1
|
Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1093376. [PMID: 36967809 PMCID: PMC10030879 DOI: 10.3389/fendo.2023.1093376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.
Collapse
Affiliation(s)
| | - Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience, University Miguel Hernández (UMH)-CSIC, Alicante, Spain
| | - Victor M. Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| |
Collapse
|
2
|
Abe I, Oguri Y, Verkerke ARP, Monteiro LB, Knuth CM, Auger C, Qiu Y, Westcott GP, Cinti S, Shinoda K, Jeschke MG, Kajimura S. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell 2022; 57:2623-2637.e8. [PMID: 36473459 PMCID: PMC9875052 DOI: 10.1016/j.devcel.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
De novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, β3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36. Linoleic acid not only was oxidized as fuel in the mitochondria but also was utilized for the synthesis of arachidonic acid-derived signaling entities such as prostaglandin D2. Oral supplementation of linoleic acid was sufficient to stimulate beige progenitor cell proliferation, even under thermoneutral conditions, in a CD36-dependent manner. Together, this study provides mechanistic insights into how diverse pathophysiological stimuli, such as cold and burn injury, promote de novo beige fat biogenesis.
Collapse
Affiliation(s)
- Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Anthony R P Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauar B Monteiro
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carly M Knuth
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yunping Qiu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada; Department of Surgery, Division of Plastic Surgery, and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
4
|
Burl RB, Rondini EA, Wei H, Pique-Regi R, Granneman JG. Deconstructing cold-induced brown adipocyte neogenesis in mice. eLife 2022; 11:e80167. [PMID: 35848799 PMCID: PMC9348851 DOI: 10.7554/elife.80167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of β1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of β1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the β3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High-resolution immunofluorescence and single-molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to β-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.
Collapse
Affiliation(s)
- Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Elizabeth Ann Rondini
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| | - Hongguang Wei
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Center for Integrative Metabolic and Endocrine Research, Wayne State UniversityDetroitUnited States
| |
Collapse
|
5
|
Shamsi F, Wang CH, Tseng YH. The evolving view of thermogenic adipocytes - ontogeny, niche and function. Nat Rev Endocrinol 2021; 17:726-744. [PMID: 34625737 PMCID: PMC8814904 DOI: 10.1038/s41574-021-00562-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The worldwide incidence of obesity and its sequelae, such as type 2 diabetes mellitus, have reached pandemic levels. Central to the development of these metabolic disorders is adipose tissue. White adipose tissue stores excess energy, whereas brown adipose tissue (BAT) and beige (also known as brite) adipose tissue dissipate energy to generate heat in a process known as thermogenesis. Strategies that activate and expand BAT and beige adipose tissue increase energy expenditure in animal models and offer therapeutic promise to treat obesity. A better understanding of the molecular mechanisms underlying the development of BAT and beige adipose tissue and the activation of thermogenic function is the key to creating practical therapeutic interventions for obesity and metabolic disorders. In this Review, we discuss the regulation of the tissue microenvironment (the adipose niche) and inter-organ communication between BAT and other tissues. We also cover the activation of BAT and beige adipose tissue in response to physiological cues (such as cold exposure, exercise and diet). We highlight advances in harnessing the therapeutic potential of BAT and beige adipose tissue by genetic, pharmacological and cell-based approaches in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Law JM, Morris DE, Robinson L, Randell T, Denvir L, Symonds ME, Budge H. Reduced brown adipose tissue-associated skin temperature following cold stimulation in children and adolescents with type 1 diabetes. Pediatr Diabetes 2021; 22:407-416. [PMID: 33252166 DOI: 10.1111/pedi.13163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is essential to maintain body temperature. Its ability to convert chemical energy in glucose and free fatty acids to heat is conferred by a unique protein, UCP-1. BAT activity is greatest in children and adolescents, declining through adulthood. Blood glucose concentrations outside the normal nondiabetic range are common in type 1 diabetes and hyperglycaemia leads to insulin resistance in muscle and white adipose tissue, but whether this applies to BAT, is not known. METHOD To investigate the effect of type 1 diabetes on BAT activity, we measured the supraclavicular temperature of 20 children with type 1 diabetes and compared them to 20 age-matched controls, using infrared thermography. RESULTS The diabetes group had lower stimulated supraclavicular temperatures (diabetes group: 35.03 (34.76-35.30)°C; control group: 35.42 (35.16-35.69)°C; p = 0.037) and a reduced response in relative temperature following cold stimulation, after adjusting for BMI (diabetes group: 0.11 (0.03-0.18)°C; control group: 0.22 (0.15-0.29)°C; p = 0.034). In the diabetes group, there was no association between glycaemic measures and supraclavicular temperatures, but the method of insulin delivery may significantly affect the change in supraclavicular temperature with stimulation (injections: 0.01 (-0.07-0.09)°C; pump: 0.15 (0.04-0.26)°C; p = 0.028). CONCLUSIONS While further work is needed to better understand the glucose-insulin-BAT relationship, one possible explanation for the reduced supraclavicular temperature is that exogenous, unlike endogenous, insulin, is not suppressed by the activity of the sympathetic nervous system, preventing lipolysis-driven activation of BAT.
