1
|
Hara M, Wu W, Malechka VV, Takahashi Y, Ma JX, Moiseyev G. PNPLA2 mobilizes retinyl esters from retinosomes and promotes the generation of 11-cis-retinal in the visual cycle. Cell Rep 2023; 42:112091. [PMID: 36763501 PMCID: PMC10406976 DOI: 10.1016/j.celrep.2023.112091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Retinosomes are intracellular lipid bodies found in the retinal pigment epithelium (RPE). They contain retinyl esters (REs) and are thought to be involved in visual chromophore regeneration during dark adaptation and in case of chromophore depletion. However, key enzymes in chromophore regeneration, retinoid isomerase (RPE65), and lecithin:retinol acyltransferase (LRAT) are located in the endoplasmic reticulum (ER). The mechanism and the enzyme responsible for mobilizing REs from retinosomes remained unknown. Our study demonstrates that patatin-like phospholipase domain containing 2 (PNPLA2) mobilizes all-trans-REs from retinosomes. The absence of PNPLA2 in mouse eyes leads to a significant accumulation of lipid droplets in RPE cells, declined electroretinography (ERG) response, and delayed dark adaptation compared with those of WT control mouse. Our work suggests a function of PNPLA2 as an RE hydrolase in the RPE, mobilizing REs from lipid bodies and functioning as an essential component of the visual cycle.
Collapse
Affiliation(s)
- Miwa Hara
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Wenjing Wu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Volha V Malechka
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
2
|
Abbas F, Vinberg F. Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans. Front Cell Neurosci 2021; 15:662453. [PMID: 33867944 PMCID: PMC8046925 DOI: 10.3389/fncel.2021.662453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.
Collapse
Affiliation(s)
- Fatima Abbas
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| | - Frans Vinberg
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Blaner WS, Brun PJ, Calderon RM, Golczak M. Retinol-binding protein 2 (RBP2): biology and pathobiology. Crit Rev Biochem Mol Biol 2020; 55:197-218. [PMID: 32466661 DOI: 10.1080/10409238.2020.1768207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinol-binding protein 2 (RBP2; originally cellular retinol-binding protein, type II (CRBPII)) is a 16 kDa cytosolic protein that in the adult is localized predominantly to absorptive cells of the proximal small intestine. It is well established that RBP2 plays a central role in facilitating uptake of dietary retinoid, retinoid metabolism in enterocytes, and retinoid actions locally within the intestine. Studies of mice lacking Rbp2 establish that Rbp2 is not required in times of dietary retinoid-sufficiency. However, in times of dietary retinoid-insufficiency, the complete lack of Rbp2 gives rise to perinatal lethality owing to RBP2 absence in both placental (maternal) and neonatal tissues. Moreover, when maintained on a high-fat diet, Rbp2-knockout mice develop obesity, glucose intolerance and a fatty liver. Unexpectedly, recent investigations have demonstrated that RBP2 binds long-chain 2-monoacylglycerols (2-MAGs), including the canonical endocannabinoid 2-arachidonoylglycerol, with very high affinity, equivalent to that of retinol binding. Crystallographic studies establish that 2-MAGs bind to a site within RBP2 that fully overlaps with the retinol binding site. When challenged orally with fat, mucosal levels of 2-MAGs in Rbp2 null mice are significantly greater than those of matched controls establishing that RBP2 is a physiologically relevant MAG-binding protein. The rise in MAG levels is accompanied by elevations in circulating levels of the hormone glucose-dependent insulinotropic polypeptide (GIP). It is not understood how retinoid and/or MAG binding to RBP2 affects the functions of this protein, nor is it presently understood how these contribute to the metabolic and hormonal phenotypes observed for Rbp2-deficient mice.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Haaker MW, Vaandrager AB, Helms JB. Retinoids in health and disease: A role for hepatic stellate cells in affecting retinoid levels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158674. [PMID: 32105672 DOI: 10.1016/j.bbalip.2020.158674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Vitamin A (retinol) is important for normal growth, vision and reproduction. It has a role in the immune response and the development of metabolic syndrome. Most of the retinol present in the body is stored as retinyl esters within lipid droplets in hepatic stellate cells (HSCs). In case of liver damage, HSCs release large amounts of stored retinol, which is partially converted to retinoic acid (RA). This surge of RA can mediate the immune response and enhance the regeneration of the liver. If the damage persists activated HSCs change into myofibroblast-like cells producing extracellular matrix, which increases the chance of tumorigenesis to occur. RA has been shown to decrease proliferation and metastasis of hepatocellular carcinoma. The levels of RA and RA signaling are influenced by the possibility to esterify retinol towards retinyl esters. This suggests a complex regulation between different retinoids, with an important regulatory role for HSCs.
Collapse
Affiliation(s)
- Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arie B Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Comparison between the enzymatic activity, structure and substrate binding of mouse and human lecithin retinol acyltransferase. Biochem Biophys Res Commun 2019; 519:832-837. [PMID: 31561851 DOI: 10.1016/j.bbrc.2019.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
Abstract
Lecithin retinol acyltransferase (LRAT) is involved in the visual cycle where it catalyzes the formation of all-trans retinyl ester. The mouse animal model has been widely used to study LRAT. Primary sequence alignment shows 80% identity and 90% similarity between human and mouse LRAT. However, human LRAT has a proline at position 173 (hLRAT (P173)) while an arginine can be found at this position for the mouse protein (mLRAT (R173)). Moreover, residue 173 is important for the human protein since a substitution mutation of this residue to a leucine (P173L-hLRAT) caused night blindness in a patient. The present study was thus undertaken to determine whether mouse and human LRAT have a similar enzymatic activity, structure and substrate binding affinity using a truncated form of LRAT (tLRAT). The enzymatic activity and binding affinity to the substrate, all-trans retinol, of mtLRAT (R173) were found to be 2.7- and 3.9-fold lower, respectively, than that of htLRAT (P173). Moreover, the enzymatic activity of P173L-htLRAT is 6.3-fold lower compared to that of htLRAT (P173). Furthermore, a significant difference was observed between the intrinsic fluorescence emission as well as between the circular dichroism spectra of mtLRAT (R173) and htLRAT (P173). In addition, mtLRAT proteins are less thermostable than htLRAT proteins, which suggests that structural differences exist between the mouse and human proteins. Altogether, these data strongly suggest that the much lower catalytic activity of mtLRAT (R173) compared to that of htLRAT (P173) mostly results from differences between their structure, predominantly revealed by their dissimilar thermal stability, as well as their efficiency to bind all-trans retinol. Therefore, conclusions regarding the behavior of human LRAT based on measurements performed with mouse LRAT must be made with caution. Also, the much lower enzymatic activity of P173L-htLRAT compared to that of htLRAT (P173) might explain the night blindness of a patient carrying this mutation.
