunits also contain a pseudo-substrate ATPMg2-dependent high-affinity inhibitor sequence. PKI and PKA, especially the Cβ subunit, are highly expressed in the brain, and PKI expression is also cell cycle-dependent. In addition, PKI is now linked to several cancers. The full biological importance of PKI and PKA signaling in the brain, and their importance in cancer thus remains to be elucidated.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, California, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Wych DC, Aoto PC, Vu L, Wolff AM, Mobley DL, Fraser JS, Taylor SS, Wall ME. Molecular-dynamics simulation methods for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:50-65. [PMID: 36601807 PMCID: PMC9815100 DOI: 10.1107/s2059798322011871] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
It is investigated whether molecular-dynamics (MD) simulations can be used to enhance macromolecular crystallography (MX) studies. Historically, protein crystal structures have been described using a single set of atomic coordinates. Because conformational variation is important for protein function, researchers now often build models that contain multiple structures. Methods for building such models can fail, however, in regions where the crystallographic density is difficult to interpret, for example at the protein-solvent interface. To address this limitation, a set of MD-MX methods that combine MD simulations of protein crystals with conventional modeling and refinement tools have been developed. In an application to a cyclic adenosine monophosphate-dependent protein kinase at room temperature, the procedure improved the interpretation of ambiguous density, yielding an alternative water model and a revised protein model including multiple conformations. The revised model provides mechanistic insights into the catalytic and regulatory interactions of the enzyme. The same methods may be used in other MX studies to seek mechanistic insights.
Collapse
Affiliation(s)
- David C. Wych
- Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Phillip C. Aoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lily Vu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander M. Wolff
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael E. Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
4
|
Dyla M, Kjaergaard M. Intrinsically disordered linkers control tethered kinases via effective concentration. Proc Natl Acad Sci U S A 2020; 117:21413-21419. [PMID: 32817491 PMCID: PMC7474599 DOI: 10.1073/pnas.2006382117] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kinase specificity is crucial to the fidelity of signaling pathways, yet many pathways use the same kinases to achieve widely different effects. Specificity arises in part from the enzymatic domain but also from the physical tethering of kinases to their substrates. Such tethering can occur via protein interaction domains in the kinase or via anchoring and scaffolding proteins and can drastically increase the kinetics of phosphorylation. However, we do not know how such intracomplex reactions depend on the link between enzyme and substrate. Here we show that the kinetics of tethered kinases follow a Michaelis-Menten-like dependence on effective concentration. We find that phosphorylation kinetics scale with the length of the intrinsically disordered linkers that join the enzyme and substrate but that the scaling differs between substrates. Steady-state kinetics can only partially predict rates of tethered reactions as product release may obscure the rate of phosphotransfer. Our results suggest that changes in signaling complex architecture not only enhance the rates of phosphorylation reactions but may also alter the relative substrate usage. This suggests a mechanism for how scaffolding proteins can allosterically modify the output from a signaling pathway.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL (European Molecular Biology Laboratory) Partnership for Molecular Medicine, DK-8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark;
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL (European Molecular Biology Laboratory) Partnership for Molecular Medicine, DK-8000 Aarhus, Denmark
- Center for Proteins in Memory, Danish National Research Foundation, DK-8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
5
|
Taylor SS, Meharena HS, Kornev AP. Evolution of a dynamic molecular switch. IUBMB Life 2019; 71:672-684. [PMID: 31059206 DOI: 10.1002/iub.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein kinases (EPKs) regulate almost every biological process and have evolved to be dynamic molecular switches; this is in stark contrast to metabolic enzymes, which have evolved to be efficient catalysts. In particular, the highly conserved active site of every EPK is dynamically and transiently assembled by a process that is highly regulated and unique for every protein kinase. We review here the essential features of the kinase core, focusing on the conserved motifs and residues that are embedded in every kinase. We explore, in particular, how the hydrophobic core architecture specifically drives the dynamic assembly of the regulatory spine and consequently the organization of the active site where the γ-phosphate of ATP is positioned by a convergence of conserved motifs including a conserved regulatory triad for transfer to a protein substrate. In conclusion, we show how the flanking N- and C-terminal tails often classified as intrinsically disordered regions, as well as flanking domains, contribute in a highly kinase-specific manner to the regulation of the conserved kinase core. Understanding this process as well as how one kinase activates another remains as two of the big challenges for the kinase signaling community. © 2019 IUBMB Life, 71(6):672-684, 2019.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Manschwetus JT, Bendzunas GN, Limaye AJ, Knape MJ, Herberg FW, Kennedy EJ. A Stapled Peptide Mimic of the Pseudosubstrate Inhibitor PKI Inhibits Protein Kinase A. Molecules 2019; 24:molecules24081567. [PMID: 31009996 PMCID: PMC6514771 DOI: 10.3390/molecules24081567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022] Open
Abstract
Kinases regulate multiple and diverse signaling pathways and misregulation is implicated in a multitude of diseases. Although significant efforts have been put forth to develop kinase-specific inhibitors, specificity remains a challenge. As an alternative to catalytic inhibition, allosteric inhibitors can target areas on the surface of an enzyme, thereby providing additional target diversity. Using cAMP-dependent protein kinase A (PKA) as a model system, we sought to develop a hydrocarbon-stapled peptide targeting the pseudosubstrate domain of the kinase. A library of peptides was designed from a Protein Kinase Inhibitor (PKI), a naturally encoded protein that serves as a pseudosubstrate inhibitor for PKA. The binding properties of these peptide analogs were characterized by fluorescence polarization and surface plasmon resonance, and two compounds were identified with KD values in the 500-600 pM range. In kinase activity assays, both compounds demonstrated inhibition with 25-35 nM IC50 values. They were also found to permeate cells and localize within the cytoplasm and inhibited PKA activity within the cellular environment. To the best of our knowledge, these stapled peptide inhibitors represent some of the highest affinity binders reported to date for hydrocarbon stapled peptides.
Collapse
Affiliation(s)
- Jascha T Manschwetus
- Department of Biochemistry, Institute for Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - George N Bendzunas
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 240 W. Green St, Athens, GA 30602, USA.
| | - Ameya J Limaye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 240 W. Green St, Athens, GA 30602, USA.
| | - Matthias J Knape
- Department of Biochemistry, Institute for Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Friedrich W Herberg
- Department of Biochemistry, Institute for Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 240 W. Green St, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Kim J, Li G, Walters MA, Taylor SS, Veglia G. Uncoupling Catalytic and Binding Functions in the Cyclic AMP-Dependent Protein Kinase A. Structure 2016; 24:353-63. [PMID: 26833386 DOI: 10.1016/j.str.2015.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023]
Abstract
The canonical function of kinases is to transfer a phosphoryl group to substrates, initiating a signaling cascade; while their non-canonical role is to bind other kinases or substrates, acting as scaffolds, competitors, and signal integrators. Here, we show how to uncouple kinases' dual function by tuning the binding cooperativity between nucleotide (or inhibitors) and substrate allosterically. We demonstrate this new concept for the C subunit of protein kinase A (PKA-C). Using thermocalorimetry and nuclear magnetic resonance, we found a linear correlation between the degree of cooperativity and the population of the closed state of PKA-C. The non-hydrolyzable ATP analog (ATPγC) does not follow this correlation, suggesting that changing the chemical groups around the phosphoester bond can uncouple kinases' dual function. Remarkably, this uncoupling was also found for two ATP-competitive inhibitors, H89 and balanol. Since the mechanism for allosteric cooperativity is not conserved in different kinases, these results may suggest new approaches for designing selective kinase inhibitors.
Collapse
Affiliation(s)
- Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Geoffrey Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Gerlits O, Das A, Keshwani MM, Taylor S, Waltman MJ, Langan P, Heller WT, Kovalevsky A. Metal-free cAMP-dependent protein kinase can catalyze phosphoryl transfer. Biochemistry 2014; 53:3179-86. [PMID: 24786636 PMCID: PMC4030786 DOI: 10.1021/bi5000965] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray structures of several ternary product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with no bound metal ions and with Na(+) or K(+) coordinated at two metal-binding sites. The metal-free PKAc and the enzyme with alkali metals were able to facilitate the phosphoryl transfer reaction. In all studied complexes, the ATP and the substrate peptide (SP20) were modified into the products ADP and the phosphorylated peptide. The products of the phosphotransfer reaction were also found when ATP-γS, a nonhydrolyzable ATP analogue, reacted with SP20 in the PKAc active site containing no metals. Single turnover enzyme kinetics measurements utilizing (32)P-labeled ATP confirmed the phosphotransferase activity of the enzyme in the absence of metal ions and in the presence of alkali metals. In addition, the structure of the apo-PKAc binary complex with SP20 suggests that the sequence of binding events may become ordered in a metal-free environment, with SP20 binding first to prime the enzyme for subsequent ATP binding. Comparison of these structures reveals conformational and hydrogen bonding changes that might be important for the mechanism of catalysis.