Collapse
Affiliation(s)
- James M Law
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - David E Morris
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Lindsay Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tabitha Randell
- Paediatric Diabetes & Endocrinology, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Louise Denvir
- Paediatric Diabetes & Endocrinology, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Im H, Park JH, Im S, Han J, Kim K, Lee YH. Regulatory roles of G-protein coupled receptors in adipose tissue metabolism and their therapeutic potential. Arch Pharm Res 2021; 44:133-145. [PMID: 33550564 PMCID: PMC7907040 DOI: 10.1007/s12272-021-01314-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
The high incidence of obesity has increased the need to discover new therapeutic targets to combat obesity and obesity-related metabolic diseases. Obesity is defined as an abnormal accumulation of adipose tissue, which is one of the major metabolic organs that regulate energy homeostasis. However, there are currently no approved anti-obesity therapeutics that directly target adipose tissue metabolism. With recent advances in the understanding of adipose tissue biology, molecular mechanisms involved in brown adipose tissue expansion and metabolic activation have been investigated as potential therapeutic targets to increase energy expenditure. This review focuses on G-protein coupled receptors (GPCRs) as they are the most successful class of druggable targets in human diseases and have an important role in regulating adipose tissue metabolism. We summarize recent findings on the major GPCR classes that regulate thermogenesis and mitochondrial metabolism in adipose tissue. Improved understanding of GPCR signaling pathways that regulate these processes could facilitate the development of novel pharmacological approaches to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Hyeonyeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyungmin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Human beige adipocytes for drug discovery and cell therapy in metabolic diseases. Nat Commun 2020; 11:2758. [PMID: 32488069 PMCID: PMC7265435 DOI: 10.1038/s41467-020-16340-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Human beige adipocytes (BAs) have potential utility for the development of therapeutics to treat diabetes and obesity-associated diseases. Although several reports have described the generation of beige adipocytes in vitro, their potential utility in cell therapy and drug discovery has not been reported. Here, we describe the generation of BAs from human adipose-derived stem/stromal cells (ADSCs) in serum-free medium with efficiencies >90%. Molecular profiling of beige adipocytes shows them to be similar to primary BAs isolated from human tissue. In vitro, beige adipocytes exhibit uncoupled mitochondrial respiration and cAMP-induced lipolytic activity. Following transplantation, BAs increase whole-body energy expenditure and oxygen consumption, while reducing body-weight in recipient mice. Finally, we show the therapeutic utility of BAs in a platform for high-throughput drug screening (HTS). These findings demonstrate the potential utility of BAs as a cell therapeutic and as a tool for the identification of drugs to treat metabolic diseases. Methods to generate beige adipocytes from a human cell source are inefficient. Here, the authors present a protocol that efficiently generates beige adipocytes from human adipose-derived stem cells (ADSCs), which have potential utility in therapeutic development relating to metabolic diseases such as type 2 diabetes.
Collapse
|
10
|
Hedderich J, El Bagdadi K, Angele P, Grässel S, Meurer A, Straub RH, Zaucke F, Jenei-Lanzl Z. Norepinephrine Inhibits the Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells via β2-Adrenoceptor-Mediated ERK1/2 and PKA Phosphorylation. Int J Mol Sci 2020; 21:ijms21113924. [PMID: 32486305 PMCID: PMC7312191 DOI: 10.3390/ijms21113924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) represent an alternative to chondrocytes to support cartilage regeneration in osteoarthritis (OA). The sympathetic neurotransmitter norepinephrine (NE) has been shown to inhibit their chondrogenic potential; however, their proliferation capacity under NE influence has not been studied yet. Therefore, we used BMSCs obtained from trauma and OA donors and compared the expression of adrenergic receptors (AR). Then, BMSCs from both donor groups were treated with NE, as well as with combinations of NE and α1-, α2- or β1/2-AR antagonists (doxazosin, yohimbine or propranolol). Activation of AR-coupled signaling was investigated by analyzing ERK1/2 and protein kinase A (PKA) phosphorylation. A similar but not identical subset of ARs was expressed in trauma (α2B-, α2C- and β2-AR) and OA BMSCs (α2A-, α2B-, and β2-AR). NE in high concentrations inhibited the proliferation of both trauma and OA BMCSs significantly. NE in low concentrations did not influence proliferation. ERK1/2 as well as PKA were activated after NE treatment in both BMSC types. These effects were abolished only by propranolol. Our results demonstrate that NE inhibits the proliferation and accordingly lowers the regenerative capacity of human BMSCs likely via β2-AR-mediated ERK1/2 and PKA phosphorylation. Therefore, targeting β2-AR-signaling might provide novel OA therapeutic options.