Collapse
|
6
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
7
|
Chelstowska S, Widjaja-Adhi MAK, Silvaroli JA, Golczak M. Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. Biochemistry 2017; 56:4489-4499. [PMID: 28758396 PMCID: PMC5682948 DOI: 10.1021/acs.biochem.7b00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is metabolized to the visual chromophore (11-cis-retinal) in the eyes and to all-trans-retinoic acid, a hormone like compound, in most tissues. A key enzyme in retinoid metabolism is lecithin:retinol acyltransferase (LRAT), which catalyzes the esterification of vitamin A. The importance of LRAT is indicated by pathogenic missense and nonsense mutations, which cause devastating blinding diseases. Retinoid-based chromophore replacement therapy has been proposed as treatment for these types of blindness based on studies in LRAT null mice. Here, we analyzed the structural and biochemical basis for retinal pathology caused by mutations in the human LRAT gene. Most LRAT missense mutations associated with retinal degeneration are localized within the catalytic domain, whereas E14L substitution is localized in an N-terminal α-helix, which has been implicated in interaction with the phospholipid bilayer. To elucidate the biochemical consequences of this mutation, we determined LRAT(E14L)'s enzymatic properties, protein stability, and impact on ocular retinoid metabolism. Bicistronic expression of LRAT(E14L) and enhanced green fluorescence protein revealed instability and accelerated proteosomal degradation of this mutant isoform. Surprisingly, instability of LRAT(E14L) did not abrogate the production of the visual chromophore in a cell-based assay. Instead, expression of LRAT(E14L) led to a rapid increase in cellular levels of retinoic acid upon retinoid supplementation. Thus, our study unveils the potential role of retinoic acid in the pathology of a degenerative retinal disease with important implications for the use of retinoid-based therapeutics in affected patients.
Collapse
Affiliation(s)
- Sylwia Chelstowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw 04141, Poland
| | | | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
8
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
9
|
Ajat M, Molenaar M, Brouwers JFHM, Vaandrager AB, Houweling M, Helms JB. Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:176-187. [PMID: 27815220 DOI: 10.1016/j.bbalip.2016.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 01/20/2023]
Abstract
Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC-MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT-/- HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT-/- HSCs (1080nm) is significantly smaller than in wild type HSCs (1618nm). This is a consequence of an altered lipid droplet size distribution with 50.5±9.0% small (≤700nm) lipid droplets in LRAT-/- HSCs and 25.6±1.4% large (1400-2100nm) lipid droplets in wild type HSC cells. Upon prolonged (24h) incubation, the amounts of small (≤700nm) lipid droplets strongly increased both in wild type and in LRAT-/- HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed.
Collapse
Affiliation(s)
- Mokrish Ajat
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Martijn Molenaar
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Arie B Vaandrager
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - Martin Houweling
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
10
|
Sears AE, Palczewski K. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle. Biochemistry 2016; 55:3082-91. [PMID: 27183166 DOI: 10.1021/acs.biochem.6b00319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established its catalytic mechanism. Mutations in the LRAT gene are responsible for approximately 1% of reported cases of Leber congenital amaurosis (LCA). Lack of functional LRAT, expressed in the retinal pigmented epithelium (RPE), results in loss of the visual chromophore and photoreceptor degeneration. LCA is a rare hereditary retinal dystrophy with an early onset associated with mutations in one of 21 known genes. Protocols have been devised to identify therapeutics that compensate for mutations in RPE65, also associated with LCA. The same protocols can be adapted to combat dystrophies associated with LRAT. Improvement in the visual function of clinical recipients of therapy with recombinant adeno-associated virus (rAAV) vectors incorporating the RPE65 gene provides a proof of concept for LRAT, which functions in the same cell type and metabolic pathway as RPE65. In parallel, a clinical trial that employs oral 9-cis-retinyl acetate to replace the missing chromophore in RPE65 and LRAT causative disease has proven to be effective and free of adverse effects. This article summarizes the biochemistry of LRAT and examines chromophore replacement as a treatment for LCA caused by LRAT mutations.
Collapse
Affiliation(s)
- Avery E Sears
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
12
|
Whole-exome sequencing identifies a novel LRAT mutation underlying retinitis punctata albescens in a consanguineous Pakistani family. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0311-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Patel S, Vajdy M. Induction of cellular and molecular immunomodulatory pathways by vitamin A and flavonoids. Expert Opin Biol Ther 2015; 15:1411-28. [PMID: 26185959 DOI: 10.1517/14712598.2015.1066331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. AREAS COVERED Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of vitamin A and select flavonoids in induction of innate and adaptive B- and T-cell responses, including TH1, TH2 and regulatory T cells (Treg). EXPERT OPINION While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immunomodulatory compounds.
Collapse
Affiliation(s)
- Sapna Patel
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| | - Michael Vajdy
- a EpitoGenesis, Inc. , 1392 Storrs Rd Unit 4213, ATL Building, Rm 101, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015; 16:14210-44. [PMID: 26110391 PMCID: PMC4490549 DOI: 10.3390/ijms160614210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, 666 High-Tech Avenue, Wuhan 430000, China.
| | - Yueqiao Wang
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
|
16
|
Kono N, Arai H. Intracellular transport of fat-soluble vitamins A and E. Traffic 2014; 16:19-34. [PMID: 25262571 DOI: 10.1111/tra.12231] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/11/2022]
Abstract
Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.
Collapse
Affiliation(s)
- Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
17
|
Horchani H, Bussières S, Cantin L, Lhor M, Laliberté-Gemme JS, Breton R, Salesse C. Enzymatic activity of Lecithin:retinol acyltransferase: a thermostable and highly active enzyme with a likely mode of interfacial activation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1128-36. [PMID: 24613493 PMCID: PMC4469483 DOI: 10.1016/j.bbapap.2014.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/28/2023]
Abstract
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70°C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100°C. The results of this study highly improved our understanding of this enzyme.
