1
|
Napoli JL. Retinoic Acid: Sexually Dimorphic, Anti-Insulin and Concentration-Dependent Effects on Energy. Nutrients 2022; 14:1553. [PMID: 35458115 PMCID: PMC9027308 DOI: 10.3390/nu14081553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
This review addresses the fasting vs. re-feeding effects of retinoic acid (RA) biosynthesis and functions, and sexually dimorphic RA actions. It also discusses other understudied topics essential for understanding RA activities-especially interactions with energy-balance-regulating hormones, including insulin and glucagon, and sex hormones. This report will introduce RA homeostasis and hormesis to provide context. Essential context also will encompass RA effects on adiposity, muscle function and pancreatic islet development and maintenance. These comments provide background for explaining interactions among insulin, glucagon and cortisol with RA homeostasis and function. One aim would clarify the often apparent RA contradictions related to pancreagenesis vs. pancreas hormone functions. The discussion also will explore the adverse effects of RA on estrogen action, in contrast to the enhancing effects of estrogen on RA action, the adverse effects of androgens on RA receptors, and the RA induction of androgen biosynthesis.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, The University of California-Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
2
|
Zalesak-Kravec S, Huang W, Jones JW, Yu J, Alloush J, Defnet AE, Moise AR, Kane MA. Role of cellular retinol-binding protein, type 1 and retinoid homeostasis in the adult mouse heart: A multi-omic approach. FASEB J 2022; 36:e22242. [PMID: 35253263 DOI: 10.1096/fj.202100901rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jenna Alloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amy E Defnet
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Defnet AE, Shah SD, Huang W, Shapiro P, Deshpande DA, Kane MA. Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J 2021; 35:e22016. [PMID: 34784434 PMCID: PMC9361782 DOI: 10.1096/fj.202100835r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.
Collapse
Affiliation(s)
- Amy E. Defnet
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Sushrut D. Shah
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Cellular retinoid-binding proteins transfer retinoids to human cytochrome P450 27C1 for desaturation. J Biol Chem 2021; 297:101142. [PMID: 34480899 PMCID: PMC8511960 DOI: 10.1016/j.jbc.2021.101142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Cytochrome P450 27C1 (P450 27C1) is a retinoid desaturase expressed in the skin that catalyzes the formation of 3,4-dehydroretinoids from all-trans retinoids. Within the skin, retinoids are important regulators of proliferation and differentiation. In vivo, retinoids are bound to cellular retinol-binding proteins (CRBPs) and cellular retinoic acid–binding proteins (CRABPs). Interaction with these binding proteins is a defining characteristic of physiologically relevant enzymes in retinoid metabolism. Previous studies that characterized the catalytic activity of human P450 27C1 utilized a reconstituted in vitro system with free retinoids. However, it was unknown whether P450 27C1 could directly interact with holo-retinoid-binding proteins to receive all-trans retinoid substrates. To assess this, steady-state kinetic assays were conducted with free all-trans retinoids and holo-CRBP-1, holo-CRABP-1, and holo-CRABP-2. For holo-CRBP-1 and holo-CRABP-2, the kcat/Km values either decreased 5-fold or were equal to the respective free retinoid values. The kcat/Km value for holo-CRABP-1, however, decreased ∼65-fold in comparison with reactions with free all-trans retinoic acid. These results suggest that P450 27C1 directly accepts all-trans retinol and retinaldehyde from CRBP-1 and all-trans retinoic acid from CRABP-2, but not from CRABP-1. A difference in substrate channeling between CRABP-1 and CRABP-2 was also supported by isotope dilution experiments. Analysis of retinoid transfer from holo-CRABPs to P450 27C1 suggests that the decrease in kcat observed in steady-state kinetic assays is due to retinoid transfer becoming rate-limiting in the P450 27C1 catalytic cycle. Overall, these results illustrate that, like the CYP26 enzymes involved in retinoic acid metabolism, P450 27C1 interacts with cellular retinoid-binding proteins.
Collapse
|
5
|
Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep 2021; 41:228584. [PMID: 33950219 PMCID: PMC8493444 DOI: 10.1042/bsr20210491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Selective modulation of retinaldehyde dehydrogenases (RALDHs)-the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.
Collapse
|
6
|
Napoli JL, Yoo HS. Retinoid metabolism and functions mediated by retinoid binding-proteins. Methods Enzymol 2020; 637:55-75. [PMID: 32359659 DOI: 10.1016/bs.mie.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular retinoid-binding proteins (BP) chaperone retinol through esterification, conversion of retinol into retinal, reduction of retinal, conversion of retinal into all-trans-retinoic acid (ATRA), and ATRA to catabolism. They also deliver ATRA to nuclear receptors and mediate non-genomic ATRA actions. These retinoid-specific binding-proteins include: cellular retinol binding-protein, type 1 (Crbp1), cellular retinol binding-protein type 2 (Crbp2), cellular retinol binding-protein type 3 (Crbp3), cellular retinoic acid binding-protein type 1 (Crabp1); cellular retinoic acid binding-protein type 2 (Crabp2). Retinoid BP bind their ligands specifically and with high-affinity. These BP seemingly evolved to solubilize the lipophilic retinoids in the aqueous cellular medium, and allow retinoid access only to enzymes that recognize both the BP and the retinoid. By chaperoning retinoids through cells, retinoid BP provide specificity to retinoids' metabolism and protect the scarce resource from dispersing into cell membranes and/or undergoing catabolism as xenobiotics. Other functions include non-genomic actions of Crabp1, delivery of ATRA to RAR by holo-Crabp2, and stabilization of HuR by apo-Crabp2. In addition to the retinoid-specific BP, Fabp5 also binds ATRA and delivers it to Pparδ. This article describes these BP and their functions, with a focus on experimental protocols to distinguish protein-protein interactions from diffusion-mediated transfer of ligand from BP to enzymes or receptors, and methods for quantifying retinoids.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States
| |
Collapse
|
7
|
Abstract
Generation of the autacoid all-trans-retinoic acid (ATRA) from retinol (vitamin A) relies on a complex metabolon that includes retinol binding-proteins and enzymes from the short-chain dehydrogenase/reductase and aldehyde dehydrogenase gene families. Serum retinol binding-protein delivers all-trans-retinol (vitamin A) from blood to cells through two membrane receptors, Stra6 and Rbpr2. Stra6 and Rbpr2 convey retinol to cellular retinol binding-protein type 1 (Crbp1). Holo-Crbp1 delivers retinol to lecithin: retinol acyl transferase (Lrat) for esterification and storage. Lrat channels retinol directly into its active site from holo-Crbp1 by protein-protein interaction. The ratio apo-Crbp1/holo-Crbp1 directs flux of retinol into and out of retinyl esters, through regulating esterification vs ester hydrolysis. Multiple retinol dehydrogenases (Rdh1, Rdh10, Dhrs9, Rdhe2, Rdhe2s) channel retinol from holo-Crbp1 to generate retinal for ATRA biosynthesis. β-Carotene oxidase type 1 generates retinal from carotenoids, delivered by the scavenger receptor-B1. Retinal reductases (Dhrs3, Dhrs4, Rdh11) reduce retinal into retinol, thereby restraining ATRA biosynthesis. Retinal dehydrogenases (Raldh1, 2, 3) dehydrogenate retinal irreversibly into ATRA. ATRA regulates its own concentrations by inducing Lrat and ATRA degradative enzymes. ATRA exhibits hormesis. Its effects relate to its concentration as an inverted J-shaped curve, transitioning from beneficial in the "goldilocks" zone to toxicity, as concentrations increase. Hormesis has distorted understanding physiological effects of ATRA post-nataly using chow-diet fed, ATRA-dosed animal models. Cancer, immune deficiency and metabolic abnormalities result from mutations and/or insufficiency in Crbp1 and retinoid metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| |
Collapse
|
8
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
9
|
Yang D, Krois CR, Huang P, Wang J, Min J, Yoo HS, Deng Y, Napoli JL. Raldh1 promotes adiposity during adolescence independently of retinal signaling. PLoS One 2017; 12:e0187669. [PMID: 29095919 PMCID: PMC5667840 DOI: 10.1371/journal.pone.0187669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
All-trans-retinoic acid (RA) inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO). The aldehyde dehydrogenase Raldh1 (Aldh1a1) functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.
