1
|
An SY, Yoon HK, Kim KS, Kim HD, Cho JH, Kim HJ, Kim CH, Lee YC. Upregulation of human GD3 synthase (hST8Sia I) gene expression during serum starvation-induced osteoblastic differentiation of MG-63 cells. PLoS One 2023; 18:e0293321. [PMID: 37917776 PMCID: PMC10621931 DOI: 10.1371/journal.pone.0293321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we have firstly elucidated that serum starvation augmented the levels of human GD3 synthase (hST8Sia I) gene and ganglioside GD3 expression as well as bone morphogenic protein-2 and osteocalcin expression during MG-63 cell differentiation using RT-PCR, qPCR, Western blot and immunofluorescence microscopy. To evaluate upregulation of hST8Sia I gene during MG-63 cell differentiation by serum starvation, promoter area of the hST8Sia I gene was functionally analyzed. Promoter analysis using luciferase reporter assay system harboring various constructs of the hST8Sia I gene proved that the cis-acting region at -1146/-646, which includes binding sites of the known transcription factors AP-1, CREB, c-Ets-1 and NF-κB, displays the highest level of promoter activity in response to serum starvation in MG-63 cells. The -731/-722 region, which contains the NF-κB binding site, was proved to be essential for expression of the hST8Sia I gene by serum starvation in MG-63 cells by site-directed mutagenesis, NF-κB inhibition, and chromatin immunoprecipitation (ChIP) assay. Knockdown of hST8Sia I using shRNA suggested that expressions of hST8Sia I and GD3 have no apparent effect on differentiation of MG-63 cells. Moreover, the transcriptional activation of hST8Sia I gene by serum starvation was strongly hindered by SB203580, a p38MAPK inhibitor in MG-63 cells. From these results, it has been suggested that transcription activity of hST8Sia I gene by serum starvation in human osteosarcoma MG-63 cells is regulated by p38MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hyun-Kyoung Yoon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Jong-Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| | - Hyeon-Jun Kim
- Department of Orthopaedic Surgery, College of Medicine, Dong-A University, Busan, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
| |
Collapse
|
2
|
Spencer B, Trinh I, Rockenstein E, Mante M, Florio J, Adame A, El-Agnaf OMA, Kim C, Masliah E, Rissman RA. Systemic peptide mediated delivery of an siRNA targeting α-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease. Neurobiol Dis 2019; 127:163-177. [PMID: 30849508 PMCID: PMC6588505 DOI: 10.1016/j.nbd.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Changyoun Kim
- Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System San Diego, CA, USA.
| |
Collapse
|
3
|
Brimson JM, Safrany ST, Qassam H, Tencomnao T. Dipentylammonium Binds to the Sigma-1 Receptor and Protects Against Glutamate Toxicity, Attenuates Dopamine Toxicity and Potentiates Neurite Outgrowth in Various Cultured Cell Lines. Neurotox Res 2018; 34:263-272. [PMID: 29589276 DOI: 10.1007/s12640-018-9883-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease that affects 44 million people worldwide, costing the world $605 billion to care for those affected not taking into account the physical and psychological costs for those who care for Alzheimer's patients. Dipentylammonium is a simple amine, which is structurally similar to a number of other identified sigma-1 receptor ligands with high affinities such as (2R-trans)-2butyl-5-heptylpyrrolidine, stearylamine and dodecylamine. This study investigates whether dipentylammonium is able to provide neuroprotective effects similar to those of sigma-1 receptor agonists such as PRE-084. Here we identify dipentylammonium as a sigma-1 receptor ligand with nanomolar affinity. We have found that micromolar concentrations of dipentylammonium protect from glutamate toxicity and prevent NFκB activation in HT-22 cells. Micromolar concentrations of dipentylammonium also protect stably expressing amyloid precursor protein Swedish mutant (APP/Swe) Neuro2A cells from toxicity induced by 150 μM dopamine, suggesting that dipentylammonium may be useful for the treatment of Parkinsonian symptoms in Alzheimer's patients which are often associated with a more rapid deterioration of cognitive and physical ability. Finally, we found that low micromolar concentrations of dipentylammonium could out preform known sigma-1 receptor agonist PRE-084 in potentiating neurite outgrowth in Neuro2A cells, further suggesting that dipentylammonium has a potential use in the treatment of neurodegenerative diseases and could be acting through the sigma-1 receptor.
Collapse
Affiliation(s)
- James M Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10230, Thailand
| | - Stephen T Safrany
- Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503, Adliya, Bahrain
| | - Heider Qassam
- Department of Molecular and Cell Biology, University in Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10230, Thailand.
| |
Collapse
|
4
|
Induction of Neuronal Differentiation of Murine N2a Cells by Two Polyphenols Present in the Mediterranean Diet Mimicking Neurotrophins Activities: Resveratrol and Apigenin. Diseases 2018; 6:diseases6030067. [PMID: 30037152 PMCID: PMC6165409 DOI: 10.3390/diseases6030067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
In the prevention of neurodegeneration associated with aging and neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), neuronal differentiation is of interest. In this context, neurotrophic factors are a family of peptides capable of promoting the growth, survival, and/or differentiation of both developing and immature neurons. In contrast to these peptidyl compounds, polyphenols are not degraded in the intestinal tract and are able to cross the blood–brain barrier. Consequently, they could potentially be used as therapeutic agents in neurodegenerative pathologies associated with neuronal loss, thus requiring the stimulation of neurogenesis. We therefore studied the ability to induce neuronal differentiation of two major polyphenols present in the Mediterranean diet: resveratrol (RSV), a major compound found in grapes and red wine, and apigenin (API), present in parsley, rosemary, olive oil, and honey. The effects of these compounds (RSV and API: 6.25–50 µM) were studied on murine neuro-2a (N2a) cells after 48 h of treatment without or with 10% fetal bovine serum (FBS). Retinoic acid (RA: 6.25–50 µM) was used as positive control. Neuronal differentiation was morphologically evaluated through the presence of dendrites and axons. Cell growth was determined by cell counting and cell viability by staining with fluorescein diacetate (FDA). Neuronal differentiation was more efficient in the absence of serum than with 10% FBS or 10% delipidized FBS. At concentrations inducing neuronal differentiation, no or slight cytotoxicity was observed with RSV and API, whereas RA was cytotoxic. Without FBS, RSV and API, as well as RA, trigger the neuronal differentiation of N2a cells via signaling pathways simultaneously involving protein kinase A (PKA)/phospholipase C (PLC)/protein kinase C (PKC) and MEK/ERK. With 10% FBS, RSV and RA induce neuronal differentiation via PLC/PKC and PKA/PLC/PKC, respectively. With 10% FBS, PKA and PLC/PKC as well as MEK/ERK signaling pathways were not activated in API-induced neuronal differentiation. In addition, the differentiating effects of RSV and API were not inhibited by cyclo[DLeu5] OP, an antagonist of octadecaneuropeptide (ODN) which is a neurotrophic factor. Moreover, RSV and API do not stimulate the expression of the diazepam-binding inhibitor (DBI), the precursor of ODN. Thus, RSV and API are able to induce neuronal differentiation, ODN and its receptor are not involved in this process, and the activation of the (PLC/PKC) signaling pathway is required, except with apigenin in the presence of 10% FBS. These data show that RSV and API are able to induce neuronal differentiation and therefore mimic neurotrophin activity. Thus, RSV and API could be of interest in regenerative medicine to favor neurogenesis.
Collapse
|
5
|
Siddiqui S, Schwarz F, Springer S, Khedri Z, Yu H, Deng L, Verhagen A, Naito-Matsui Y, Jiang W, Kim D, Zhou J, Ding B, Chen X, Varki N, Varki A. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E. J Biol Chem 2016; 292:1029-1037. [PMID: 27920204 DOI: 10.1074/jbc.m116.738351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.