Collapse
Affiliation(s)
- Oksana Gerlits
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1271-8. [PMID: 23535202 DOI: 10.1016/j.bbapap.2013.03.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
The first protein kinase structure, solved in 1991, revealed the fold that is shared by all members of the eukaryotic protein kinase superfamily and showed how the conserved sequence motifs cluster mostly around the active site. This structure of the PKA catalytic (C) subunit showed also how a single phosphate integrated the entire molecule. Since then the EPKs have become a major drug target, second only to the G-protein coupled receptors. Although PKA provided a mechanistic understanding of catalysis that continues to serve as a prototype for the family, by comparing many active and inactive kinases we subsequently discovered a hydrophobic spine architecture that is a characteristic feature of all active kinases. The ways in which the regulatory spine is dynamically assembled is the defining feature of each protein kinase. Protein kinases have thus evolved to be molecular switches, like the G-proteins, and unlike metabolic enzymes which have evolved to be efficient catalysis. PKA also shows how the dynamic tails surround the core and serve as essential regulatory elements. The phosphorylation sites in PKA, introduced both co- and post-translationally, are very stable. The resulting C-subunit is then packaged as an inhibited holoenzyme with cAMP-binding regulatory (R) subunits so that PKA activity is regulated exclusively by cAMP, not by the dynamic turnover of an activation loop phosphate. We could not understand activation and inhibition without seeing structures of R:C complexes; however, to appreciate the structural uniqueness of each R2:C2 holoenzyme required solving structures of tetrameric holoenzymes. It is these tetrameric holoenzymes that are localized to discrete sites in the cell, typically by A Kinase Anchoring Proteins where they create discrete foci for PKA signaling. Understanding these dynamic macromolecular complexes is the challenge that we now face. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0654, USA.
| | | | | | | | | |
Collapse
|
10
|
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc Natl Acad Sci U S A 2011; 108:6969-74. [PMID: 21471451 DOI: 10.1073/pnas.1102701108] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these conformational states are minimal and allosteric dynamics encode the motions from one state to the next. NMR and molecular dynamics simulations define the energy landscape of PKA-C, with the substrate allowing the enzyme to adopt a broad distribution of conformations (dynamically committed state) and the inhibitors (high magnesium and pseudosubstrate) locking it into discrete minima (dynamically quenched state), thereby reducing the motions that allow turnover. These results unveil the role of internal dynamics in both kinase function and regulation.
Collapse
|
11
|
Evidence for the phosphorylation of serine259 of histone deacetylase 5 by protein kinase Cδ. Arch Biochem Biophys 2011; 506:173-80. [DOI: 10.1016/j.abb.2010.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/16/2010] [Accepted: 12/06/2010] [Indexed: 11/23/2022]
|
12
|
Huynh QK, Pagratis N. Kinetic mechanisms of Ca++/calmodulin dependent protein kinases. Arch Biochem Biophys 2010; 506:130-6. [PMID: 21081101 DOI: 10.1016/j.abb.2010.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
Abstract
Many of the cellular responses to Ca++ signaling are modulated by a family of multifunctional Ca++/calmodulin dependent protein kinases (CaMKs): CaMK I, CaMK II and CaMK IV. In order to further understand the role of CaMKs, we investigated the kinetic mechanism of CaMK II isozymes in comparison with those of CaMK I and CaMK IV by analyzing their steady state kinetics using phospholamban as a phosphoacceptor. The results indicated that (a) the CaMK family's reaction mechanisms were of the sequential type in which all substrates must bind to enzyme before any product is released; (b) CaMK I and CaMK IV exhibited random sequential mechanism where either phospholamban or ATP can bind to the free enzyme; (c) the data of product inhibition for CaMK IIs best fit with an Ordered Bi Bi mechanism in which phospholamban is the first substrate to bind and ADP is the last product to be released; and (d) the constant α (ratio of apparent dissociation constants for binding peptide in the presence and absence of the second ligand) of all isozymes for ATP and peptide was higher than 1 indicating that the binding of phospholamban to CaMK decreased the enzyme's affinity toward ATP.
Collapse
Affiliation(s)
- Q Khai Huynh
- Research and Development, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA.
| | | |
Collapse
|
13
|
Khavrutskii IV, Grant B, Taylor SS, McCammon JA. A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A. Biochemistry 2009; 48:11532-45. [PMID: 19886670 PMCID: PMC2789581 DOI: 10.1021/bi901475g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Protein kinases are key regulators of diverse signaling networks
critical for growth and development. Protein kinase A (PKA) is an
important kinase prototype that phosphorylates protein targets at
Ser and Thr residues by converting ATP to ADP. Mg2+ ions
play a crucial role in regulating phosphoryl transfer and can limit
overall enzyme turnover by affecting ADP release. However, the mechanism
by which Mg2+ participates in ADP release is poorly understood.
Here we use a novel transition path ensemble technique, the harmonic
Fourier beads method, to explore the atomic and energetic details
of the Mg2+-dependent ADP binding and release. Our studies
demonstrate that adenine-driven ADP binding to PKA creates three ion-binding
sites at the ADP/PKA interface that are absent otherwise. Two of these
sites bind the previously characterized Mg2+ ions, whereas
the third site binds a monovalent cation with high affinity. This
third site can bind the P-3 residue of substrate proteins and may
serve as a reporter of the active site occupation. Binding of Mg2+ ions restricts mobility of the Gly-rich loop that closes
over the active site. We find that simultaneous release of ADP with
Mg2+ ions from the active site is unfeasible. Thus, we
conclude that Mg2+ ions act as a linchpin and that at least
one ion must be removed prior to pyrophosphate-driven ADP release.
The results of the present study enhance understanding of Mg2+-dependent association of nucleotides with protein kinases.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Howard Hughes Medical Institute, University of California San Diego,La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
14
|
Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase A. Anal Biochem 2009; 387:150-61. [DOI: 10.1016/j.ab.2009.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/22/2022]
|
15
|
Leterrier JF, Kurachi M, Tashiro T, Janmey PA. MAP2-mediated in vitro interactions of brain microtubules and their modulation by cAMP. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:381-93. [PMID: 19009287 DOI: 10.1007/s00249-008-0381-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/03/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Microtubule-associated proteins (MAPs) are involved in microtubule (MT) bundling and in crossbridges between MTs and other organelles. Previous studies have assigned the MT bundling function of MAPs to their MT-binding domain and its modulation by the projection domain. In the present work, we analyse the viscoelastic properties of MT suspensions in the presence or the absence of cAMP. The experimental data reveal the occurrence of interactions between MT polymers involving MAP2 and modulated by cAMP. Two distinct mechanisms of action of cAMP are identified, which involve on one hand the phosphorylation of MT proteins by the cAMP-dependent protein kinase A (PKA) bound to the end of the N-terminal projection of MAP2, and on the other hand the binding of cAMP to the RII subunit of the PKA affecting interactions between MTs in a phosphorylation-independent manner. These findings imply a role for the complex of PKA with the projection domain of MAP2 in MT-MT interactions and suggest that cAMP may influence directly the density and bundling of MT arrays in dendrites of neurons.
