1
|
Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain. Int J Mol Sci 2022; 23:ijms231710073. [PMID: 36077475 PMCID: PMC9456256 DOI: 10.3390/ijms231710073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.
Collapse
|
2
|
Serrano WC, Maldonado J. The Use of Physostigmine in the Diagnosis and Treatment of Anticholinergic Toxicity After Olanzapine Overdose: Literature Review and Case Report. J Acad Consult Liaison Psychiatry 2021; 62:285-297. [PMID: 34102130 DOI: 10.1016/j.jaclp.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Second-generation antipsychotic agents are commonly used by clinicians for the treatment of various psychiatric and medical conditions. Despite their presumed safety, an overdose with olanzapine may lead to the development of anticholinergic toxicity. The anticholinergic toxidrome is characterized by both central and peripheral physical findings. Central anticholinergic syndrome, a term used to describe the symptoms that arise from reduced cholinergic activity in the central nervous system, is characterized primarily by signs and symptoms consistent with hyperactive delirium. Signs of peripheral anticholinergia include mydriasis and blurred vision, tremors, ataxia, fever/hyperthermia, flushed and dry skin, dry oral mucosa, decreased bowel sounds, constipation, and urinary retention, among other symptoms. In extreme cases, central anticholinergic syndrome can be associated with seizures, coma, respiratory failure, and cardiovascular collapse. OBJECTIVE To provide scientific evidence regarding the efficacy and safety of physostigmine use in cases of anticholinergic toxicity. METHODS We conducted a comprehensive review of the published literature on the symptoms, diagnosis, and treatment of anticholinergic toxicity. RESULTS Currently the recommended treatment for olanzapine overdose, as is the case of most severe anticholinergic toxicity cases, involves supportive care, along with cardiac, neurological, and respiratory status monitoring. In addition, we detail the symptoms characteristic of anticholinergic toxicity, using the case of a patient experiencing central anticholinergic syndrome after an overdose with olanzapine. CONCLUSION Physostigmine, a tertiary acetylcholinesterase inhibitor, can be used to assist in the both the diagnosis and management of severe anticholinergic toxicity associated with an olanzapine overdose, which might be applicable to the antimuscarinic toxidrome associated with the ingestion of agents with significant anticholinergic activity.
Collapse
Affiliation(s)
- Wilmarie Cidre Serrano
- Department of Psychiatry & Behavioral Sciences, Stanford University 401 Quarry Road, Stanford, CA
| | - Jose Maldonado
- Department of Psychiatry & Behavioral Sciences, Stanford University 401 Quarry Road, Stanford, CA.
| |
Collapse
|
3
|
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M, Jankowska-Kulawy A. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12:169. [PMID: 30050410 PMCID: PMC6052899 DOI: 10.3389/fncel.2018.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 μmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-β1-42 (Aβ). Extra and intracellular oligomeric deposits of Aβ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
4
|
Pathoetiological model of delirium: a comprehensive understanding of the neurobiology of delirium and an evidence-based approach to prevention and treatment. Crit Care Clin 2008; 24:789-856, ix. [PMID: 18929943 DOI: 10.1016/j.ccc.2008.06.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Delirium is the most common complication found in the general hospital setting. Yet, we know relatively little about its actual pathophysiology. This article contains a summary of what we know to date and how different proposed intrinsic and external factors may work together or by themselves to elicit the cascade of neurochemical events that leads to the development delirium. Given how devastating delirium can be, it is imperative that we better understand the causes and underlying pathophysiology. Elaborating a pathoetiology-based cohesive model to better grasp the basic mechanisms that mediate this syndrome will serve clinicians well in aspiring to find ways to correct these cascades, instituting rational treatment modalities, and developing effective preventive techniques.