Collapse
Affiliation(s)
- Habib Horchani
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sylvain Bussières
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Mustapha Lhor
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Laliberté-Gemme
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Rock Breton
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
18
|
Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med 2014; 3:453-79. [PMID: 26237385 PMCID: PMC4449691 DOI: 10.3390/jcm3020453] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023] Open
Abstract
Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity's impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA's role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
19
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
20
|
Das BC, Thapa P, Karki R, Das S, Mahapatra S, Liu TC, Torregroza I, Wallace DP, Kambhampati S, Van Veldhuizen P, Verma A, Ray SK, Evans T. Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem 2014; 22:673-83. [PMID: 24393720 PMCID: PMC4447240 DOI: 10.1016/j.bmc.2013.11.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
Retinoids comprise a group of compounds each composed of three basic parts: a trimethylated cyclohexene ring that is a bulky hydrophobic group, a conjugated tetraene side chain that functions as a linker unit, and a polar carbon-oxygen functional group. Biochemical conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for normal regulation of a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids regulate various physiological outputs by binding to nuclear receptors called retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which themselves are DNA-binding transcriptional regulators. The functional response of RA and their receptors are modulated by a host of coactivators and corepressors. Retinoids are essential in the development and function of several organ systems; however, deregulated retinoid signaling can contribute to serious diseases. Several natural and synthetic retinoids are in clinical use or undergoing trials for treating specific diseases including cancer. In this review, we provide a broad overview on the importance of retinoids in development and various diseases, highlighting various retinoids in the drug discovery process, ranging all the way from retinoid chemistry to clinical uses and imaging.
Collapse
Affiliation(s)
- Bhaskar C Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| | - Pritam Thapa
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Radha Karki
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sasmita Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sweta Mahapatra
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Darren P Wallace
- The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Suman Kambhampati
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Peter Van Veldhuizen
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
21
|
Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients 2013; 5:2646-66. [PMID: 23857173 PMCID: PMC3738993 DOI: 10.3390/nu5072646] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 11/17/2022] Open
Abstract
The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.
Collapse
|
22
|
Eroglu A, Harrison EH. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 2013; 54:1719-30. [PMID: 23667178 PMCID: PMC3679377 DOI: 10.1194/jlr.r039537] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 12/22/2022] Open
Abstract
Vitamin A was recognized as an essential nutrient 100 years ago. In the 1930s, it became clear that dietary β-carotene was cleaved at its central double to yield vitamin A (retinal or β-apo-15'-carotenal). Thus a great deal of research has focused on the central cleavage of provitamin A carotenoids to form vitamin A (retinoids). The mechanisms of formation and the physiological role(s) of noncentral (eccentric) cleavage of both provitamin A carotenoids and nonprovitamin A carotenoids has been less clear. It is becoming apparent that the apocarotenoids exert unique biological activities themselves. These compounds are found in the diet and thus may be absorbed in the intestine, or they may form from enzymatic or nonenzymatic cleavage of the parent carotenoids. The mechanism of action of apocarotenoids in mammals is not fully worked out. However, as detailed in this review, they have profound effects on gene expression and work, at least in part, through the modulation of ligand-activated nuclear receptors. Understanding the interactions of apocarotenoids with other lipid-binding proteins, chaperones, and metabolizing enzymes will undoubtedly increase our understanding of the biological roles of these carotenoid metabolites.
Collapse
Affiliation(s)
| | - Earl H. Harrison
- Department of Human Nutrition, Ohio State University, Columbus, OH
| |
Collapse
|
23
|
Ruggles KV, Turkish A, Sturley SL. Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 2013; 33:413-51. [PMID: 23701589 DOI: 10.1146/annurev-nutr-071812-161254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Kelly V Ruggles
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
24
|
Abstract
The chromophore of all known visual pigments consists of 11-cis-retinal (derived from either vitamin A1 or A2) or a hydroxylated derivative, bound to a protein (opsin) via a Schiff base. Absorption of a photon results in photoisomerization of the chromophore to all-trans-retinal and conversion of the visual pigment to the signaling form. Regeneration of the 11-cis-retinal occurs in an adjacent tissue and involves several enzymes, several water-soluble retinoid-binding proteins, and intra- and intercellular diffusional processes. Rod photoreceptor cells depend completely on the output of 11-cis-retinal from adjacent retinal pigment epithelial (RPE) cells. Cone photoreceptors cells can use 11-cis-retinal from the RPE and from a second more poorly characterized cycle, which appears to involve adjacent Müller (glial) cells. Recent progress in the characterization of rod and cone visual cycle components and reactions will result in the development of approaches to the amelioration of blinding eye diseases associated with visual cycle defects.