Collapse
Affiliation(s)
- J F Leterrier
- Department of Neurosciences, UMR 6187 CNRS, P.B.S., Poitiers University, 40 Avenue du, Recteur Pineau, 86022, Poitiers Cedex, France.
| | | | | | | |
Collapse
|
16
|
Effect of metal ions on high-affinity binding of pseudosubstrate inhibitors to PKA. Biochem J 2008; 413:93-101. [PMID: 18373497 DOI: 10.1042/bj20071665] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformational control of protein kinases is an important way of modulating catalytic activity. Crystal structures of the C (catalytic) subunit of PKA (protein kinase A) in complex with physiological inhibitors and/or nucleotides suggest a highly dynamic process switching between open and more closed conformations. To investigate the underlying molecular mechanisms, SPR (surface plasmon resonance) was used for detailed binding analyses of two physiological PKA inhibitors, PKI (heat-stable protein kinase inhibitor) and a truncated form of the R (regulatory) subunit (RIalpha 92-260), in the presence of various concentrations of metals and nucleotides. Interestingly, it could be demonstrated that high-affinity binding of each pseudosubstrate inhibitor was dependent only on the concentration of divalent metal ions. At low micromolar concentrations of Mg2+ with PKI, transient interaction kinetics with fast on- and off-rates were observed, whereas at high Mg2+ concentrations the off-rate was slowed down by a factor of 200. This effect could be attributed to the second, low-affinity metal-binding site in the C subunit. In contrast, when investigating the interaction of RIalpha 92-260 with the C subunit under the same conditions, it was shown that the association rate rather than the dissociation rate was influenced by the presence of high concentrations of Mg2+. A model is presented, where the high-affinity interaction of the C subunit with pseudosubstrate inhibitors (RIalpha and PKI) is dependent on the closed, catalytically inactive conformation induced by the binding of a nucleotide complex where both of the metal-binding sites are occupied.
Collapse
|
17
|
Ember B, Kamenecka T, LoGrasso P. Kinetic mechanism and inhibitor characterization for c-jun-N-terminal kinase 3alpha1. Biochemistry 2008; 47:3076-84. [PMID: 18269248 DOI: 10.1021/bi701852z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
c-jun-N-Terminal kinase 3alpha1 (JNK3alpha1) is a mitogen-activated protein (MAP) kinase family member expressed primarily in the brain that phosphorylates protein transcription factors including c-jun and activating transcription factor 2 (ATF2) upon activation by a variety of stress-based stimuli. In this study, the kinetic mechanism for JNK3alpha1 was determined via initial velocity patterns in the presence and absence of both ATP and ATF2 competitive inhibitors. Peptide inhibitors from both ATF2 (peptide 1) and JNK-interacting protein 1 (JIP-1) (peptide 3), derived from the homologous delta-domain JNK docking sequence, inhibited JNK3alpha1 activity in a competitive fashion versus ATF2 while being pure noncompetitive toward ATP. In contrast, peptides derived from the phosphoacceptor activation domain on ATF2 (peptides 4 and 5) were recognized neither as substrates nor as inhibitors of JNK3alpha1. AMP-PCP and compound 6, a small molecule analinopyrimidine, exhibited pure noncompetitive inhibition versus ATF2 and competitive inhibition versus ATP. Peptide inhibitors based on the delta-domain sites of JIP ( 3) and ATF2 ( 1) were not recognized by p38, also of the MAPK family, which may give insight into finding more selective inhibitors for the JNK family of kinases. Collectively these data showed that JNK3alpha1 proceeded by a random sequential kinetic mechanism and that the ATP and ATF2 substrate sites were non-interacting. Moreover, these results established the 11-mer JIP peptide ( 3) as a potent ( K i = 25 +/- 6 nM) competitive inhibitor versus ATF2 in JNK3alpha1.
Collapse
Affiliation(s)
- Brian Ember
- Department of Molecular Therapeutics and Drug Discovery, The Scripps Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, Florida 33458, USA
| | | | | |
Collapse
|
18
|
Wu J, Vajjhala S, O'Connor S. A microPLC-based approach for determining kinase-substrate specificity. Assay Drug Dev Technol 2007; 5:559-66. [PMID: 17767424 DOI: 10.1089/adt.2007.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorylation is central to signal transduction in living organisms. The specificity of phosphorylation ensures signaling fidelity. Understanding substrate specificity is essential for novel assay development in drug discovery. In this study, we have developed an innovative approach to study protein kinase and its substrate specificity. Using 24 micro parallel liquid chromatography, we studied the reaction kinetics for two different peptide substrates commonly associated with protein kinase A (PKA): Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Glu) and CREBtide (Lys-Arg-Arg-Glu-Ile-Leu-Ser-Arg-Arg-Pro-Ser-Tyr-Arg). The phosphorylation of each substrate was monitored in real time, and the kinetic parameters (V(max), K(m), k(cat), and k(cat) K(m)) were determined for a variety of initial conditions. The results from several kinetic experiments indicated that Kemptide had higher V(max) and k(cat) values compared to CREBtide under the same assay conditions. However, both substrates had a similar k cat)/K(m) value, suggesting that both substrates have similar specificity constants for PKA. We further analyzed the reaction kinetics of ATP for both PKA/substrate complexes. Interestingly, we found that there was a fivefold difference in the specificity constants for ATP affinity to the two complexes, suggesting that even though the sequence differences between the two substrates do not affect their independent interactions with PKA, the differences do have a secondary effect on each enzyme's interaction with ATP and significantly alter the ATP consumption and thus phosphorylation. This novel approach has a broad application for studying enzyme functions and enzyme/substrate specificity.
Collapse
Affiliation(s)
- Jun Wu
- Nanostream Inc., Pasadena, CA 91107, USA.
| | | | | |
Collapse
|
19
|
Abstract
H89 is marketed as a selective and potent inhibitor of protein kinase A (PKA). Since its discovery, it has been used extensively for evaluation of the role of PKA in the heart, osteoblasts, hepatocytes, smooth muscle cells, neuronal tissue, epithelial cells, etc. Despite the frequent use of H89, its mode of specific inhibition of PKA is still not completely understood. It has also been shown that H89 inhibits at least 8 other kinases, while having a relatively large number of PKA-independent effects which may seriously compromise interpretation of data. Thus, while recognizing its kinase inhibiting properties, it is advised that H89 should not be used as the single source of evidence of PKA involvement. H-89 should be used in conjunction with other PKA inhibitors, such as Rp-cAMPS or PKA analogs.
Collapse
Affiliation(s)
- A Lochner
- Dept. Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | | |
Collapse
|
20
|
Viht K, Schweinsberg S, Lust M, Vaasa A, Raidaru G, Lavogina D, Uri A, Herberg FW. Surface-plasmon-resonance-based biosensor with immobilized bisubstrate analog inhibitor for the determination of affinities of ATP- and protein-competitive ligands of cAMP-dependent protein kinase. Anal Biochem 2006; 362:268-77. [PMID: 17274940 DOI: 10.1016/j.ab.2006.12.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/19/2006] [Accepted: 12/22/2006] [Indexed: 11/23/2022]
Abstract
Interactions between adenosine-oligoarginine conjugates (ARC), bisubstrate analog inhibitors of protein kinases, and catalytic subunits of cAMP-dependent protein kinase (cAPK Calpha) were characterized with surface-plasmon-resonance-based biosensors. ARC-704 bound to the immobilized kinase with subnanomolar affinity. The immobilization of ARC-704 to the chip surface via streptavidin-biotin complex yielded a high-affinity surface (K(D)=16nM). The bisubstrate character of ARC-704 was demonstrated with various ligands targeted to ATP-binding pocket (ATP and inhibitors H89 and H1152P) and protein-substrate-binding domain of Calpha (RIIalpha and GST-PKIalpha) in competition assays. The experiments performed on surfaces with different immobilization levels of ARC-704 produced similar results. The closeness of the obtained affinities of the tested compounds to the inhibitory potencies and affinities of the compounds measured with other methods demonstrates the applicability of the chip with the immobilized biligand inhibitor for the characterization of both ATP- and substrate protein-competitive ligands of basophilic protein kinases.
Collapse
Affiliation(s)
- Kaido Viht
- Institute of Organic and Bioorganic Chemistry, University of Tartu, 51014 Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cheley S, Xie H, Bayley H. A Genetically Encoded Pore for the Stochastic Detection of a Protein Kinase. Chembiochem 2006; 7:1923-7. [PMID: 17068836 DOI: 10.1002/cbic.200600274] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stochastic sensing is an emerging approach for the detection of a wide variety of analytes at the level of individual molecules. Detection is accomplished by observing the modulation of the current that flows through a single protein pore that has been engineered to bind an analyte of interest. Previously, protein analytes have been detected by using pores to which ligands have been appended at specific sites by targeted chemical modification. Here, we report the first genetically encoded stochastic sensor element for detecting a protein. A protein kinase inhibitor peptide sequence was incorporated into the alpha-hemolysin polypeptide, which was used to form a heteroheptameric pore containing a single copy of the inhibitor sequence. With this pore, the successful detection of the catalytic subunit of protein kinase A was demonstrated. This development should greatly facilitate the detection of active kinase subunits by stochastic sensing and the rapid screening of kinase inhibitors by an approach that yields kinetic information.