Collapse
|
5
|
Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:10-22. [PMID: 11754536 DOI: 10.1021/jf010753k] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
(-)-Hydroxycitric acid [(-)-HCA] is the principal acid of fruit rinds of Garcinia cambogia, Garcinia indica, and Garcinia atroviridis. (-)-HCA was shown to be a potent inhibitor of ATP citrate lyase (EC 4.1.3.8), which catalyzes the extramitochondrial cleavage of citrate to oxaloacetate and acetyl-CoA: citrate + ATP + CoA --> acetyl-CoA + ADP + P(i) + oxaloacetate. The inhibition of this reaction limits the availability of acetyl-CoA units required for fatty acid synthesis and lipogenesis during a lipogenic diet, that is, a diet high in carbohydrates. Extensive animal studies indicated that (-)-HCA suppresses the fatty acid synthesis, lipogenesis, food intake, and induced weight loss. In vitro studies revealed the inhibitions of fatty acid synthesis and lipogenesis from various precursors. However, a few clinical studies have shown controversial findings. This review explores the literature on a number of topics: the source of (-)-HCA; the discovery of (-)-HCA; the isolation, stereochemistry, properties, methods of estimation, and derivatives of (-)-HCA; and its biochemistry, which includes inhibition of the citrate cleavage enzyme, effects on fatty acid synthesis and lipogenesis, effects on ketogenesis, other biological effects, possible modes of action on the reduction of food intake, promotion of glycogenesis, gluconeogenesis, and lipid oxidation, (-)-HCA as weight-controlling agent, and some possible concerns about (-)-HCA, which provides a coherent presentation of scattered literature on (-)-HCA and its plausible mechanism of action and is provocative of further research.
Collapse
Affiliation(s)
- B S Jena
- Human Resource Development, Central Food Technological Research Institute, Mysore 570 013, India
| | | | | | | |
Collapse
|
6
|
Mottin S, Laporte P, Jouvet M, Cespuglio R. Determination of NADH in the rat brain during sleep-wake states with an optic fibre sensor and time-resolved fluorescence procedures. Neuroscience 1997; 79:683-93. [PMID: 9219933 DOI: 10.1016/s0306-4522(96)00709-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present paper reports a nanosecond time-resolved fluorescence derived from the cortex and the area of the periaqueductal gray including the nucleus raphe dorsalis (PAG-nRD) in unanaesthetized freely moving rats. The measurements were acquired through a single optic fibre transmitting a subnanosecond nitrogen laser pulse (337 nm, 15 Hz) and collecting the brain fluorescence occurring at 460 nm which might depend on mitochondrial NADH (reduced form of nicotinamide adenine dinucleotide). The fluorometric method was combined with polygraphic recordings, and this procedure allowed us to define, for the first time, variations of the 460 nm signal occurring throughout the sleep-wake cycle. In the PAG-nRD, the signal exhibited moderate heterogeneous variation in amplitude during slow-wave as compared to the waking state. Constant increases were observed during paradoxical sleep as compared to the waking state. For this state of sleep the magnitude of the variations depended on the optic fibre location. In the cortex and during either slow-wave sleep or paradoxical sleep, the signal presented moderate increases which were significant during paradoxical sleep. The magnitude of the redox variations observed either in the PAG-nRD or in the cortex might be ascribed to the oxidative energy balance which is related to sleep states.
Collapse
Affiliation(s)
- S Mottin
- T. S. I. Laboratory, CNRS-URA842, Jean Monnet University, St-Etienne, France
| | | | | | | |
Collapse
|
7
|
Calingasan NY, Baker H, Sheu KF, Gibson GE. Selective enrichment of cholinergic neurons with the alpha-ketoglutarate dehydrogenase complex in rat brain. Neurosci Lett 1994; 168:209-12. [PMID: 8028777 DOI: 10.1016/0304-3940(94)90452-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Numerous reports suggest a close interaction between acetylcholine homeostasis and oxidative metabolism. However, the neuroanatomical basis of this relationship has not been established. A previous study showed that a key mitochondrial enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC) occurs at low levels in neurons, glia and neuropil throughout the rat brain. Some regions including those that are enriched with a cholinergic neuronal marker, choline acetyltransferase (ChAT) show relatively high perikaryal enrichment of KGDHC. The current study utilized double label immunofluorescence to determine whether cholinergic neurons are enriched with KGDHC in rat brain. In cranial nerve nuclei, trapezoid nucleus, nucleus ambiguous and inferior olive, virtually all cholinergic neurons were enriched with KGDHC. However, in basal forebrain nuclei, only a subpopulation of cholinergic cells were intensely immunoreactive for KGDHC. These data provide morphological evidence to support the hypothesized link between cholinergic function and oxidative metabolism in specific brain regions.
