1
|
Jiachen Z, Paul Kwong Hang T, Kenneth Kak Yuen W, Vincent Chi Hang L. Pathological role of methionine in the initiation and progression of biliary atresia. Front Pediatr 2023; 11:1263836. [PMID: 37772039 PMCID: PMC10522914 DOI: 10.3389/fped.2023.1263836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Methionine (Met) is an essential amino acid, and its excessive dietary intake and/or its metabolism disturbance could lead to accumulation/depletion of hepatic Met and some of the key intermediates of these pathways, which would interfere normal liver function and would be associated with liver diseases. Biliary atresia (BA) is a life-threatening disease characterized by inflammatory fibrosclerosing changes of the intrahepatic and extrahepatic biliary systems and is the primary cause of obstructive neonatal cholestasis with a rapid course of liver failure. However, its pathogenesis remains unknown. Previous studies reported elevated Met level in patients with obstructive cholestasis, suggesting a potential link between Met and BA. This paper reviews the Met metabolism in normal conditions and its dysregulation under abnormal conditions, the possible causes of hypermethioninemia, and its connection to BA pathogenesis: Abnormal hepatic level of Met could lead to a perturbation of redox homeostasis and mitochondrial functions of hepatocytes, enhancement of viral infectivity, and dysregulation of innate and adaptative immune cells in response to infection/damage of the liver contributing to the initiation/progression of BA.
Collapse
Affiliation(s)
- Zheng Jiachen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tam Paul Kwong Hang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wong Kenneth Kak Yuen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lui Vincent Chi Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Lu J, Weil JT, Cerrate S, Coon CN. Ontogeny of hepatic methionine catabolic enzyme activities (Transmethylation and Transsulphuration) and associated physiological amino acids in E10-21 chick embryos and D1-49 broilers. J Anim Physiol Anim Nutr (Berl) 2020; 105:507-519. [PMID: 33159699 DOI: 10.1111/jpn.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 01/25/2023]
Abstract
Developmental changes in hepatic methionine adenosyltransferase, cystathionine β-synthase, cystathionase, and glycine N-methyltransferase were determined in broiler chick embryos and hatched chicks by using radiometric and spectrometric methods. Hepatic free methionine, S-adenosylmethionine, S-adenosylhomocysteine, homocysteine, cystathionine, and cysteine levels were also investigated. Results showed an increase in hepatic MAT activity from E10 to E21 during embryogenesis, suggesting greater transmethylation rates throughout the rapid embryonic growth and development period. A strong positive correlation between embryo BW and MAT activity also supports this idea. The MAT specific activity continued to increase after hatching, but there was a negative correlation between chick BW and MAT activities from D1 to D49. This may indicate different MAT isozymes exist for chick embryo hepatic tissue compared to hepatic tissue of hatched chick and growing broilers. The developmental pattern of MAT isozymes could be critical for methionine metabolism to cope with the demand imposed on the embryo, chicks, and growing broilers. Additionally, the specific activity of hepatic CBS in chick embryos was determined to be lower compared to that observed in older broilers (35 and 49 days). Since liver CBS specific activity is at the lowest point from D1-7 in young chicks, the ability to convert adequate homocysteine to cysteine through transsulphuration may be limiting for cysteine synthesis at this time. Steady-state hepatic homocysteine levels in chick embryos and chicks may be a function of the rates of homocysteine formation, remethylation, and catabolism via the transsulphuration pathway. The present study indicates young chicks from D1 to D7 may have a limited ability for adequate transsulphuration; therefore, dietary cystine may be needed for optimum performance.
Collapse
Affiliation(s)
| | - Jordan Taylor Weil
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | - Craig Nelson Coon
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Chang MM, Lin CN, Fang CC, Chen M, Liang PI, Li WM, Yeh BW, Cheng HC, Huang BM, Wu WJ, Chen YMA. Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes. Sci Rep 2018; 8:6960. [PMID: 29725048 PMCID: PMC5934382 DOI: 10.1038/s41598-018-22298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Plants containing aristolochic acids (AA) are nephrotoxins. Glycine N-methyltransferase (GNMT) acts to bind environmental toxins such as benzo(a)pyrene and aflatoxin B1, translocate into nucleus, and alter hepatic metabolism. This study aims to determine the role of GNMT in AA-induced nephropathy. We established an AA nephropathy mouse model and found that AA type I (AAI)-induced nephropathy at a lower concentration in male than in female mice, implying sex differences in AAI resistance. Microarray analysis and AAI-treated mouse models showed that GNMT moderately reduced AAI-induced nephropathy by lowering the upregulated level of NQO1 in male, but significantly improved the nephropathy additionally by increasing Cyp3A44/3A41 in female. The protective effects of GNMT were absent in female GNMT knockout mice, in which re-expression of hepatic GNMT significantly decreased AAI-induced nephropathy. Mechanism-wise, AAI enhanced GNMT nuclear translocation, resulting in GNMT interaction with the promoter region of the genes encoding Nrf2 and CAR/PXR, the transcription factors for NQO1 and CYP3A44/3A41, respectively. Unlike the preference for Nrf2/NQO1 transcriptions at lower levels of GNMT, overexpression of GNMT preferred CAR/PXR/CYP3A44/3A41 transcriptions and alleviated kidney injury upon AAI treatment. In summary, hepatic GNMT protected mice from AAI nephropathy by enhancing CAR/PXR/CYP3A44/3A41 transcriptions and reducing Nrf2/NQO1 transcriptions.
Collapse
Affiliation(s)
- Ming-Min Chang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Ni Lin
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Marcelo Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Pingtung Hospital, Ministry of Health and Welfare, Executive Yuan, Pingtung, Taiwan.,Department of Urology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jeng Wu
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Pérez-Sala D, Martínez-Costa ÓH, Aragón JJ, Pajares MA. Alterations in Nucleocytoplasmic Localization of the Methionine Cycle Induced by Oxidative Stress During Liver Disease. THE LIVER 2018:21-41. [DOI: 10.1016/b978-0-12-803951-9.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Burgos ES, Walters RO, Huffman DM, Shechter D. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting. Chem Sci 2017; 8:6601-6612. [PMID: 29449933 PMCID: PMC5676521 DOI: 10.1039/c7sc02830j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/25/2017] [Indexed: 01/02/2023] Open
Abstract
Methyltransferases use S-adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo, we report a highly-sensitive one-step deaminase-linked continuous assay where the S-adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S-inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N-methyltransferase (DIM-5) and a sarcosine/dimethylglycine N-methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S-8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h-1, thus making it possible to quantify low nanomolar concentrations of glycine N-methyltransferase within crude biological samples. With Z'-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA . ; ; ; Tel: +1-718-430-4120 ; Tel: +1-718-430-4128
| | - Ryan O Walters
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Medicine , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Institute for Aging Research , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA
| | - Derek M Huffman
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Medicine , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Institute for Aging Research , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA
| | - David Shechter
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA . ; ; ; Tel: +1-718-430-4120 ; Tel: +1-718-430-4128
| |
Collapse
|
6
|
Li CH, Yen CH, Chen YF, Lee KJ, Fang CC, Zhang X, Lai CC, Huang SF, Lin HK, Arthur Chen YM. Characterization of the GNMT-HectH9-PREX2 tripartite relationship in the pathogenesis of hepatocellular carcinoma. Int J Cancer 2017; 140:2284-2297. [PMID: 28205209 DOI: 10.1002/ijc.30652] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) involves many molecular pathways. Glycine N-methyltransferase (GNMT) is downregulated in almost all HCC and its gene knockout mice developed HCC with high penetrance. We identified PREX2, a novel PTEN inhibitor, as a GNMT-interacting protein. Such interaction enhanced degradation of PREX2 through an E3 ligase HectH9-mediated proteasomal ubiquitination pathway. Depletion of GNMT or HectH9 resulted in AKT activation in a PREX2 dependent manner and enhanced cell proliferation. An elevated PREX2 protein expression accompanied by activation of AKT was observed in the liver of Gnmt knockout mice. PREX2 protein expression was upregulated in 54.9% of human HCC samples, while its mRNA level was comparable in tumor and tumor-adjacent tissue, suggesting a post-translational alteration of PREX2 expression. Higher level of PREX2 in the tumor tissues was associated with poorer survival. These results reveal a novel mechanism in which GNMT participates in AKT signaling and HCC tumorigenesis by promoting HectH9-mediated PREX2 degradation.
Collapse
Affiliation(s)
- Chung-Hsien Li
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yen-Fu Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuo-Jui Lee
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest Cancer Center, Wake Forest University, Winston-Salem, NC
| | - Chih-Chung Lai
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shiu-Feng Huang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Cancer Center, Wake Forest University, Winston-Salem, NC
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
7
|
Kriangkrai R, Chareonvit S, Iseki S, Limwongse V. Pretreatment Effect of Folic Acid on 13-Cis-RA-Induced Cellular Damage of Developing Midfacial Processes in Cultured Rat Embryos. Open Dent J 2017; 11:200-212. [PMID: 28567144 PMCID: PMC5418950 DOI: 10.2174/1874210601711010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Excess treatment of 13-cis-RA (Accutane®) on pregnant women induces craniofacial malformation found in infants. However, the effect of folic acid on 13-cis-RA-induced cellular damages of developing midfacial processes is still unknown. The purpose of this study was to investigate the pretreatment effect of folic acid (FA) on 13-cis-RA-induced cellular damage in developing midfacial processes in rat embryos. MATERIALS AND METHODS The rat embryos at developing midfacial processes were performed by whole embryo culture in vitro, in the presence of 13-cis-RA (20 µM) with or without pre-treatment of FA (100 µM). The midfacial morphogenesis score, PCNA and TUNEL assay staining were evaluated for morphogenesis, cell proliferation and apoptosis of the midfacial processes, respectively. RESULTS The 13-cis-RA-treated embryos at 24h showed atrophy of midfacial processes with significantly decreased morphogenesis score and cell proliferation, and increased apoptotic cell death. In contrast, the embryos pre-treated with FA for 18h, followed by 13-cis-RA treatment for 24h (FA-RA) showed significantly greater morphogenesis score, increased cell proliferation and lower apoptotic cell death compared to those of the 13-cis-RA-treated embryos. CONCLUSION The results suggest that FA reduced the teratogenic effects of 13-cis-RA on midfacial process tissue. Future investigations regarding the anti-teratogenic mechanism of FA on the prevention of damages in midface processes induced by 13-cis-RA on pregnant woman are warranted.