Collapse
Affiliation(s)
- Stephen Cheley
- Department of Molecular and Cellular Medicine, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
22
|
Paulucci-Holthauzen AA, O'Connor KL. Use of pseudosubstrate affinity to measure active protein kinase A. Anal Biochem 2006; 355:175-82. [PMID: 16842735 DOI: 10.1016/j.ab.2006.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Traditional cAMP-dependent protein kinase (also known as protein kinase A [PKA]) assays, which are based on substrate phosphorylation, often have high background activity from other kinases, thereby limiting sensitivity and making it difficult to detect low levels of active PKA in cell lysates. Therefore, a better technique that measures active PKA in crude cell lysates undoubtedly is necessary. We developed an efficient and sensitive assay to compare active PKA levels based on binding of the active PKA catalytic subunit to its pseudosubstrate domain inhibitor (PKI) fused with glutathione S-transferase (GST-PKI). This pseudosubstrate affinity assay can detect variations in the active PKA levels in the presence of common inducers of PKA activity such as forskolin and prostaglandins. It has resolution to detect a concentration-dependent curve of active PKA in a linear range, and it also has sensitivity to detect up to 2.5 ng of active enzyme. An observed change in the binding affinity between PKA and PKI in the presence of the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89) shows that this assay can be successfully used to measure how active PKA is affected by specific inhibitors. We conclude that this method is a simple, inexpensive, and nonhazardous method to compare active PKA levels with high sensitivity and specificity with negligible background.
Collapse
Affiliation(s)
- Adriana A Paulucci-Holthauzen
- Department of Surgery and Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
23
|
Nesterova M, Johnson N, Cheadle C, Cho-Chung YS. Autoantibody biomarker opens a new gateway for cancer diagnosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:398-403. [PMID: 16483750 DOI: 10.1016/j.bbadis.2005.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 11/26/2022]
Abstract
The list of cancer markers of current interest has grown considerably, but none of the markers used in clinical work is a true tumor marker. These cancer biomarkers are based on the determination of tumor antigens. Here, we report a single method of autoantibody enzyme immunoassay (EIA) screens for a spectrum of serum tumor markers. A comparison of the autoantibody-based EIA to conventional antigen EIA kits, using receiver operating characteristic (ROC) plots, showed that the autoantibody EIA can significantly enhance the sensitivity and specificity of tumor markers. The detection of serum autoantibodies for a spectrum of serum tumor markers, as demonstrated here, suggests that most, if not all, serum cancer biomarkers produce autoantibodies. A unique autoantibody biomarker screening method, as presented here, might therefore facilitate achieving the accurate and early diagnosis of cancer.
Collapse
Affiliation(s)
- M Nesterova
- Cellular Biochemistry Section, Basic Research Laboratory, CCR, National Cancer Institute, Bethesda, MD 20892-1750, USA
| | | | | | | |
Collapse
|
24
|
Huynh QK, McKinsey TA. Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Arch Biochem Biophys 2006; 450:141-8. [PMID: 16584705 DOI: 10.1016/j.abb.2006.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Class II histone deacetylases (HDACs) are signal-responsive repressors of gene transcription. In the heart, class II HDAC5 suppresses expression of genes that govern stress-induced cardiomyocyte growth. Signaling via pro-growth G protein coupled receptors triggers phosphorylation of HDAC5 on two serine residues (Ser(259) and Ser(498)), resulting in nuclear export of HDAC5 and de-repression downstream target genes. Although prior studies established a role for protein kinase D (PKD) in the regulation of HDAC5 phosphorylation, it remained unclear whether PKD functions directly or indirectly to control the phosphorylation status of this transcriptional repressor. Here, we demonstrate that PKD catalyzes direct phosphoryl-group transfer to Ser(498) of HDAC5. Each of the three PKD family members, PKD1, PKD2, and PKD3, is capable of phosphorylating HDAC5 (K(m) for substrate=2.07, 3.12, and 1.43microM, respectively), although PKD2 exhibits highest catalytic efficiency (k(cat)/K(m)=6.77min(-1)microM(-1)). Kinetic studies revealed that the three PKD isozymes phosphorylate HDAC5 through a random sequential mechanism, and that ATP has no effect on association of kinase with peptide substrate. In addition, we demonstrate that ADP competitively inhibits phosphorylation of HDAC5 (K(i)=8.50, 17.54, and 11.98microM for PKD1, PKD2, and PKD3, respectively). These findings define PKD as an HDAC kinase and thus suggest key roles for PKD family members in the control of chromatin structure and gene expression.
Collapse
Affiliation(s)
- Q Khai Huynh
- Research and Development, Myogen, Inc., 7575 West 103(rd) Ave., Westminster, CO 80021, USA.
| | | |
Collapse
|
25
|
Dalton GD, Dewey WL. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 2006; 40:23-34. [PMID: 16442618 DOI: 10.1016/j.npep.2005.10.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.
Collapse
Affiliation(s)
- George D Dalton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980524, Richmond, VA 23298, USA.
| | | |
Collapse
|
26
|
Yang S, Rogers KM, Johnson DA. MgATP-induced conformational change of the catalytic subunit of cAMP-dependent protein kinase. Biophys Chem 2005; 113:193-9. [PMID: 15617827 DOI: 10.1016/j.bpc.2004.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 11/24/2022]
Abstract
Conformational changes of the cAMP-dependent protein kinase (PKA) catalytic (C) subunit are critical for the catalysis of gamma-phosphate transfer from adenosine 5'-triphosphate (ATP) to target proteins. Time-resolved fluorescence anisotropy (TRFA) was used to investigate the respective roles of Mg(2+), ATP, MgATP, and the inhibitor peptide (IP20) in the conformational changes of a 5,6-carboxyfluorescein succinimidyl ester (CF) labeled C subunit ((CF)C). TRFA decays were fit to a biexponential equation incorporating the fast and slow rotational correlation times phi(F) and phi(S). The (CF)C apoenzyme exhibited the rotational correlation times phi(F)=1.8+/-0.3 ns and phi(S)=20.1+/-0.6 ns which were reduced to phi(F)=1.1+/-0.2 ns and phi(S)=13.3+/-0.9 ns in the presence of MgATP. The reduction in rotational correlation times indicated that the (CF)C subunit adopted a more compact shape upon formation of a (CF)C.MgATP binary complex. Neither Mg(2+) (1-3 mM) nor ATP (0.4 mM) alone induced changes in the (CF)C subunit conformation equivalent to those induced by MgATP. The effect of MgATP was removed in the presence of ethylenediaminetetraacetic acid (EDTA). The addition of IP20 and MgATP to form the (CF)C x MgATP x IP20 ternary complex produced rotational correlation times similar to those of the (CF)C x MgATP binary complex. However, IP20 alone did not elicit an equivalent reduction in rotational correlation times. The results indicate that binding of MgATP to the C subunit may induce conformation changes in the C subunit necessary for the proper stereochemical alignment of substrates in the subsequent phosphorylation.
Collapse
Affiliation(s)
- Shumei Yang
- Department of Chemistry, California State University, San Bernardino, CA 92407, USA.
| | | | | |
Collapse
|
27
|
Xie H, Braha O, Gu LQ, Cheley S, Bayley H. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. ACTA ACUST UNITED AC 2005; 12:109-20. [PMID: 15664520 DOI: 10.1016/j.chembiol.2004.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 11/04/2004] [Accepted: 11/05/2004] [Indexed: 11/17/2022]
Abstract
An engineered version of the staphylococcal alpha-hemolysin protein pore, bearing a peptide inhibitor near the entrance to the beta barrel, interacts with the catalytic (C) subunit of cAMP-dependent protein kinase. By monitoring the ionic current through the pore, binding events are detected at the single-molecule level. The kinetic and thermodynamic constants governing the binding interaction and the synergistic effect of MgATP are comparable but not identical to the values in bulk solution. Further, the values are strongly dependent on the applied membrane potential. Additional exploration of these findings may lead to a better understanding of the properties of enzymes at the lipid/water interface. Despite the complications, we suggest that the engineered pore might be used as a sensor element to screen inhibitors that act at either the substrate or ATP binding sites of the C subunit.