Collapse
Affiliation(s)
- Shoib Siddiqui
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Flavio Schwarz
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Stevan Springer
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Zahra Khedri
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Hai Yu
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Lingquan Deng
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Andrea Verhagen
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Yuko Naito-Matsui
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | | | - Daniel Kim
- BioLegend, Inc., San Diego, California 92121
| | - Jie Zhou
- BioLegend, Inc., San Diego, California 92121
| | - Beibei Ding
- BioLegend, Inc., San Diego, California 92121
| | - Xi Chen
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Nissi Varki
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687
| | - Ajit Varki
- From the Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center (GRTC), University of California San Diego, La Jolla, California 92093-0687,
| |
Collapse
|
6
|
Wei G, Deng X, Agarwal S, Iwase S, Disteche C, Xu J. Patient Mutations of the Intellectual Disability Gene KDM5C Downregulate Netrin G2 and Suppress Neurite Growth in Neuro2a Cells. J Mol Neurosci 2016; 60:33-45. [PMID: 27421841 DOI: 10.1007/s12031-016-0770-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
The X-linked lysine (K)-specific demethylase 5C (KDM5C) gene plays an important role in brain development and behavior. It encodes a histone demethylase that is involved in gene regulation in neuronal differentiation and morphogenesis. When mutated, it causes neuropsychiatric symptoms, such as intellectual disability, delayed language development, epilepsy, and impulsivity. To better understand how the patient mutations affect neuronal development, we expressed KDM5C mutants in Neuro2a cells, a mouse neuroblastoma cell line. Retinoic acid (RA)-induced neurite growth was suppressed by the mutation KDM5C (Y751C) , KDM5C (H514A) , and KDM5C (F642L) , but not KDM5C (D87G) or KDM5C (A388P) . RNA-seq analysis indicated an upregulation of genes important for neuronal development, such as Ntng2, Enah, Gas1, Slit2, and Dscam, in response to the RA treatment in control Neuro2a cells transfected with GFP or wild-type KDM5C. In contrast, in cells transfected with KDM5C (Y751C) , these genes were not upregulated by RA. Ntng2 was downregulated in cells with KDM5C mutations, concordant with the lower levels of H3K4 methylation at its promoter. Moreover, knocking down Ntng2 in control Neuro2a cells led to the phenotype of short neurites similar to that of cells with KDM5C (Y751C) , whereas Ntng2 overexpression in the mutant cells rescued the morphological phenotype. These findings provide new insight into the pathogenesis of phenotypes associated with KDM5C mutations.
Collapse
Affiliation(s)
- Gengze Wei
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Xinxian Deng
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Saurabh Agarwal
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI, USA
| | | | - Jun Xu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
7
|
Zhu X, Chen Y, Zhang N, Zheng Z, Zhao F, Liu N, Lv C, Troy FA, Wang B. Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels. Glycoconj J 2015; 32:715-28. [PMID: 26452605 DOI: 10.1007/s10719-015-9622-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023]
Abstract
The two mammalian α2,8-polysialyltransferases (polyST's), ST8Sia II (STX) and ST8Sia IV (PST), catalyze synthesis of the α2-8-linked polysialic acid (polySia) glycans on neural cell adhesion molecules (NCAMs). The objective of this study was to clone the coding sequence of the piglet ST8Sia II and determine the mRNA expression levels of ST8Sia II, ST8Sia IV, NCAM and neuropilin-2 (NRP-2), also a carrier protein of polySia, during postnatal development. The amino acid sequence deduced from the coding sequence of ST8Sia II was compared with seven other mammalian species. Piglet ST8Sia II was highly conserved and shared 67.8% sequence identity with ST8Sia IV. Genes coding for ST8Sia II and IV were differentially expressed and distinctly different in neural and non-neural tissues at postnatal days 3 and 38. Unexpectedly, the cellular levels of mRNA coding for ST8Sia II and IV showed no correlation with the posttranslational level of polySia glycans in different tissues. In contrast, mRNA abundance coding for NCAM and neuropilin-2 correlated with expression of ST8Sia II and IV. These findings show that the cellular abundance of ST8Sia II and IV in postnatal piglets is regulated at the level of translation/posttranslation, and not at the level of transcription, a finding that has not been previously reported. These studies further highlight differences in the molecular mechanisms controlling polysialylation in adult rodents and neonatal piglets.
Collapse
Affiliation(s)
- Xi Zhu
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Yue Chen
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Nai Zhang
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Zhiqiang Zheng
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Fengjun Zhao
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Ni Liu
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Chunlong Lv
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Frederic A Troy
- School of Medicine, Xiamen University, Xiamen City, 361005, China. .,Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, 95616, USA.
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen City, 361005, China. .,School of Animal & Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
8
|
Kaneko T, Tsubakihara Y, Fushimi H, Yamaguchi S, Takabatake Y, Rakugi H, Kawakami H, Isaka Y. Histochemical and immunoelectron microscopic analysis of ganglioside GM3 in human kidney. Clin Exp Nephrol 2014; 19:403-10. [PMID: 24985965 DOI: 10.1007/s10157-014-1003-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Gangliosides are amphipathic lipids ubiquitously expressed in all vertebrate cells. They have been reported to play pivotal roles in cell morphology, cell adhesion, signal transduction, and modulation of immune reaction. Although human kidney contains various kinds of ganglioside, their physiological and pathophysiological roles have not been elucidated yet. As ganglioside GM3 is the most abundant ganglioside in human kidney, we tried to reveal the distribution of GM3 using histological analysis. METHODS Macroscopically normal parts of operatively resected kidney from renal cell carcinoma patients were used for analyses. Immunohistochemical and immunoelectron microscopic analyses were performed with anti-GM3 antibody. RESULTS Immunohistochemical analyses showed that GM3 was observed in glomeruli and renal proximal tubules. Immunoelectron microscopy demonstrated that GM3 was localized on the foot process of podocyte and also in Golgi region of renal proximal tubule cells. CONCLUSIONS Ganglioside GM3 might take a part of the negative electric charge on the surface of podocyte and its multiple physiological actions may play pivotal roles for maintaining glomerular function.
Collapse
Affiliation(s)
- Tetsuya Kaneko
- Department of Nephrology, NTT West Japan Osaka Hospital, Osaka, Japan.
| | - Yoshiharu Tsubakihara
- Department of Comprehensive Kidney Disease Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Fushimi
- The Department of Pathology, Osaka General Medical Center, Osaka, Japan
| | - Seiji Yamaguchi
- The Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Chen WS, Sawant RC, Yang SA, Liao YJ, Liao JW, Badsara SS, Luo SY. Synthesis of ganglioside Hp-s1. RSC Adv 2014. [DOI: 10.1039/c4ra08272a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The complete synthesis of the ganglioside Hp-s1 (1) is described in 10 steps.
Collapse
Affiliation(s)
- Wan-Shin Chen
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | | | - Shih-An Yang
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Ying-Ju Liao
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Jung-Wei Liao
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| | | | - Shun-Yuan Luo
- Department of Chemistry
- National Chung Hsing University
- Taichung 402, Taiwan
| |
Collapse
|
10
|
Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N, Yamamoto T, Oneyama C, Okada M, Kasahara K. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem 2013; 124:514-22. [PMID: 23035659 DOI: 10.1111/jnc.12040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C-terminal src kinase)-binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent-resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti-ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over-expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314-phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314-phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP-43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella.
Collapse
Affiliation(s)
- Naoko Sekino-Suzuki
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dopamine induces apoptosis in APPswe-expressing Neuro2A cells following Pepstatin-sensitive proteolysis of APP in acid compartments. Brain Res 2012; 1471:102-17. [DOI: 10.1016/j.brainres.2012.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/14/2012] [Accepted: 06/21/2012] [Indexed: 11/23/2022]
|
12
|
Tsai YF, Shih CH, Su YT, Yao CH, Lian JF, Liao CC, Hsia CW, Shui HA, Rani R. The total synthesis of a ganglioside Hp-s1 analogue possessing neuritogenic activity by chemoselective activation glycosylation. Org Biomol Chem 2011; 10:931-4. [PMID: 22179062 DOI: 10.1039/c2ob06827c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of ganglioside 2, an analogue of the ganglioside Hp-s1 (1) which displays neuritogenic activity toward the rat pheochromocytoma cell line PC-12 cell in the presence of nerve growth factor (NGF) with an effect (34.0%) greater than that of the mammalian ganglioside GM 1 (25.4%), was accomplished by applying a chemoselective-activation glycosylation strategy. Moreover, we also demonstrate that the synthesized ganglioside 2 exhibited neuritogenic activity toward the human neuroblastoma cell line SH-SY5Y without the presence of NGF.