Collapse
Affiliation(s)
- Rungarun Kriangkrai
- Department of Oral Biology, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Suconta Chareonvit
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Visaka Limwongse
- Department of Oral Biology, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
8
|
Saa PA, Nielsen LK. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach. Sci Rep 2016; 6:29635. [PMID: 27417285 PMCID: PMC4945864 DOI: 10.1038/srep29635] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
Kinetic models are essential to quantitatively understand and predict the behaviour of metabolic networks. Detailed and thermodynamically feasible kinetic models of metabolism are inherently difficult to formulate and fit. They have a large number of heterogeneous parameters, are non-linear and have complex interactions. Many powerful fitting strategies are ruled out by the intractability of the likelihood function. Here, we have developed a computational framework capable of fitting feasible and accurate kinetic models using Approximate Bayesian Computation. This framework readily supports advanced modelling features such as model selection and model-based experimental design. We illustrate this approach on the tightly-regulated mammalian methionine cycle. Sampling from the posterior distribution, the proposed framework generated thermodynamically feasible parameter samples that converged on the true values, and displayed remarkable prediction accuracy in several validation tests. Furthermore, a posteriori analysis of the parameter distributions enabled appraisal of the systems properties of the network (e.g., control structure) and key metabolic regulations. Finally, the framework was used to predict missing allosteric interactions.
Collapse
Affiliation(s)
- Pedro A. Saa
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Li CH, Lin MH, Chu SH, Tu PH, Fang CC, Yen CH, Liang PI, Huang JC, Su YC, Sytwu HK, Chen YMA. Role of glycine N-methyltransferase in the regulation of T-cell responses in experimental autoimmune encephalomyelitis. Mol Med 2015; 20:684-96. [PMID: 25535034 DOI: 10.2119/molmed.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/12/2014] [Indexed: 01/18/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is known for its function as a tumor suppressor gene. Since 100% of female Gnmt(-/-) mice developed hepatocellular carcinoma, we hypothesized that Gnmt(-/-) mice may have defective immune surveillance. In this study, we examined the immune modulation of GNMT in T-cell responses using experimental autoimmune encephalomyelitis (EAE). The results showed that EAE severity was reduced significantly in Gnmt(-/-) mice. Pathological examination of the spinal cords revealed that Gnmt(-/-) mice had significantly lower levels of mononuclear cell infiltration and demyelination than the wild-type mice. In addition, quantitative real-time PCR showed that expression levels of proinflammatory cytokines, including interferon (IFN)-γ and interleukin (IL)-17A, were much lower in the spinal cord of Gnmt(-/-) than in that of wild-type mice. Accordingly, myelin oligodendrocyte glycoprotein (MOG)-specific T-cell proliferation and induction of T-helper (Th)1 and Th17 cells were markedly suppressed in MOG(35-55)-induced Gnmt(-/-) mice. Moreover, the number of regulatory T (Treg) cells was increased significantly in these mice. When the T-cell receptor was stimulated, the proliferative capacity and the activation status of mTOR-associated downstream signaling were decreased significantly in Gnmt(-/-) CD4(+) T cells via an IL-2- and CD25-independent manner. Moreover, GNMT deficiency enhanced the differentiation of Treg cells without affecting the differentiation of Th1 and Th17 cells. Furthermore, the severity of EAE in mice adoptive transferred with GNMT-deficient CD4(+) T cells was much milder than in those with wild-type CD4(+) T cells. In summary, our findings suggest that GNMT is involved in the pathogenesis of EAE and plays a crucial role in the regulation of CD4(+) T-cell functions.
Collapse
Affiliation(s)
- Chung-Hsien Li
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Han Chu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chia Su
- National Laboratory Animal Center, National Applied Research Laboratories
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
The multi-functional roles of GNMT in toxicology and cancer. Toxicol Appl Pharmacol 2012; 266:67-75. [PMID: 23147572 DOI: 10.1016/j.taap.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/23/2022]
Abstract
Although glycine N-methyltransferase (GNMT) has been discovered for five decades, its function was not elucidated until recently. In this review, we discuss the multiple roles of GNMT in toxicology and cancer. Besides catalyzing the production of methylglycine (sarcosine) in one carbon metabolism pathway, GNMT was found to be able to bind a number of polycyclic aromatic hydrocarbons and inhibit DNA adducts formation. Moreover, GNMT exerts protective effects against the cytotoxicity and carcinogenicity of benzo(a)pyrene and aflatoxin B(1) in vitro and in vivo. Occupational study showed that workers who had genotypes with higher GNMT promoter activity may have lower content of oxidative damaged DNA products in their urine. In terms of cancer, recent studies using GNMT knockout mouse models demonstrated that GNMT deficiency has high penetrance in inducing the development of steatohepatitis and hepatocellular carcinoma. In terms of the mechanism, besides dysregulation of epigenetic modification, insights have been provided by recent identification of two novel proteins interacting with GNMT-DEPTOR and NPC2. These studies suggest that GNMT not only is involved in mTOR signaling pathway, but also plays an important role in the intracellular trafficking of cholesterol. The implication of these findings to the preventive medicine and translational research will be discussed.
Collapse
|
11
|
Martínez-López N, García-Rodríguez JL, Varela-Rey M, Gutiérrez V, Fernández-Ramos D, Beraza N, Aransay AM, Schlangen K, Lozano JJ, Aspichueta P, Luka Z, Wagner C, Evert M, Calvisi DF, Lu SC, Mato JM, Martínez-Chantar ML. Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1. Gastroenterology 2012; 143:787-798.e13. [PMID: 22687285 PMCID: PMC3429651 DOI: 10.1053/j.gastro.2012.05.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/22/2012] [Accepted: 05/26/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Patients with cirrhosis are at high risk for developing hepatocellular carcinoma (HCC), and their liver tissues have abnormal levels of S-adenosylmethionine (SAMe). Glycine N-methyltransferase (GNMT) catabolizes SAMe, but its expression is down-regulated in HCC cells. Mice that lack GNMT develop fibrosis and hepatomas and have alterations in signaling pathways involved in carcinogenesis. We investigated the role of GNMT in human HCC cell lines and in liver carcinogenesis in mice. METHODS We studied hepatoma cells from GNMT knockout mice and analyzed the roles of liver kinase B1 (LKB1, STK11) signaling via 5'-adenosine monophosphate-activated protein kinase (AMPK) and Ras in regulating proliferation and transformation. RESULTS Hepatoma cells from GNMT mice had defects in LKB1 signaling to AMPK, making them resistant to induction of apoptosis by adenosine 3',5'-cyclic monophosphate activation of protein kinase A and calcium/calmodulin-dependent protein kinase kinase 2. Ras-mediated hyperactivation of LKB1 promoted proliferation of GNMT-deficient hepatoma cells and required mitogen-activated protein kinase 2 (ERK) and ribosomal protein S6 kinase polypeptide 2 (p90RSK). Ras activation of LKB1 required expression of RAS guanyl releasing protein 3 (RASGRP3). Reduced levels of GNMT and phosphorylation of AMPKα at Thr172 and increased levels of Ras, LKB1, and RASGRP3 in HCC samples from patients were associated with shorter survival times. CONCLUSIONS Reduced expression of GNMT in mouse hepatoma cells and human HCC cells appears to increase activity of LKB1 and RAS; activation of RAS signaling to LKB1 and RASGRP3, via ERK and p90RSK, might be involved in liver carcinogenesis and be used as a prognostic marker. Reagents that disrupt this pathway might be developed to treat patients with HCC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Apoptosis
- Azacitidine/pharmacology
- Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA Methylation
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Glycine N-Methyltransferase/deficiency
- Glycine N-Methyltransferase/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transfection
- Tumor Burden
- ras Guanine Nucleotide Exchange Factors
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Nuria Martínez-López
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain.
| | - Juan L García-Rodríguez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Virginia Gutiérrez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Naiara Beraza
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Karin Schlangen
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas, Hospital Clinic, Centre Esther Koplovitz, Barcelona, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthias Evert
- Institute of Pathology, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| |
Collapse
|
12
|
Yen CH, Lu YC, Li CH, Lee CM, Chen CY, Cheng MY, Huang SF, Chen KF, Cheng AL, Liao LY, Lee YHW, Chen YMA. Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma. Mol Med 2012; 18:286-96. [PMID: 22160218 DOI: 10.2119/molmed.2011.00331] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/29/2011] [Indexed: 12/21/2022] Open
Abstract
Glycine N-methyltransferase (GNMT) is a tumor suppressor for hepatocellular carcinoma (HCC). High rates of Gnmt knockout mice developed HCC. Epigenetic alteration and dysregulation of several pathways including wingless-type MMTV integration site (Wnt), mitogen-activated protein kinase (MAPK) and Janus kinase and signal transducer and activator of transcription (JAK-STAT) are associated with HCC development in Gnmt knockout mice. We hypothesized that GNMT may regulate signal transduction through interacting with other proteins directly. In this report, we identified a mammalian target of rapamycin (mTOR) inhibitor (DEP domain containing MTOR-interacting protein [DEPDC6/DEPTOR]) as a GNMT-binding protein by using yeast two-hybrid screening. Fluorescence resonance energy transfer assay demonstrated that the C-terminal half of GNMT interact with the PSD-95/Dlg1/ZO-1 (PDZ) domain of DEPDC6/DEPTOR. Immunohistochemical staining showed that 27.5% (14/51) of HCC patients had higher expression levels of DEPDC6/DEPTOR in the tumorous tissues than in tumor-adjacent tissues, especially among HCC patients with hepatitis B viral infection (odds ratio 10.3, 95% confidence interval [CI] 1.05-11.3) or patients with poor prognosis (death hazard ratio 4.51, 95% CI 1.60-12.7). In terms of molecular mechanism, knockdown of DEPDC6/DEPTOR expression in HuH-7 cells caused S6K and 4E-BP activation, but suppressed Akt. Overexpression of DEPDC6/DEPTOR activated Akt and increased survival of HCC cells. Overexpression of GNMT caused activation of mTOR/raptor downstream signaling and delayed G2/M cell cycle progression, which altogether resulted in cellular senescence. Furthermore, GNMT reduced proliferation of HuH-7 cells and sensitized them to rapamycin treatment both in vitro and in vivo. In conclusion, GNMT regulates HCC growth in part through interacting with DEPDC6/DEPTOR and modulating mTOR/raptor signaling pathway. Both GNMT and DEPDC6/DEPTOR are potential targets for developing therapeutics for HCC.