Collapse
Affiliation(s)
- John C Saari
- Department of Ophthalmology and Biochemistry, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
25
|
Harrison EH. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:70-7. [PMID: 21718801 PMCID: PMC3525326 DOI: 10.1016/j.bbalip.2011.06.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/29/2011] [Accepted: 06/01/2011] [Indexed: 01/15/2023]
Abstract
Vitamin A is an essential nutrient for humans and is converted to the visual chromophore, 11-cis-retinal, and to the hormone, retinoic acid. Vitamin A in animal-derived foods is found as long chain acyl esters of retinol and these are digested to free fatty acids and retinol before uptake by the intestinal mucosal cell. The retinol is then reesterified to retinyl esters for incorporation into chlylomicrons and absorbed via the lymphatics or effluxed into the portal circulation facilitated by the lipid transporter, ABCA1. Provitamin A carotenoids such as β-carotene are found in plant-derived foods. These and other carotenoids are transported into the mucosal cell by scavenger receptor class B type I (SR-BI). Provitamin A carotenoids are partly converted to retinol by oxygenase and reductase enzymes and the retinol so produced is available for absorption via the two pathways described above. The efficiency of vitamin A and carotenoid intestinal absorption is determined by the regulation of a number of proteins involved in the process. Polymorphisms in genes for these proteins lead to individual variability in the metabolism and transport of vitamin A and carotenoids. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Nutrition, The Ohio State University, 350 Campell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Bussières S, Cantin L, Salesse C. Lecithin retinol acyltransferase and its S175R mutant have a similar secondary structure content and maximum insertion pressure but different enzyme activities. Exp Eye Res 2011; 93:778-81. [DOI: 10.1016/j.exer.2011.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
27
|
Kiser PD, Golczak M, Maeda A, Palczewski K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:137-51. [PMID: 21447403 DOI: 10.1016/j.bbalip.2011.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/08/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
Abstract
A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | |
Collapse
|
28
|
Pang W, Zhang Y, Wang S, Jia A, Dong W, Cai C, Hua Z, Zhang J. The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver. J Lipid Res 2011; 52:934-41. [PMID: 21339507 DOI: 10.1194/jlr.m010082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retinyl esters are the major chemical forms of vitamin A stored in the liver, and can be delivered to peripheral tissues for conversion into biologically active forms. The function and regulation of the hepatic genes that are potentially involved in catalyzing the hydrolysis of retinyl esters remain unclear. Here we show that two lipid hydrolytic genes, pancreatic-related protein 2 (mPlrp2) and procolipase (mClps), expressed specifically in the mouse pancreas, are associated with the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy). Light illumination deficiency or administration of 5'-AMP elevated the ratio of AdoMet to AdoHcy and induced the expression in the liver of mPlrp2 and mClps, which was blocked by all-trans retinoic acid. Mice fed a vitamin A-free diet exhibited increased activation of hepatic mPlrp2 and mClps expression, which was associated with increased methylation of histone H3K4 residues located near the mPlrp2 and mClps promoters. Inhibition of hepatic mPlrp2 and mClps expression by a methylase inhibitor, methylthioadenosine, markedly decreased plasma retinol levels in these mice. The activated hepatic stellate cell (HSC)-T6 cell line specifically expressed mClps and mPlrp2. Inhibition of mClps gene expressions by short hairpin RNA (shRNA) decreased hydrolysis of retinyl esters in the HSC-T6 cell line. These data suggest that the conditional expression of mPlrp2 and mClps is involved in the hydrolysis of retinyl esters in the mouse liver.
Collapse
Affiliation(s)
- Wenqiang Pang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Murdaugh LS, Mandal S, Dill AE, Dillon J, Simon JD, Gaillard ER. Compositional studies of human RPE lipofuscin: mechanisms of molecular modifications. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:90-95. [PMID: 21182214 DOI: 10.1002/jms.1865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The accumulation of lipofuscin has previously been implicated in several retinal diseases including Best's macular dystrophy, Stargardt's disease and age-related macular degeneration (AMD). Previously one of the major fluorophores of lipofuscin was identified as a bis-retinoid pyridinium salt called A2E, which is known to photochemically cause damage. In addition to A2E, there are numerous components in RPE lipofuscin that are unidentified. These compounds were determined to be structurally related to A2E by their fragmentation pattern with losses of 106, 190, 174 and/or 150 amu from the parent ion and the formation of fragments of ca 592 amu. The vast majority consists of relatively hydrophobic components corresponding to derivatized A2E with molecular weights in discrete groups of 800-900, 970-1080 and > 1200 m/z regions. In order to determine the mechanism of these modifications, A2E was chemically modified by; (1) the formation of specific esters, (2) reaction with specific aldehydes and (3) spontaneous auto-oxidation. The contribution of ester formation to the naturally occurring components of lipofuscin was discounted since their fragmentation patterns were different to those found in vivo. Alternatively, reactions with specific aldehydes result in nearly identical products as those found in vivo. Artificial aging of RPE lipofuscin gives a complex mixture of structurally related components. This results from the auto- and/or photooxidation of A2E to form aldehydes, which then back react with A2E giving a series of higher molecular weight products. The majority of these modifications result in compounds that are much more hydrophobic than A2E. These higher molecular weight materials have increased values of log P compared to A2E. This increase in hydrophobicity most likely aids in the sequestering of A2E into granules with the concomitant diminution of its reactivity. Therefore, these processes may serve as protective mechanisms for the RPE.
Collapse
Affiliation(s)
- L S Murdaugh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | | | |
Collapse
|
30
|
von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 2010; 30:35-56. [PMID: 20415581 DOI: 10.1146/annurev-nutr-080508-141027] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health, serving as antioxidants in lipophilic environments and blue light filters in the macula of human retina. These dietary compounds also serve as precursors of a unique set of apo-carotenoid cleavage products, including retinoids. Although knowledge about retinoid biology has tremendously increased, the metabolism of retinoids' parent precursors remains poorly understood. Recently, molecular players in carotenoid metabolism have been identified and biochemically characterized. Moreover, mutations in their corresponding genes impair carotenoid metabolism and induce various pathologies in animal models. Polymorphisms in these genes alter carotenoid and retinoid homeostasis in humans as well. This review summarizes our current knowledge about the molecular/biochemical basis of carotenoid metabolism and particularly the physiological role of carotenoids in retinoid-dependent physiological processes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
31
|
Ren X, Lin J, Jin C, Xia B. Solution structure of the N-terminal catalytic domain of human H-REV107 - A novel circular permutated NlpC/P60 domain. FEBS Lett 2010; 584:4222-6. [DOI: 10.1016/j.febslet.2010.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/03/2010] [Accepted: 09/04/2010] [Indexed: 12/15/2022]
|
32
|
Golczak M, Palczewski K. An acyl-covalent enzyme intermediate of lecithin:retinol acyltransferase. J Biol Chem 2010; 285:29217-22. [PMID: 20628054 DOI: 10.1074/jbc.m110.152314] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synthesis of fatty acid retinyl esters determines systemic vitamin A levels and provides substrate for production of visual chromophore (11-cis-retinal) in vertebrates. Lecithin:retinol acyltransferase (LRAT), the main enzyme responsible for retinyl ester formation, catalyzes the transfer of an acyl group from the sn-1 position of phosphatidylcholine to retinol. To delineate the catalytic mechanism of this reaction, we expressed and purified a fully active, soluble form of this enzyme and used it to examine the possible formation of a transient acyl-enzyme intermediate. Detailed mass spectrometry analyses revealed that LRAT undergoes spontaneous, covalent modification upon incubation with a variety of phosphatidylcholine substrates. The addition of an acyl chain occurs at the Cys(161) residue, indicating formation of a thioester intermediate. This observation provides the first direct experimental evidence of thioester intermediate formation that constitutes the initial step in the proposed LRAT catalytic reaction. Additionally, we examined the effect of increasing fatty acyl side chain length in phosphatidylcholine on substrate accessibility in this reaction, which provided insights into the function of the single membrane-spanning domain of LRAT. These observations are critical to understanding the catalytic mechanism of LRAT protein family members as well as other lecithin:acyltransferases wherein Cys residues are required for catalysis.