Collapse
Affiliation(s)
- Di Yang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Charles R. Krois
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jinshan Wang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jin Min
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Yinghua Deng
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
11
|
Abstract
Retinoic acid (RA) was identified as the biologically active form of vitamin A almost 70 years ago and work on its function and mechanism of action is still of major interest both from a scientific and a clinical perspective. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA. Excess RA is inactivated by conversion to hydroxylated derivatives. Much is left to learn, especially about retinoid binding proteins and the trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes. Here, background on development of the field and an update on recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation are presented with a focus on the many questions that remain unanswered.
Collapse
|
12
|
Arnold SLM, Kent T, Hogarth CA, Griswold MD, Amory JK, Isoherranen N. Pharmacological inhibition of ALDH1A in mice decreases all-trans retinoic acid concentrations in a tissue specific manner. Biochem Pharmacol 2015; 95:177-92. [PMID: 25764981 PMCID: PMC4420653 DOI: 10.1016/j.bcp.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
all-trans retinoic acid (atRA), the active metabolite of vitamin A, is an essential signaling molecule. Specifically the concentrations of atRA are spatiotemporally controlled in target tissues such as the liver and the testes. While the enzymes of the aldehyde dehydrogenase 1A family (ALDH1A) are believed to control the synthesis of atRA, a direct relationship between altered ALDH1A activity and tissue atRA concentrations has never been shown. To test whether inhibition of ALDH1A enzymes decreases atRA concentrations in a tissue specific manner, the potent ALDH1A inhibitor WIN 18,446 was used to inhibit ALDH1A activity in mice. The ALDH1A expression, atRA formation kinetics, ALDH1A inhibition by WIN 18,446 and WIN 18,446 disposition were used to predict the time course and extent of inhibition of atRA formation in the testis and liver. The effect of WIN 18,446 on atRA concentrations in testis, liver and serum were measured following single and multiple doses of WIN 18,446. ALDH1A1 and ALDH1A2 were responsible for the majority of atRA formation in the testis while ALDH1A1 and aldehyde oxidase contributed to atRA formation in the liver. Due to the different complement of enzymes contributing to atRA formation in different tissues and different inhibition of ALDH1A1 and ALDH1A2 by WIN 18,446, WIN 18,446 caused only a 50% decrease in liver atRA but testicular atRA decreased over 90%. Serum atRA concentrations were also reduced. These data demonstrate that inhibition of ALDH1A enzymes will decrease atRA concentrations in a tissue specific manner and selective ALDH1A inhibition could be used to alter atRA concentrations in select target tissues.
Collapse
Affiliation(s)
- Samuel L M Arnold
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Travis Kent
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Michael D Griswold
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Arnold SL, Kent T, Hogarth CA, Schlatt S, Prasad B, Haenisch M, Walsh T, Muller CH, Griswold MD, Amory JK, Isoherranen N. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J Lipid Res 2014; 56:342-57. [PMID: 25502770 DOI: 10.1194/jlr.m054718] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types.
Collapse
Affiliation(s)
- Samuel L Arnold
- Department of Pharmaceutics, School of Pharmacy, School of Medicine, University of Washington, Seattle, WA 98195
| | - Travis Kent
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Stefan Schlatt
- Center for Reproductive Medicine and Andrology, Munster, Germany
| | - Bhagwat Prasad
- Department of Pharmaceutics, School of Pharmacy, School of Medicine, University of Washington, Seattle, WA 98195
| | - Michael Haenisch
- Departments of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195
| | - Thomas Walsh
- Urology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Charles H Muller
- Urology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John K Amory
- Medicine, School of Medicine, University of Washington, Seattle, WA 98195
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, School of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
14
|
Kono N, Arai H. Intracellular transport of fat-soluble vitamins A and E. Traffic 2014; 16:19-34. [PMID: 25262571 DOI: 10.1111/tra.12231] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/11/2022]
Abstract
Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.
Collapse
Affiliation(s)
- Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
15
|
Marwarha G, Berry DC, Croniger CM, Noy N. The retinol esterifying enzyme LRAT supports cell signaling by retinol-binding protein and its receptor STRA6. FASEB J 2013; 28:26-34. [PMID: 24036882 DOI: 10.1096/fj.13-234310] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP). At some tissues, holo-RBP is recognized by a plasma membrane receptor termed STRA6, which serves a dual role: it mediates transport of retinol from RBP into cells, and it functions as a cytokine receptor that, on binding holo-RBP, activates JAK2/STAT5 signaling. As STAT target genes include SOCS3, an inhibitor of insulin receptor, holo-RBP suppresses insulin responses in STRA6-expressing cells. We have shown previously that the two functions of STRA6 are interdependent. These observations suggest factors that regulate STRA6-mediated retinol transport may also control STRA6-mediated cell signaling. One such factor is retinol metabolism, which enables cellular uptake of retinol by maintaining an inward-directed concentration gradient. We show here that lecithin:retinol acyl transferase (LRAT), which catalyzes esterification of retinol to its storage species retinyl esters, is necessary for activation of the STRA6/JAK2/STAT5 cascade by holo-RBP. In accordance, LRAT-null mice are protected from holo-RBP-induced suppression of insulin responses. Hence, STRA6 signaling, which requires STRA6-mediated retinol transport, is supported by LRAT-catalyzed retinol metabolism. The observations demonstrate that STRA6 regulates key cellular processes by coupling circulating holo-RBP levels and intracellular retinol metabolism to cell signaling.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- 2Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
16
|
Lin JY. Production and validation of recombinant adeno-associated virus for channelrhodopsin expression in neurons. Methods Mol Biol 2013; 998:401-15. [PMID: 23529447 DOI: 10.1007/978-1-62703-351-0_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Recent discovery of the light-activated ion channel, channelrhodopsin (ChR), has provided researchers a powerful and convenient tool to manipulate the membrane potential of specific cells with light. With genetic targeting of these channels and illumination of light to a specific location, the experimenter can selectively activate the voltage-gated ion channels (VGICs) of ChR-expressing cells, initiating electrical signaling in temporally and spatially precise manners. In neuroscience research, this can be used to study electrical signal processing within one neuron at the cellular level, or the synaptic connectivity between neurons at the circuitry level. To conduct experiments with ChRs, these exogenous channels need to be introduced into the cells of interest, commonly through a viral approach. This chapter provides an overview of the design, production, and validation of recombinant adeno-associated virus (rAAV) for ChR expression that can be used in vitro or in vivo to infect neurons. The virus produced can be used to conduct "optogenetic" experiments in behaving animals, in vitro preparations and cultured cells, and can be used to study signal transduction and processing at a cellular or circuitry level.