Collapse
Affiliation(s)
- Chia-Hung Yen
- AIDS Prevention and Research Center, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Martinov MV, Vitvitsky VM, Banerjee R, Ataullakhanov FI. The logic of the hepatic methionine metabolic cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:89-96. [PMID: 19833238 DOI: 10.1016/j.bbapap.2009.10.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 12/18/2022]
Abstract
This review describes our current understanding of the "traffic lights" that regulate sulfur flow through the methionine bionetwork in liver, which supplies two major homeostatic systems governing cellular methylation and antioxidant potential. Theoretical concepts derived from mathematical modeling of this metabolic nexus provide insights into the properties of this system, some of which seem to be paradoxical at first glance. Cellular needs supported by this network are met by use of parallel metabolic tracks that are differentially controlled by intermediates in the pathway. A major task, i.e. providing cellular methylases with the methylating substrate, S-adenosylmethionine, is met by flux through the methionine adenosyltransferase I isoform. On the other hand, a second important function, i.e., stabilization of the blood methionine concentration in the face of high dietary intake of this amino acid, is achieved by switching to an alternative isoform, methionine adenosyltransferase III, and to glycine N-methyl transferase, which together bypass the first two reactions in the methionine cycle. This regulatory strategy leads to two metabolic modes that differ in metabolite concentrations and metabolic rates almost by an order of magnitude. Switching between these modes occurs in a narrow trigger zone of methionine concentration. Complementary experimental and theoretical analyses of hepatic methionine metabolism have been richly informative and have the potential to illuminate its response to oxidative challenge, to methionine restriction and lifespan extension studies and to diseases resulting from deficiencies at specific loci in this pathway.
Collapse
Affiliation(s)
- M V Martinov
- National Research Center for Hematology, RAMS, Moscow, Russia
| | | | | | | |
Collapse
|
14
|
Luka Z, Mudd SH, Wagner C. Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem 2009; 284:22507-11. [PMID: 19483083 DOI: 10.1074/jbc.r109.019273] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methylation is a major biological process. It has been shown to be important in formation of compounds such as phosphatidylcholine, creatine, and many others and also participates in epigenetic effects through methylation of histones and DNA. The donor of methyl groups for almost all cellular methylation reactions is S-adenosylmethionine. It seems that the level of S-adenosylmethionine must be regulated in response to developmental stages and metabolic changes, and the enzyme glycine N-methyltransferase has been shown to play a major role in such regulation in mammals. This minireview will focus on the latest discoveries in the elucidation of the mechanism of that regulation.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
15
|
Abstract
In the early 1930s, Banting and Best, the discoverers of insulin, found that choline could prevent the development of fatty liver disease (steatosis) in pancreatectomized dogs treated with insulin. Later work indicated that in rats and mice, diets deficient in labile methyl groups (choline, methionine, betaine, folate) produced fatty liver and that long-term administration of diets deficient in choline and methionine also caused hepatocellular carcinoma. These experiments not only linked steatosis and diabetes but also provided evidence, for the first time, of the importance of labile methyl group balance to maintain normal liver function. This conclusion is now amply supported by the observation of mice devoid of key enzymes of methionine and folate metabolism and in patients with severe deficiencies in these enzymes. Moreover, treatments with various methionine metabolites in experimental animal models of liver disease show hepatoprotective properties.
Collapse
Affiliation(s)
- José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (ciberhed), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.
| | | | | |
Collapse
|
16
|
Luka Z, Loukachevitch LV, Wagner C. Acetylation of N-terminal valine of glycine N-methyltransferase affects enzyme inhibition by folate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1342-6. [PMID: 18501206 DOI: 10.1016/j.bbapap.2008.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
Abstract
Native liver glycine N-methyltransferase (GNMT) is N-acetylated while the recombinant enzyme is not. We show here that acetylation of the N-terminal valine affects several kinetic parameters of the enzyme. Glycine N-methyltransferase is a regulatory enzyme mediating the availability of methyl groups by virtue of being inhibited by folate. N-acetylation does not affect the overall structure of the protein and does not affect basal enzyme activity of GNMT. Binding of both the mono- and pentaglutamate forms of 5-methyltetrahydrofolate is the same for the acetylated and non-acetylated forms of the enzyme, however the pentaglutamate form is bound more tightly than the monoglutamate form in both cases. Although binding of the folates is similar for the acetylated and non-acetylated forms of the enzyme, inhibition of enzyme activity differs significantly. The native, N-acetylated form of the enzyme shows 50% inhibition at 1.3 microM concentration of the pentaglutamate while the recombinant non-acetylated form shows 50% inhibition at 590 microM. In addition, the binding of folate results in cooperativity of the substrate S-adenosylmethionine (AdoMet), with a Hill coefficient of 1.5 for 5-methyltetrahydrofolate pentaglutamate.
Collapse
Affiliation(s)
- Zigmund Luka
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| | | | | |
Collapse
|
17
|
Luz Martínez-Chantar M, Vázquez-Chantada M, Ariz U, Martínez N, Varela M, Luka Z, Capdevila A, Rodríguez J, Aransay AM, Matthiesen R, Yang H, Calvisi DF, Esteller M, Fraga M, Lu SC, Wagner C, Mato JM. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 2008; 47:1191-9. [PMID: 18318442 PMCID: PMC2405897 DOI: 10.1002/hep.22159] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Glycine N-methyltransferase (GNMT) is the main enzyme responsible for catabolism of excess hepatic S-adenosylmethionine (SAMe). GNMT is absent in hepatocellular carcinoma (HCC), messenger RNA (mRNA) levels are significantly lower in livers of patients at risk of developing HCC, and GNMT has been proposed to be a tumor-susceptibility gene for liver cancer. The identification of several children with liver disease as having mutations of the GNMT gene further suggests that this enzyme plays an important role in liver function. In the current study we studied development of liver pathologies including HCC in GNMT-knockout (GNMT-KO) mice. GNMT-KO mice have elevated serum aminotransferase, methionine, and SAMe levels and develop liver steatosis, fibrosis, and HCC. We found that activation of the Ras and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways was increased in liver tumors from GNMT-KO mice coincidently with the suppression of the Ras inhibitors Ras-association domain family/tumor suppressor (RASSF) 1 and 4 and the JAK/STAT inhibitors suppressor of cytokine signaling (SOCS) 1-3 and cytokine-inducible SH2-protein. Finally, we found that methylation of RASSF1 and SOCS2 promoters and the binding of trimethylated lysine 27 in histone 3 to these 2 genes was increased in HCC from GNMT-KO mice. CONCLUSION These data demonstrate that loss of GNMT induces aberrant methylation of DNA and histones, resulting in epigenetic modulation of critical carcinogenic pathways in mice.
Collapse
Affiliation(s)
| | | | - Usue Ariz
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| | - Nuria Martínez
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| | - Marta Varela
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | | | - Juan Rodríguez
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| | - Ana M. Aransay
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| | - Rune Matthiesen
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| | - Heping Yang
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA
| | - Diego F. Calvisi
- Division of Experimental Pathology and Oncology, University of Sassary, Sassary, Italy
| | - Manel Esteller
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Mario Fraga
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Shelly C. Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University, Nashville, TN,Tennessee Valley Department of Medical Affairs Medical Center, Nashville, TN
| | - José M. Mato
- CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Bizkaia, Spain
| |
Collapse
|
18
|
Luka Z. Methyltetrahydrofolate in folate-binding protein glycine N-methyltransferase. VITAMINS AND HORMONES 2008; 79:325-45. [PMID: 18804700 DOI: 10.1016/s0083-6729(08)00411-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, folate is used as a carrier of one-carbon units (C(1)) in nucleic acids metabolism and biological methylation. Among all forms of folate the most abundant is 5-methyltetrahydrofolate (5-CH(3)-THF), which is of exceptional importance. Its distinctive role among other forms of folate is in its dual function. As a C(1) carrier it is used for synthesis of methionine by remethylation of homocysteine. In addition, 5-CH(3)-THF is bound to and inhibits glycine-N-methyltransferase (GNMT). GNMT is one of the key enzymes in methionine and S-adenosylmethionine (AdoMet) metabolism. It removes excess AdoMet by using it for methylation of glycine. The interaction of 5-CH(3)-THF and GNMT was proposed as an important regulatory mechanism in AdoMet metabolism and biological methylation. The recent discovery of human individuals with mutant GNMT and the study of a mouse model with the GNMT gene knocked out showed that inactivation of that enzyme, indeed, has a significant impact on AdoMet levels in the liver and plasma. The crystal structure of GNMT complexed with 5-CH(3)-THF revealed that there are two folate molecules bound to one tetrameric form of GNMT, which is a basis for establishing of mechanism of inhibition of GNMT. The role of GNMT as a folate-binding protein and how it affects one-carbon folate metabolism is discussed.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
19
|
Velichkova P, Himo F. Methyl transfer in glycine N-methyltransferase. A theoretical study. J Phys Chem B 2007; 109:8216-9. [PMID: 16851960 DOI: 10.1021/jp0443254] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Density functional theory calculations using the hybrid functional B3LYP have been performed to study the methyl transfer step in glycine N-methyltransferase (GNMT). This enzyme catalyzes the S-adenosyl-L-methionine (SAM)-dependent methylation of glycine to form sarcosine. The starting point for the calculations is the recent X-ray crystal structure of GNMT complexed with SAM and acetate. Several quantum chemical models with different sizes, employing up to 98 atoms, were used. The calculations demonstrate that the suggested mechanism, where the methyl group is transferred in a single S(N)2 step, is thermodynamically plausible. By adding or eliminating various groups at the active site, it was furthermore demonstrated that hydrogen bonds to the amino group of the glycine substrate lower the reaction barrier, while hydrogen bonds to the carboxylate group raise the barrier.