Collapse
Affiliation(s)
- N Y Calingasan
- Cornell University Medical College, Burke Medical Research Institute, White Plains, NY 10605
| | | | | | | |
Collapse
|
8
|
Schanne FA, Gupta RK, Stanton PK. 31P-NMR study of transient ischemia in rat hippocampal slices in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1158:257-63. [PMID: 8251525 DOI: 10.1016/0304-4165(93)90023-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracellular high energy phosphates (HEP) were monitored in rat hippocampal slices in vitro by 31P-NMR during continuous superfusion, no flow and reperfusion in order to model the changes which occur during cerebral ischemia and reperfusion in vivo. With continuous superfusion, stable intracellular HEP resonance signals were observed for over 4 h. When superfusion was stopped, there were rapid decreases in pH and phosphocreatine levels followed by slower loss of ATP. These changes are similar to those observed during cerebral ischemia in vivo by 31P-NMR. Upon reperfusion, the pH returned to normal, but the extent of HEP recovery depended on the length of time superfusion was halted. Following a 10 min ischemic period HEP levels returned to greater than 90% of preischemic values, while following a 16 min ischemic period there was only 60% recovery. Superfusion with low calcium, high magnesium medium significantly improved the recovery of HEP following 16 min of ischemia to 80% of preischemic levels. These data support the hypothesis that calcium influx during and following ischemia can disrupt energy metabolism in the hippocampus, and that magnesium can have a protective action on cellular energy status, perhaps by further blocking calcium influx.
Collapse
Affiliation(s)
- F A Schanne
- Department of Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467
| | | | | |
Collapse
|
9
|
Gibson G, Nielsen P, Mykytyn V, Carlson K, Blass J. Regionally selective alterations in enzymatic activities and metabolic fluxes during thiamin deficiency. Neurochem Res 1989; 14:17-24. [PMID: 2496326 DOI: 10.1007/bf00969752] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To further elucidate the molecular basis of the selective damage to various brain regions by thiamin deficiency, changes in enzymatic activities were compared to carbohydrate flux through various pathways from vulnerable (mammillary bodies and inferior colliculi) and nonvulnerable (cochlear nuclei) regions after 11 or 14 days of pyrithiamin-induced thiamin deficiency. After 11 days, large decreases (-43 to -59%) in transketolase (TK) occurred in all 3 regions; 2-ketoglutarate dehydrogenase (KGDHC) declined (-45%), but only in mammillary bodies; pyruvate dehydrogenase (PDHC) was unaffected. By day 14, TK remained reduced by 58%-66%; KGDHC was now reduced in all regions (-48 to -55%); PDHC was also reduced (-32%), but only in the mammillary bodies. Thus, the enzyme changes did not parallel the pathological vulnerability of these regions to thiamin deficiency. 14CO2 production from 14C-glucose labeled in various positions was utilized to assess metabolic flux. After 14 days, CO2 production in the vulnerable regions declined severely (-46 to 70%) and approximately twice as much as those in the cochlear nucleus. Also by day 14, the ratio of enzymatic activity to metabolic flux increased as much as 56% in the vulnerable regions, but decreased 18 to 30% in the cochlear nuclei. These differences reflect a greater decrease in flux than enzyme activities in the two vulnerable regions. Thus, selective cellular responses to thiamin deficiency can be demonstrated ex vivo, and these changes can be directly related to alterations in metabolic flux. Since they cannot be related to enzymatic alterations in the three regions, factors other than decreases in the activity of these TPP-dependent enzymes must underlie selective vulnerability in this model of thiamin deficiency.