Collapse
Affiliation(s)
- Hongzhi Xie
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
28
|
Dalton GD, Smith FL, Smith PA, Dewey WL. Alterations in brain Protein Kinase A activity and reversal of morphine tolerance by two fragments of native Protein Kinase A inhibitor peptide (PKI). Neuropharmacology 2005; 48:648-57. [PMID: 15814100 DOI: 10.1016/j.neuropharm.2004.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 11/24/2004] [Accepted: 12/10/2004] [Indexed: 11/21/2022]
Abstract
Two peptide fragments of native Protein Kinase A inhibitor (PKI), PKI-(6-22)-amide and PKI-(Myr-14-22)-amide, significantly reversed low-level morphine antinociceptive tolerance in mice. The inhibition of Protein Kinase A (PKA) activity by both peptide fragments was then measured in specific brain regions (thalamus, periaqueductal gray (PAG), and medulla) and in lumbar spinal cord (LSC), which in previous studies have been shown to play a role in morphine-induced analgesia. In drug naive animals, cytosolic PKA activity was greater than particulate PKA activity in each region, while cytosolic and particulate PKA activities were greater in thalamus and PAG compared to medulla and LSC. The addition of both peptides to homogenates from each region completely abolished cytosolic and particulate PKA activities in vitro. Following injection into the lateral ventricle of the brain of drug naive mice and morphine-tolerant mice, both peptides inhibited PKA activity in the cytosolic, but not the particulate fraction of LSC. In addition, cytosolic and particulate PKA activities were inhibited by both peptides in thalamus. These results demonstrate that the inhibition of PKA reverses morphine tolerance. Moreover, the inhibition of PKA activity in specific brain regions and LSC from morphine-tolerant mice by PKI analogs administered i.c.v. is evidence that PKA plays a role in morphine tolerance.
Collapse
Affiliation(s)
- George D Dalton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, 3298-0613, USA
| | | | | | | |
Collapse
|
29
|
Kita T, Goydos J, Reitman E, Ravatn R, Lin Y, Shih WC, Kikuchi Y, Chin KV. Extracellular cAMP-dependent protein kinase (ECPKA) in melanoma. Cancer Lett 2004; 208:187-91. [PMID: 15142677 DOI: 10.1016/j.canlet.2004.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 02/18/2004] [Accepted: 02/19/2004] [Indexed: 11/23/2022]
Abstract
Melanoma is one of the fastest rising malignancies in the United States. When detected early, primary melanomas are curable through surgery. However, despite significant improvements in diagnosis and surgical, local and systemic therapy, mortality rate in metastatic melanoma remains high. Furthermore, genetic alterations associated with the development and stepwise progression of melanoma, are still unclear. Previous reports show that the catalytic kinase subunit of the cAMP-dependent protein kinase is secreted by tumor cells and can be detected in the serum of cancer patients. We examine in this report the clinical significance of this secreted C subunit kinase termed extracellular protein kinase (ECPKA) in melanoma patients. Our results showed the presence of ECPKA activity in the serum of melanoma patients and correlate with the appearance and size of the tumor. Most importantly, surgical removal of melanoma causes a precipitous decrease in ECPKA activity in the sera of patients, suggesting that ECPKA may be a novel predictive marker in melanoma.
Collapse
Affiliation(s)
- Tsunekazu Kita
- Department of Surgery, School of Public Health; Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Duan CJ, Binkley C, Li G, Uhler MD, Logsdon CD, Simeone DM. A transforming growth factor beta-induced Smad3/Smad4 complex directly activates protein kinase A. Mol Cell Biol 2004; 24:2169-80. [PMID: 14966294 PMCID: PMC350541 DOI: 10.1128/mcb.24.5.2169-2180.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) interacts with cell surface receptors to initiate a signaling cascade critical in regulating growth, differentiation, and development of many cell types. TGFbeta signaling involves activation of Smad proteins which directly regulate target gene expression. Here we show that Smad proteins also regulate gene expression by using a previously unrecognized pathway involving direct interaction with protein kinase A (PKA). PKA has numerous effects on growth, differentiation, and apoptosis, and activation of PKA is generally initiated by increased cellular cyclic AMP (cAMP). However, we found that TGFbeta activates PKA independent of increased cAMP, and our observations support the conclusion that there is formation of a complex between Smad proteins and the regulatory subunit of PKA, with release of the catalytic subunit from the PKA holoenzyme. We also found that the activation of PKA was required for TGFbeta activation of CREB, induction of p21(Cip1), and inhibition of cell growth. Taken together, these data indicate an important and previously unrecognized interaction between the TGFbeta and PKA signaling pathways.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Gassel M, Breitenlechner CB, Rüger P, Jucknischke U, Schneider T, Huber R, Bossemeyer D, Engh RA. Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT). J Mol Biol 2003; 329:1021-34. [PMID: 12798691 DOI: 10.1016/s0022-2836(03)00518-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mutation of well behaved enzymes in order to simulate less manageable cognates is the obvious approach to study specific features of the recalcitrant target. Accordingly, the prototypical protein kinase PKA serves as a model for many kinases, including the closely related PKB, an AGC family protein kinase now implicated as oncogenic in several cancers. Two residues that differ between the alpha isoforms of PKA and PKB at the adenine-binding site generate differing shapes of the binding surface and are likely to play a role in ligand selectivity. As the corresponding mutations in PKA, V123A would enlarge the adenine pocket, while L173M would alter both the shape and its electronic character of the adenine-binding surface. We have determined the structures of the corresponding double mutant (PKAB2: PKAalpha V123A, L173M) in apo and MgATP-bound states, and observed structural alterations of a residue not previously involved in ATP-binding interactions: the side-chain of Q181, which in native PKA points away from the ATP-binding site, adopts in apo double mutant protein a new rotamer conformation, which places the polar groups at the hinge region in the ATP pocket. MgATP binding forces Q181 back to the position seen in native PKA. The crystal structure shows that ATP binding geometry is identical with that in native PKA but in this case was determined under conditions with only a single Mg ion ligand. Surface plasmon resonance spectroscopy studies show that significant energy is required for this ligand-induced transition. An additional PKA/PKB mutation, Q181K, corrects the defect, as shown both by the crystal structure of triple mutant PKAB3 (PKAalpha V123A, L173M, Q181K) and by surface plasmon resonance spectroscopy binding studies with ATP and three isoquinoline inhibitors. Thus, the triple mutant serves well as an easily crystallizable model for PKB inhibitor interactions. Further, the phenomenon of Q181 shows how crystallographic analysis should accompany mutant studies to monitor possible spurious structural effects.
Collapse
Affiliation(s)
- Michael Gassel
- German Cancer Research Center (DKFZ), Division of Pathochemistry, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Akamine P, Wu J, Xuong NH, Ten Eyck LF, Taylor SS. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. J Mol Biol 2003; 327:159-71. [PMID: 12614615 DOI: 10.1016/s0022-2836(02)01446-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To better understand the mechanism of ligand binding and ligand-induced conformational change, the crystal structure of apoenzyme catalytic (C) subunit of adenosine-3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) was solved. The apoenzyme structure (Apo) provides a snapshot of the enzyme in the first step of the catalytic cycle, and in this unliganded form the PKA C subunit adopts an open conformation. A hydrophobic junction is formed by residues from the small and large lobes that come into close contact. This "greasy" patch may lubricate the shearing motion associated with domain rotation, and the opening and closing of the active-site cleft. Although Apo appears to be quite dynamic, many important residues for MgATP binding and phosphoryl transfer in the active site are preformed. Residues around the adenine ring of ATP and residues involved in phosphoryl transfer from the large lobe are mostly preformed, whereas residues involved in ribose binding and in the Gly-rich loop are not. Prior to ligand binding, Lys72 and the C-terminal tail, two important ATP-binding elements are also disordered. The surface created in the active site is contoured to bind ATP, but not GTP, and appears to be held in place by a stable hydrophobic core, which includes helices C, E, and F, and beta strand 6. This core seems to provide a network for communicating from the active site, where nucleotide binds, to the peripheral peptide-binding F-to-G helix loop, exemplified by Phe239. Two potential lines of communication are the D helix and the F helix. The conserved Trp222-Phe238 network, which lies adjacent to the F-to-G helix loop, suggests that this network would exist in other protein kinases and may be a conserved means of communicating ATP binding from the active site to the distal peptide-binding ledge.