Collapse
Affiliation(s)
- John Y Lin
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
17
|
Pierzchalski K, Yu J, Norman V, Kane MA. CrbpI regulates mammary retinoic acid homeostasis and the mammary microenvironment. FASEB J 2013; 27:1904-16. [PMID: 23362116 DOI: 10.1096/fj.12-219410] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular retinol-binding protein, type I (CrbpI), encoded by retinol-binding protein, type 1 (Rbp1), is a chaperone of vitamin A (retinol) that is epigenetically silenced in ~25% of human breast cancers. CrbpI delivers vitamin A to enzymes for metabolism into an active metabolite, all-trans retinoic acid (atRA), where atRA is essential to cell proliferation, apoptosis, differentiation, and migration. Here, we show the effect of CrbpI loss on mammary atRA homeostasis using the Rbp1(-/-) mouse model. Rbp1(-/-) mouse mammary tissue has disrupted retinoid homeostasis that results in 40% depleted endogenous atRA. CrbpI loss and atRA depletion precede defects in atRA biosynthesis enzyme expression. Compensation by CrbpIII as a retinoid chaperone does not functionally replace CrbpI. Mammary subcellular fractions isolated from Rbp1(-/-) mice have altered retinol dehydrogenase/reductase (Rdh) enzyme activity that results in 24-42% less atRA production. Rbp1(-/-) mammary tissue has epithelial hyperplasia, stromal hypercellularity, increased collagen, and increased oxidative stress characteristic of atRA deficiency and early tissue dysfunction that precedes tumor formation. Consistent with the findings from the Rbp1(-/-) mouse, tumorigenic epithelial cells lacking CrbpI expression produce 51% less atRA. Together, these data show that CrbpI loss disrupts atRA homeostasis in mammary tissue, resulting in microenvironmental defects similar to those observed at the early stages of tumorigenesis.
Collapse
Affiliation(s)
- Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
18
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
19
|
Wang C, Kane MA, Napoli JL. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J Biol Chem 2010; 286:6542-53. [PMID: 21138835 DOI: 10.1074/jbc.m110.198382] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) stimulates neurogenesis, dendritic growth of hippocampal neurons, and higher cognitive functions, such as spatial learning and memory formation. Although astrocyte-derived atRA has been considered a key factor in neurogenesis, little direct evidence identifies hippocampus cell types and the enzymes that biosynthesize atRA. Here we show that primary rat astrocytes, but not neurons, biosynthesize atRA using multiple retinol dehydrogenases (Rdh) of the short chain dehydrogenase/reductase gene family and retinaldehyde dehydrogenases (Raldh). Astrocytes secrete atRA into their medium; neurons sequester atRA. The first step, conversion of retinol into retinal, is rate-limiting. Neurons and astrocytes both synthesize retinyl esters and reduce retinal into retinol. siRNA knockdown indicates that Rdh10, Rdh2 (mRdh1), and Raldh1, -2, and -3 contribute to atRA production. Knockdown of the Rdh Dhrs9 increased atRA synthesis ∼40% by increasing Raldh1 expression. Immunocytochemistry revealed cytosolic and nuclear expression of Raldh1 and cytosol and perinuclear expression of Raldh2. atRA autoregulated its concentrations by inducing retinyl ester synthesis via lecithin:retinol acyltransferase and stimulating its catabolism via inducing Cyp26B1. These data show that adult hippocampus astrocytes rely on multiple Rdh and Raldh to provide a paracrine source of atRA to neurons, and atRA regulates its own biosynthesis in astrocytes by directing flux of retinol. Observation of cross-talk between Dhrs9 and Raldh1 provides a novel mechanism of regulating atRA biosynthesis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Starkey JM, Zhao Y, Sadygov RG, Haidacher SJ, LeJeune WS, Dey N, Luxon BA, Kane MA, Napoli JL, Denner L, Tilton RG. Altered retinoic acid metabolism in diabetic mouse kidney identified by O isotopic labeling and 2D mass spectrometry. PLoS One 2010; 5:e11095. [PMID: 20559430 PMCID: PMC2885420 DOI: 10.1371/journal.pone.0011095] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/14/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, (18)O- and (16)O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change >or=1.5 and p<or=0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARbeta/delta mRNA. CONCLUSIONS/SIGNIFICANCE Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in type 2 diabetic renal disease. Our observations provide novel insights into potential links between altered lipid metabolism and other gene networks controlled by retinoic acid in the diabetic kidney, and demonstrate the utility of using systems biology to gain new insights into diabetic nephropathy.
Collapse
Affiliation(s)
- Jonathan M. Starkey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Stark Diabetes Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rovshan G. Sadygov
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sigmund J. Haidacher
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wanda S. LeJeune
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nilay Dey
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruce A. Luxon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Translational Science Biomedical Informatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maureen A. Kane
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Stark Diabetes Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald G. Tilton
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Stark Diabetes Center, University of Texas Medical Branch, Galveston, Texas, United States of America
- McCoy Diabetes Mass Spectrometry Research Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kane MA, Folias AE, Wang C, Napoli JL. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J 2009; 24:823-32. [PMID: 19890016 DOI: 10.1096/fj.09-141572] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
All-trans-retinoic acid (atRA) supports embryonic development, central nervous system function, and the immune response. atRA initiates neurogenesis and dendritic growth in the hippocampus and is required for spatial memory; superphysiological atRA inhibits neurogenesis, causes teratology and/or embryo toxicity, and alters cognitive function and behavior. Because abnormal atRA shares pathological conditions with alcoholism, inhibition of retinol (vitamin A) activation into atRA has been credited widely as a mechanism of ethanol toxicity. Here, we analyze the effects of ethanol on retinoid concentrations in vivo during normal vitamin A nutriture, using sensitive and analytically robust assays. Ethanol either increased or had no effect on atRA, regardless of changes in retinol and retinyl esters. Acute ethanol (3.5 g/kg) increased atRA in adult hippocampus (1.6-fold), liver (2.4-fold), and testis (1.5-fold). Feeding dams a liquid diet with 6.5% ethanol from embryonic day 13 (e13) to e19 increased atRA in fetal hippocampus (up to 20-fold) and cortex (up to 50-fold), depending on blood alcohol content. One-month feeding of the 6.5% ethanol diet increased atRA in adult hippocampus (20-fold), cortex (2-fold), testis (2-fold), and serum (10-fold). Tissue-specific increases in retinoid dehydrogenase mRNAs and activities, extrahepatic retinol concentrations, and atRA catabolism combined to produce site-specific effects. Because a sustained increase in atRA has deleterious effects on the central nervous system and embryo development, these data suggest that superphysiological atRA contributes to ethanol pathological conditions, including cognitive dysfunction and fetal alcohol syndrome.-Kane, M. A., Folias, A. E., Wang, C., Napoli, J. L. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity.