Collapse
Affiliation(s)
- Polina Velichkova
- Theoretical Chemistry, Department of Biotechnology, Royal Institute of Technology, Albanova University Center, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
20
|
Soriano A, Castillo R, Christov C, Andrés J, Moliner V, Tuñón I. Catalysis in glycine N-methyltransferase: testing the electrostatic stabilization and compression hypothesis. Biochemistry 2007; 45:14917-25. [PMID: 17154529 DOI: 10.1021/bi061319k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycine N-methyltransferase (GNMT) is an S-adenosyl-l-methionine dependent enzyme that catalyzes glycine transformation to sarcosine. Here, we present a hybrid quantum mechanics/molecular mechanics (QM/MM) computational study of the reaction compared to the counterpart process in water. The process takes place through an SN2 mechanism in both media with a transition state in which the transferring methyl group is placed in between the donor (SAM) and the acceptor (the amine group of glycine). Comparative analysis of structural, electrostatic, and electronic characteristics of the in-solution and enzymatic transition states allows us to get a deeper insight into the origins of the enzyme's catalytic power. We found that the enzyme is able to stabilize the substrate in its more active basic form by means of a positively charged residue (Arg175) placed in the active site. However, the maximum stabilization is attained for the transition state. In this case, the enzyme is able to form stronger hydrogen bonds with the positively charged amine group. Finally, we show that in agreement with previous computational studies on other methyltransferases, there is no computational evidence for the compression hypothesis, as was formulated by Schowen (Hegazi, M. F., Borchardt, R. T., and Schowen, R. L. (1979) J. Am. Chem. Soc. 101, 4359-4365).
Collapse
Affiliation(s)
- Alejandro Soriano
- Departament de Ciències Experimentals, Universitat Jaume I, 12071 Castellón, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Nieman KM, Hartz CS, Szegedi SS, Garrow TA, Sparks JD, Schalinske KL. Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats. Am J Physiol Endocrinol Metab 2006; 291:E1235-42. [PMID: 16835399 DOI: 10.1152/ajpendo.00237.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A diabetic state induces the activity and abundance of glycine N-methyltransferase (GNMT), a key protein in the regulation of folate, methyl group, and homocysteine metabolism. Because the folate-dependent one-carbon pool is a source of methyl groups and 5-methyltetrahydrofolate allosterically inhibits GNMT, the aim of this study was to determine whether folate status has an impact on the interaction between diabetes and methyl group metabolism. Rats were fed a diet containing deficient (0 ppm), adequate (2 ppm), or supplemental (8 ppm) folate for 30 days, after which diabetes was initiated in one-half of the rats by streptozotocin treatment. The activities of GNMT, phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine S-methyltransferase (BHMT) were increased about twofold in diabetic rat liver; folate deficiency resulted in the greatest elevation in GNMT activity. The abundance of GNMT protein and mRNA, as well as BHMT mRNA, was also elevated in diabetic rats. The marked hyperhomocysteinemia in folate-deficient rats was attenuated by streptozotocin, likely due in part to increased BHMT expression. These results indicate that a diabetic state profoundly modulates methyl group, choline, and homocysteine metabolism, and folate status may play a role in the extent of these alterations. Moreover, the upregulation of BHMT and PEMT may indicate an increased choline requirement in the diabetic rat.
Collapse
Affiliation(s)
- Kristin M Nieman
- Dept. of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lai MC, Wang CC, Chuang MJ, Wu YC, Lee YC. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res Microbiol 2006; 157:948-55. [PMID: 17098399 DOI: 10.1016/j.resmic.2006.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 07/31/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Methanohalophilus portucalensis FDF1 can synthesize the compatible solute betaine de novo through the methylation of glycine, sarcosine and dimethylglycine with the methyl group from S-adenosylmethionine. After separation by DEAE-Sephacel ion chromatography using a KCl step gradient, glycine, sarcosine and dimethylglycine methytransfer (GSDMT) activities were detected in a single peak. The estimated molecular weight of GSDMT was 240 kDa and 2-D gel analysis indicated it was separated into four subunits (52 kDa) with different pI. The PBE94 chromatofocusing column also separated GSDMT into four protein peaks A, B, C, D. Both peak B and D proteins possessed GSDMT activity, while the peak A protein only exhibited SDMT activity. The multiple methyltransferase activities of the large complex appear to be unique compared to other methyltransferases used in betaine synthesis. Further methyltransferase assays in response to different concentrations of KCl indicated that the peak D protein exhibited low GSDMT activity only when K(+) < or = 0.4 M. The peak B protein exhibited a higher GSDMT activity at 0.4 M K(+), while the peak A protein exhibited SDMT activity only at higher K(+) (0.8 M). These results suggest that the internal K(+) concentration regulates GSDMT activities and affects the net betaine accumulation in the cells.
Collapse
Affiliation(s)
- Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
23
|
Beagle B, Yang TL, Hung J, Cogger EA, Moriarty DJ, Caudill MA. The glycine N-methyltransferase (GNMT) 1289 C->T variant influences plasma total homocysteine concentrations in young women after restricting folate intake. J Nutr 2005; 135:2780-5. [PMID: 16317120 DOI: 10.1093/jn/135.12.2780] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycine N-methyltransferase (GNMT) is a key regulatory protein in folate metabolism, methionine availability, and transmethylation reactions. Perturbations in GNMT may lead to aberrations in homocysteine metabolism, a marker of numerous pathologies. The primary objective of this study was to examine the influence of the GNMT 1289 C-->T alone, and in combination with the methylenetetrahydrofolate reductase (MTHFR) 677 C-->T variant, on plasma total homocysteine concentrations in healthy young women (n = 114). Plasma total homocysteine was measured at baseline (wk 0) and after 2 wk of controlled folate restriction (135 microg/d as dietary folate equivalents). Plasma homocysteine concentrations did not differ among the GNMT C1289T genotypes at baseline. However, after folate restriction, women with the GNMT 1289 TT genotype (n = 16) had higher (P = 0.019) homocysteine concentrations than women with the CT (n = 51) or CC (n = 47) genotype. The influence of the GNMT 1289 C-->T variant on homocysteine was dependent on the MTHFR C677T genotype. In subjects with the MTHFR 677 CC genotype, homocysteine was greater (P < or = 0.05) for GNMT 1289 TT subjects relative to 1289 CT or CC subjects. However, in subjects with the MTHFR 677 TT genotype, plasma homocysteine concentrations did not differ among the GNMT C1289T genotypes. Overall, these data suggest that the GNMT 1289 C-->T polymorphism influences plasma homocysteine and is responsive to folate intake.
Collapse
Affiliation(s)
- Brandon Beagle
- Human Nutrition and Food Science Department, Cal Poly Pomona University, CA 91768, USA
| | | | | | | | | | | |
Collapse
|
24
|
Pakhomova S, Luka Z, Grohmann S, Wagner C, Newcomer ME. Glycine N-methyltransferases: a comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes. Proteins 2005; 57:331-7. [PMID: 15340920 DOI: 10.1002/prot.20209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glycine N-methyltransferases (GNMTs) from three mammalian sources were compared with respect to their crystal structures and kinetic parameters. The crystal structure for the rat enzyme was published previously. Human and mouse GNMT were expressed in Escherichia coli in order to determine their crystal structures. Mouse GNMT was crystallized in two crystal forms, a monoclinic form and a tetragonal form. Comparison of the three structures reveals subtle differences, which may relate to the different kinetic properties of the enzymes. The flexible character of several loops surrounding the active site, along with an analysis of the active site boundaries, indicates that the observed conformations of human and mouse GNMTs are more open than that of the rat enzyme. There is an increase in kcat when going from rat to mouse to human, suggesting a correlation with the increased flexibility of some structural elements of the respective enzymes.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- J D Finkelstein
- Department of Veterans Affairs Medical Center and George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
26
|
Kloor D, Karnahl K, Kömpf J. Characterization of glycine N-methyltransferase from rabbit liver. Biochem Cell Biol 2005; 82:369-74. [PMID: 15181470 DOI: 10.1139/o04-007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The enzymatic properties of glycine N-methyltransferase from rabbit liver and the effects of endogenous adenosine nucleosides, nucleotides and methyltransferase inhibitors were investigated using a photometrical assay to detect sarcosine with o-dianisidine as a dye. After isolation and purification the denatured enzyme showed a two-banded pattern by SDS-PAGE. The enzyme was highly specific for its substrates with a pH-optimum at pH 8.6. Glycine N-methyltransferase exhibits Michaelis-Menten kinetics for its substrates, S-adenosylmethionine and glycine, respectively. The apparent Km and Vmax values were determined for both the substrates, the other substrate being present at saturating concentrations. The enzyme was strongly inhibited in the presence of S-adenosylhomocysteine, 3-deazaadenosine, and 5'-S-isobutylthio-5'-deoxyadenosine. All other inhibitors investigated, adenosine, 2'-deoxyadenosine, aciclovir, and 5'-N-ethylcarboxamidoadenosine were poor inhibitors of the methylation reaction. Adenine nucleotides and vidarabin were without effect on the enzymatic activity. Based on the kinetic data glycine N-methyltransferase from rabbit liver exhibits appreciable activity at physiological S-adenosylmethionine and S-adenosylhomocysteine levels.