Collapse
Affiliation(s)
- Pearl Akamine
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0654, USA
| | | | | | | | | |
Collapse
|
33
|
Schindler JF, Godbey A, Hood WF, Bolten SL, Broadus RM, Kasten TP, Cassely AJ, Hirsch JL, Merwood MA, Nagy MA, Fok KF, Saabye MJ, Morgan HM, Compton RP, Mourey RJ, Wittwer AJ, Monahan JB. Examination of the kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1598:88-97. [PMID: 12147348 DOI: 10.1016/s0167-4838(02)00340-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2 (MAPKAPK2) was investigated using a peptide (LKRSLSEM) based on the phosphorylation site found in serum response factor (SRF). Initial velocity studies yielded a family of double-reciprocal lines that appear parallel and indicative of a ping-pong mechanism. The use of dead-end inhibition studies did not provide a definitive assignment of a reaction mechanism. However, product inhibition studies suggested that MAPKAPK2 follows an ordered bi-bi kinetic mechanism, where ATP must bind to the enzyme prior to the SRF-peptide and the phosphorylated product is released first, followed by ADP. In agreement with these latter results, surface plasmon resonance measurements demonstrate that the binding of the inhibitor peptide to MAPKAPK2 requires the presence of ATP. Furthermore, competitive inhibitors of ATP, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) and a staurosporine analog (K252a), can inhibit this ATP-dependent binding providing further evidence that the peptide substrate binds preferably to the E:ATP complex.
Collapse
Affiliation(s)
- John F Schindler
- Signal Transduction and Enzymology Group, Pharmacia Corporation, Chesterfield Parkway North, St. Louis, MO 63198, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Huynh QK, Kishore N, Mathialagan S, Donnelly AM, Tripp CS. Kinetic mechanisms of IkappaB-related kinases (IKK) inducible IKK and TBK-1 differ from IKK-1/IKK-2 heterodimer. J Biol Chem 2002; 277:12550-8. [PMID: 11815618 DOI: 10.1074/jbc.m111526200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-kappaB activation depends on phosphorylation and degradation of its inhibitor protein, IkappaB. The phosphorylation of IkappaBalpha on Ser(32) and Ser(36) is initiated by an IkappaB kinase (IKK) complex that includes a catalytic heterodimer composed of IkappaB kinase 1 (IKK-1) and IkappaB kinase 2 (IKK-2) as well as a regulatory adaptor subunit, NF-kappaB essential modulator. Recently, two related IkappaB kinases, TBK-1 and IKK-i, have been described. TBK-1 and IKK-i show sequence and structural homology to IKK-1 and IKK-2. TBK-1 and IKK-i phosphorylate Ser(36) of IkappaBalpha. We describe the kinetic mechanisms in terms of substrate and product inhibition of the recombinant human (rh) proteins, rhTBK-1, rhIKK-I, and rhIKK-1/rhIKK-2 heterodimers. The results indicate that although each of these enzymes exhibits a random sequential kinetic mechanism, the effect of the binding of one substrate on the affinity of the other substrate is significantly different. ATP has no effect on the binding of an IkappaBalpha peptide for the rhIKK-1/rhIKK-2 heterodimer (alpha = 0.99), whereas the binding of ATP decreased the affinity of the IkappaBalpha peptide for both rhTBK-1 (alpha = 10.16) and rhIKK-i (alpha = 62.28). Furthermore, the dissociation constants of ATP for rhTBK-1 and rhIKK-i are between the expected values for kinases, whereas the dissociation constants of the IkappaBalpha peptide for each IKK isoforms is unique with rhTBK-1 being the highest (K(IkappaBalpha) = 69.87 microm), followed by rhIKK-i (K(IkappaBalpha) = 5.47 microm) and rhIKK-1/rhIKK-2 heterodimers (K(IkappaBalpha) = 0.12 microm). Thus this family of IkappaB kinases has very unique kinetic properties.
Collapse
Affiliation(s)
- Q Khai Huynh
- Department of Arthritis and Inflammation Pharmacology, Discovery Research, Pharmacia Corporation, Mailzone T3M, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA.
| | | | | | | | | |
Collapse
|
35
|
Lum H, Hao Z, Gayle D, Kumar P, Patterson CE, Uhler MD. Vascular endothelial cells express isoforms of protein kinase A inhibitor. Am J Physiol Cell Physiol 2002; 282:C59-66. [PMID: 11742798 DOI: 10.1152/ajpcell.00256.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.
Collapse
Affiliation(s)
- Hazel Lum
- Department of Pharmacology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Clare PM, Poorman RA, Kelley LC, Watenpaugh KD, Bannow CA, Leach KL. The cyclin-dependent kinases cdk2 and cdk5 act by a random, anticooperative kinetic mechanism. J Biol Chem 2001; 276:48292-9. [PMID: 11604388 DOI: 10.1074/jbc.m102034200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cdk2.cyclin E and cdk5.p25 are two members of the cyclin-dependent kinase family that are potential therapeutic targets for oncology and Alzheimer's disease, respectively. In this study we have investigated the mechanism for these enzymes. Kinases catalyze the transfer of phosphate from ATP to a protein acceptor, thus utilizing two substrates, ATP and the target protein. For a two-substrate reaction, possible kinetic mechanisms include: ping-pong, sequential random, or sequential ordered. To determine the kinetic mechanism of cdk2.GST-cyclin E and cdk5.GST-p25, kinase activity was measured in experiments in which concentrations of peptide and ATP substrates were varied in the presence of dead-end inhibitors. A peptide identical to the peptide substrate, but with a substitution of valine for the phosphoacceptor threonine, competed with substrate with a K(i) value of 0.6 mm. An aminopyrimidine, PNU 112455A, was identified in a screen for inhibitors of cdk2. Nonlinear least squares and Lineweaver-Burk analyses demonstrated that the inhibitor PNU 112455A was competitive with ATP with a K(i) value of 2 microm. In addition, a co-crystal of PNU 112455A with cdk2 showed that the inhibitor binds in the ATP binding pocket of the enzyme. Analysis of the inhibitor data demonstrated that both kinases use a sequential random mechanism, in which either ATP or peptide may bind first to the enzyme active site. For both kinases, the binding of the second substrate was shown to be anticooperative, in that the binding of the first substrate decreases the affinity of the second substrate. For cdk2.GST-cyclin E the kinetic parameters were determined to be K(m, ATP) = 3.6 +/- 1.0 microm, K(m, peptide) = 4.6 +/- 1.4 microm, and the anticooperativity factor, alpha = 130 +/- 44. For cdk5.GST-p25, the K(m, ATP) = 3.2 +/- 0.7 microm, K(m, peptide) = 1.6 +/- 0.3 microm, and alpha = 7.2 +/- 1.8.
Collapse
Affiliation(s)
- P M Clare
- Department of Cell and Molecular Biology, Pharmacia Corporation, Kalamazoo, Michigan 49007-4940, USA
| | | | | | | | | | | |
Collapse
|
37
|
Anil VS, Sankara Rao K. Purification and characterization of a Ca(2+)-dependent protein kinase from sandalwood (Santalum album L.): evidence for Ca(2+)-induced conformational changes. PHYTOCHEMISTRY 2001; 58:203-212. [PMID: 11551540 DOI: 10.1016/s0031-9422(01)00231-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An early development-specific soluble 55 kDa Ca(2+)-dependent protein kinase has been purified to homogeneity from sandalwood somatic embryos and biochemically characterized. The purified enzyme, swCDPK, resolved into a single band on 10% polyacrylamide gels, both under denaturing and non-denaturing conditions. swCDPK activity was strictly dependent on Ca(2+), K(0.5) (apparent binding constant) for Ca(2+)-activation of substrate phosphorylation activity being 0.7 microM and for autophosphorylation activity approximately 50 nM. Ca(2+)-dependence for activation, CaM-independence, inhibition by CaM-antagonist (IC(50) for W7=6 microM, for W5=46 microM) and cross-reaction with polyclonal antibodies directed against the CaM-like domain of soybean CDPK, confirmed the presence of an endogenous CaM-like domain in the purified enzyme. Kinetic studies revealed a K(m) value of 1.3 mg/ml for histone III-S and a V(max) value of 0.1 nmol min(-1) mg(-1). The enzyme exhibited high specificity for ATP with a K(m) value of 10 nM. Titration with calcium resulted in the enhancement of intrinsic emission fluorescence of swCDPK and a shift in the lambda(max) emission from tryptophan residues. A reduction in the efficiency of non-radiative energy transfer from tyrosine to tryptophan residues was also observed. These are taken as evidence for the occurrence of Ca(2+)-induced conformational change in swCDPK. The emission spectral properties of swCDPK in conjunction with Ca(2+) levels required for autophosphorylation and substrate phosphorylation help understand mode of Ca(2+) activation of this enzyme.