Collapse
Affiliation(s)
- Maureen A Kane
- 119 Morgan Hall, MC#3104, University of California, Berkeley, Berkeley, CA 94720-3104, USA
| | | | | | | |
Collapse
|
22
|
Fujiwara K, Kikuchi M, Horiguchi K, Kusumoto K, Kouki T, Kawanishi K, Yashiro T. Estrogen receptor alpha regulates retinaldehyde dehydrogenase 1 expression in rat anterior pituitary cells. Endocr J 2009; 56:963-73. [PMID: 19671997 DOI: 10.1507/endocrj.k09e-115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) plays a critical role in embryonic development, growth, and reproduction. RA is synthesized from retinoids via oxidation processes, and the oxidation of retinal to RA is catalyzed by the retinaldehyde dehydrogenases (RALDHs). We previously reported that RALDH1 mRNA was expressed in the anterior pituitary glands of adult rats and suppressed by administration of 17beta-estradiol in vivo. However, little is known about the mechanism regulating pituitary RALDH1 expression. In order to characterize the mechanism of estrogen-induced RALDH1 reduction, we examined the effect of 17beta-estradiol on the regulation of pituitary RALDH1 gene expression and protein production both in vivo and in vitro. Using quantitative real-time PCR and immunoblot analysis, we found that levels of RALDH1 gene expression and protein production markedly decreased after 1-week treatment with 17beta-estradiol in male rats. In immunohistochemical analysis, RALDH1-immunoreaction was observed in prolactin cells and folliculo-stellate cells. In 17beta-estradiol-treated rats, RALDH1-immunoreactivity was lower in prolactin cells, but not in folliculo-stellate cells. Treatment of isolated anterior pituitary cells with 17beta-estradiol (10(-14) - 10(-8) M) decreased expression of RALDH1 mRNA in a dose-dependent manner. Estradiol-induced suppression of RALDH1 expression was completely blocked by the estrogen receptor (ER) antagonist ICI 182, 780. The ERalpha-selective agonist propylpyrazole triol (10(-8) M) mimicked the effect of 17beta-estradiol on RALDH1 expression, but the ERbeta-selective agonist diarylpropionitrile (10(-8) M) did not. These results strongly suggest that RALDH1 mRNA expression is suppressed by 17beta-estradiol through ERalpha, and that estrogen regulates the expression of RALDH1 and production of RA in the anterior pituitary gland.
Collapse
Affiliation(s)
- Ken Fujiwara
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J. Theylo-1gene encodes an aldehyde dehydrogenase responsible for the last reaction in theNeurosporacarotenoid pathway. Mol Microbiol 2008; 69:1207-20. [DOI: 10.1111/j.1365-2958.2008.06349.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Abstract
Retinoids play important roles in cell differentiation and apoptosis, notably in epithelial tissues. Their utility in cancer therapy has been demonstrated in specific cancer types. Use of retinoic acid (RA) in the treatment of acute promyelocytic leukemia was the first successful example of retinoid-based differentiation therapy. RA has since been evaluated for treatment of other cancers, revealing variable effectiveness. The observation that expression of enzymes involved in RA biosynthesis is suppressed during tumorigenesis suggests that intra-tumor depletion in RA levels may contribute to tumor development and argues for the use of retinoids in cancer treatment. However, the induction of RA-inactivating enzymes is one of the mechanisms that may limit the efficacy of retinoid therapy and contribute to acquired resistance to RA treatment, suggesting that retinoic acid metabolism blocking agents may be effective agents in differentiation therapy.
Collapse
Affiliation(s)
- Maxime Parisotto
- Département de biochimie et Institut de recherche en immunologie et cancérologie, Université de Montréal, CP 6128, succursale Centre-ville, Montréal (Québec), H3C 3J7 Canada
| | | | | | | |
Collapse
|
25
|
Zhang M, Hu P, Krois CR, Kane MA, Napoli JL. Altered vitamin A homeostasis and increased size and adiposity in the rdh1-null mouse. FASEB J 2007; 21:2886-96. [PMID: 17435174 DOI: 10.1096/fj.06-7964com] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rat RoDH performs efficiently (V(m)/K(m)) in a pathway of all-trans-retinoic acid biosynthesis in cells and recognizes the physiological form of vitamin A, i.e., retinol bound with cellular retinol binding-protein, type I. Here we report that mouse embryo (e7.5 to e18.5) and liver (e12.5 to P2M) display inversely related mRNA expression of an Rodh ortholog, rdh1, and a major retinoic acid catabolic enzyme, cyp26a1, suggesting coordinate modulation of retinoic acid homeostasis. Rdh1 inactivation by homologous recombination produces mice with decreased liver cyp26a1 mRNA and protein and increased liver and kidney retinoid stores, when fed vitamin A-restricted diets. Thus, null mice autocompensate by down-regulating cyp26a1 and sparing retinoids, indicating that rdh1 metabolizes retinoids in vivo. Surprisingly, rdh1-null mice grow longer than wild type, with increased weight and adiposity, when restricted in vitamin A. Liver, kidney, and multiple fat pads increase in weight. Some differences reflect the larger sizes of rdh1-null mice, but mesentery, femoral, and inguinal fat pads grow disproportionately larger. These data reveal an unexpected contribution of Rdh1 to size and adiposity and provide the first genetic evidence of a candidate retinol dehydrogenase affecting either vitamin A-related homeostasis physiologically or vitamin A-related gene expression or biological function in vivo.
Collapse
Affiliation(s)
- Min Zhang
- Nutritional Science and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | | | | | |
Collapse
|
26
|
Du K, Liu GF, Xie JP, Song XH, Li R, Liang B, Huang DY. A 27.368 kDa retinal reductase in New Zealand white rabbit liver cytosol encoded by the peroxisomal retinol dehydrogenase-reductase cDNA: purification and characterization of the enzyme. Biochem Cell Biol 2007; 85:209-17. [PMID: 17534402 DOI: 10.1139/o06-183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We obtained a full-length cDNA based on a sequence deposited in GenBank (accession No. AB045133), annotated as rabbit peroxisomal NADP(H)-dependent retinol dehydrogenase-reductase (NDRD). The rabbit NDRD gene, like its mouse and human homologs, harbors 2 initiation sites, one of which theoretically encodes a 29.6 kDa protein with 279 amino acids, and the other encodes a 27.4 kDa protein with 260 amino acids. The purification of a rabbit cytosolic retinol oxidoreductase with a subunit molecular mass of 34 kDa and an N terminus that is not completely identical to that of NDRD, has been reported. An enzyme responsible for the all-trans retinal reductase activity in the liver cytosol of New Zealand white rabbit was purified to homogeneity using differential centrifugation and successive chromatographic analyses. The subunit molecular mass of the purified enzyme, revealed by SDS-PAGE, was approximately 27 kDa. The intact molecular mass, measured by MALDI-TOF mass spectrometry, was 27.368 kDa. The 60 kDa relative mobility observed in size-exclusion chromatography indicates that the native protein probably exists as a dimer. The purified enzyme was positively confirmed to be the product of NDRD by peptide mass fingerprinting, tandem mass spectrometry, and N-terminal sequencing. Taken together, the results suggested that the native protein is truncated at the N terminus.