Collapse
Affiliation(s)
- Yow-Fu Tsai
- Department of Chemistry, Chung Yuan Christian University, Chung Li 32023, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yuyama K, Sekino-Suzuki N, Yamamoto N, Kasahara K. Ganglioside GD3 monoclonal antibody-induced paxillin tyrosine phosphorylation and filamentous actin assembly in cerebellar growth cones. J Neurochem 2011; 116:845-50. [DOI: 10.1111/j.1471-4159.2010.07071.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S. Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochem Res 2011; 36:1654-68. [DOI: 10.1007/s11064-010-0380-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/20/2022]
|
15
|
Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:297-316. [DOI: 10.1007/978-1-4419-7877-6_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Abstract
The GD2 ganglioside, displayed by five carbohydrate Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glcbeta residues attached to a ceramide chain that anchors the ganglioside in the cell membrane, is expressed on neuroectodermally derived tumors. GD2 has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have generated 47-LDA mimotope of GD2 by screening a phage display peptide library with anti-GD2 mAb 14G2a and reported that vaccination with the 47-LDA mimotope elicited GD2 cross-reactive IgG antibody responses as well as MHC class I-restricted CD8(+) T cells to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated antigen cross-reacting with 47-LDA. Immunoblotting studies using 14G2a mAb demonstrated that this antibody cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional (3D) collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by 105 kDa activated leukocyte cell adhesion molecules (ALCAM/CD166). The CD166 glycoprotein was shown to be recognized by 14G2a antibody, and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166 and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate antigens.
Collapse
|
17
|
Inoko E, Nishiura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, Sato C. Developmental stage-dependent expression of an 2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 2010; 20:916-28. [DOI: 10.1093/glycob/cwq049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wierzbicki A, Gil M, Ciesielski M, Fenstermaker RA, Kaneko Y, Rokita H, Lau JT, Kozbor D. Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6644-53. [PMID: 18941255 DOI: 10.4049/jimmunol.181.9.6644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags.
Collapse
Affiliation(s)
- Andrzej Wierzbicki
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Inokuchi JI. Neurotrophic and neuroprotective actions of an enhancer of ganglioside biosynthesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:319-36. [PMID: 19607978 DOI: 10.1016/s0074-7742(09)85022-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To address the role of brain gangliosides in synaptic plasticity, the synthetic ceramide analog, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) was used to manipulate the biosynthesis of gangliosides in cultured cortical neurons. Spontaneous synchronized oscillatory activity of intracellular Ca(2+) between the neurons, which represents synapse formation, was suppressed by the depletion of endogenous gangliosides by d-threo-PDMP, an inhibitor of glucosylceramide synthase. On the other hand, the enantiomer of inhibitor, l-threo-PDMP, could elevate cellular levels of gangliosides by upregulating several glycosyltransferases responsible for ganglioside biosynthesis. This review presents our findings on the neurotrophic actions of l-threo-PDMP in vitro and in vivo. We found that l-PDMP could upregulate neurite outgrowth, and functional synapse formation through activating GM3, GD3, and GQ1b synthases. Simultaneously, the activity of p42 mitogen-activated protein kinase was also facilitated by l-PDMP. To evaluate the efficacy of this drug on long term memory, rats were trained for 2 weeks using an 8-arm radial maze task, and then forebrain ischemia was induced by four-vessel occlusion. Repeated treatment of l-PDMP starting 24h after the ischemia, improved the deficit of the well-learned spatial memory and prevented the ischemia-induced apoptosis in hippocampus, demonstrating the potential therapeutic use of the ceramide analog for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| |
Collapse
|
21
|
Touma E, Kato S, Fukui K, Koike T. Calpain-mediated cleavage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur J Neurosci 2007; 26:3368-81. [PMID: 18052987 DOI: 10.1111/j.1460-9568.2007.05943.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Axon or dendrite degeneration involves activation of the ubiquitin-proteasome system, failure to maintain neuritic ATP levels, microtubule fragmentation and a mitochondrial permeability transition that occur independently of the somal death programs. To gain further insight into the neurite degeneration mechanims we have compared two-dimensional gel electrophoresis patterns of neurite proteins from suprior cervical ganglia during degeneration caused by nerve growth factor (NGF) deprivation. We show here that collapsin response mediator protein (CRMP)-2 and CMRP-4 protein patterns were altered during beading formation, an early hallmark of neurite degeneration, prior to neurite fragmentation, the final stage of degeneration. Western blotting using a monoclonal antibody against CRMP-2 shows that the native form (64 kDa) was cleaved to generate a truncated form (58 kDa). No cleavage of CRMP-2 or -4 occurred in NGF-deprived neurites from Wld(s) (Wallerian degeneration slow) mutant mice in which neurite degeneration is markedly delayed. Using different protease inhibitors, purified calpain 1 protein and calpain 1-specific siRNA, we have demonstrated that CRMP-2 is a substrate for calpain 1. Indeed, caplain activity was activated at an early phase of neuronal degeneration in cerebellar granule neurons, and down-regulation of caplain 1 expression suppressed CRMP-2 cleavage. Furthermore, this cleavage occurred after vinblastine treatment or in vitro Wallerian degeneration, suggesting that it represents a common step in the process of dying neurites. CRMP-2 and -4 play a pivotal role in axonal growth and transport, and the C-terminus region of CRMP-2 is essential for its binding to kinesin-1. Hence, this cleavage will render them dysfunctional and subject to autophagic processing associated with beading formation, as evidenced by the finding that the truncated form was localized in the beadings.
Collapse
Affiliation(s)
- Ekatherina Touma
- Molecular Neurobiology Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
22
|
Prinetti A, Chigorno V, Mauri L, Loberto N, Sonnino S. Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 2007; 103 Suppl 1:113-25. [DOI: 10.1111/j.1471-4159.2007.04714.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yuyama K, Sekino-Suzuki N, Sanai Y, Kasahara K. Translocation of activated heterotrimeric G protein Galpha(o) to ganglioside-enriched detergent-resistant membrane rafts in developing cerebellum. J Biol Chem 2007; 282:26392-400. [PMID: 17623667 DOI: 10.1074/jbc.m705046200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of gangliosides with specific proteins in the central nervous system was examined by co-immunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 immunoprecipitated phosphoproteins of 40, 53, 56, and 80 kDa from the rat cerebellum. Of these proteins, the 40-kDa protein was identified as the alpha-subunit of a heterotrimeric G protein, G(o) (Galpha(o)). Using sucrose density gradient analysis of cerebellar membranes, Galpha(o), but not Gbetagamma, was observed in detergent-resistant membrane (DRM) raft fractions in which GD3 was abundant after the addition of guanosine 5'-O-(thiotriphosphate) (GTPgammaS), which stabilizes G(o) in its active form. On the other hand, both Galpha(o) and Gbetagamma were excluded from the DRM raft fractions in the presence of guanyl-5'-yl thiophosphate, which stabilizes G(o) in its inactive form. Only Galpha(o) was observed in the DRM fractions from the cerebellum on postnatal day 7, but not from that in adult. After pertussis toxin treatment, Galpha(o) was not observed in the DRM fractions, even from the cerebellum on postnatal day 7. These results indicate the activation-dependent translocation of Galpha(o) into the DRM rafts. Furthermore, Galpha(o) was concentrated in the neuronal growth cones. Treatment with stromal cell-derived factor-1alpha, a physiological ligand for the G protein-coupled receptor, stimulated [(35)S]GTPgammaS binding to Galpha(o) and caused Galpha(o) translocation to the DRM fractions and RhoA translocation to the membrane fraction, leading to the growth cone collapse of cerebellar granule neurons. The collapse was partly prevented by pretreatment with the cholesterol-sequestering and raft-disrupting agent methyl-beta-cyclodextrin. These results demonstrate the involvement of signal-dependent Galpha(o) translocation to the DRM in the growth cone behavior of cerebellar granule neurons.
Collapse
Affiliation(s)
- Kohei Yuyama
- Biomembrane Signaling Project 2, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome Bunkyo-ku, Tokyo, 113-8613 Japan
| | | | | | | |
Collapse
|
24
|
Valaperta R, Valsecchi M, Rocchetta F, Aureli M, Prioni S, Prinetti A, Chigorno V, Sonnino S. Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J Neurochem 2007; 100:708-19. [PMID: 17176265 DOI: 10.1111/j.1471-4159.2006.04279.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reduction of 70% of the plasma membrane-associated sialidase Neu3 activity, due to a corresponding reduction of the enzyme expression by transducing cells with a short hairpin RNA encoding a sequence target (complementary messenger of mouse Neu3), caused neurite elongation in Neuro2a murine neuroblastoma cells. The differentiation process was accompanied in parallel by an increase of the acetylcholinesterase activity, a moderate increase of the c-Src expression and by the presence of the axonal marker tau protein on the neurites. The sphingolipid pattern and turnover in transduced and control cells were characterized by thin layer chromatography, mass spectrometry and metabolic radiolabeling after feeding cells with tritiated sphingosine. Control cells contained about 2 nmol of gangliosides/mg cell protein. GM2 was the main compound, followed by GD1a, GM3 and GM1. In Neu3 silenced cells, the total ganglioside content remained quite similar, but GM2 increased by 54%, GM3 remain constant, and GM1 and GD1a decreased by 66% and 50%, respectively. Within the organic phase sphingolipids, ceramide decreased by 50%, whereas the sphingomyelin content did not change in Neu3 silenced cells.