Collapse
Affiliation(s)
- V S Anil
- Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
| | | |
Collapse
|
38
|
Affiliation(s)
- J A Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0506, USA.
| |
Collapse
|
39
|
Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS. Dynamics of cAMP-dependent protein kinase. Chem Rev 2001; 101:2243-70. [PMID: 11749372 DOI: 10.1021/cr000226k] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D A Johnson
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0654, USA
| | | | | | | | | |
Collapse
|
40
|
Kiger JA, O'Shea C. Genetic evidence for a protein kinase A/cubitus interruptus complex that facilitates processing of cubitus interruptus in Drosophila. Genetics 2001; 158:1157-66. [PMID: 11454764 PMCID: PMC1461713 DOI: 10.1093/genetics/158.3.1157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) activates a signal transduction pathway regulating Cubitus interruptus (Ci). In the absence of Hh, full-length Ci (Ci-155) is bound in a complex that includes Costal2 (Cos2) and Fused (Fu). Ci-155 is phosphorylated by protein kinase A (PKA), inducing proteolysis to Ci-75, a transcriptional repressor. Hh signaling blocks proteolysis and produces an activated Ci-155 transcriptional activator. The relationship between PKA and the Ci/Cos2/Fu complex is unclear. Here we examine Hh target gene expression caused by mutant forms of PKA regulatory (PKAr) and catalytic (PKAc) subunits and by the PKAc inhibitor PKI(1-31). The mutant PKAr*, defective in binding cAMP, is shown to activate Hh target genes solely through its ability to bind and inhibit endogenous PKAc. Surprisingly, PKAcA75, a catalytically impaired mutant, also activates Hh target genes. To account for this observation, we propose that PKAc phosphorylation targeting Ci-155 for proteolysis is regulated within a complex that includes PKAc and Ci-155 and excludes PKI(1-31). This complex may permit processive phosphorylation of Ci-155 molecules, facilitating their processing to Ci-75.
Collapse
Affiliation(s)
- J A Kiger
- Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
41
|
Smith CM, Radzio-Andzelm E, Akamine P, Taylor SS. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:313-41. [PMID: 10354702 DOI: 10.1016/s0079-6107(98)00059-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protein kinase catalytic core in essence comprises an extended network of interactions that link distal parts of the molecule to the active site where they facilitate phosphoryl transfer from ATP to protein substrate. This review defines key sequence and structural elements, describes what is currently known about the molecular interactions, and how they are involved in catalysis.
Collapse
Affiliation(s)
- C M Smith
- San Diego Supercomputer Center, University of California, La Jolla 92093-0505, USA.
| | | | | | | |
Collapse
|
42
|
Zimmermann B, Chiorini JA, Ma Y, Kotin RM, Herberg FW. PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit type I. J Biol Chem 1999; 274:5370-8. [PMID: 10026146 DOI: 10.1074/jbc.274.9.5370] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.
Collapse
Affiliation(s)
- B Zimmermann
- Institut für Physiologische Chemie I, MA 2/40, Abteilung für Biochemie Supramolekularer Systeme, Medizinische Fakultät der Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | | | | | | | | |
Collapse
|
43
|
Hünenberger PH, Helms V, Narayana N, Taylor SS, McCammon JA. Determinants of ligand binding to cAMP-dependent protein kinase. Biochemistry 1999; 38:2358-66. [PMID: 10029529 DOI: 10.1021/bi982064g] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinases are essential for the regulation of cellular growth and metabolism. Since their dysfunction leads to debilitating diseases, they represent key targets for pharmaceutical research. The rational design of kinase inhibitors requires an understanding of the determinants of ligand binding to these proteins. In the present study, a theoretical model based on continuum electrostatics and a surface-area-dependent nonpolar term is used to calculate binding affinities of balanol derivatives, H-series inhibitors, and ATP analogues toward the catalytic subunit of cAMP-dependent protein kinase (cAPK or protein kinase A). The calculations reproduce most of the experimental trends and provide insight into the driving forces responsible for binding. Nonpolar interactions are found to govern protein-ligand affinity. Hydrogen bonds represent a negligible contribution, because hydrogen bond formation in the complex requires the desolvation of the interacting partners. However, the binding affinity is decreased if hydrogen-bonding groups of the ligand remain unsatisfied in the complex. The disposition of hydrogen-bonding groups in the ligand is therefore crucial for binding specificity. These observations should be valuable guides in the design of potent and specific kinase inhibitors.
Collapse
Affiliation(s)
- P H Hünenberger
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla 92093-0365, USA.
| | | | | | | | | |
Collapse
|
44
|
Kumar P, Van Patten SM, Walsh DA. Multiplicity of the beta form of the cAMP-dependent protein kinase inhibitor protein generated by post-translational modification and alternate translational initiation. J Biol Chem 1997; 272:20011-20. [PMID: 9242671 DOI: 10.1074/jbc.272.32.20011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two distinct species of the thermostable inhibitor of the cAMP-dependent protein kinase, PKIalpha and PKIbeta, exist that are the products of separate genes. The PKIbeta form, as first isolated from rat testis, is a 70-amino acid protein, but the genomic sequence suggested that an alternate form might exist, arising as a consequence of alternate translational initiation. This species, now termed PKIbeta-78, has been synthesized by bacterial expression, demonstrated to be equipotent with PKIbeta-70, and also now demonstrated to occur in vivo. By Western blot analyses, six additional species of PKIbeta are also evident in tissues. Two of these represent the phospho forms of PKIbeta-78 and PKIbeta-70. The other four represent phospho and dephospho forms of two higher molecular mass PKIbeta species. These latter forms are currently termed PKIbeta-X and PKIbeta-Y, awaiting the full elucidation of their molecular identity. In adult rat testis and cerebellum, PKIbeta-70, PKIbeta-X, and PKIbeta-Y constitute 39, 23, and 32% and 15, 29, and 54% of the total tissue levels, respectively. In adult rat testis, 35-42% of each of these three species is present as a monophospho form, whereas no phosphorylation of them is evident in cerebellum. PKIbeta-78 is present at much lower levels in both rat testis and cerebellum (approximately 6 and 2% of the total, respectively) and almost entirely as a monophospho species. PKIbeta-78, like PKIbeta-70, is a high affinity and specific inhibitor of the cAMP-dependent protein kinase. PKIbeta-Y and PKIbeta-X, in contrast, also significantly inhibit the cGMP-dependent protein kinase.
Collapse
Affiliation(s)
- P Kumar
- Department of Biological Chemistry, School of Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
45
|
Collins SP, Uhler MD. Characterization of PKIgamma, a novel isoform of the protein kinase inhibitor of cAMP-dependent protein kinase. J Biol Chem 1997; 272:18169-78. [PMID: 9218452 DOI: 10.1074/jbc.272.29.18169] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Attempts to understand the physiological roles of the protein kinase inhibitor (PKI) proteins have been hampered by a lack of knowledge concerning the molecular heterogeneity of the PKI family. The PKIgamma cDNA sequence determined here predicted an open reading frame of 75 amino acids, showing 35% identity to PKIalpha and 30% identity to PKIbeta1. Residues important for the high affinity of PKIalpha and PKIbeta1 as well as nuclear export of the catalytic (C) subunit of cAMP-dependent protein kinase were found to be conserved in PKIgamma. Northern blot analysis showed that a 1.3-kilobase PKIgamma message is widely expressed, with highest levels in heart, skeletal muscle, and testis. RNase protection analysis revealed that in most tissues examined PKIgamma is expressed at levels equal to or higher than the other known PKI isoforms and that in several mouse-derived cell lines, PKIgamma is the predominant PKI message. Partial purification of PKI activities from mouse heart by DEAE ion exchange chromatography resolved two major inhibitory peaks, and isoform-specific polyclonal antibodies raised against recombinant PKIalpha and PKIgamma identified these inhibitory activities to be PKIalpha and PKIgamma. A comparison of inhibitory potencies of PKIalpha and PKIgamma expressed in Escherichia coli revealed that PKIgamma was a potent competitive inhibitor of Calpha phosphotransferase activity in vitro (Ki = 0.44 nM) but is 6-fold less potent than PKIalpha (Ki = 0.073 nM). Like PKIalpha, PKIgamma was capable of blocking the nuclear accumulation of Flag-tagged C subunit in transiently transfected mammalian cells. Finally, the murine PKIgamma gene was found to overlap the murine adenosine deaminase gene on mouse chromosome 2. These results demonstrate that PKIgamma is a novel, functional PKI isoform that accounts for the previously observed discrepancy between PKI activity and PKI mRNA levels in several mammalian tissues.