Collapse
Affiliation(s)
- Kun Du
- Center for Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Asson-Batres MA, Smith WB. Localization of retinaldehyde dehydrogenases and retinoid binding proteins to sustentacular cells, glia, Bowman's gland cells, and stroma: potential sites of retinoic acid synthesis in the postnatal rat olfactory organ. J Comp Neurol 2006; 496:149-71. [PMID: 16538685 PMCID: PMC2562045 DOI: 10.1002/cne.20904] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Work from our laboratory suggests that retinoic acid (RA) influences neuron development in the postnatal olfactory epithelium (OE). The studies reported here were carried out to identify and localize retinaldehyde dehydrogenase (RALDH) expression in postnatal rat OE to gain a better understanding of potential in vivo RA synthesis sites in this continuously regenerating tissue. RALDH 1, 2, and 3 mRNAs were detected in postnatal rat olfactory tissue by RT-PCR analysis, but RALDH 1 and 2 transcripts were predominant. RALDH 1 immunoreactivity was localized to sustentacular cells in the OE and to Bowman's gland cells, and GFAP(+)/p75(-) olfactory ensheathing cells (OECs) in the underlying lamina propria (LP). RALDH 2 did not colocalize with RALDH 1, but appeared to be expressed in GFAP(-)/RALDH 1(-) OECs as well as in unidentified structures in the LP. Cellular RA binding protein (CRABP II) colocalized with RALDH 1. Cellular retinol/retinaldehyde binding protein (CRBP I) was localized to RALDH 1(+) sites in the OE and LP and RALDH 2(+) sites, primarily surrounding nerve fiber bundles in the LP. Vitamin A deficiency altered RALDH 1, but not RALDH 2 protein expression. The isozymes and binding proteins exhibited random variability in levels and areas of expression both within and between animals. These findings support the hypothesis that RA is synthesized in the postnatal OE (catalyzed by RALDH 1) and underlying LP (differentially catalyzed by RALDH 1 and RALDH 2) at sites that could influence the development, maturation, targeting, and/or turnover of olfactory receptor neurons throughout the olfactory organ.
Collapse
Affiliation(s)
- Mary Ann Asson-Batres
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee 37209, USA.
| | | |
Collapse
|
28
|
Matt N, Schmidt CK, Dupé V, Dennefeld C, Nau H, Chambon P, Mark M, Ghyselinck NB. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development. Dev Dyn 2005; 233:167-76. [PMID: 15765518 DOI: 10.1002/dvdy.20313] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency.
Collapse
Affiliation(s)
- Nicolas Matt
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut Clinique de la Souris (ICS), CNRS/INSERM/ULP, Collège de France, BP10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Belyaeva OV, Korkina OV, Stetsenko AV, Kim T, Nelson PS, Kedishvili NY. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry 2005; 44:7035-47. [PMID: 15865448 PMCID: PMC2679700 DOI: 10.1021/bi050226k] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia Y. Kedishvili
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama-Birmingham, 720, 20th Street South, 440B KAUL, Birmingham, AL 35294. Phone, (205) 996 4023; fax, (205) 934 0758; e-mail,
| |
Collapse
|
30
|
Katz ML, Wendt KD, Sanders DN. RPE65 gene mutation prevents development of autofluorescence in retinal pigment epithelial phagosomes. Mech Ageing Dev 2005; 126:513-21. [PMID: 15722110 DOI: 10.1016/j.mad.2004.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/10/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
During senescence, autofluorescent lysosomal storage bodies known as lipofusin or age pigment accumulate in many post-mitotic types of cells. Among these cell types is the retinal pigment epithelium (RPE) of the mammalian eye. The mechanisms of lipofuscin formation and accumulation have been studied more extensively in the RPE than in any other cell type. Substantial evidence indicates that Vitamin A derivatives (retinoids) are required for RPE lipofuscin formation. The RPE and adjacent retina contain retinoids in the forms of retinol, retinyl esters, and retinaldehyde. Previous research has demonstrated that retinaldehydes are directly involved in the formation of one RPE lipofuscin fluorophore. However, RPE lipofuscin contains many other fluorophores. It has not been determined which retinoids are involved in the formation of these fluorescent compounds. Mice with a mutation in the Rpe65 gene contain substantial levels of retinol and retinyl esters in the RPE, but little if any retinaldehydes in either the RPE or retina. Therefore, these mice could be used to determine whether retinaldehydes are required for formation of all of the RPE lipofuscin fluorophores. Normal mice were given intraocular injections of a protease inhibitor, which resulted in the rapid accumulation in the RPE of lipofuscin-like inclusions. These inclusions exhibited fluorescence properties typical of RPE lipofuscin. Rpe65-/- mice treated with the protease inhibitor also accumulated inclusions similar to those observed in the normal mice. However, these inclusions did not fluoresce under the conditions used to visualize lipofuscin fluorescence. These findings indicate that the aldehyde form of Vitamin A is required for the formation of not only one, but all of the RPE lipofuscin fluorophores.
Collapse
Affiliation(s)
- Martin L Katz
- Department of Ophthalmology, University of Missouri School of Medicine, Mason Eye Institute, One Hospital Dr., Columbia, MO 65212, USA.
| | | | | |
Collapse
|
31
|
Lin M, Zhang M, Abraham M, Smith SM, Napoli JL. Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9-cis-retinoic acid biosynthesis in intact cells. J Biol Chem 2003; 278:9856-61. [PMID: 12519776 DOI: 10.1074/jbc.m211417200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes cDNA cloning and characterization of mouse RALDH4. The 2.3-kb cDNA encodes an aldehyde dehydrogenase of 487 amino acid residues, about two-orders of magnitude more active in vitro with 9-cis-retinal than with all-trans-retinal. RALDH4 recognizes as substrate 9-cis-retinal generated in transfected cells by the short-chain dehydrogenases CRAD1, CRAD3, or RDH1, to reconstitute a path of 9-cis-retinoic acid biosynthesis in situ. Northern blot analysis showed expression of RALDH4 mRNA in adult mouse liver and kidney. In situ hybridization revealed expression of RALDH4 in liver on embryo day 14.5, in adult hepatocytes, and kidney cortex. Immunohistochemistry confirmed RALDH4 expression in hepatocytes and showed that hepatocytes also express RALDH1, RALDH2, and RALDH3. Kidney expresses the RALDH4 protein primarily in the proximal and distal convoluted tubules of the cortex but not in the glomeruli or the medulla. Kidney expresses RALDH2 in the proximal convoluted tubules of the cortex but not in the distal convoluted tubules or glomeruli. Kidney expresses RALDH1 and RALDH2 in the medulla. The enzymatic characteristics of RALDH4, its expression in fetal liver, and its unique expression pattern in adult kidney compared with RALDH1, -2, and -3 suggest that it could meet specific needs for 9-cis-retinoic acid biosynthesis.
Collapse
Affiliation(s)
- Min Lin
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Mouse rdh1 encodes retinol dehydrogenase type 1 (RDH1), a short-chain dehydrogenase, which recognizes as substrates all-trans-retinol, 9-cis-retinol, 5alpha-androstan-3,17-diol and 5alpha-androstan-3-ol-17-one. RDH1 is the most efficient known mouse short-chain dehydrogenase that catalyzes dehydrogenation of all-trans-retinol, and contributes to a reconstituted path of all-trans-retinoic acid biosynthesis, when coexpressed in reporter cells with any one of three retinal dehydrogenases. Rdh1 shows widespread, if not ubiquitous, mRNA expression in the mouse beginning no later than embryo day 7. Here we report genomic organization, chromosomal localization and analysis of a minimum promoter of mouse rdh1. Rdh1 consists of four exons and three introns and spans approximately 14412 bp. Rdh1 is a single copy gene that maps to chromosome 10D3 with rdh5-9, but no known disorder maps precisely to rdh1. Rdh1 has three transcription start sites in kidney and one start site in liver. The rdh1 5'-region between -424 and +43 induces transcription maximally in COS7, mouse kidney RAG, and mouse liver NMu3Li cells. This section has no TATA box, but has a CCAAT box beginning 65 bp upstream of the major transcription start site, which is required for transcription of transfected reporter constructs. An AP1 binding site at -119 also activates transfected reporter constructs, and mediates 2-O-tetradecanoylphorbol-13-acetate (TPA) induced transcription. All-trans-retinoic acid antagonizes the TPA affect; however, no RARE or RXRE was found in the proximal promoter region, consistent with indirect regulation by all-trans-retinoic acid.