Collapse
Affiliation(s)
- Doris Kloor
- Department of Pharmacology and Toxicology, Wilhelmstrasse 56, Faculty of Medicine, Univesrity of Tübingen, D-72074 Tübingen, Germany.
| | | | | |
Collapse
|
27
|
Abstract
Alcoholic liver disease is associated with abnormal hepatic methionine metabolism, including increased levels of homocysteine and S-adenosylhomocysteine (SAH) and reduced levels of S-adenosylmethionine (SAM) and glutathione (GSH). The concept that abnormal methionine metabolism is involved in the pathogenesis of alcoholic liver disease was strengthened by our previous findings in a micropig model where combining dietary folate deficiency with chronic ethanol feeding produced maximal changes in these metabolites together with early onset of microscopic steatohepatitis and an eightfold increase in plasma aspartate aminotransferase. The goal of the present study was to determine potential mechanisms for abnormal levels of these methionine metabolites by analyzing the transcripts and activities of transmethylation enzymes in the livers of the same micropigs. Ethanol feeding or folate deficiency, separately or in combination, decreased transcript levels of methylenetetrahydrofolate reductase (MTHFR), methionine adenosyltransferase (MAT1A), glycine-N-methyltransferase (GNMT) and S-adenosylhomocysteine hydrolase (SAHH). Ethanol feeding alone reduced the activities of methionine synthase (MS) and MATIII and increased the activity of GNMT. Each diet, separately or in combination, decreased the activities of MTHFR and SAHH. In conclusion, the observed abnormal levels of methionine metabolites in this animal model of accelerated alcoholic liver injury can be ascribed to specific effects of ethanol with or without folate deficiency on the expressions and activities of hepatic enzymes that regulate transmethylation reactions. These novel effects on transmethylation reactions may be implicated in the pathogenesis of alcoholic liver disease.
Collapse
Affiliation(s)
- Jesus A Villanueva
- Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Abstract
Building on the work of Martinov et al. (2000), a mathematical model is developed for the methionine cycle. A large amount of information is available about the enzymes that catalyse individual reaction steps in the cycle, from methionine to S-adenosylmethionine to S-adenosylhomocysteine to homocysteine, and the removal of mass from the cycle by the conversion of homocysteine to cystathionine. Nevertheless, the behavior of the cycle is very complicated since many substrates alter the activities of the enzymes in the reactions that produce them, and some can also alter the activities of other enzymes in the cycle. The model consists of four differential equations, based on known reaction kinetics, that can be solved to give the time course of the concentrations of the four main substrates in the cycle under various circumstances. We show that the behavior of the model in response to genetic abnormalities and dietary deficiencies is similar to the changes seen in a wide variety of experimental studies. We conduct computational "experiments" that give understanding of the regulatory behavior of the methionine cycle under normal conditions and the behavior in the presence of genetic variation and dietary deficiencies.
Collapse
Affiliation(s)
- Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
29
|
Luka Z, Wagner C. Effect of naturally occurring mutations in human glycine N-methyltransferase on activity and conformation. Biochem Biophys Res Commun 2004; 312:1067-72. [PMID: 14651980 DOI: 10.1016/j.bbrc.2003.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Missense mutations in the enzyme, glycine N-methyltransferase (GNMT) have been shown to be one cause of persistent isolated hypermethioninaemia in humans. These mutations were first identified by metabolite analysis and were shown to be L49P, N140S, and H176N by gene sequencing. Here we report the kinetic and conformational characterization of the wild type and the three human mutant GNMTs expressed in Escherichia coli. Although quaternary, tertiary, and secondary structures of the mutant proteins are not changed, they are inactivated to different extents. The H176N mutation possesses 75% activity of the wild type enzyme while L49P has 10% activity and N140S has less than 0.5% activity of the wild type GNMT under the same conditions. All GNMTs display hyperbolic kinetics at neutral pH toward both substrates, S-adenosylmethionine and glycine. The turnover constants, k(cat) and Michaelis constants, K(m) for both substrates of all mutant proteins are considerably changed compared to the wild type enzyme.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
30
|
Ozias MK, Schalinske KL. All-trans-retinoic acid rapidly induces glycine N-methyltransferase in a dose-dependent manner and reduces circulating methionine and homocysteine levels in rats. J Nutr 2004; 133:4090-4. [PMID: 14652353 DOI: 10.1093/jn/133.12.4090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycine N-methyltransferase (GNMT) regulates the methyl group supply for S-adenosylmethionine-dependent transmethylation reactions. Retinoids have been shown to perturb methyl group metabolism by increasing the abundance and activity of GNMT, thereby leading to the loss of methyl groups. Previous studies used pharmacologic doses (30 micro mol/kg body weight) of various retinoids administered daily for a total of 10 d. Here, we examined the dose- and time-dependent relationships between all-trans-retinoic acid (ATRA) administration and induction of GNMT, as well as determining additional indices of methyl group and folate metabolism. For the dose-response study, rats were administered 0, 1, 5, 10, 15 or 30 micro mol ATRA/kg body weight for 10 d. For the time-course study, rats were given 30 micromol ATRA/kg body weight for 0, 1, 2, 4, or 8 d. A significant increase (105%) in GNMT activity was observed with doses as low as 5 micromol/kg body weight, whereas maximal induction (231%) of GNMT activity was achieved at 30 micromol/kg body weight. Induction of hepatic GNMT by ATRA was rapid, exhibiting a 31% increase after a single dose (1 d) and achieving maximal induction (95%) after 4 d. Plasma methionine and homocysteine concentrations were decreased 42 and 53%, respectively, in ATRA-treated rats compared with controls. In support of this finding, the hepatic activity of methionine synthase, the folate-dependent enzyme required for homocysteine remethylation, was elevated 40% in ATRA-treated rats. This work demonstrates that ATRA administration exerts a rapid effect on hepatic methyl group, folate and homocysteine metabolism at doses that are within the therapeutic range used by humans.
Collapse
Affiliation(s)
- Marlies K Ozias
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
31
|
Takata Y, Huang Y, Komoto J, Yamada T, Konishi K, Ogawa H, Gomi T, Fujioka M, Takusagawa F. Catalytic mechanism of glycine N-methyltransferase. Biochemistry 2003; 42:8394-402. [PMID: 12859184 DOI: 10.1021/bi034245a] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyltransfer reactions are some of the most important reactions in biological systems. Glycine N-methyltransferase (GNMT) catalyzes the S-adenosyl-l-methionine- (SAM-) dependent methylation of glycine to form sarcosine. Unlike most SAM-dependent methyltransferases, GNMT has a relatively high value and is weakly inhibited by the product S-adenosyl-l-homocysteine (SAH). The major role of GNMT is believed to be the regulation of the cellular SAM/SAH ratio, which is thought to play a key role in SAM-dependent methyltransfer reactions. Crystal structures of GNMT complexed with SAM and acetate (a potent competitive inhibitor of Gly) and the R175K mutated enzyme complexed with SAM were determined at 2.8 and 3.0 A resolutions, respectively. With these crystal structures and the previously determined structures of substrate-free enzyme, a catalytic mechanism has been proposed. Structural changes occur in the transitions from the substrate-free to the binary complex and from the binary to the ternary complex. In the ternary complex stage, an alpha-helix in the N-terminus undergoes a major conformational change. As a result, the bound SAM is firmly connected to protein and a "Gly pocket" is created near the bound SAM. The second substrate Gly binds to Arg175 and is brought into the Gly pocket. Five hydrogen bonds connect the Gly in the proximity of the bound SAM and orient the lone pair orbital on the amino nitrogen (N) of Gly toward the donor methyl group (C(E)) of SAM. Thermal motion of the enzyme leads to a collision of the N and C(E) so that a S(N)2 methyltransfer reaction occurs. The proposed mechanism is supported by mutagenesis studies.
Collapse
Affiliation(s)
- Yoshimi Takata
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045-7534, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Augoustides-Savvopoulou P, Luka Z, Karyda S, Stabler SP, Allen RH, Patsiaoura K, Wagner C, Mudd SH. Glycine N -methyltransferase deficiency: a new patient with a novel mutation. J Inherit Metab Dis 2003; 26:745-59. [PMID: 14739680 DOI: 10.1023/b:boli.0000009978.17777.33] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report studies of a Greek boy of gypsy origin that show that he has severe deficiency of glycine N -methyltransferase (GNMT) activity due to apparent homozygosity for a novel mutation in the gene encoding this enzyme that changes asparagine-140 to serine. At age 2 years he was found to have mildly elevated serum liver transaminases that have persisted to his present age of 5 years. At age 4 years, hypermethioninaemia was discovered. Plasma methionine concentrations have ranged from 508 to 1049 micro mol/L. Several known causes of hypermethioninaemia were ruled out by studies of plasma metabolites: tyrosinaemia type I by a normal plasma tyrosine and urine succinylacetone; cystathionine beta-synthase deficiency by total homocysteine of 9.4-12.1 micro mol/L; methionine adenosyltransferase I/III deficiency by S -adenosylmethionine (AdoMet) levels elevated to 1643-2222 nmol/L; and S -adenosylhomocysteine (AdoHcy) hydrolase deficiency by normal AdoHcy levels. A normal plasma N -methylglycine concentration in spite of elevated AdoMet strongly suggested GNMT deficiency. Molecular genetic studies identified a missense mutation in the coding region of the boy's GNMT gene, which, upon expression, retained only barely detectable catalytic activity. The mild hepatitis-like manifestations in this boy are similar to those in the only two previously reported children with GNMT deficiency, strengthening the likelihood of a causative association. Although his deficiency of GNMT activity may well be more extreme, his metabolic abnormalities are not strikingly greater. Also discussed is the metabolic role of GNMT; several additional metabolite abnormalities found in these patients; and remaining questions about human GNMT deficiency, such as the long-term prognosis, whether other individuals with this defect are currently going undetected, and means to search for such persons.