Collapse
Affiliation(s)
- Marcin Golczak
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
33
|
Hu J, Bok D. Culture of highly differentiated human retinal pigment epithelium for analysis of the polarized uptake, processing, and secretion of retinoids. Methods Mol Biol 2010; 652:55-73. [PMID: 20552421 DOI: 10.1007/978-1-60327-325-1_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) occupies a strategic position within the eye, given its location between the neurosensory retina and the vascular bed (choroid) that nourishes the photoreceptor cells (rods and cones). Among the many attributes of this versatile monolayer of cells is its unique ability to convert vitamin A (retinol) into the prosthetic group (11-cis-retinal) for the rod and cone opsins, the photopigments essential for vision. It does so by absorbing retinol via a receptor-mediated process that involves the interaction of a carrier protein secreted by the liver, retinol-binding protein (RBP), and a receptor/channel that is the gene product of STRA6 (stimulated by retinoic acid 6). Following its uptake through the basolateral plasma membrane of the RPE, retinol encounters a brigade of binding proteins, membrane-bound receptors, and enzymes that mediate its multi-step conversion to 11-cis-retinal and the transport of this visual chromophore to the light-sensitive photoreceptor cell outer segment, the portion of the cell that houses the phototransduction cascade. This process is iterative, repeating itself via the retinoid visual cycle. Most of the human genes that code for this cohort of proteins carry disease-causing mutations in humans. The consequences of these mutations range in severity from relatively mild dysfunction such as congenital stationary night blindness to total blindness. The RPE, although post-mitotic in situ, is capable of proliferation when removed from its native milieu. This offers one the opportunity to study the retinoid visual cycle in modular form, providing insights into this intriguing process in health and disease. This chapter describes a cell culture method whereby the entire visual cycle can be created in vitro.
Collapse
Affiliation(s)
- Jane Hu
- Jules Stein Eye Institute and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
34
|
Schreiber R, Taschler U, Wolinski H, Seper A, Tamegger SN, Graf M, Kohlwein SD, Haemmerle G, Zimmermann R, Zechner R, Lass A. Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver. J Lipid Res 2009; 50:2514-23. [PMID: 19723663 DOI: 10.1194/jlr.m000950] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with beta-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl beta-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism.
Collapse
Affiliation(s)
- Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Our knowledge of the uptake and transport of dietary fat and fat-soluble vitamins has advanced considerably. Researchers have identified several new mechanisms by which lipids are taken up by enterocytes and packaged as chylomicrons for export into the lymphatic system or clarified the actions of mechanisms previously known to participate in these processes. Fatty acids are taken up by enterocytes involving protein-mediated as well as protein-independent processes. Net cholesterol uptake depends on the competing activities of NPC1L1, ABCG5, and ABCG8 present in the apical membrane. We have considerably more detailed information about the uptake of products of lipid hydrolysis, the active transport systems by which they reach the endoplasmic reticulum, the mechanisms by which they are resynthesized into neutral lipids and utilized within the endoplasmic reticulum to form lipoproteins, and the mechanisms by which lipoproteins are secreted from the basolateral side of the enterocyte. apoB and MTP are known to be central to the efficient assembly and secretion of lipoproteins. In recent studies, investigators found that cholesterol, phospholipids, and vitamin E can also be secreted from enterocytes as components of high-density apoB-free/apoAI-containing lipoproteins. Several of these advances will probably be investigated further for their potential as targets for the development of drugs that can suppress cholesterol absorption, thereby reducing the risk of hypercholesterolemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Dept. of Anatomy, 450 Clarkson Ave., State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
36
|
Shih MYS, Kane MA, Zhou P, Yen CLE, Streeper RS, Napoli JL, Farese RV. Retinol Esterification by DGAT1 Is Essential for Retinoid Homeostasis in Murine Skin. J Biol Chem 2008; 284:4292-9. [PMID: 19028692 DOI: 10.1074/jbc.m807503200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinoic acid (RA) is a potent signaling molecule that is essential for many biological processes, and its levels are tightly regulated by mechanisms that are only partially understood. The synthesis of RA from its precursor retinol (vitamin A) is an important regulatory mechanism. Therefore, the esterification of retinol with fatty acyl moieties to generate retinyl esters, the main storage form of retinol, may also regulate RA levels. Here we show that the neutral lipid synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) functions as the major acyl-CoA:retinol acyltransferase (ARAT) in murine skin. When dietary retinol is abundant, DGAT1 deficiency results in elevated levels of RA in skin and cyclical hair loss; both are prevented by dietary retinol deprivation. Further, DGAT1-deficient skin exhibits enhanced sensitivity to topically administered retinol. Deletion of the enzyme specifically in the epidermis causes alopecia, indicating that the regulation of RA homeostasis by DGAT1 is autonomous in the epidermis. These findings show that DGAT1 functions as an ARAT in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity. Our findings may have implications for human skin or hair disorders treated with agents that modulate RA signaling.