Collapse
Affiliation(s)
- S P Collins
- Department of Biological Chemistry and the Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
46
|
Lew J, Coruh N, Tsigelny I, Garrod S, Taylor SS. Synergistic binding of nucleotides and inhibitors to cAMP-dependent protein kinase examined by acrylodan fluorescence spectroscopy. J Biol Chem 1997; 272:1507-13. [PMID: 8999821 DOI: 10.1074/jbc.272.3.1507] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have engineered an acrylodan-modified derivative of the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK) whose fluorescence emission signal has allowed the synergistic binding between nucleotides and physiological inhibitors of cAPK to be examined (Whitehouse, S., and Walsh, D. A. (1983) J. Biol. Chem. 258, 3682-3692). In the presence of the regulatory subunit, RI, the affinity of cAPK for adenosine, ADP, AMPPNP (adenosine 5'-(beta, gamma-imino)triphosphate), or ATP was 5-, 50-, 120-, and 15,000-fold enhanced, while in the presence of the heat-stable inhibitor protein of cAPK (PKI), there was a 3-, 20-, 33-, and 2000-fold enhancement in the binding of these nucleotides, respectively. A short inhibitor peptide, PKI-(14-22), enhanced the binding of ADP to the same degree as did full-length PKI (20-fold) but, in contrast, did not significantly enhance the binding of ATP or AMPPNP. The full binding synergism between PKI and either ATP (2000-fold) or AMPPNP (33-fold) to cAPK could, however, be mimicked by a longer peptide, PKI-(5-24), suggesting that the PKI NH2 terminus (residues 5-13) is most likely critical. Since this region is remote from the ATP gamma-phosphate, the binding synergism must arise through an extended network communication mechanism between the PKI NH2 terminus and the ATP binding site.
Collapse
Affiliation(s)
- J Lew
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | | | | | |
Collapse
|
47
|
Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J Biol Chem 1996; 271:26157-64. [PMID: 8824261 DOI: 10.1074/jbc.271.42.26157] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The discovery of several hundred different protein kinases involved in highly diverse cellular signaling pathways is in stark contrast to the much smaller number of known modulators of cell signaling. Of these, the H series protein kinase inhibitors (1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H8) N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89)) are frequently used to block signaling pathways in studies of cellular regulation. To elucidate inhibition mechanisms at atomic resolution and to enable structure-based drug design of potential therapeutic modulators of signaling pathways, we determined the crystal structures of corresponding complexes with the cAPK catalytic subunit. Complexes with H7 and H8 (2.2 A) and with H89 (2.3 A) define the binding mode of the isoquinoline-sulfonamide derivatives in the ATP-binding site while demonstrating effects of ligand-induced structural change. Specific interactions between the enzyme and the inhibitors include the isoquinoline ring nitrogen ligating to backbone amide of Val-123 and an inhibitor side chain amide bonding to the backbone carbonyl of Glu-170. The conservation of the ATP-binding site of protein kinases allows evaluation of factors governing general selectivity of these inhibitors among kinases. These results should assist efforts in the design of protein kinase inhibitors with specific properties.
Collapse
Affiliation(s)
- R A Engh
- Abteilung Strukturforschung II, Max-Planck Institute for Biochemistry, D-82152 Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
48
|
Russo AA, Jeffrey PD, Pavletich NP. Structural basis of cyclin-dependent kinase activation by phosphorylation. NATURE STRUCTURAL BIOLOGY 1996; 3:696-700. [PMID: 8756328 DOI: 10.1038/nsb0896-696] [Citation(s) in RCA: 452] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclin-dependent kinase (CDK)-cyclin complexes require phosphorylation on the CDK subunit for full activation of their Ser/Thr protein kinase activity. The crystal structure of the phosphorylated CDK2-CyclinA-ATP gamma S complex has been determined at 2.6 A resolution. The phosphate group, which is on the regulatory T-loop of CDK2, is mostly buried, its charge being neutralized by three Arg side chains. The arginines help extend the influence of the phosphate group through a network of hydrogen bonds to both CDK2 and cyclinA. Comparison with the unphosphorylated CDK2-CyclinA complex shows that the T-loop moves by as much as 7 A, and this affects the putative substrate binding site as well as resulting in additional CDK2-CyclinA contacts. The phosphate group thus acts as a major organizing centre in the CDK2-CyclinA complex.
Collapse
Affiliation(s)
- A A Russo
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
49
|
Carlson GL, Nelson DL. The 44-kDa regulatory subunit of the Paramecium cAMP-dependent protein kinase lacks a dimerization domain and may have a unique autophosphorylation site sequence. J Eukaryot Microbiol 1996; 43:347-56. [PMID: 8768440 DOI: 10.1111/j.1550-7408.1996.tb03999.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 44-kDa regulatory subunit (R44) of one form of cAMP-dependent protein kinase of Paramecium was purified, and two partial internal amino acid sequences from it were used to clone the corresponding cDNA. This R44 cDNA clone was 1022-bp long, including 978 bp of coding sequence and 7 bp and 37 bp of 5' and 3' untranslated sequences, respectively. A 1.1-kb mRNA was labeled on a Northern blot. The deduced R44 amino acid sequence had 31%-38% positional identity to the sequences of other cloned cAMP-dependent protein kinase regulatory subunits. R44 sequence showed equal sequence similarity to mammalian types I and II regulatory subunits. The N-terminal sequence encoding the regulatory subunit dimerization domain found in most regulatory subunits is not present in the R44 clone, confirming the lack of regulatory subunit dimer formation previously reported for the Paramecium cAMP-dependent protein kinase. The putative autophosphorylation site of R44 contains the amino acid sequence TRTS, distinct from the consensus sequence RRXS, where X is any residue, found in other autophosphorylated cAMP-dependent protein kinase regulatory subunits and many cAMP-dependent protein kinase substrates.
Collapse
Affiliation(s)
- G L Carlson
- Department of Biochemistry, University of Wisconsin-Madison 53706-1569, USA
| | | |
Collapse
|
50
|
Fritz CC, Green MR. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr Biol 1996; 6:848-54. [PMID: 8805303 DOI: 10.1016/s0960-9822(02)00608-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The structural proteins of human immunodeficiency virus type 1 (HIV-1) are encoded by intron-containing mRNAs that normally are retained in the nucleus. A viral regulatory protein, Rev, specifically induces the accumulation of these transcripts in the cytoplasm. Rev is an RNA-binding protein that also contains an 'effector' domain. The Rev effector domain has recently been shown to function as an autonomous nuclear export signal (NES) that, when fused to a foreign protein, will cause its rapid nuclear export. We and others have recently reported the cloning of a human protein (hRIP/Rab), that specifically interacts with the effector domain of Rev. RESULTS Here we show that the NESs contained within two cellular proteins, PKI and I kappa B, which are not involved in RNA metabolism, also interact with hRIP. Fusion of these cellular sequences to the Rev RNA-binding domain reconstitutes a functional Rev protein. In addition to hRIP, these NESs also bind to several nuclear pore complex (NPC). We show that this protein export pathway is highly conserved by demonstrating that mammalian NESs also function in yeast. CONCLUSIONS Our results indicate that the HIV-1 Rev protein evolved to take advantage of a cellular protein export pathway in order to allow the nucleocytoplasmic transport of unspliced viral RNA. Our data suggest a model in which the export substrate is translocated through the NPC by sequential interactions with different nucleoporins. Finally, our experiment suggests a mechanism by which I kappa B can downregulate nuclear NF kappa B activity by causing its rapid export from the nucleus.
Collapse
Affiliation(s)
- C C Fritz
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA
| | | |
Collapse
|