Collapse
|
33
|
Liu HH, Chen KH, Shih YP, Lui WY, Wong FH, Chen YMA. Characterization of reduced expression of glycine N-methyltransferase in cancerous hepatic tissues using two newly developed monoclonal antibodies. J Biomed Sci 2003; 10:87-97. [PMID: 12566990 DOI: 10.1007/bf02256001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2002] [Accepted: 07/31/2002] [Indexed: 11/29/2022] Open
Abstract
Glycine N-methyltransferase (GNMT) is a protein with multiple functions. Recently, two Italian siblings who had hepatomegaly and chronic elevation of serum transaminases were diagnosed to have GNMT deficiency caused by inherited compound heterozygosity of the GNMT gene with missence mutations. To evaluate the expression of GNMT in cell lines and tissues from hepatocellular carcinoma (HCC) patients, we produced two monoclonal antibodies (mAbs) 4-17 and 14-1 using two recombinant GNMT fusion proteins. M13 phage peptide display showed that the reactive epitopes of mAbs 4-17 and 14-1 were amino acid residues 11-15 and 272-276 of human GNMT, respectively. The dissociation constants of the binding between GNMT and mAbs were 1.7 x 10(-8) M for mAb 4-17 and 1.8 x 10(-9) M for mAb 14-1. Both mAbs can identify GNMT present in normal human and mouse liver tissues using Western blotting (WB) and immunohistochemical staining assay (IHC). In addition, WB with both mAbs showed that none of 2 hepatoblastoma and 5 HCC cell lines expressed GNMT. IHC demonstrated that 50% (13/26) of nontumorous liver tissues and 96% (24/25) of HCC tissues did not express GNMT. Therefore, the expression of GNMT was downregulated in human HCC.
Collapse
Affiliation(s)
- Hsiao-Han Liu
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
34
|
Rowling MJ, McMullen MH, Chipman DC, Schalinske KL. Hepatic glycine N-methyltransferase is up-regulated by excess dietary methionine in rats. J Nutr 2002; 132:2545-50. [PMID: 12221207 DOI: 10.1093/jn/132.9.2545] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) regulates S-adenosylmethionine (SAM) levels and the ratio of SAM:S-adenosylhomocysteine (SAH). In liver, methionine availability, both from the diet and via the folate-dependent one-carbon pool, modulates GNMT activity to maintain an optimal SAM:SAH ratio. The regulation of GNMT activity is accomplished via posttranslational and allosteric mechanisms. We more closely examined GNMT regulation in various tissues as a function of excess dietary methyl groups. Sprague Dawley rats were fed either a control diet (10% casein plus 0.3% L-methionine) or the control diet supplemented with graded levels (0.5-2%) of L-methionine. Pair-fed control groups of rats were included due to the toxicity associated with high methionine consumption. As expected, the hepatic activity of GNMT was significantly elevated in a dose-dependent fashion after 10 d of feeding the diets containing excess methionine. Moreover, the abundance of hepatic GNMT protein was similarly increased. The kidney had a significant increase in GNMT as a function of dietary methionine, but to a much lesser extent than in the liver. For pancreatic tissue, neither the activity of GNMT nor the abundance of the protein was responsive to excess dietary methionine. These data suggest that additional mechanisms contribute to regulation of GNMT such that synthesis of the protein is greater than its degradation. In addition, methionine-induced regulation of GNMT is dose dependent and appears to be tissue specific, the latter suggesting that the role it plays in the kidney and pancreas may in part differ from its hepatic function.
Collapse
Affiliation(s)
- Matthew J Rowling
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
35
|
McMullen MH, Rowling MJ, Ozias MK, Schalinske KL. Activation and induction of glycine N-methyltransferase by retinoids are tissue- and gender-specific. Arch Biochem Biophys 2002; 401:73-80. [PMID: 12054489 DOI: 10.1016/s0003-9861(02)00030-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine N-methyltransferase (GNMT) is a key protein in the liver that functions to regulate S-adenosylmethionine (SAM) and the SAM/S-adenosylhomocysteine ratio. Significant GNMT expression is also present in the kidney and pancreas. Inappropriate regulation of GNMT may have negative consequences on methyl group and folate metabolism. We have demonstrated that retinoid compounds significantly elevated hepatic GNMT activity and abundance (approximately 2-fold) in male rats. However, pancreatic GNMT activity and abundance were not altered by retinoid treatment. Likewise, retinoid administration was without effect on renal GNMT activity. Hepatic GNMT activity was also elevated in female rats treated with all-trans-retinoic acid, but to a lesser extent compared to males. Collectively, these results indicate that the modulation of methyl group metabolism by retinoids is tissue- and gender-specific, and may compromise the availability of methyl groups for SAM-dependent transmethylation reactions. In support of this, SAM-dependent synthesis of creatinine was significantly reduced 21% following all-trans-retinoic acid treatment.
Collapse
Affiliation(s)
- Mary H McMullen
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
36
|
|
37
|
Mudd SH, Cerone R, Schiaffino MC, Fantasia AR, Minniti G, Caruso U, Lorini R, Watkins D, Matiaszuk N, Rosenblatt DS, Schwahn B, Rozen R, LeGros L, Kotb M, Capdevila A, Luka Z, Finkelstein JD, Tangerman A, Stabler SP, Allen RH, Wagner C. Glycine N-methyltransferase deficiency: a novel inborn error causing persistent isolated hypermethioninaemia. J Inherit Metab Dis 2001; 24:448-64. [PMID: 11596649 DOI: 10.1023/a:1010577512912] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper reports clinical and metabolic studies of two Italian siblings with a novel form of persistent isolated hypermethioninaemia, i.e. abnormally elevated plasma methionine that lasted beyond the first months of life and is not due to cystathionine beta-synthase deficiency, tyrosinaemia I or liver disease. Abnormal elevations of their plasma S-adenosylmethionine (AdoMet) concentrations proved they do not have deficient activity of methionine adenosyltransferase I/III. A variety of studies provided evidence that the elevations of methionine and AdoMet are not caused by defects in the methionine transamination pathway, deficient activity of methionine adenosyltransferase II, a mutation in methylenetetrahydrofolate reductase rendering this activity resistant to inhibition by AdoMet, or deficient activity of guanidinoacetate methyltransferase. Plasma sarcosine (N-methylglycine) is elevated, together with elevated plasma AdoMet in normal subjects following oral methionine loads and in association with increased plasma levels of both methionine and AdoMet in cystathionine beta-synthase-deficient individuals. However, plasma sarcosine is not elevated in these siblings. The latter result provides evidence they are deficient in activity of glycine N-methyltransferase (GNMT). The only clinical abnormalities in these siblings are mild hepatomegaly and chronic elevation of serum transaminases not attributable to conventional causes of liver disease. A possible causative connection between GNMT deficiency and these hepatitis-like manifestations is discussed. Further studies are required to evaluate whether dietary methionine restriction will be useful in this situation.
Collapse
Affiliation(s)
- S H Mudd
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland 20892-4034, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nyyssölä A, Reinikainen T, Leisola M. Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl Environ Microbiol 2001; 67:2044-50. [PMID: 11319079 PMCID: PMC92834 DOI: 10.1128/aem.67.5.2044-2050.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycine betaine is accumulated in cells living in high salt concentrations to balance the osmotic pressure. Glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) of Ectothiorhodospira halochloris catalyze the threefold methylation of glycine to betaine, with S-adenosylmethionine acting as the methyl group donor. These methyltransferases were expressed in Escherichia coli and purified, and some of their enzymatic properties were characterized. Both enzymes had high substrate specificities and pH optima near the physiological pH. No evidence of cofactors was found. The enzymes showed Michaelis-Menten kinetics for their substrates. The apparent K(m) and V(max) values were determined for all substrates when the other substrate was present in saturating concentrations. Both enzymes were strongly inhibited by the reaction product S-adenosylhomocysteine. Betaine inhibited the methylation reactions only at high concentrations.
Collapse
Affiliation(s)
- A Nyyssölä
- Helsinki University of Technology, Laboratory of Bioprocess Engineering, FIN-02015 HUT Espoo, Finland.
| | | | | |
Collapse
|
39
|
Martinov MV, Vitvitsky VM, Mosharov EV, Banerjee R, Ataullakhanov FI. A substrate switch: a new mode of regulation in the methionine metabolic pathway. J Theor Biol 2000; 204:521-32. [PMID: 10833353 DOI: 10.1006/jtbi.2000.2035] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We propose a simple mathematical model of liver S -adenosylmethionine (AdoMet) metabolism. Analysis of the model has shown that AdoMet metabolism can operate under two different modes. The first, with low metabolic rate and low AdoMet concentration, serves predominantly to supply the cell with AdoMet, the substrate for various cellular methylation reactions. The second, with high metabolic rate and high AdoMet concentration, provides an avenue for cleavage of excess methionine and can serve as a source of cysteine when its increased synthesis is necessary. The switch that triggers interconversion between the "low" and "high" modes is methionine concentration. Under a certain set of parameters both modes may coexist. This behavior results from the kinetic properties of (i) the two isoenzymes of AdoMet synthetase, MATI and MATIII, that catalyse AdoMet production; one is inhibited by AdoMet, whereas the other is activated by it, and (ii) glycine- N -methyltransferase that displays highly cooperative kinetics that is different from that of other AdoMet-dependent methyltransferases. Thus, the model provides an explanation for how different cellular needs are met by regulation of this pathway. The model also correctly identifies a critical role for glycine N -methyltransferase in depleting excess methionine in the high mode, thus avoiding the toxicity associated with elevated levels of this essential amino acid.