Collapse
Affiliation(s)
- Michelle Y S Shih
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wongsiriroj N, Piantedosi R, Palczewski K, Goldberg IJ, Johnston TP, Li E, Blaner WS. The molecular basis of retinoid absorption: a genetic dissection. J Biol Chem 2008; 283:13510-9. [PMID: 18348983 PMCID: PMC2376245 DOI: 10.1074/jbc.m800777200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
The intestine and other tissues are able to synthesize retinyl esters in an acyl-CoA-dependent manner involving an acyl-CoA:retinol acyltransferase (ARAT). However, the molecular identity of this ARAT has not been established. Recent studies of lecithin:retinol acyltransferase (LRAT)-deficient mice indicate that LRAT is responsible for the preponderance of retinyl ester synthesis in the body, aside from in the intestine and adipose tissue. Our present studies, employing a number of mutant mouse models, identify diacylglycerol acyltransferase 1 (DGAT1) as an important intestinal ARAT in vivo. The contribution that DGAT1 makes to intestinal retinyl ester synthesis becomes greater when a large pharmacologic dose of retinol is administered by gavage to mice. Moreover, when large retinol doses are administered another intestinal enzyme(s) with ARAT activity becomes apparent. Surprisingly, although DGAT1 is expressed in adipose tissue, DGAT1 does not catalyze retinyl ester synthesis in adipose tissue in vivo. Our data also establish that cellular retinol-binding protein, type II (CRBPII), which is expressed solely in the adult intestine, in vivo channels retinol to LRAT for retinyl ester synthesis. Contrary to what has been proposed in the literature based on in vitro studies, CRBPII does not directly prevent retinol from being acted upon by DGAT1 or other intestinal ARATs in vivo.
Collapse
Affiliation(s)
- Nuttaporn Wongsiriroj
- Institute of Human Nutrition and Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH. Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem 2008; 283:19730-8. [PMID: 18474598 DOI: 10.1074/jbc.m801288200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.
Collapse
|
39
|
Liu L, Tang XH, Gudas LJ. Homeostasis of retinol in lecithin: retinol acyltransferase gene knockout mice fed a high retinol diet. Biochem Pharmacol 2008; 75:2316-24. [PMID: 18455147 DOI: 10.1016/j.bcp.2008.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 11/25/2022]
Abstract
We analyzed the retinoid levels and gene expression in various tissues after wild-type (Wt) and lecithin:retinol acyltransferase (LRAT-/-) knockout mice were fed a high retinol diet (250 IU/g). As compared to Wt, LRAT-/- mice exhibited a greater and faster increase in serum retinol concentration (mean+/-S.D., Wt, 1.3 +/- 0.2 microM to 1.5 +/- 0.3 microM in 48 h, p > 0.05; LRAT-/-, 1.3 +/- 0.2 microM to 2.2+/-0.3 microM in 48 h, p < 0.01) and a higher level of retinol in adipose tissue (17.2 +/- 2.4 pmol/mg in Wt vs. 34.6 +/- 8.0 pmol/mg in LRAT-/-). In the small intestines of Wt mice higher levels of retinol (96.4 +/- 13.0 pmol/mg in Wt vs. 13.7 +/- 7.6 pmol/mg in LRAT-/- and retinyl esters (2493.4 +/- 544.8 pmol/mg in Wt vs. 8.2 +/- 2.6 pmol/mg in LRAT-/- were detected. More retinol was detected in the feces of LRAT-/- mice (69.3 +/- 32.6 pmol/mg in LRAT-/- vs. 24.1 +/- 8.6 pmol/mg in Wt). LRAT mRNA levels increased in the lungs, small intestines, and livers of Wt mice on the high retinol diet, while CYP26A1 mRNA levels increased greatly only in the LRAT-/- mice. After 4 weeks, no significant differences between Wt mice and LRAT-/- mice were observed in either the serum retinol level or in the prevalence of Goblet cells in jejunal crypts. Our data indicate that the LRAT-/- mice maintain the homeostasis of retinol as the dietary retinol increases by increasing the excretion of retinol from the gastrointestinal tract, increasing the distribution of retinol to adipose tissue, and enhancing the catabolism by CYP26A1. We show that LRAT plays a role in maintaining a stable serum retinol concentration when dietary retinol concentration fluctuates.
Collapse
Affiliation(s)
- Limin Liu
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
40
|
Yamaguchi N, Suruga K. Triiodothyronine stimulates CMO1 gene expression in human intestinal Caco-2 BBe cells. Life Sci 2008; 82:789-96. [DOI: 10.1016/j.lfs.2008.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/04/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
|
41
|
Bussières S, Buffeteau T, Desbat B, Breton R, Salesse C. Secondary structure of a truncated form of lecithin retinol acyltransferase in solution and evidence for its binding and hydrolytic action in monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1324-34. [PMID: 18284914 DOI: 10.1016/j.bbamem.2008.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
Lecithin retinol acyltransferase (LRAT) is a 230 amino acids membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. The enzymatic activity of a truncated form of LRAT (tLRAT) which contains the residues required for catalysis but which is lacking N- and C-terminal hydrophobic segments has been shown to depend on the detergent used for its solubilization. Moreover, it is unknown whether tLRAT can bind membranes in the absence of these hydrophobic segments. The present study has allowed to measure the membrane binding and hydrolytic action of tLRAT in lipid monolayers by use of polarization modulation infrared reflection absorption spectroscopy and Brewster angle microscopy. Moreover, the proportion of the secondary structure components of tLRAT was determined in three different detergents by infrared absorption spectroscopy, vibrational circular dichroism and electronic circular dichroism which allowed to explain its detergent dependent activity. In addition, the secondary structure of tLRAT in the absence of detergent was very similar to that in Triton X-100 thus suggesting that, compared to the other detergents assayed, the secondary structure of this protein is very little perturbed by this detergent.
Collapse
Affiliation(s)
- Sylvain Bussières
- Unité de recherche en ophtalmologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Département d'ophtalmologie, Faculté de médecine, Université Laval, 2705 Blvd. Laurier, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
42
|
Yamaguchi N, Yamamoto T, Suruga K, Takase S. Developmental changes in gene expressions of β-carotene cleavage enzyme and retinoic acid synthesizing enzymes in the chick duodenum. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:690-7. [PMID: 17890117 DOI: 10.1016/j.cbpa.2007.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 01/09/2023]
Abstract
Vitamin A is derived from provitamin A carotenoids, mainly beta-carotene, by beta-carotene 15,15'-monooxygenase (BCMO1; EC 1.13.11.21). We previously reported that chick duodenal BCMO1 activity increased abruptly just after hatching. In this study, we further investigated mechanisms and physiological roles of the postnatal induction of BCMO1 expression in the chick duodenum. We showed that BCMO1 mRNA levels increased in the chick duodenum during postnatal period after hatching, but remain unchanged in the chick liver throughout the perinatal period. Serum hydrocortisone (HC) levels were also increased after hatching. Moreover, HC-administered chicks showed an enhancement of duodenal BCMO1 mRNA during the perinatal period. We further analyzed the developmental gene expression patterns of three types of retinoic acid (RA) synthesizing enzymes in the chick duodenum. Among them, retinal dehydrogenase 1 (RALDH1) mRNA levels in the chick duodenum increased during the postnatal period, indicating a similar developmental expression pattern to that of BCMO1. These results suggest that the postnatal induction of BCMO1 gene expression in the chick duodenum may be caused by the elevation of serum HC levels and may contribute to the RALDH1-mediated RA synthetic pathway.