Collapse
Affiliation(s)
- Rea Valaperta
- Department of Medical Chemistry, Biochemistry and Biotechnology, and Center of Excellence on Neurodegenerative Diseases, University of Milan, Segrate, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yanaka N, Nogusa Y, Fujioka Y, Yamashita Y, Kato N. Involvement of membrane protein GDE2 in retinoic acid-induced neurite formation in Neuro2A cells. FEBS Lett 2007; 581:712-8. [PMID: 17275818 DOI: 10.1016/j.febslet.2007.01.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 01/15/2007] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
We show that a glycerophosphodiester phosphodiesterase homolog, GDE2, is widely expressed in brain tissues including primary neurons, and that the expression of GDE2 in neuroblastoma Neuro2A cells is significantly upregulated during neuronal differentiation by retinoic acid (RA) treatment. Stable expression of GDE2 resulted in neurite formation in the absence of RA, and GDE2 accumulated at the regions of perinuclear and growth cones in Neuro2A cells. Furthermore, a loss-of-function of GDE2 in Neuro2A cells by RNAi blocked RA-induced neurite formation. These results demonstrate that GDE2 expression during neuronal differentiation plays an important role for growing neurites.
Collapse
Affiliation(s)
- Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 4-4, Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| | | | | | | | | |
Collapse
|
26
|
Hoda K, Ikeda Y, Kawasaki H, Yamada K, Higuchi R, Shibata O. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: Three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol. Colloids Surf B Biointerfaces 2006; 52:57-75. [PMID: 16930959 DOI: 10.1016/j.colsurfb.2006.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/20/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The surface pressure (pi)-area (A), the surface potential (DeltaV)-A, and the dipole moment (mu( perpendicular))-A isotherms were obtained for monolayers made from a ganglioside originated from echinoderms [Diadema setosum ganglioside (DSG-1)], dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylethanolamine (DMPE), cholesterol (Ch), and their combinations. Monolayers spread on several different substrates were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, fluorescence microscopy (FM) and atomic force microscopy (AFM). Surface potentials (DeltaV) of pure components were analyzed using the three-layer model proposed by Demchak and Fort [R.J. Demchak, T. Fort, J. Colloid Interface Sci. 46 (1974) 191-202]. The new finding was that DSG-1 was stable and showed a liquid-expanded film and that its monolayer behavior of DeltaV was sensitive for the change of the NaCl concentration in the subphase. Moreover, the miscibility of DSG-1 and three major lipids in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the DSG-1 molar fraction (X(DSG-1)), using the additivity rule. From the A-X(DSG-1) and DeltaV(m)-X(DSG-1) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible system. The miscibility was also investigated from the two-dimensional phase diagrams. Furthermore, a regular surface mixture, for which the Joos equation was used for the analysis of the collapse pressure of two-component monolayers, allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between them. The observations using fluorescence microscopy and AFM image also provide us the miscibility in the monolayer state.
Collapse
Affiliation(s)
- Kazuki Hoda
- Division of Biointerfacial Science, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Shinjyo N, Kita K. Up-Regulation of Heme Biosynthesis during Differentiation of Neuro2a Cells. ACTA ACUST UNITED AC 2006; 139:373-81. [PMID: 16567402 DOI: 10.1093/jb/mvj040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heme is an iron-containing tetrapyrrole molecule that functions as a prosthetic group for proteins such as mitochondrial respiratory enzymes. Several studies have suggested that heme has essential functions in the construction and maintenance of the nervous system. In this study, the contents of three biologically important forms of heme (types a, b, and c) and the expression of heme biosynthetic enzymes were examined in differentiating Neuro2a cells. During neuronal differentiation, there were increases in the cellular heme levels and increases in the mRNA levels for the rate-limiting enzymes of heme biosynthesis, such as aminolevulinic acid synthase (ALAS; EC 2.3.1.37) and coproporphyrinogen oxidase (EC 1.3.3.3). With respect to heme contents, heme b increased in the late phase of differentiation, but no apparent increase in heme a or b was observed in the early phase. In contrast, heme c (cytochrome c) markedly increased during the early phase of differentiation. This change preceded the increase in heme b and the up-regulation of the mRNA levels for heme biosynthetic enzymes. This study suggests the up-regulation of heme biosynthesis and differential regulation of the heme a, b, and c levels during neuronal differentiation.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | | |
Collapse
|
28
|
Saqr HE, Omran O, Dasgupta S, Yu RK, Oblinger JL, Yates AJ. Endogenous GD3 ganglioside induces apoptosis in U-1242 MG glioma cells. J Neurochem 2006; 96:1301-14. [PMID: 16441517 DOI: 10.1111/j.1471-4159.2005.03640.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GD3 ganglioside induces apoptosis in several cell types, but the molecular events through which this occurs are largely unknown. We investigated the apoptotic effects of GD3 expression using U-1242 MG glioblastoma cells, as these cells synthesize almost exclusively GM3 and GM2 but not GD3. To express GD3 under the control of the TetOn system with minimum leakage, we modified the system by constructing a single tri-cistronic retrovirus vector containing three genes separated by two internal ribosome entry sites: (a) transcriptional silencer, tTS; (b) mutant of reverse transcriptional activator, rtTA2(S)-M2 (provided by H. Bujard, Heidelberg, Germany); and (c) enhanced green fluorescent protein (EGFP), as an indicator of the tri-cistronic gene expression. Using flow cytometry, we selected glioma cells (U1242MG-GD3 clone) that express high levels of GD3 in response to doxycycline. Expression of GD3 was associated with apoptosis as verified by annexin-V binding, TdT-mediated dUTPnick end-labelling assay (TUNEL), and EGFP degradation. GD3-induced apoptosis occurred via caspase-8 activation, as GD3 caused cleavage of caspase-8 and inhibition of caspase-8 activation by zlETD-fmk minimized GD3-induced apoptosis.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
29
|
Maruta T, Hoda K, Inagaki M, Higuchi R, Shibata O. Langmuir monolayers of cerebroside originated from Linckia laevigata: binary systems of cerebrosides and phospholipid. Colloids Surf B Biointerfaces 2005; 44:123-42. [PMID: 16051475 DOI: 10.1016/j.colsurfb.2005.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 05/31/2005] [Accepted: 06/18/2005] [Indexed: 11/21/2022]
Abstract
The surface pressure (pi)-area (A), the surface potential (DeltaV)-A and the dipole moment (mu( perpendicular))-A isotherms were obtained for six cerebrosides of LLC-2, LLC-2-1, LLC-2-8, LLC-2-10, LLC-2-12, and LLC-2-15, which were isolated from Linckia laevigata, and two-component monolayers of two different cerebrosides (LLC-2 and LLC-2-8) with phospholipid of dipalmitoylphosphatidylcholine (DPPC) on a subphase of 0.15 M sodium chloride solution as a function of cerebroside compositions in the two-component systems by employing the Wilhelmy method, the ionizing electrode method, and the fluorescence microscopy. The new finding was that LLC-2 showed a stable and liquid expanded type film. Four of them (LLC-2-8, -10, -12, and -15) had the phase transition from the liquid-expanded (LE) to the liquid-condensed (LC) states at 298.2 K. The apparent molar quantity changes (Deltas(gamma), Deltah(gamma), and Deltau(gamma)) on their phase transition on 0.15M at 298.2 K were calculated. The miscibility of cerebroside and phospholipid in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the cerebroside molar fraction (X(cerebroside)), using the additivity rule. From the A-X(cerebroside) and DeltaV(m)-X(phospholipid) plots, a partial molecular surface area (PMA) and an apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible systems. Judging from the two-dimensional phase diagrams, these were found to be one type, a positive azeotropic type; all the cerebrosides were miscible with DPPC. Furthermore, assuming a regular surface mixture, the Joos equation for the analysis of the collapse pressure of two-component monolayers allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between the cerebrosides and DPPC. The miscibility of cerebroside and phospholipid components in the monolayer state was also supported by fluorescence microscopy.