Collapse
Affiliation(s)
- Min Zhang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
33
|
Taibi G, Paganini A, Gueli MC, Ampola F, Nicotra CM. Xanthine oxidase catalyzes the synthesis of retinoic acid. JOURNAL OF ENZYME INHIBITION 2002; 16:275-85. [PMID: 11697048 DOI: 10.1080/14756360109162376] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Milk xanthine oxidase (xanthine: oxygen oxidoreductase; XO; EC 1.1.3.22) was found to catalyze the conversion of retinaldehyde to retinoic acid. The ability of XO to synthesize all trans-retinoic acid efficiently was assessed by its turnover number of 31.56 min-1, determined at pH 7.0 with 1 nM XO and all trans-retinaldehyde varying between 0.05 to 2 microM. The determination of both retinoid and purine content in milk was also considered in order to correlate their concentrations with kinetic parameters of retinaldehyde oxidase activity. The velocity of the reaction was dependent on the isomeric form of the substrate, the all trans- and 9-cis-forms being the preferred substrates rather than 13-cis-retinaldehyde. The enzyme was able to oxidize retinaldehyde in the presence of oxygen with NAD or without NAD addition. In this latter condition the catalytic efficiency of the enzyme was higher. The synthesis of retinoic acid was inhibited 87% and 54% by 4 microM and 2 microM allopurinol respectively and inhibited 48% by 10 microM xanthine in enzyme assays performed at 2 microM all trans-retinaldehyde. The Ki value determined for xanthine as an inhibitor of retinaldehyde oxidase activity was 4 microM.
Collapse
Affiliation(s)
- G Taibi
- Istituto di Chimica Biologica, Università di Palermo, 90127 Palermo, Italia.
| | | | | | | | | |
Collapse
|
34
|
Zhang M, Chen W, Smith SM, Napoli JL. Molecular characterization of a mouse short chain dehydrogenase/reductase active with all-trans-retinol in intact cells, mRDH1. J Biol Chem 2001; 276:44083-90. [PMID: 11562362 DOI: 10.1074/jbc.m105748200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic activation of retinol (vitamin A) via sequential actions of retinol and retinal dehydrogenases produces the active metabolite all-trans-retinoic acid. This work reports cDNA cloning, enzymatic characterization, function in a reconstituted path of all-trans-retinoic acid biosynthesis in cell culture, and mRNA expression patterns in adult tissues and embryos of a mouse retinol dehydrogenase, RDH1. RDH1 represents a new member of the short chain dehydrogenase/reductase superfamily that differs from other mouse RDH in relative activity with all-trans and cis-retinols. RDH1 has a multifunctional catalytic nature, as do other short chain dehydrogenase/reductases. In addition to retinol dehydrogenase activity, RDH1 has strong 3alpha-hydroxy and weak 17beta-hydroxy steroid dehydrogenase activities. RDH1 has widespread and intense mRNA expression in tissues of embryonic and adult mice. The mouse embryo expresses RDH1 as early as 7.0 days post-coitus, and expression is especially intense within the neural tube, gut, and neural crest at embryo day 10.5. Cells cotransfected with RDH1 and any one of three retinal dehydrogenase isozymes synthesize all-trans-retinoic acid from retinol, demonstrating that RDH1contributes to a path of all-trans-retinoic acid biosynthesis in intact cells. These characteristics are consistent with RDH1 functioning in a path of all-trans-retinoic acid biosynthesis starting early during embryogenesis.
Collapse
Affiliation(s)
- M Zhang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
35
|
Wang J, Bongianni JK, Napoli JL. The N-terminus of retinol dehydrogenase type 1 signals cytosolic orientation in the microsomal membrane. Biochemistry 2001; 40:12533-40. [PMID: 11601977 DOI: 10.1021/bi011396+] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We determined the orientation of the SDR (short-chain dehydrogenase/reductase) rat RoDH1 (retinol dehydrogenase type 1) in the endoplasmic reticulum to provide insight into its function in retinol metabolism, and to resolve whether retinoid-metabolizing SDRs differ from several other SDRs by requiring a C-terminal segment for the membrane orientation. In contrast to several soluble SDRs, the membrane-associated RoDH1 has hydrophobic extensions N- and C-terminal to the SDR core. Confocal microscopy and/or proteinase K protection assays of RoDH1, RoDH1 mutants, and RoDH1-green fluorescent protein fusion proteins showed that the N-terminal segment anchors RoDH1 to the endoplasmic reticulum membrane facing the cytosol. The C-terminal hydrophobic segment increases the relative proportion of RoDH1 associated with the endoplasmic reticulum, but has no affect on orientation. Deletion of either or both extensions causes nearly total loss of enzyme activity, possibly through altering the nature of RoDH1 association with membranes, or destabilizing the enzyme, but does not alter the expression of RoDH1 or convert it into a soluble protein. The latter suggests that the SDR core of RoDH1 has marked external hydrophobicity that causes nonspecific membrane association.
Collapse
Affiliation(s)
- J Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 97420-3104, USA
| | | | | |
Collapse
|
36
|
Wang X, Sperkova Z, Napoli JL. Analysis of mouse retinal dehydrogenase type 2 promoter and expression. Genomics 2001; 74:245-50. [PMID: 11386761 DOI: 10.1006/geno.2001.6546] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse RALDH2 gene spans >50 kb, has a structure similar to that of human class 1 aldehyde dehydrogenase genes, and localizes to the central region of chromosome 9 by single-strand polymorphism analysis. Expression of mouse RALDH2 was detected in testis, lung, brain, and heart (Northern blot) and in liver and kidney (RNase protection assays). Expression was not detected by RNase protection assay in testis of vitamin A-deficient rats, and all-trans-retinoic acid dosing did not increase expression in vitamin A-deficient rat testis. A 2.3-kb section of the gene 5' to the transcription start site included neither retinoic acid nor retinoid X response elements, but included TATA and CCAAT motifs and AP, AHR, CREB, ER, Ets, and SREBP sites. The promoter initiated transcription of a luciferase reporter in human embryonic kidney cells (EBNA) and mouse Leydig- (TM3) and Sertoli-derived (TM4) cell lines, but neither all-trans-retinoic acid nor 9-cis-retinoic acid affected reporter transcription. These data suggest that relatively weak RALDH2 expression in vitamin A-deficient testis reflects vastly decreased numbers of germ cells, the major site of expression.