Collapse
Affiliation(s)
- Noriaki Yamaguchi
- Graduate School of Human Health Science, Siebold University of Nagasaki, 1-1-1 Manabino, Nishisonogi-gun, Nagasaki 851-2195, Japan
| | | | | | | |
Collapse
|
43
|
Estes KA, Kalamegham R, Hanna-Rose W. Membrane localization of the NlpC/P60 family protein EGL-26 correlates with regulation of vulval cell morphogenesis in Caenorhabditis elegans. Dev Biol 2007; 308:196-205. [PMID: 17560977 DOI: 10.1016/j.ydbio.2007.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/26/2007] [Accepted: 05/18/2007] [Indexed: 11/25/2022]
Abstract
Vulval morphogenesis in Caenorhabditis elegans generates a stack of toroidal cells enclosing a tubular lumen. Mutation of egl-26 is associated with malformation of vulF, the most dorsal toroid in the stack, resulting in a blocked lumen and an egg-laying defect. Here we present evidence that vulF retains the expected gene expression pattern, functions in signaling to the uterus and retains proper polarity when egl-26 is mutated, all suggesting that mutation of egl-26 specifically results in aberrant morphogenesis as opposed to abnormal fate specification. Recent computational analysis indicates that EGL-26, which was previously characterized as novel, belongs to the LRAT (lecithin retinol acyltransferase) subfamily of the NlpC/P60 superfamily of catalytic proteins. Via site-directed mutagenesis, we demonstrate a requirement of the putative catalytic residues for EGL-26 function in vivo. We also show that mutation of conserved serine 275 perturbs the apical membrane localization and the function of the EGL-26 protein. Additional mutagenesis of this residue suggests that EGL-26 attains its membrane localization via a mechanism distinct from that of LRAT.
Collapse
Affiliation(s)
- Kathleen A Estes
- Department of Biochemistry and Molecular Biology, 104D Life Science Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
44
|
Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol 2007; 47:469-512. [PMID: 16968212 PMCID: PMC2442882 DOI: 10.1146/annurev.pharmtox.47.120505.105225] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Absorption of a photon by an opsin pigment causes isomerization of the chromophore from 11-cis-retinaldehyde to all-trans-retinaldehyde. Regeneration of visual chromophore following light exposure is dependent on an enzyme pathway called the retinoid or visual cycle. Our understanding of this pathway has been greatly facilitated by the identification of disease-causing mutations in the genes coding for visual cycle enzymes. Defects in nearly every step of this pathway are responsible for human-inherited retinal dystrophies. These retinal dystrophies can be divided into two etiologic groups. One involves the impaired synthesis of visual chromophore. The second involves accumulation of cytotoxic products derived from all-trans-retinaldehyde. Gene therapy has been successfully used in animal models of these diseases to rescue the function of enzymes involved in chromophore regeneration, restoring vision. Dystrophies resulting from impaired chromophore synthesis can also be treated by supplementation with a chromophore analog. Dystrophies resulting from the accumulation of toxic pigments can be treated pharmacologically by inhibiting the visual cycle, or limiting the supply of vitamin A to the eyes. Recent progress in both areas provides hope that multiple inherited retinal diseases will soon be treated by pharmaceutical intervention.
Collapse
Affiliation(s)
- Gabriel H. Travis
- Department of Ophthalmology, UCLA School of Medicine, Los Angeles, California 90095;
| | - Marcin Golczak
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965;
| | - Alexander R. Moise
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965;
| | - Krzysztof Palczewski
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965;
| |
Collapse
|
45
|
Nazarenko I, Schäfer R, Sers C. Mechanisms of the HRSL3 tumor suppressor function in ovarian carcinoma cells. J Cell Sci 2007; 120:1393-404. [PMID: 17374643 DOI: 10.1242/jcs.000018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the alpha-isoform of the regulatory subunit A of protein phosphatase 2A (PR65alpha) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65alpha was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65alpha, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65alpha and induction of programmed cell death. This suggests that the negative impact of HRSL3 onto PP2A activity is important for the HRSL3 pro-apoptotic function and indicates a role of PP2A in survival of human ovarian carcinomas. The analysis of distinct PP2A target molecules revealed PKCzeta as being involved in HRSL3 action. These data implicate HRSL3 as a signaling regulatory molecule, which is functionally involved in the oncogenic network mediating growth and survival of ovarian cancer cells.
Collapse
Affiliation(s)
- Irina Nazarenko
- Molecular Tumor Pathology, Institute of Pathology, University Medicine Charité Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany
| | | | | |
Collapse
|
46
|
Moise AR, Golczak M, Imanishi Y, Palczewski K. Topology and Membrane Association of Lecithin: Retinol Acyltransferase. J Biol Chem 2007; 282:2081-90. [PMID: 17114808 DOI: 10.1074/jbc.m608315200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid retinyl esters are the storage form of vitamin A (all-trans-retinol) and serve as metabolic intermediates in the formation of the visual chromophore 11-cis-retinal. Lecithin:retinol acyltransferase (LRAT), the main enzyme responsible for retinyl ester formation, acts by transferring an acyl group from the sn-1 position of phosphatidylcholine to retinol. To define the membrane association and localization of LRAT, we produced an LRAT-specific monoclonal antibody, which we used to study enzyme partition under different experimental conditions. Furthermore, we examined the membrane topology of LRAT through an N-linked glycosylation scanning approach and protease protection assays. We show that LRAT is localized to the membrane of the endoplasmic reticulum (ER) and assumes a single membrane-spanning topology with an N-terminal cytoplasmic/C-terminal luminal orientation. In eukaryotic cells, the C-terminal transmembrane domain is essential for the activity and ER membrane targeting of LRAT. In contrast, the N-terminal hydrophobic region is not required for ER membrane targeting or enzymatic activity, and its amino acid sequence is not conserved in other species examined. We present experimental evidence of the topology and subcellular localization of LRAT, a critical enzyme in vitamin A metabolism.