Collapse
Affiliation(s)
- Tomoki Maruta
- Division of Biointerfacial Science, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
30
|
Manabe T, Tatsumi K, Inoue M, Matsuyoshi H, Makinodan M, Yokoyama S, Wanaka A. L3/Lhx8 is involved in the determination of cholinergic or GABAergic cell fate. J Neurochem 2005; 94:723-30. [PMID: 16000160 DOI: 10.1111/j.1471-4159.2005.03261.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The LIM homeobox family of transcription factors is involved in many processes during the development of the mammalian central nerves system. L3, also called Lhx8 (L3/Lhx8), is a recently identified member of the LIM homeobox gene family and is selectively expressed in the medial ganglionic eminence (MGE). Our previous study demonstrated that L3/Lhx8-null mice specifically lacked cholinergic neurons in the basal forebrain. In this study, we reduced L3/Lhx8 function in the murine neuroblastoma cell line, Neuro2a (N2a), using L3/Lhx8-targeted small interfering RNA (siRNA) produced by H1.2 promoter-driven vector. The levels of cholinergic markers per cell were diminished without a reduction in the number of marker-positive cells. Intriguingly, GABAergic marker expression and the number of GABAergic cells were dramatically increased in the differentiating L3/Lhx8-knockdown N2a. These results suggest the possibility that L3/Lhx8 is involved in the determination of transmitter phenotypes (GABAergic or cholinergic cell fate) in a population of neurons during basal forebrain development.
Collapse
Affiliation(s)
- T Manabe
- Department of 2nd Anatomy, Faculty of Medicine, Nara Medical University, Kasihara City, Nara, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Colombaioni L, Garcia-Gil M. Sphingolipid metabolites in neural signalling and function. ACTA ACUST UNITED AC 2004; 46:328-55. [PMID: 15571774 DOI: 10.1016/j.brainresrev.2004.07.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/20/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P) and complex sphingolipids (gangliosides), are recognized as molecules capable of regulating a variety of cellular processes. The role of sphingolipid metabolites has been studied mainly in non-neuronal tissues. These studies have underscored their importance as signals transducers, involved in control of proliferation, survival, differentiation and apoptosis. In this review, we will focus on studies performed over the last years in the nervous system, discussing the recent developments and the current perspectives in sphingolipid metabolism and functions.
Collapse
|
32
|
Hettmer S, McCarter R, Ladisch S, Kaucic K. Alterations in neuroblastoma ganglioside synthesis by induction of GD1b synthase by retinoic acid. Br J Cancer 2004; 91:389-97. [PMID: 15187999 PMCID: PMC2409816 DOI: 10.1038/sj.bjc.6601914] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent findings link increased expression of the structurally complex 'b' pathway gangliosides GD1b, GT1b, GQ1b (CbG) to a favourable clinical and biological behaviour in human neuroblastoma (NB). Seeking a model to probe these observations, we evaluated four human NB cell lines. Very low CbG content (4-10%) in three of the four cell lines (LAN-5, LAN-1, SMS-KCNR) reflected the ganglioside pattern observed in the most aggressive NB tumours. Pharmacological alterations of complex ganglioside synthesis in vitro by a 5-7 day exposure to 5-10 microM retinoic acid, which is employed in maintenance therapy of disseminated NB, included markedly increased (i) relative expression of CbG (6.6+/-2.0-fold increase, P=0.037), (ii) relative expression of the analogous 'a' pathway gangliosides, termed CaG (6.4+/-1.4-fold increase in GM1a and GD1a; P=0.010), and (iii) total cellular ganglioside content (2.0-6.3-fold), which in turn amplified the accumulation of structurally complex gangliosides. Substantial increases (2.7-2.9-fold) in the activity of GD1b/GM1a synthase (beta-1,3-galactosyltransferase), which initiates the synthesis of CbG and CaG, accompanied the all-trans retinoic acid (ATRA)-induced ganglioside changes. Thus, increased CbG synthesis in NB cell lines is attributable to a specific effect of ATRA, namely induction of GD1b/GM1a synthase activity. Since the shift towards higher expression of CbG and CaG during retinoic acid-induced cellular differentiation reflects a ganglioside pattern found in clinically less-aggressive tumours, our studies suggest that complex gangliosides may play a role in the biological and clinical behaviour of NB.
Collapse
Affiliation(s)
- S Hettmer
- Glycobiology Program, Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20010, USA
| | - R McCarter
- Biostatistics and Informatics Unit, Center for Health Services and Community Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20010, USA
| | - S Ladisch
- Glycobiology Program, Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20010, USA
| | - K Kaucic
- Glycobiology Program, Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Avenue, NW, Washington DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington DC 20010, USA
- Center for Cancer and Immunology Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC 20010, USA. E-mail:
| |
Collapse
|
33
|
Moon SK, Kim HM, Lee YC, Kim CH. Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression. J Biol Chem 2004; 279:33063-70. [PMID: 15175338 DOI: 10.1074/jbc.m313462200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sialic acid-containing glycosphingolipids (gangliosides) have been implicated in the regulation of various biological phenomena such as atherosclerosis. Recent report suggests that exogenously supplied disialoganglioside (GD3) serves a dual role in vascular smooth muscle cells (VSMC) proliferation and apoptosis. However, the role of the GD3 synthase gene in VSMC responses has not yet been elucidated. To determine whether a ganglioside is able to modulate VSMC growth, the effect of overexpression of the GD3 synthase gene on DNA synthesis was examined. The results show that the overexpression of this gene has a potent inhibitory effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of PDGF. The suppression of the GD3 synthase gene was correlated with the down-regulation of cyclinE/CDK2, the up-regulation of the CDK inhibitor p21 and blocking of the p27 inhibition, whereas up-regulation of p53 as the result of GD3 synthase gene expression was not observed. Consistently, blockade of GD3 function with anti-GD3 antibody reversed VSMC proliferation and cell cycle proteins. The expression of the GD3 synthase gene also led to the inhibition of TNF-alpha-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, GD3 synthase gene expression strongly decreased MMP-9 promoter activity in response to TNF-alpha. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-kappaB and activation protein-1 (AP-1) sites in the MMP-9 promoter. Finally, the overexpression of MMP-9 in GD3 synthase transfectant cells rescued VSMC proliferation. However, MMP-2 overexpression was not affected by cell proliferation. These findings suggest that the GD3 synthase gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.
Collapse
Affiliation(s)
- Sung-Kwon Moon
- National Research Laboratory for Glycobiology, Ministry of Science and Technology, Dongguk University College of Oriental Medicine, Kyungju City, Kyungbuk 780-714, Korea
| | | | | | | |
Collapse
|
34
|
Küry P, Abankwa D, Kruse F, Greiner-Petter R, Müller HW. Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure. Eur J Neurosci 2004; 19:32-42. [PMID: 14750961 DOI: 10.1111/j.1460-9568.2004.03112.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to the regeneration-competent peripheral nervous system (PNS), lesions of nerve tracts within the central nervous system (CNS) lead to chronically impaired neuronal connections. We have analysed changes in gene expression patterns occurring as a consequence of postcommissural fornix transection at a time when spontaneous axonal growth has ceased at the lesion site. This was done in order to describe both extrinsic and intrinsic determinants of regeneration failure. Using a genomic approach we have identified a number of so far undetected factors such as bamacan and semaphorin 6B, which relate to chronic axonal growth arrest and therefore are promising candidates for lesion-induced axonal growth inhibitors. In addition, we observed that within the subiculum, where the fornix axons originate, neuronal Oct-6 was induced and NG2 was down-regulated, indicating that axotomized neurons as well as glial cells react at the level of gene expression to remote axotomy.