Collapse
Affiliation(s)
- M V Martinov
- National Research Center for Hematology, Moscow, 125167, Russia
| | | | | | | | | |
Collapse
|
40
|
Huang Y, Komoto J, Konishi K, Takata Y, Ogawa H, Gomi T, Fujioka M, Takusagawa F. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. J Mol Biol 2000; 298:149-62. [PMID: 10756111 DOI: 10.1006/jmbi.2000.3637] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycine N-methyltransferase (S-adenosyl-l-methionine: glycine methyltransferase, EC 2.1.1.20; GNMT) catalyzes the AdoMet-dependent methylation of glycine to form sarcosine (N-methylglycine). Unlike most methyltransferases, GNMT is a tetrameric protein showing a positive cooperativity in AdoMet binding and weak inhibition by S-adenosylhomocysteine (AdoHcy). The first crystal structure of GNMT complexed with AdoMet showed a unique "closed" molecular basket structure, in which the N-terminal section penetrates and corks the entrance of the adjacent subunit. Thus, the apparent entrance or exit of the active site is not recognizable in the subunit structure, suggesting that the enzyme must possess a second, enzymatically active, "open" structural conformation. A new crystalline form of the R175K enzyme has been grown in the presence of an excess of AdoHcy, and its crystal structure has been determined at 3.0 A resolution. In this structure, the N-terminal domain (40 amino acid residues) of each subunit has moved out of the active site of the adjacent subunit, and the entrances of the active sites are now opened widely. An AdoHcy molecule has entered the site occupied in the "closed" structure by Glu15 and Gly16 of the N-terminal domain of the adjacent subunit. An AdoHcy binds to the consensus AdoMet binding site observed in the other methyltransferase. This AdoHcy binding site supports the glycine binding site (Arg175) deduced from a chemical modification study and site-directed mutagenesis (R175K). The crystal structures of WT and R175K enzymes were also determined at 2.5 A resolution. These enzyme structures have a closed molecular basket structure and are isomorphous to the previously determined AdoMet-GNMT structure. By comparing the open structure to the closed structure, mechanisms for auto-inhibition and for the forced release of the product AdoHcy have been revealed in the GNMT structure. The N-terminal section of the adjacent subunit occupies the AdoMet binding site and thus inhibits the methyltransfer reaction, whereas the same N-terminal section forces the departure of the potentially potent inhibitor AdoHcy from the active site and thus facilitates the methyltransfer reaction. Consequently GNMT is less active at a low level of AdoMet concentration, and is only weakly inhibited by AdoHcy. These properties of GNMT are particularly suited for regulation of the cellular AdoMet/AdoHcy ratio.
Collapse
Affiliation(s)
- Y Huang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045-2106, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yeo EJ, Briggs WT, Wagner C. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. J Biol Chem 1999; 274:37559-64. [PMID: 10608809 DOI: 10.1074/jbc.274.53.37559] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycine N-methyltransferase (EC 2.1.1.20) catalyzes the methylation of glycine by S-adenosylmethionine to form sarcosine and S-adenosylhomocysteine. The enzyme was previously shown to be abundant in both the liver and pancreas of the rat, to consist of four identical monomers, and to contain tightly bound folate polyglutamates in vivo. We now report that the inhibition of glycine N-methyltransferase by (6S)-5-CH(3)-H(4)PteGlu(5) is noncompetitive with regard to both S-adenosylmethionine and glycine. The enzyme exhibits strong positive cooperativity with respect to S-adenosylmethionine. Cooperativity increases with increasing concentrations of 5-CH(3)-H(4)PteGlu(5) and is greater at physiological pH than at pH 9.0, the pH optimum. Under the same conditions, cooperativity is much greater for the pancreatic form of the enzyme. The V(max) for the liver form of the enzyme is approximately twice that of the pancreatic enzyme, while K(m) values for each substrate are similar in the liver and pancreatic enzymes. For the liver enzyme, at pH 7.0 half-maximal inhibition is seen at a concentration of about 0.2 microM (6S)-5-CH(3)-H(4)PteGlu(5), while at pH 9.0 this value is increased to about 1 microM. For the liver form of the enzyme, 50% inhibition with respect to S-adenosylmethionine at pH 7.4 occurs at about 0.27 microM. The dissociation constant, K(s), obtained from binding data at pH 7.4 is 0.095. About 1 mol of (6S)-5-CH(3)-H(4)PteGlu(5) was bound per tetramer at pH 7.0, and 1.6 mol were bound at pH 9.0. The degree of binding and inhibition were closely parallel at each pH. At equal concentrations of (6R,6S)- and (6S)-5-CH(3)-H(4)PteGlu(5), the natural (6S) form was about twice as inhibitory. These studies indicate that glycine N-methyltransferase is a highly allosteric enzyme, which is consistent with its role as a regulator of methyl group metabolism in both the liver and the pancreas.
Collapse
Affiliation(s)
- E J Yeo
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
42
|
Raha A, Hamilton JW, Bresnick E. The existence of the 4S polycyclic aromatic hydrocarbon-protein binding in 14-day-old chick embryo liver. Toxicol Appl Pharmacol 1999; 158:1-8. [PMID: 10387926 DOI: 10.1006/taap.1999.8671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P-450IA1, the isozyme most closely associated with aryl hydrocarbon hydroxylase (AHH), is regulated by two high-affinity binding proteins, the 4S polycyclic aromatic hydrocarbon (PAH)-binding protein which primarily binds PAHs and the 8S Ah (dioxin) receptor which binds 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and like congeners. The present study was conducted to determine whether the 4S protein existed in 14-day-old chick embryo liver when AHH activity is maximal to determine if they are linked as is the 8S Ah receptor and to confirm the existence of the dioxin receptor by investigating their ligand binding characteristics in the presence and absence of sodium molybdate, an agent that stabilizes steroid hormone receptors and partially stabilizes the dioxin receptor. Competitive ligand binding studies were performed with liver cytosol from livers of male 14-day-old chick embryos using [3H]-benzo[a]pyrene (B[a]P) or [3H]-TCDD in the presence and absence of a 200-fold excess of B[a]P, benzo[e]pyrene (B[e]P), 3-methylcholanthrene (3-MC), and tetrachlorodibenzofuran (TCDBF). Specific PAH-binding activity was assayed using sucrose gradient analysis. In the absence of molybdate, the 4S PAH-binding protein had high affinity for B[a]P, B[e]P, 3-MC, but very low affinity for TCDBF; the Ah receptor exhibited high affinity for TCDBF. In the presence of sodium molybdate, the Ah receptor was stabilized while the 4S PAH-binding protein was relatively unaffected. These results affirm the existence of two distinct PAH-binding proteins in 14-day-old chick embryo liver cytosol and suggest a linkage of the 4S protein to AHH.
Collapse
Affiliation(s)
- A Raha
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
43
|
Abstract
The crystal structure of the recombinant apo-form of glycine N-methyltransferase (GNMT) has been determined at 2.5 A resolution. GNMT is a tetrameric enzyme (monomer Mr = 32,423Da, 292 amino acids) that catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to glycine with the formation of S-adenosylhomocysteine (AdoHcy) and sarcosine (N-methylglycine). GNMT is a regulatory enzyme, which is inhibited by 5-methyltetrahydrofolate pentaglutamate and believed to control the ratio of AdoMet to AdoHcy in tissues. The crystals belong to the orthorhombic space group P2(1)2(1)2 (a = 85.39, b = 174.21, c = 44.71 A) and contain one dimer per asymmetric unit. The AdoMet-GNMT structure served as the starting model. The structure was refined to an R-factor of 21.9%. Each monomer is a three-domain structure with a large cavity enclosed by the three domains. The tetramer resembles a square with a central channel about which N-terminal domains are intertwined. Only localized changes of the residues involved in the binding pocket are observed for the apo-GNMT structure when compared to that determined in the presence of substrate and substrate analog.
Collapse
Affiliation(s)
- R Pattanayek
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | |
Collapse
|
44
|
Chen YM, Shiu JY, Tzeng SJ, Shih LS, Chen YJ, Lui WY, Chen PH. Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int J Cancer 1998; 75:787-93. [PMID: 9495250 DOI: 10.1002/(sici)1097-0215(19980302)75:5<787::aid-ijc20>3.0.co;2-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Messenger RNA differential display was used to study liver-gene expression in paired tumor and non-tumor tissues from hepatocellular carcinoma (HCC) patients. mRNA differential display and Northern-blot analyses showed that a 0.8-kb cDNA fragment was diminished or absent from the tumorous tissues of 7 HCC patients. The cDNA fragment was sequenced and found to have 98.7% nucleotide sequence homology with human glycine-N-methyltransferase cDNA (GNMT). In addition, there was no detectable level of GNMT expression in 4 human HCC cell lines, SK-Hep1, Hep 3B, HuH-7 and HA22T, examined by Northern-blot assay. A full-length GNMT cDNA clone-9-1-2 was obtained by screening a Taiwanese liver cDNA library. In comparison with the GNMT cDNA sequence reported elsewhere, clone 9-1-2 had 4 nucleotide differences resulting in 1 amino-acid change. Immunohistochemical staining with rabbit anti-recombinant GNMT serum showed that GNMT protein almost completely disappeared in liver-cancer cells, while it was abundant in the non-tumorous liver cells. Down-regulation of GNMT gene expression may be involved in the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Y M Chen
- Division of Preventative Medicine, Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ogawa H, Gomi T, Takusagawa F, Fujioka M. Structure, function and physiological role of glycine N-methyltransferase. Int J Biochem Cell Biol 1998; 30:13-26. [PMID: 9597750 DOI: 10.1016/s1357-2725(97)00105-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycine N-methyltransferase (EC 2.1.1.20) catalyzes the transfer of the methyl group of S-adenosylmethionine (AdoMet) to glycine to form S-adenosylhomocysteine and sarcosine. Unlike most AdoMet-dependent methyltransferases, glycine N-methyltransferase is a tetramer of identical subunits. Crystallography of recombinant rat glycine N-methyltransferase indicates that four nearly spherical subunits are arranged to form a flat, square tetramer with a large hole in the centre. The enzyme occurs abundantly in the livers of rat, rabbit and mouse. Glycine N-methyltransferases from rat, rabbit, human and pig livers are shown to have similar amino acid sequences and, with the enzymes from rat and rabbit livers, it is demonstrated that the N-terminal valine is acetylated. Glycine N-methyltransferases from livers exhibit sigmoidal rate behaviour with respect to AdoMet and hyperbolic behaviour with respect to glycine at all pH tested. However, recombinant rat glycine N-methyltransferase which lacks the N-terminal acetyl group shows no cooperativity toward AdoMet at neutral pH, suggesting that elimination of the positive charge at the N-terminus is required for cooperative behaviour. Glycine N-methyltransferase binds 5-methyltetrahydropteroylpentaglutamate tightly, resulting in inhibition of the catalytic activity. The nature of these unique functional features is discussed in the light of the three-dimensional structure of the enzyme. The tissue and subcellular localization of the enzyme and its possible role in methionine metabolism are reviewed.