Collapse
Affiliation(s)
- Alexander R Moise
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | |
Collapse
|
47
|
Schindler R, Fielenbach T, Rave G. A comparative study on the effects of oral amiodarone and trimeprazine, two in vitroretinyl ester hydrolase inhibitors, on the metabolic availability of vitamin A in rats. Br J Nutr 2005; 94:675-83. [PMID: 16277768 DOI: 10.1079/bjn20051495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amiodarone, an antiarrhythmic drug, and trimeprazine, an antipsychotic drug, are bothin vitroinhibitors of retinyl ester hydrolase. To determine whether these agents have deleterious effects on aspects of vitamin A metabolism, Brown Norway rats (n18) were treated at clinically equivalent doses once daily for 26d with either oral drug. On day 27, a tolerance test was used to determine whether these agents interfered with vitamin absorption. During the first 8d, the plasma retinol level declined in all animals. Between days 12 and 27, it rose to near pre-treatment concentrations in the control and trimeprazine groups and remained relatively constant at low levels (P<0·001) in the amiodarone group. The intestinal absorption of vitamin A was reduced (P<0·05) in the amiodarone group compared with the placebo and trimeprazine groups, which did not differ significantly from each other. At the end of the 4-week treatment period, hepatic retinyl ester hydrolase activity was lower in the drug-dosed rats (P=0·06 for amiodarone) than in the controls. With regard to effects on liver reserves, drug treatment resulted in vitamin A depletion (P<0·019), and distinctive patterns of retinol and its esters were seen in response to dosing. In conclusion, amiodarone and trimeprazine have been shown to influence different aspects of retinoid metabolism, namely absorption, storage and transport. In clinical practice, the routine unmonitored use of these drugs and the suggestion that these agents be taken with meals are not recommended.
Collapse
Affiliation(s)
- Rainer Schindler
- Department of Human Nutrition and Food Science, Christian-Albrechts-University zu Kiel, D-24 116, Germany.
| | | | | |
Collapse
|
48
|
Golczak M, Imanishi Y, Kuksa V, Maeda T, Kubota R, Palczewski K. Lecithin:retinol acyltransferase is responsible for amidation of retinylamine, a potent inhibitor of the retinoid cycle. J Biol Chem 2005; 280:42263-73. [PMID: 16216874 DOI: 10.1074/jbc.m509351200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the transfer of an acyl group from the sn-1 position of phosphatidylcholine to all-trans-retinol (vitamin A) and plays an essential role in the regeneration of visual chromophore as well as in the metabolism of vitamin A. Here we demonstrate that retinylamine (Ret-NH2), a potent and selective inhibitor of 11-cis-retinal biosynthesis (Golczak, M., Kuksa, V., Maeda, T., Moise, A. R., and Palczewski, K. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 8162-8167), is a substrate for LRAT. LRAT catalyzes the transfer of the acyl group onto Ret-NH2 leading to the formation of N-retinylpalmitamide, N-retinylstearamide, and N-retinylmyristamide with a ratio of 15:6:2, respectively. The presence of N-retinylamides was detected in vivo in mice supplemented with Ret-NH2. N-Retinylamides are thus the main metabolites of Ret-NH2 in the liver and the eye and can be mobilized by hydrolysis/deamidation back to Ret-NH2. Using two-photon microscopy and the intrinsic fluorescence of N-retinylamides, we showed that newly formed amides colocalize with the retinyl ester storage particles (retinosomes) in the retinal pigment epithelium. These observations provide new information concerning the substrate specificity of LRAT and explain the prolonged effect of Ret-NH2 on the rate of 11-cis-retinal recovery in vivo.
Collapse
Affiliation(s)
- Marcin Golczak
- Department of Ophthalmology, University of Washington and Acucela Inc., Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Mechanisms involved in the digestion and absorption of dietary vitamin A require the participation of several proteins. Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase, and intestinal brush border enzyme, phospholipase B. Unesterified retinol taken up by the enterocyte is complexed with cellular retinol-binding protein type 2 and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). The retinyl esters are then incorporated into chylomicrons, intestinal lipoproteins containing other dietary lipids, such as triglycerides, phospholipids, and free and esterified cholesterol, and apolipoprotein B. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph. Although under normal dietary conditions much of the dietary vitamin A is absorbed via the chylomicron/lymphatic route, it is also clear that under some circumstances there is substantial absorption of unesterified retinol via the portal route. Evidence supports the idea that the cellular uptake and efflux of unesterified retinol by enterocytes is mediated by lipid transporters, but the exact number, identity, and role of these proteins is not known and is an active area of research.
Collapse
Affiliation(s)
- Earl H Harrison
- Human Nutrition Research Center, United States Department of Agriculture, Beltsville, Maryland 20705, USA.
| |
Collapse
|
50
|
Jin M, Li S, Moghrabi WN, Sun H, Travis GH. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 2005; 122:449-59. [PMID: 16096063 PMCID: PMC2748856 DOI: 10.1016/j.cell.2005.06.042] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 05/27/2005] [Accepted: 06/20/2005] [Indexed: 11/15/2022]
Abstract
The first event in light perception is absorption of a photon by an opsin pigment, which induces isomerization of its 11-cis-retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical regeneration of 11-cis-retinaldehyde through an enzymatic pathway called the visual cycle. The isomerase, which converts an all-trans-retinyl ester to 11-cis-retinol, has never been identified. Here, we performed an unbiased cDNA expression screen to identify this isomerase. We discovered that the isomerase is a previously characterized protein called Rpe65. We confirmed our identification of the isomerase by demonstrating catalytic activity in mammalian and insect cells that express Rpe65. Mutations in the human RPE65 gene cause a blinding disease of infancy called Leber congenital amaurosis. Rpe65 with the Leber-associated C330Y and Y368H substitutions had no isomerase activity. Identification of Rpe65 as the isomerase explains the phenotypes in rpe65-/- knockout mice and in humans with Leber congenital amaurosis.
Collapse
Affiliation(s)
- Minghao Jin
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|