Therien AG, Blostein R. K(+)/Na(+) antagonism at cytoplasmic sites of Na(+)-K(+)-ATPase: a tissue-specific mechanism of sodium pump regulation.
THE AMERICAN JOURNAL OF PHYSIOLOGY 1999;
277:C891-8. [PMID:
10564082 DOI:
10.1152/ajpcell.1999.277.5.c891]
[Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue-distinct interactions of the Na(+)-K(+)-ATPase with Na(+) and K(+), independent of isoform-specific properties, were reported previously (A. G. Therien, N. B. Nestor, W. J. Ball, and R. Blostein. J. Biol. Chem. 271: 7104-7112, 1996). In this paper, we describe a detailed analysis of tissue-specific kinetics particularly relevant to regulation of pump activity by intracellular K(+), namely K(+) inhibition at cytoplasmic Na(+) sites. Our results show that the order of susceptibilities of alpha(1) pumps of various rat tissues to K(+)/Na(+) antagonism, represented by the ratio of the apparent affinity for Na(+) binding at cytoplasmic activation sites in the absence of K(+) to the affinity constant for K(+) as a competitive inhibitor of Na(+) binding at cytoplasmic sites, is red blood cell < axolemma approximately rat alpha(1)-transfected HeLa cells < small intestine < kidney < heart. In addition, we have carried out an extensive analysis of the kinetics of K(+) binding and occlusion to the cytoplasmic cation binding site and find that, for most tissues, there is a relationship between the rate of K(+) binding/occlusion and the apparent affinity for K(+) as a competitive inhibitor of Na(+) activation, the order for both parameters being heart >/= kidney > small intestine approximately rat alpha(1)-transfected HeLa cells. The notion that modulations in cytoplasmic K(+)/Na(+) antagonism are a potential mode of pump regulation is underscored by evidence of its reversibility. Thus the relatively high K(+)/Na(+) antagonism characteristic of kidney pumps was reduced when rat kidney microsomal membranes were fused into the dog red blood cell.
Collapse