Collapse
Affiliation(s)
- G Gibson
- Cornell University Medical College, Burke Rehabilitation Center, White Plains, NY 10605
| | | | | | | | | |
Collapse
|
10
|
Gibson GE, Freeman GB, Mykytyn V. Selective damage in striatum and hippocampus with in vitro anoxia. Neurochem Res 1988; 13:329-35. [PMID: 2899300 DOI: 10.1007/bf00972482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An in vitro model of anoxia-induced brain damage was utilized to help elucidate the biochemical basis of cell damage due to reduced oxygen availability. Previous studies suggest that anoxia-induced damage may vary presynaptically, post-synaptically or in the cell body. Thus, the consequences of an anoxic treatment incubation were examined with hippocampal slices, which contain cholinergic nerve terminals but not cell bodies, and with slices from whole striatum or its subregions, which contain both cholinergic cell bodies and nerve terminals. Slices were preincubated with either oxygen or nitrogen (treatment incubation) and the persistent effects of this treatment on [14C]acetylcholine and 14CO2 production from [U-14C]glucose were assessed in a subsequent incubation under optimal conditions (test incubation). An anoxic treatment incubation reduced the subsequent test incubation production of CO2 about 40% in the hippocampus and striatum. The anoxic treatment incubation diminished ACh production by 46% in the striatum, but only minimally affected that in the hippocampus. Anoxic treatment incubations of synaptosomes did not alter test-incubation ACh synthesis or CO2 production. Omission of calcium from the anoxic treatment incubation increased striatal ACh synthesis by 88% and CO2 production in both regions. These results suggest that anoxia produces persistent changes in postsynaptic processes or cell bodies (in this model cholinergic ones) that differ from those in nerve terminals and that calcium is important in the production of these deficits.
Collapse
Affiliation(s)
- G E Gibson
- Cornell University Medical College, Burke Rehabilitation Center, White Plains, New York 10605
| | | | | |
Collapse
|
11
|
Sanchez-Prieto J, Harvey SA, Clark JB. Effects of in vitro anoxia and low pH on acetylcholine release by rat brain synaptosomes. J Neurochem 1987; 48:1278-84. [PMID: 3819730 DOI: 10.1111/j.1471-4159.1987.tb05658.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acetylcholine and choline release from rat brain synaptosomes have been measured using a chemiluminescent technique under a variety of conditions set up to mimic anoxic insult, including conditions of low pH (6.2) and the presence of lactate plus pyruvate as substrate. Lactate plus pyruvate as substrate consistently gave higher respiration rates than glucose alone, but with either substrate (glucose or lactate plus pyruvate) the omission of Ca2+ caused an increase in respiration whereas a low pH caused a decreased respiration. Acetylcholine release under control conditions (glucose, pH 7.4) was Ca2+-dependent, stimulated by high K+ concentrations, and decreased significantly during anoxia but recovered fully after a period of postanoxic oxygenation. Low pH (6.2) suppressed K+ stimulation of acetylcholine release, and after a period of anoxia at low pH the recovery of acetylcholine release was only partial. With lactate plus pyruvate as substrate, the effects of anoxia and/or low pH on acetylcholine release and its subsequent recovery were exacerbated. Choline release from synaptosomes, however, was not affected by anoxic/ionic conditions in the same way as acetylcholine release. At low pH (6.2) there was a marked reduction in choline release both under aerobic and anoxic conditions. These results suggest that acetylcholine release per se from the nerve is very sensitive to anoxic insult and that the low pH occurring during anoxia may be an important contributory factor.
Collapse
|
12
|
Abstract
Alzheimer's disease can be considered a late-onset system degeneration, characteristically involving certain populations of cholinergic neurons but eventually involving other cells as well. Decreases in cerebral metabolic rate occur in it and may reflect not only decreased neuronal activity, but also deficiencies in metabolic enzymes. Abnormalities reported in nonneural Alzheimer tissues suggest that at the molecular level it is a systemic disease whose biochemical aspects can usefully be studied in nonneural tissues. Alzheimer's disease can be formulated as one of a number of metabolic encephalopathies that impair central cholinergic function.