Collapse
Affiliation(s)
- Patrick Küry
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
35
|
Satake H, Chen HY, Varki A. Genes modulated by expression of GD3 synthase in Chinese hamster ovary cells. Evidence that the Tis21 gene is involved in the induction of GD3 9-O-acetylation. J Biol Chem 2003; 278:7942-8. [PMID: 12493756 DOI: 10.1074/jbc.m210565200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation is a common sialic acid modification, expressed in a developmentally regulated and tissue/cell type-specific manner. The relevant 9-O-acetyltransferase(s) have not been isolated or cloned; nor have mechanisms for their regulation been elucidated. We previously showed that transfection of the GD3 synthase (ST8Sia-I) gene into Chinese hamster ovary (CHO)-K1 cells gave expression of not only the disialoganglioside GD3 but also 9-O-acetyl-GD3. We now use differential display PCR between wild type CHO-K1 cells and clones stably expressing GD3 synthase (CHO-GD3 cells) to detect any increased expression of other genes and explore the possible induction of a 9-O-acetyltransferase. The four CHO mRNAs showing major up-regulation were homologous to VCAM-1, Tis21, the KC-protein-like protein, and a functionally unknown type II transmembrane protein. A moderate increase in expression of the FxC1 and SPR-1 genes was also seen. Interestingly, these are different from genes observed by others to be up-regulated after transfection of GD3 synthase into a neuroblastoma cell line. We also isolated a CHO-GD3 mutant lacking 9-O-acetyl-GD3 following chemical mutagenesis (CHO-GD3-OAc(-)). Analysis of the above differential display PCR-derived genes in these cells showed that expression of Tis21 was selectively reduced. Transfection of a mouse Tis21 cDNA into the CHO-GD3-OAc(-) mutant cells restored 9-O-acetyl-GD3 expression. Since the only major gangliosides expressed by CHO-GD3 cells are GD3 and 9-O-acetyl-GD3 (in addition to GM3, the predominant ganglioside type in wild-type CHO-K1 cells), we conclude that GD3 enhances its own 9-O-acetylation via induction of Tis21. This is the first known nuclear inducible factor for 9-O-acetylation and also the first proof that 9-O-acetylation can be directly regulated by GD3 synthase. Finally, transfection of CHO-GD3-OAc(-) mutant cells with ST6Gal-I induced 9-O-acetylation specifically on sialylated N-glycans, in a manner similar to wild-type cells. This indicates separate machineries for 9-O-acetylation on alpha2-8-linked sialic acids of gangliosides and on alpha2-6-linked sialic acids on N-glycans.
Collapse
Affiliation(s)
- Honoo Satake
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla 92093-0687, USA
| | | | | |
Collapse
|
36
|
Abstract
Lipid and glycolipid mediators are important messengers of the adaptive responses to stress, including apoptosis. In mammalian cells, the intracellular accumulation of ganglioside GD3, an acidic glycosphingolipid, contributes to mitochondrial damage, a crucial event during the apoptopic program. GD3 is a minor ganglioside in most normal tissues. Its expression increases during development and in pathological conditions such as cancer and neurodegenerative disorders. Intriguingly, GD3 can mediate additional biological events such as cell proliferation and differentiation. These diverse and opposing effects indicate that tightly regulated mechanisms, including 9-O-acetylation, control GD3 function, by affecting intracellular levels, localization and structure of GD3, and eventually dictate biological outcomes and cell fate decisions.
Collapse
Affiliation(s)
- Florence Malisan
- Department of Experimental Medicine and Biochemical Sciences, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | |
Collapse
|
37
|
Hynds DL, Takehana A, Inokuchi J, Snow DM. L- and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) inhibit neurite outgrowth from SH-SY5Y cells. Neuroscience 2002; 114:731-44. [PMID: 12220574 DOI: 10.1016/s0306-4522(02)00302-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gangliosides and extracellular matrix molecules influence neurite outgrowth, but the combinatorial effects of these endogenous agents on outgrowth are unclear. Exogenous gangliosides inhibit neurite outgrowth from SH-SY5Y cells stimulated with platelet-derived growth factor-BB, and different isoforms of the ceramide analog threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) stimulate (L-PDMP) or inhibit (D-PDMP) glycosphingolipid biosynthesis. In this study, we determined whether altering the endogenous ganglioside levels with PDMP in SH-SY5Y cells regulates neurite outgrowth on the outgrowth-supporting extracellular matrix molecule, laminin. In cells stimulated with 20 ng/ml platelet-derived growth factor-BB to promote outgrowth, we used image analysis to evaluate neurite outgrowth from SH-SY5Y cells grown on endogenous matrix or laminin and exposed to L- or D-PDMP. Both L- and D-PDMP decreased neurite initiation (the number of neurites/cell, the percent of neurite-bearing cells), elongation (the length of the longest neurite/cell, the total neurite length/cell), and branching (the number of branch points/neurite) from SH-SY5Y cells on endogenous matrix or laminin in a dose-dependent manner in serum-free or serum-containing medium. The inhibitory effects of each PDMP isoform were reversible. Inhibition of neurite outgrowth by L-PDMP could be mimicked by addition of exogenous gangliosides or C2-ceramide. Our analyses of neurite outgrowth in SH-SY5Y cells, a model of developing or regenerating noradrenergic neurons, demonstrate that increasing or decreasing endogenous ganglioside levels decreases neurite outgrowth. These results may indicate that SH-SY5Y cells undergo tight regulation by gangliosides, possibly through modulation of growth/trophic factor- and/or extracellular matrix-activated signaling cascades.
Collapse
Affiliation(s)
- D L Hynds
- Anatomy and Neurobiology, University of Kentucky, MN232/234 UKMC, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
38
|
Sato C, Matsuda T, Kitajima K. Neuronal differentiation-dependent expression of the disialic acid epitope on CD166 and its involvement in neurite formation in Neuro2A cells. J Biol Chem 2002; 277:45299-305. [PMID: 12235144 DOI: 10.1074/jbc.m206046200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that alpha2,8-linked disialic acid (diSia) residues occur in several glycoproteins of mammalian brains (Sato, C., Fukuoka, H., Ohta, K., Matsuda, T., Koshino, R., Kobayashi, K., Troy, F. A., II, and Kitajima, K. (2000) J. Biol. Chem. 275, 15422-15431). The role of the diSia epitope on these glycoproteins is not known, whereas the importance of the diSia epitope on glycolipids is well documented in neurite formation. In this study, we demonstrated that the diSia epitope (Neu5Acalpha2 --> 8Neu5Acalpha2 --> 3Gal) on glycoproteins, but not on glycolipids, is involved in neurite formation in a mouse neuroblastoma cell line, Neuro2A, based on the following lines of evidence. First, the amount of diSia epitope on glycoproteins increased during retinoic acid-induced neurite formation. Second, retinoic acid treatment primarily increased the diSia epitope on a 100-kDa glycoprotein. We identified this protein as CD166 (SC1), an immunoglobulin superfamily cell adhesion molecule involved in neurite extension. Third, a monoclonal antibody against the diSia epitope specifically inhibited neurite formation. We also demonstrated that alpha2,8-sialyltransferase III mRNA expression increased 1.7-fold after the induction of neurite formation, suggesting that alpha2,8-sialyltransferase III is responsible for formation of the diSia epitope on CD166.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | |
Collapse
|
39
|
Chen GY, Kurosawa N, Muramatsu T. Functional analysis of promoter activity of murine beta-1,6-N-acetylglucosaminyltransferase. Gene 2001; 275:253-9. [PMID: 11587852 DOI: 10.1016/s0378-1119(01)00657-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the mouse, beta-1,6-N-acetylglucosaminyltransferase (IGnT) forms branches in poly-N-acetyllactosamines, which are good scaffolds for oncodevelopmental cell-surface antigens and recognition markers. There are two isoforms of IGnT, IGnT A and B, which are produced by alternative splicing of the IGnT gene; the unique portion is encoded by exon 1 and common portion is encoded by exons 2 and 3. Thus, the expression of each isoform is controlled by a different promoter. Here, we identified the regulatory regions of the mouse IGnT A and B genes. The promoter regions for IGnT A and B did not contain putative TATA or CAAT boxes, but each contained GT boxes. The upstream regulatory region of each gene was examined by transient luciferase reporter gene transfection experiments and gel mobility shift assay. Promoter activity for each gene was detected in F9 embryonal carcinoma cells, which express IGnT A and B, but not in N2a cells, which do not express the gene. Deletion analysis demonstrated that the regions 308 bp upstream from the transcriptional initiation site of IGnT A and 430 bp upstream from the transcriptional initiation site of IGnT B showed minimal promoter activity. Mutation of the single GT box in IGnT A and two GT boxes in IGnT B caused marked reduction of the promoter activity. These findings provided strong evidence that the GT boxes play crucial roles in transcriptional regulation of the genes.