Collapse
Affiliation(s)
- H Ogawa
- Department of Biochemistry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
46
|
Krupenko NI, Wagner C. Transport of rat liver glycine N-methyltransferase into rat liver nuclei. J Biol Chem 1997; 272:27140-6. [PMID: 9341155 DOI: 10.1074/jbc.272.43.27140] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rat liver cytosolic glycine N-methyltransferase (GNMT) catalyzes the S-adenosylmethionine-dependent methylation of glycine to sarcosine. It is comprised of four identical 292-amino acid residue subunits. Recently, evidence has been provided to show that GNMT is identical to the cytosolic receptor for benzo[a]pyrene, which induces cytochrome P450 1A1 gene expression. In the present study we show that chemical modification of purified rat liver GNMT with fluorescein isothiocyanate (FITC) resulted in dissociation of the tetrameric enzyme and was accompanied by loss of enzyme activity. Amino acid sequence analysis of the FITC-labeled peptides obtained by hydrolysis of the modified protein with Staphylococcus aureus V8 protease revealed that lysines 45, 89, 92, 96, 122, and 147 were modified. Lys-122 and Lys-147 were derivatized in tetrameric, dimeric, and monomeric forms of the enzyme. Lysines 45, 89, 92, and 96 were derivatized only in monomeric GNMT, suggesting that modification of these residues resulted in GNMT dissociation. The modified monomeric GNMT was quickly transported into isolated rat liver nuclei. This transport was specific for the GNMT monomer, since neither tetramer nor dimer was able to enter the nuclei. Bovine carbonic anhydrase, similar in size to the GNMT monomer, was labeled with FITC to a similar extent but was not transported into the nuclei. Disruption of the nuclei containing fluorescein-labeled GNMT and subsequent extraction of the nuclear lysate with both high and low salt buffers recovered FITC-GNMT only in the chromatin pellet. Our study supports the suggestion of an additional function for GNMT, probably connected with regulation of cytochrome P450 1A1 gene expression.
Collapse
Affiliation(s)
- N I Krupenko
- Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
47
|
Capdevila A, Decha-Umphai W, Song KH, Borchardt RT, Wagner C. Pancreatic exocrine secretion is blocked by inhibitors of methylation. Arch Biochem Biophys 1997; 345:47-55. [PMID: 9281310 DOI: 10.1006/abbi.1997.0249] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of early experiments suggested a relationship between methyl group metabolism and the exocrine secretion of the pancreas. These included nutritional studies showing that ethionine, the ethyl analog of methionine which inhibits cellular methylation reactions, is a specific pancreatic toxin. Other studies indicated that protein carboxymethylation might be involved. We now show that in vivo ethionine inhibits amylase secretion from freshly isolated rat pancreatic acini, while in vitro ethionine inhibits amylase secretion from the AR42J pancreatic cell line. S-Adenosylhomocysteine (SAH) is a product inhibitor of all methyltransferase reactions involving S-adenosylmethionine (SAM), and treatments that elevate cellular levels of SAH such as inhibition of S-adenosylhomocysteine hydrolase and the in vitro addition of adenosine and homocysteine result in the inhibition of amylase secretion in both isolated pancreatic acini and AR42J cells. Measurement of SAM and SAH levels in AR42J cells shows that inhibition of secretion is more closely related to elevation of SAH levels than to a decrease in the SAM/SAH ratio. Small G-proteins are carboxymethylated on the C-terminal prenylated cysteine and inhibitors of membrane-associated prenylcysteine methyltransferase, N-acetylfarnesylcysteine, N-acetylgeranylgeranylcysteine, and farnesylthioacetic acid (FTA), block secretion in AR42J cells. N-Acetylgeranylcysteine is not an inhibitor of the methyltransferase and does not inhibit amylase secretion. FTA inhibits membrane-associated prenylcysteine methyltransferase from AR42J cells with a Ki in the 45-69 microm range. These results suggest that a methylation event is needed for pancreatic exocrine secretion which may be the reversible methylation of a G-protein involved in signal transduction or membrane trafficking.
Collapse
Affiliation(s)
- A Capdevila
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
48
|
Bhat R, Bresnick E. Glycine N-methyltransferase is an example of functional diversity. Role as a polycyclic aromatic hydrocarbon-binding receptor. J Biol Chem 1997; 272:21221-6. [PMID: 9261130 DOI: 10.1074/jbc.272.34.21221] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cytochrome P-4501A1 (CYP1A1) gene is regulated by several trans-acting factors including the 4 S polycyclic aromatic hydrocarbon (PAH)-binding protein, which has recently been identified as glycine N-methyltransferase (GNMT) (Raha, A., Wagner, C., Macdonald, R. G., and Bresnick, E. (1994) J. Biol. Chem. 269, 5750-5756). The role of GNMT as a 4 S PAH-binding protein in mediating the induction of cytochrome P-4501A1 has been investigated further. GNMT cDNA, which was cloned into a pMAMneo vector containing the Rous sarcoma virus promoter and the neomycin resistance gene, was stably transfected into D422 Chinese hamster ovary (CHO) cells. Several positive clones were selected by reverse transcription-polymerase chain reaction and assayed for the expression of recombinant protein. Western blot analysis indicated the expression of significant levels of the 4 S protein in the stably transfected CHO cells (CHO-GNMT). Cytosolic preparations from the CHO-GNMT showed high benzo[a]pyrene (B[a]P) binding but no 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) binding activity when compared with clones transfected with the pMAMneo vector alone (CHO-neo) or the parental CHO cells. Challanging the CHO-GNMT cells with 4 microM B[a]P resulted in elevated levels of CYP1A1 mRNA. Equally effective in inducing CYP1A1 mRNA were benzo[e]pyrene and 3-methylcholanthrene. On the other hand, TCDD did not induce CYP1A1 gene expression in these cells. B[a]P-treated CHO-GNMT, expressing the 4 S protein, also showed CYP1A1 protein by Western blotting and exhibited ethoxyresorufin-O-deethylase activity; neither the CHO-neo or parental CHO cells were positive for any of these measures. No Ah receptor message or protein was detectable in the parental CHO, CHO-neo, or CHO-GNMT cells. Furthermore, no XRE binding activity was observed in TCDD-treated cytosolic preparations or nuclear extracts from CHO-GNMT cells that were treated with TCDD. These studies unequivocally establish that GNMT is a PAH-binding protein that can mediate the induction of CYP1A1 by PAHs such as B[a]P through an Ah receptor-independent pathway.
Collapse
Affiliation(s)
- R Bhat
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
49
|
Bhat R, Wagner C, Bresnick E. The homodimeric form of glycine N-methyltransferase acts as a polycyclic aromatic hydrocarbon-binding receptor. Biochemistry 1997; 36:9906-10. [PMID: 9245423 DOI: 10.1021/bi970159x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the rat, cytochrome P4501A1 gene expression is thought to be regulated by several trans-acting factors including the 4S polycyclic aromatic hydrocarbon (PAH)-binding protein, which was recently identified as glycine N-methyltransferase [Raha, A., Wagner, C., MacDonald, R. G., and Bresnick, E. (1994) J. Biol. Chem. 268, 5750-5756]. Glycine N-methyltransferase (GNMT) is one of those unique proteins which exhibit diversity in function. Different subunit configurations are involved in its enzymatic role as a methyltransferase and as PAH-binding receptor. Here we report a systematic study of the oligomeric state of GNMT in the presence of benzo[a]pyrene (B[a]P) in vivo and in vitro. We have used chemical cross-linking and denaturing polyacrylamide gel electrophoresis to show that the B[a]P-binding unit of GNMT is a homodimer. We recently reported that phosphorylation is involved in the interaction of B[a]P with the 4S PAH-binding protein [Bhat, R., Weaver, J. A., Wagner, C., Bodwell, J. E., and Bresnick, E. (1996) J. Biol. Chem. 271, 32551-32556]. In the present study, this observation has been amplified by using bacterially expressed GNMT, which was post-translationally modified by a reticulocyte lysate and ATP-generating system. This modification was also accompanied by the formation of homodimers in the presence of B[a]P. These results indicate that post-translational modification is involved in determining the final configuration, i.e., dimeric form, of GNMT which then acts as a PAH-binding receptor.
Collapse
Affiliation(s)
- R Bhat
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | |
Collapse
|
50
|
Ogawa H, Gomi T, Imamura T, Kobayashi M, Huh N. Rat liver 4S-benzo[a]pyrene-binding protein is distinct from glycine N-methyltransferase. Biochem Biophys Res Commun 1997; 233:300-4. [PMID: 9144528 DOI: 10.1006/bbrc.1997.6444] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rat liver 4S-benzo[a]pyrene-binding protein (BAP) was reported to be identical to the subunit (Mr 32,500) of the tetrameric glycine N-methyltransferase (GNMT). We have reevaluated this study. When a liver cytosol was subjected to Sephacryl S-200 gel permeation chromatography, enzyme activity as well as cross-reactivity with anti-GNMT antibody were found only at the elution position of the purified GNMT. Chromatograph of the cytosol pretreated with [3H]benzo[a]pyrene showed two peaks in the void volume and at the position of an approximate Mr of 40,000. The latter, corresponding to the 4 S BAP, did not cross-react with the anti-GNMT antibody. An extract of nuclei in which GNMT was proposed to act as a mediator of cytochrome P4501A1 gene expression contained the tetrameric GNMT but no binding activity. The lung, in which no GNMT mRNA occurred, had the 4 S BAP. Extracts of Escherichia coli and COS-7 cells expressing large amounts of GNMT showed no 4 S BAP. These findings suggest that the 4 S BAP is distinct from the subunit of GNMT.
Collapse
Affiliation(s)
- H Ogawa
- Department of Biochemistry, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan.
| | | | | | | | | |
Collapse
|