Collapse
|
13
|
Gibson GE, Blass JP. Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment. Neurochem Res 1985; 10:453-67. [PMID: 4000397 DOI: 10.1007/bf00964650] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In order to clarify the mechanisms by which nicotinic acid deficiency impairs brain function, the effects of the nicotinic acid antimetabolite, 3-acetylpyridine, have been investigated on behavior, cerebral oxidative metabolism, and acetylcholine synthesis. In young rats (21-23 days old), 3-acetylpyridine caused dose- and time-related deficits in behavior, as measured by a neurological scale and by "tight-rope" performance, loss of body weight, and decreased survival. An intermediate dosage decreased cerebral glucose utilization in the inferior olivary nuclei, but increased it in the fastigial, interpositus, red, dentate, vestibular, posterior mamillary, and habenular nuclei. Selective alteration of metabolism was also observed in brain slices from 3-acetylpyridine-treated rats. Although forebrain slices were unaffected, in brainstem slices the synthesis of acetylcholine decreased by 34% with depolarizing (31 mM) concentrations of K+ (P less than 0.05). This dose of 3-acetylpyridine did not deplete the total pool of NAD in any of the 7 brain regions examined. Thus, the nicotinic acid deficiency which results from 3-acetylpyridine treatment appears to be yet another metabolic encephalopathy in which cholinergic systems are impaired.
Collapse
|
14
|
|
15
|
Hirsch JA, Gibson GE. Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem Res 1984; 9:1039-49. [PMID: 6149480 DOI: 10.1007/bf00964800] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The potassium-stimulated release of acetylcholine, norepinephrine, serotonin, glutamate, and 4-aminobutyrate from superfused rat cortical slices was studied during hypoxia. A reduction in oxygen tensions from 603 +/- 6 to 22 +/- 2 mm Hg selectively altered the calcium-dependent efflux of these neurotransmitters, but did not change their calcium-independent release. The calcium-dependent release of [14C]acetylcholine decreased (39%), while that of glutamate increased (66%) and 4-aminobutyrate, [3H]norepinephrine, and [3H]serotonin were unaffected. Thus, low oxygen reveals variations in the calcium-dependent release mechanisms of several neurotransmitters. These differences may have important implications for pharmacological intervention of neurotransmitter release.
Collapse
|
16
|
Gibson GE, Ksiezak-Reding H, Sheu KF, Mykytyn V, Blass JP. Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochem Res 1984; 9:803-14. [PMID: 6149477 DOI: 10.1007/bf00965667] [Citation(s) in RCA: 118] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To clarify the enzymatic mechanisms of brain damage in thiamin deficiency, glucose oxidation, acetylcholine synthesis, and the activities of the three major thiamin pyrophosphate (TPP) dependent brain enzymes were compared in untreated controls, in symptomatic pyrithiamin-induced thiamin-deficient rats, and in animals in which the symptoms had been reversed by treatment with thiamin. Although brain slices from symptomatic animals produced 14CO2 and 14C-acetylcholine from [U-14C]glucose at rates similar to controls under resting conditions, their K+-induced-increase declined by 50 and 75%, respectively. In brain homogenates from these same animals, the activities of two TPP-dependent enzymes transketolase (EC 2.2.1.1) and 2-oxoglutarate dehydrogenase complex (EC 1.2.4.2, EC 2.3.1.61, EC 1.6.4.3) decreased 60-65% and 36%, respectively. The activity of the third TPP-dependent enzyme, pyruvate dehydrogenase complex (EC 1.2.4.1, EC 2.3.1.12, EC 1.6.4.3) did not change nor did the activity of its activator pyruvate dehydrogenase phosphate phosphatase (EC 3.1.3.43). Although treatment with thiamin for seven days reversed the neurological symptoms and restored glucose oxidation, acetylcholine synthesis and 2-oxoglutarate dehydrogenase activity to normal, transketolase activity remained 30-32% lower than controls. The activities of other TPP-independent enzymes (hexokinase, phosphofructokinase, and glutamate dehydrogenase) were normal in both deficient and reversed animals.
Collapse
|
17
|
Tucek S. Problems in the organization and control of acetylcholine synthesis in brain neurons. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1984; 44:1-46. [PMID: 6385131 DOI: 10.1016/0079-6107(84)90011-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|