Collapse
Affiliation(s)
- G Y Chen
- Department of Biochemistry, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
40
|
Henion TR, Zhou D, Wolfer DP, Jungalwala FB, Hennet T. Cloning of a mouse beta 1,3 N-acetylglucosaminyltransferase GlcNAc(beta 1,3)Gal(beta 1,4)Glc-ceramide synthase gene encoding the key regulator of lacto-series glycolipid biosynthesis. J Biol Chem 2001; 276:30261-9. [PMID: 11384981 DOI: 10.1074/jbc.m102979200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.
Collapse
Affiliation(s)
- T R Henion
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Waltham, Massachusetts 02452, USA
| | | | | | | | | |
Collapse
|
41
|
Wu G, Lu ZH, Xie X, Li L, Ledeen RW. Mutant NG108-15 cells (NG-CR72) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: they are rescued with LIGA-20. J Neurochem 2001; 76:690-702. [PMID: 11158239 DOI: 10.1046/j.1471-4159.2001.00036.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuroblastoma x glioma NG108-15 hybrid cell line, a widely used model for the study of neuronal differentiation, contains a variety of gangliosides including GM1 and its sialosylated derivative, GD1a. To investigate the role of these a-series gangliotetraose gangliosides in neuritogenesis, we have obtained a mutated subclone of NG108-15 that is deficient in that family of gangliosides. NG108-15 cells were grown in the presence of cholera toxin, which killed the large majority of cells, and from the cholera-resistant survivors we isolated a clone, NG-CR72, that lacks GM1 and GD1a in the plasma and nuclear membranes. GM2 concentration was significantly higher in the plasma membrane. Enzyme assay indicated deficiency of UDP-Gal:GM2 galactosyltransferase (GM1 synthase), which was confirmed by incorporation studies with [3H]sphingosine. These cells resembled wild-type NG108-15 in extending dendritic processes in response to dendritogenic agents (retinoic acid, dibutyryl cAMP) but responded aberrantly to axonogenic stimuli (KCl, ionomycin) by extending unstable neurites that showed the cytoskeletal staining characteristic of dendrites. Moreover, mutant cells treated with the Ca2+ elevating axonogenic agents underwent apoptosis over time, attributed to dysfunction of Ca2+ regulatory mechanisms normally mediated by GM1. Such agents caused dramatic and sustained elevation of intracellular Ca2+ in mutant cells, in contrast to modest and temporary elevation in wild-type cells. Exogenous GM1, inserted into the plasma membrane, had no discernable protective effect on NG-CR72 cells whereas LIGA-20, a membrane-permeant derivative of GM1 that entered both plasma and nuclear membranes, blocked apoptosis, permitted extension of stable neurites, and attenuated the abnormal elevation of intracellular Ca2+.
Collapse
Affiliation(s)
- G Wu
- Department of Neurosciences, New Jersey Medical School, UMDNJ, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
42
|
Wu G, Xie X, Lu ZH, Ledeen RW. Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci U S A 2001; 98:307-12. [PMID: 11134519 PMCID: PMC14586 DOI: 10.1073/pnas.98.1.307] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 10/31/2000] [Indexed: 11/18/2022] Open
Abstract
Mice engineered to lack GM2/GD2 synthase (GalNAc-T), with resultant deficit of GM2, GD2, and all gangliotetraose gangliosides, were originally described as showing a relatively normal phenotype with only a slight reduction in nerve conduction. However, a subsequent study showed that similar animals suffer axonal degeneration, myelination defects, and impaired motor coordination. We have examined the behavior of cerebellar granule neurons from these neonatal knockouts in culture and have found evidence of impaired capacity for Ca2+ regulation. These cells showed relatively normal behavior when grown in the presence of physiological or moderately elevated K+ but gradually degenerated in the presence of high K+. This degeneration in depolarizing medium was accompanied by progressive elevation of intracellular calcium and onset of apoptosis, phenomena not observed with normal cells. No differences were detected in cells from normal vs. heterozygous mice. These findings suggest that neurons from GalNAc-T knockout mice are lacking a calcium regulatory mechanism that is modulated by one or more of the deleted gangliosides, and they support the hypothesis that maintenance of calcium homeostasis is one function of complex gangliosides during, and perhaps subsequent to, neuronal development.
Collapse
Affiliation(s)
- G Wu
- Department of Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
43
|
Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y. Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 2000; 275:34701-9. [PMID: 10944523 DOI: 10.1074/jbc.m003163200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The association of ganglioside GD3 with TAG-1, a glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule, was examined by coimmunoprecipitation experiments. Previously, we have shown that the anti-ganglioside GD3 antibody (R24) immunoprecipitated the Src family kinase Lyn from the rat cerebellum, and R24 treatment of primary cerebellar cultures induced Lyn activation and rapid tyrosine phosphorylation of an 80-kDa protein (p80). We now report that R24 coimmunoprecipitates a 135-kDa protein (p135) from primary cerebellar cultures. Treatment with phosphatidylinositol-specific phospholipase C revealed that p135 was glycosylphosphatidylinositol-anchored to the membrane. It was identified as TAG-1 by sequential immunoprecipitation with an anti-TAG-1 antibody. Antibody-mediated cross-linking of TAG-1 induced Lyn activation and rapid tyrosine phosphorylation of p80. Selective inhibitor for Src family kinases reduced the tyrosine phosphorylation of p80. Sucrose density gradient analysis revealed that the TAG-1 and tyrosine-phosphorylated p80 in cerebellar cultures were present in the lipid raft fraction. These data show that TAG-1 transduces signals via Lyn to p80 in the lipid rafts of the cerebellum. Furthermore, degradation of cell-surface glycosphingolipids by endoglycoceramidase induced an alteration of TAG-1 distribution on an OptiPrep gradient and reduced the TAG-1-mediated Lyn activation and tyrosine phosphorylation of p80. These observations suggest that glycosphingolipids are involved in TAG-1-mediated signaling in lipid rafts.
Collapse
Affiliation(s)
- K Kasahara
- Department of Biochemical Cell Research, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abad-Rodríguez J, Bernabé M, Romero-Ramírez L, Vallejo-Cremades M, Fernández-Mayoralas A, Nieto-Sampedro M. Purification and structure of neurostatin, an inhibitor of astrocyte division of mammalian brain. J Neurochem 2000; 74:2547-56. [PMID: 10820217 DOI: 10.1046/j.1471-4159.2000.0742547.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurostatin was originally described as an inhibitor of astroblast and astrocytoma division present in rat brain extracts and immunologically related to the sugar moiety of epidermal growth factor receptor and to blood group antigens. It was purified recently from mammalian brain extracts and characterized as a glycosphingolipid, but its precise structure remained unknown. Neurostatin has now been purified to apparent homogeneity from ganglioside extracts of rat, bovine, and porcine brain. It is cytostatic for astroblasts, C6 glioma cells, and various human astrocytomas grades III and IV, with IC(50) values ranging from 250 to 450 nM, but does not affect the division of primary or transformed fibroblasts up to concentrations >4 microM. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of purified pig neurostatin showed a molecular ion of 1, 905 Da and ions of 1,863 and 1,934 Da, compatible with a disialoganglioside. Mono- and bidimensional NMR spectra, together with biochemical studies, suggest that neurostatin may be the 9-O-monoacetyl ester of GD1b.
Collapse
Affiliation(s)
- J Abad-Rodríguez
- Neural Plasticity Group, Instituto Cajal, Madrid, Spain. Institute of Organic Chemistry, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J Biol Chem 2000; 275:8007-15. [PMID: 10713120 DOI: 10.1074/jbc.275.11.8007] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ganglioside sialidases have been implicated in neuronal differentiation processes, including neurite outgrowth. To understand further the roles and regulation mechanisms of the sialidase in neuronal systems, we have cloned mouse ganglioside sialidase cDNA and observed its expression in Neuro2a cell differentiation. A 3339-base pair cDNA, cloned based on the sequence information of previously cloned enzymes, encodes 418 amino acids containing three Asp boxes characteristic of sialidases. Northern blot analysis revealed a 3.4-kilobase transcript expressed highly in heart but also in several other tissues including brain. In situ hybridization of mouse brain demonstrated the mRNA to be present in the cerebral cortex, as well as in the granule cell layer, Purkinje cells, and deep cerebellar nucleus of the cerebellum. Transient expression of the cDNA in COS-1 cells resulted in over 300-fold increase in sialidase activity toward gangliosides compared with the control level, with a preference for ganglioside substrate. During 5-bromodeoxyuridine-induced Neuro2a cell differentiation, the expression of the sialidase was increased as assessed by activity assays and quantitative reverse transcription-polymerase chain reaction analyses. Stable transfection of the sialidase in Neuro2a cells resulted in accelerated neurite arborization following 5-bromodeoxyuridine treatment, indicating the direct participation of this ganglioside sialidase in neuronal cell differentiation.