Collapse
Affiliation(s)
- X Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720-3104, USA
| | | | | |
Collapse
|
37
|
Zhai Y, Sperkova Z, Napoli JL. Cellular expression of retinal dehydrogenase types 1 and 2: effects of vitamin A status on testis mRNA. J Cell Physiol 2001; 186:220-32. [PMID: 11169459 DOI: 10.1002/1097-4652(200102)186:2<220::aid-jcp1018>3.0.co;2-n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined expression of retinal dehydrogenase (RALDH) types 1 and 2 in liver and lung, and the effect of vitamin A status on testis expression by in situ hybridization. Liver expressed RALDH1 and RALDH2 only in stellate cells and hepatocytes, respectively. Lung expressed RALDH1 and RALDH2 throughout the epithelia of the airways, from the principal bronchi to the respiratory bronchiole. Vitamin A-sufficient rats expressed RALDH1 in spermatocytes, with less intense expression in spermatogonia and spermatids, and expressed RALDH2 in interstitial cells, spermatogonia, and spermatocytes. Neither Sertoli nor peritubular cells showed detectable RALDH1 or RALDH2 mRNA. Vitamin A deficiency produced a sevenfold increase in RALDH1 and a 70-fold decrease in RALDH2 mRNA in testis. In each case, the net change reflected extensive loss of germ cells, increased intensity of expression in residual germ cells, and expression in Sertoli and peritubular cells. Low-dose RA relatively early during vitamin A depletion supported spermatogenesis and affected expression of both RALDHs, but did not reinstate "vitamin A normal" expression patterns. These results show that: RALDH1 and RALDH2 have distinct mRNA expression patterns in multiple cell types in three vitamin A target tissues; RALDH expression occurs in cell types that express cellular retinol-binding protein and retinol dehydrogenase isozymes (except stellate cells, for which retinol dehydrogenase expression remains unknown); vitamin A deficiency and RA supplementation affects the loci and intensity of RALDH mRNAs in testis; and low-dose RA does not substitute completely for retinol. Overall, these data provide insight into the unique functions of RALDH1 and RALDH2 in retinoid metabolism.
Collapse
Affiliation(s)
- Y Zhai
- Department of Nutritional Sciences, University of California, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|
38
|
Yamauchi K, Tata JR. Characterization of Xenopus cytosolic thyroid-hormone-binding protein (xCTBP) with aldehyde dehydrogenase activity. Chem Biol Interact 2001; 130-132:309-21. [PMID: 11306054 DOI: 10.1016/s0009-2797(00)00274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T(3)-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T(3)-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T(3)-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T(3). Communications between thyroid hormone and retinoid pathways are discussed.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Biology, Faculty of Science, Shizuoka University, 836 Oya, 422-8529, Shizuoka, Japan.
| | | |
Collapse
|
39
|
Lin M, Napoli JL. cDNA cloning and expression of a human aldehyde dehydrogenase (ALDH) active with 9-cis-retinal and identification of a rat ortholog, ALDH12. J Biol Chem 2000; 275:40106-12. [PMID: 11007799 DOI: 10.1074/jbc.m008027200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis- retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion.
Collapse
Affiliation(s)
- M Lin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
40
|
Abstract
Choroid plexus lipocalin 1 (Cpl1) has been isolated from the African clawed toad (Xenopus laevis) and the cane toad (Bufo marinus). Xcpl1 has been used as a marker for studying early neural development. Due to its retinoid binding properties and the fact that it causes dysmorphogenesis when overexpressed in the early embryo, the protein product is considered to be part of the retinoic acid signalling pathway. Later in development and during adulthood, the epithelial cell sheet of the choroid plexus which forms the blood-cerebrospinal fluid barrier expresses cpl1 as the predominant secretory protein. These data, the similarity of Cpl1 to prostaglandin D(2) synthase and its functional homology to transthyretin will be discussed.
Collapse
Affiliation(s)
- G Lepperdinger
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria.
| |
Collapse
|
41
|
Napoli JL. A gene knockout corroborates the integral function of cellular retinol-binding protein in retinoid metabolism. Nutr Rev 2000; 58:230-6. [PMID: 10946560 DOI: 10.1111/j.1753-4887.2000.tb01870.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Continually expanding evidence has moved inexorably toward establishing key functions for cellular retinol-binding protein (CRBP) in retinoid metabolism. These experimental data integrate into a model of CRBP as a chaperone that protects retinol from the cellular milieu and interacts with certain retinoid-metabolizing enzymes. Mutant mice with an inactivated CRBP gene show decreased liver retinyl ester storage, a shorter elimination half-life of liver retinoids, and predisposition to vitamin A deficiency. No morphologic phenotype was observed until vitamin A was exhausted. Although the mechanisms underlying diminished vitamin A in the CRBP-null mice have not been elucidated, the observations support the model of CRBP as a chaperone of retinoid metabolism.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley 94720-3104, USA
| |
Collapse
|
42
|
Yeum KJ, dos Anjos Ferreira AL, Smith D, Krinsky NI, Russell RM. The effect of alpha-tocopherol on the oxidative cleavage of beta-carotene. Free Radic Biol Med 2000; 29:105-14. [PMID: 10980399 DOI: 10.1016/s0891-5849(00)00296-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h, and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal.
Collapse
Affiliation(s)
- K J Yeum
- United States Department of Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
43
|
Chandrasekaran V, Zhai Y, Wagner M, Kaplan PL, Napoli JL, Higgins D. Retinoic acid regulates the morphological development of sympathetic neurons. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-4695(200003)42:4<383::aid-neu1>3.0.co;2-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Ambroziak W, Izaguirre G, Pietruszko R. Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem 1999; 274:33366-73. [PMID: 10559215 DOI: 10.1074/jbc.274.47.33366] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purification and characterization of enzymes metabolizing retinaldehyde, propionaldehyde, and octanaldehyde from four human livers and three kidneys were done to identify enzymes metabolizing retinaldehyde and their relationship to enzymes metabolizing other aldehydes. The tissue fractionation patterns from human liver and kidney were the same, indicating presence of the same enzymes in human liver and kidney. Moreover, in both organs the major NAD(+)-dependent retinaldehyde activity copurified with the propionaldehyde and octanaldehyde activities; in both organs the major NAD(+)-dependent retinaldehyde activity was associated with the E1 isozyme (coded for by aldh1 gene) of human aldehyde dehydrogenase. A small amount of NAD(+)-dependent retinaldehyde activity was associated with the E2 isozyme (product of aldh2 gene) of aldehyde dehydrogenase. Some NAD(+)-independent retinaldehyde activity in both organs was associated with aldehyde oxidase, which could be easily separated from dehydrogenases. Employing cellular retinoid-binding protein (CRBP), purified from human liver, demonstrated that E1 isozyme (but not E2 isozyme) could utilize CRBP-bound retinaldehyde as substrate, a feature thought to be specific to retinaldehyde dehydrogenases. This is the first report of CRBP-bound retinaldehyde functioning as substrate for aldehyde dehydrogenase of broad substrate specificity. Thus, it is concluded that in the human organism, retinaldehyde dehydrogenase (coded for by raldH1 gene) and broad substrate specificity E1 (a member of EC 1. 2.1.3 aldehyde dehydrogenase family) are the same enzyme. These results suggest that the E1 isozyme may be more important to alcoholism than the acetaldehyde-metabolizing enzyme, E2, because competition between acetaldehyde and retinaldehyde could result in abnormalities associated with vitamin A metabolism and alcoholism.
Collapse
Affiliation(s)
- W Ambroziak
- Center of Alcohol Studies, Department of Molecular Biology The State University of New Jersey, Piscataway, New Jersey 08854-8001, USA
| | | | | |
Collapse
|
45
|
Napoli JL. Retinoic acid: its biosynthesis and metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:139-88. [PMID: 10506831 DOI: 10.1016/s0079-6603(08)60722-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis.
Collapse
Affiliation(s)
- J L Napoli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| |
Collapse
|
46
|
Napoli JL. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:139-62. [PMID: 10521699 DOI: 10.1016/s1388-1981(99)00117-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring retinoids (vitamin A or retinol and its active metabolites) are vital for vision, controlling the differentiation program of epithelial cells in the digestive tract and respiratory system, skin, bone, the nervous system, the immune system, and for hematopoiesis. Retinoids are essential for growth, reproduction (conception and embryonic development), and resistance to and recovery from infection. The functions of retinoids in the embryo begin soon after conception and continue throughout the lifespan of all vertebrates. Both naturally occurring and synthetic retinoids are used in the therapy of various skin diseases, especially acne, for augmenting the treatment of diabetes, and as cancer chemopreventive agents. Retinol metabolites serve as ligands that activate specific transcription factors in the superfamily of steroid/retinoid/thyroid/vitamin D/orphan receptors and thereby control gene expression. Additionally, retinoids may also function through non-genomic actions. Various retinoid binding proteins serve as partners in retinoid function. These binding proteins show high specificity and affinity for specific retinoids and seem to control retinoid metabolism in vivo qualitatively and quantitatively by reducing 'free' retinoid concentrations, protecting retinoids from non-specific interactions, and chaperoning access of metabolic enzymes to retinoids. Implementation of the physiological effects of retinoids depends on the spatial-temporal expressions of binding proteins, receptors and metabolic enzymes. This review will discuss current understanding of the enzymes that catalyze retinol and retinoic acid metabolism and their unique and integral relationship to retinoid binding proteins.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences, 119 Morgan Hall, University of California, Berkeley, USA.
| |
Collapse
|
47
|
Trøen G, Eskild W, Fromm SH, De Luca LM, Ong DE, Wardlaw SA, Reppe S, Blomhoff R. Vitamin A-sensitive tissues in transgenic mice expressing high levels of human cellular retinol-binding protein type I are not altered phenotypically. J Nutr 1999; 129:1621-7. [PMID: 10460195 DOI: 10.1093/jn/129.9.1621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The suggested function of cellular retinol-binding protein type I [CRBP(I)] is to carry retinol to esterifying or oxidizing enzymes. The retinyl esters are used in storage or transport, whereas oxidized forms such as all-trans or 9-cis retinoic acid are metabolites used in the mechanism of action of vitamin A. Thus, high expression of human CRBP(I) [hCRBP(I)] in transgenic mice might be expected to increase the production of retinoic acid in tissues, thereby inducing a phenotype resembling vitamin A toxicity. Alternatively, a vitamin A-deficient phenotype could also be envisioned as a result of an increased accumulation of vitamin A in storage cells induced by a high hCRBP(I) level. Signs of vitamin A toxicity or deficiency were therefore examined in tissues from transgenic mice with ectopic expression of hCRBP(I). Testis and intestine, the tissues with the highest expression of the transgene, showed normal gross morphology. Similarly, no abnormalities were observed in other tissues known to be sensitive to vitamin A status such as cornea and retina, and the epithelia in the cervix, trachea and skin. Furthermore, hematologic variables known to be influenced by vitamin A status such as the hemoglobin concentration, hematocrits and the number of red blood cells were within normal ranges in the transgenic mice. In conclusion, these transgenic mice have normal function of vitamin A despite high expression of hCRBP(I) in several tissues.
Collapse
Affiliation(s)
- G Trøen
- Institute for Nutrition Research, Institute of Medical Biochemistry and Laboratory of Molecular Embryology, University of Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inouye K, Mae T, Kondo S, Ohkawa H. Inhibitory effects of vitamin A and vitamin K on rat cytochrome P4501A1-dependent monooxygenase activity. Biochem Biophys Res Commun 1999; 262:565-9. [PMID: 10462515 DOI: 10.1006/bbrc.1999.1240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inhibitory effects of vitamins A and K toward P4501A1-dependent 7-ethoxycoumarin O-deethylation were examined in the reconstituted system containing the microsomal fraction prepared from the recombinant Saccharomyces cerevisiae cells producing rat P4501A1 and yeast NADPH-P450 reductase. On vitamins A, all-trans-retinol, all-trans-retinal, all-trans-retinoic acid and retinol-palmitate showed competitive inhibition with K(i) values of 0.068, 0.079, 2.6 and 2.0 microM, respectively. Judging from the K(i) values, the inhibitory effects of those vitamins A appear to have physiological significance on the basis of their contents in liver, lung and kidney. On vitamins K, vitamin K(1) showed competitive inhibition with K(i) value of 24 microM, while vitamin K(2) showed noncompetitive inhibition with K(i) value of 60 microM. Judging from these K(i) values together with the contents of these vitamins K in liver, the inhibitory effects of the vitamins K are not as significant as those of vitamins A. These results suggest that the ingestion of enough amounts of vitamins A from foods might lead to the inhibition of the activity of P4501A1 which is known to be induced by smoking, drugs such as omeprazole and lansoprazole, and environmental pollutants like dioxins.
Collapse
Affiliation(s)
- K Inouye
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | |
Collapse
|
49
|
Kitson KE, Blythe TJ. The hunt for a retinal-specific aldehyde dehydrogenase in sheep liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:213-21. [PMID: 10352688 DOI: 10.1007/978-1-4615-4735-8_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- K E Kitson
- Institute of Food, Nutrition, and Human Health, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
50
|
Kikonyogo A, Abriola DP, Dryjanski M, Pietruszko R. Mechanism of inhibition of aldehyde dehydrogenase by citral, a retinoid antagonist. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:704-12. [PMID: 10411631 DOI: 10.1046/j.1432-1327.1999.00415.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Low concentrations of citral (3,7-dimethyl-2,6-octadienal), an inhibitor of retinoic acid biosynthesis, inhibited E1, E2 and E3 isozymes of human aldehyde dehydrogenase (EC1.2.1.3). The inhibition was reversible on dilution and upon long incubation in the presence of NAD+; it occurred with simultaneous formation of NADH and of geranic acid. Thus, citral is an inhibitor and also a substrate. Km values for citral were 4 microM for E1, 1 microM for E2 and 0.1 microM for E3; Vmax values were highest for E1 (73 nmol x min-1 x mg-1), intermediate for E2 (17 nmol x min-1 x mg-1) and lowest (0.07 nmol x min-1 x mg-1) for the E3 isozyme. Citral is a 1 : 2 mixture of isomers: cis isomer neral and trans isomer, geranial; the latter structurally resembles physiologically important retinoids. Both were utilized by all three isozymes; a preference for the trans isomer, geranial, was observed by HPLC and by enzyme kinetics. With the E1 isozyme, both geranial and neral, and with the E2 isozyme, only neral obeyed Michaelis-Menten kinetics. With the E2 isozyme and geranial sigmoidal saturation curves were observed with S0.5 of approximately 50 nM; the n-values of 2-2.5 indicated positive cooperativity. Geranial was a better substrate and a better inhibitor than neral. The low Vmax, which appeared to be controlled by either the slow formation, or decomposition via the hydride transfer, of the thiohemiacetal reaction intermediate, makes citral an excellent inhibitor whose selectivity is enhanced by low Km values. The Vmax for citral with the E1 isozyme was higher than those of the E2 and E3 isozymes which explains its fast recovery following inhibition by citral and suggests that E1 may be the enzyme involved in vivo citral metabolism.
Collapse
Affiliation(s)
- A Kikonyogo
- Center of Alcohol Studies and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8001, USA
| | | | | | | |
Collapse
|