Collapse
Affiliation(s)
- T Hasegawa
- Division of Biochemistry, Research Institute, Miyagi Prefectural Cancer Center, 47-1 Nodayama, Medeshima-shiode, Natori, Miyagi 981-1293, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, Furukawa K, Urano T. GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J Biol Chem 2000; 275:5832-8. [PMID: 10681573 DOI: 10.1074/jbc.275.8.5832] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A rat pheochromocytoma cell line (PC12) transfected with ganglioside GD3 synthase gene showed a marked change in the ganglioside profile and enhanced proliferation and no response of neurite extension to nerve growth factor (NGF) stimulation. In these transfectant cells, a continuous phosphorylation of TrkA and the activation of ERK1/2 without NGF treatment were observed. Proliferation inhibition experiments with kinase inhibitors such as herbimycin A, K-252a, and PD98059 revealed that the enhanced proliferation was actually due to the activation of the Ras/MEK/ERK pathway. A TrkA dimer was detected in the GD3 synthase transfectant cells regardless of NGF treatment by cross-linking and immunoblotting. The increased expression of GD1b and GT1b in these transfectant cells might induce the conformational change of TrkA to form a dimer and to be activated continuously. These results may indicate regulatory roles of gangliosides in cell proliferation under physiological and malignant processes.
Collapse
Affiliation(s)
- S Fukumoto
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Birklé S, Gao L, Zeng G, Yu RK. Down-regulation of GD3 ganglioside and its O-acetylated derivative by stable transfection with antisense vector against GD3-synthase gene expression in hamster melanoma cells: effects on cellular growth, melanogenesis, and dendricity. J Neurochem 2000; 74:547-54. [PMID: 10646505 DOI: 10.1046/j.1471-4159.2000.740547.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of gangliosides in hamster melanoma cells is closely related to cellular growth and degree of differentiation, with slow-growing, highly differentiated melanotic melanoma cells expressing GM3 and fast-growing, undifferentiated amelanotic Ab melanoma cells having a preponderance of GD3 and O-acetyl-GD3. We recently showed that down-regulation of O-acetyl-GD3 expression in hamster melanoma cells by introducing the influenza C virus O-acetylesterase cDNA into the cells resulted in induction of dendricity, with a concomitant increased expression of GD3. To examine the effect of the increased GD3 expression in the plasma membrane on the dendricity of the AbC-1 cells, we first established the cDNA coding for hamster GD3-synthase. We then targeted the sialyltransferase gene expression by the antisense knockdown experiment, and the results showed that inhibition of the expression of gangliosides GD3 and O-acetyl-GD3 induced dendricity in the hamster melanoma AbC-1 cell line. These GD3- and O-acetyl-GD3-depleted cells also demonstrated a decreased rate of cell growth, but their melanogenic potential was not affected. These results rule out the possibility that GD3 may serve as an active molecule for dendrite outgrowth in this cell line and suggest that the enhanced expression of O-acetyl-GD3 ganglioside may stimulate cellular growth and suppress certain differentiated phenotypes such as dendrite formation, but not melanogenesis, in our system.
Collapse
Affiliation(s)
- S Birklé
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond 23298-0614, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Recent studies have suggested that glycosphingolipid (GSL)-cholesterol microdomains in cell membranes may function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are proposed to be involved in membrane trafficking of GPI-anchored proteins and in signal transduction via src-family kinases. Here, the possible roles of GSLs in the physical properties of these microdomains, as well as in membrane trafficking and signal transduction, are discussed. Sphingolipid depletion inhibits the intracellular transport of GPI-anchored proteins in biosynthetic traffic and endocytosis via GPI-anchored proteins. Antibodies against GSLs as well as GPI-anchored proteins co-precipitate src-family kinases. Antibody-mediated cross-linking of GSLs, as well as that of GPI-anchored proteins, induces a transient increase in the tyrosine phosphorylation of several substrates. Thus, GSLs have important roles in lipid rafts.
Collapse
Affiliation(s)
- K Kasahara
- Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, Japan.
| | | |
Collapse
|
49
|
Prinetti A, Iwabuchi K, Hakomori S. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 1999; 274:20916-24. [PMID: 10409636 DOI: 10.1074/jbc.274.30.20916] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation and neuritogenesis of mouse neuroblastoma Neuro2a cells are induced by exogenous ganglioside but are not induced by nerve growth factor because its receptor is absent in these cells. In view of the emerging concept of the "glycosphingolipid-enriched domain" (GEM), we studied the mechanism of the ganglioside effect, focusing on the structure and function of such a domain. GEM in Neuro2a cells, separated as a low density membrane fraction, contains essentially all glycosphingolipids and sphingomyelin, together with five signal transducer molecules (c-Src, Lyn, Csk, Rho A, Ha-Ras). (3)H-Labeled Il(3)NeuAc-LacCer (GM3), Gb4Cer (globoside), and Il(3)NeuAc-Gg4Cer (GM1) added exogenously to cells were incorporated and concentrated in the low density GEM fraction. In contrast, more than 50% of glycerophospholipids and 30% of cholesterol were found in the high density fraction. (3)H-Labeled phosphatidylcholine added exogenously to cells was incorporated exclusively in the high density fraction. c-Src, the predominant signal transducer in the microdomain, was coimmunoprecipitated with anti-GM3 antibody DH2 or with anti-Csk; reciprocally, Csk was coimmunoprecipitated with anti-c-Src, indicating a close association of GM3, c-Src, and Csk. Brief stimulation of an isolated GEM fraction by the exogenous addition of GM3, but not lactosylceramide, caused enhanced c-Src phosphorylation with a concomitant decrease of Csk level in GEM. A decreased Csk/c-Src ratio in GEM may cause activation of c-Src because Csk is a negative regulator of c-Src. The effect of exogenous GM3 on c-Src activity was also observed in intact Neuro2a cells. Activation of c-Src was followed by rapid and prolonged (60 min) enhancement of mitogen-activated protein kinase activity leading to neuritogenesis. Thus, the ganglioside induction of neuritogenesis in Neuro2a cells is mediated by GEM structure and function.
Collapse
Affiliation(s)
- A Prinetti
- Pacific Northwest Research Institute, Seattle, Washington 98122 and the Departments of Pathobiology and Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
50
|
Liu H, Nakagawa T, Kanematsu T, Uchida T, Tsuji S. Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the GD3 synthase gene. J Neurochem 1999; 72:1781-90. [PMID: 10217254 DOI: 10.1046/j.1471-4159.1999.0721781.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we showed that transfection of GD3 synthase cDNA into Neuro2a cells, a mouse neuroblastoma cell line, causes cell differentiation with neurite sprouting. In a search for the genes involved in this ganglioside-induced Neuro2a differentiation, we used a tetracycline-regulated GD3 synthase cDNA expression system combined with differential display PCRs to identify mRNAs that were differentially expressed at four representative time points during the process. We report here the identification of 10 mRNAs that are expressed highly at the Neuro2a differentiated stage. These cDNAs were named GDAP1-GDAP10 for (ganglioside-induced differentiation-associated protein) cDNAs. It is interesting that in retinoic acid-induced neural differentiated mouse embryonic carcinoma P19 cells, GDAP mRNA expression levels were also up-regulated (except that of GDAP3), ranging from three to >10 times compared with nondifferentiated P19 cells. All the GDAP genes (except that of GDAP3) were developmentally regulated. The GDAP1, 2, 6, 8, and 10 mRNAs were expressed highly in the adult mouse brain, whereas all the other GDAP mRNAs were expressed in most tissues. Our results suggested that these GDAP genes might be involved in the signal transduction pathway that is triggered through the expression of a single sialyltransferase gene to induce neurite-like differentiation of Neuro2a cells.
Collapse
Affiliation(s)
- H Liu
- Department of Molecular Glycobiology, Institute of Physical and Chemical Research, Wako, Saitama, Japan
| | | | | | | | | |
Collapse
|