Collapse
Affiliation(s)
- Jessica Hedderich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, 93053 Regensburg, Germany;
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
- Correspondence: ; Tel.: +49-69-6705-408
| |
Collapse
|
11
|
Kannabiran SA, Gosejacob D, Niemann B, Nikolaev VO, Pfeifer A. Real-time monitoring of cAMP in brown adipocytes reveals differential compartmentation of β 1 and β 3-adrenoceptor signalling. Mol Metab 2020; 37:100986. [PMID: 32247064 PMCID: PMC7191645 DOI: 10.1016/j.molmet.2020.100986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Objective 3′,5′-Cyclic adenosine monophosphate (cAMP) is a central second messenger governing brown adipocyte differentiation and function. β-adrenergic receptors (β-ARs) stimulate adenylate cyclases which produce cAMP. Moreover, cyclic nucleotide levels are tightly controlled by phosphodiesterases (PDEs), which can generate subcellular microdomains of cAMP. Since the spatio-temporal organisation of the cAMP signalling pathway in adipocytes is still unclear, we sought to monitor real-time cAMP dynamics by live cell imaging in pre-mature and mature brown adipocytes. Methods We measured the real-time dynamics of cAMP in murine pre-mature and mature brown adipocytes during stimulation of individual β-AR subtypes, as well as its regulation by PDEs using a Förster Resonance Energy Transfer based biosensor and pharmacological tools. We also correlated these data with β-AR stimulated lipolysis and analysed the expression of β-ARs and PDEs in brown adipocytes using qPCR and immunoblotting. Furthermore, subcellular distribution of PDEs was studied using cell fractionation and immunoblots. Results Using pre-mature and mature brown adipocytes isolated from transgenic mice expressing a highly sensitive cytosolic biosensor Epac1-camps, we established real-time measurements of cAMP responses. PDE4 turned out to be the major PDE regulating cytosolic cAMP in brown preadipocytes. Upon maturation, PDE3 gets upregulated and contributes with PDE4 to control β1-AR-induced cAMP. Unexpectedly, β3-AR initiated cAMP is resistant to increased PDE3 protein levels and simultaneously, the control of this microdomain by PDE4 is reduced upon brown adipocyte maturation. Therefore we postulate the existence of distinct cAMP pools in brown adipocytes. One cAMP pool is formed by β1-AR associated with PDE3 and PDE4, while another pool is centred around β3-AR and is much less controlled by these PDEs. Functionally, lower control of β3-AR initiated cAMP by PDE3 and PDE4 facilitates brown adipocyte lipolysis, while lipolysis activated by β1-AR and is under tight control of PDE3 and PDE4. Conclusions We have established a real-time live cell imaging approach to analyse brown adipocyte cAMP dynamics in real-time using a cAMP biosensor. We showed that during the differentiation from pre-mature to mature murine brown adipocytes, there was a change in PDE-dependent compartmentation of β1-and β3-AR-initiated cAMP responses by PDE3 and PDE4 regulating lipolysis. Establishment of real-time cAMP analysis using a FRET biosensor in brown adipocytes. Real-time dynamics of cAMP generation from different β-adrenoceptor subtypes in pre- and mature brown adipocytes. Expression analysis of PDE families in pre- and mature brown adipocytes. Differences in PDE3- and PDE4-dependent regulation of β1- and β3-adrenoceptor initiated cAMP signalling in brown adipocytes. Differential compartmentation of β1- and β3-adrenoceptor signalling in brown adipocytes.
Collapse
Affiliation(s)
- Sukanya Arcot Kannabiran
- Institute of Pharmacology and Toxicology, University of Bonn, 53127, Bonn, Germany; Research Training Group 1873, University of Bonn, 53127, Bonn, Germany
| | - Dominic Gosejacob
- Institute of Pharmacology and Toxicology, University of Bonn, 53127, Bonn, Germany.
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University of Bonn, 53127, Bonn, Germany; Bonn International Graduate School of Drug Sciences (BIGS DrugS), Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany.
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, 53127, Bonn, Germany; Research Training Group 1873, University of Bonn, 53127, Bonn, Germany; Bonn International Graduate School of Drug Sciences (BIGS DrugS), Germany.
| |
Collapse
|
12
|
Efremova A, Senzacqua M, Venema W, Isakov E, Di Vincenzo A, Zingaretti MC, Protasoni M, Thomski M, Giordano A, Cinti S. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes. J Physiol Biochem 2019; 76:185-192. [PMID: 31853729 DOI: 10.1007/s13105-019-00721-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Many deleterious consequences for health of excessive fat accumulation are due to visceral fat. Browning of visceral fat is mainly cold dependent and has been proposed as a possible tool for future therapies of obesity and related disorders. In this paper, we studied the composition of mediastinal and perirenal visceral fat, collected at necropsy, of human adults that lived in Siberia, one of the coldest regions of the earth. Data showed that a consistent part of the mediastinal and perirenal fat (up to about 40%) had the morphology typical of brown adipocytes and that a relevant percentage of them (up to about 30%) also expressed the functional marker uncoupling protein 1 (UCP1). Patients living mainly outdoor had higher percentage of brown-like adipocytes with more intensely UCP1 immunoreactive cells. The presence of numerous UCP1 immunoreactive paucilocular cells, a transitional stage of transdifferentiating adipocytes, supports the idea that visceral fat can be converted to brown adipose tissue in adult humans in physiological conditions. Tyrosine hydroxylase immunoreactive noradrenergic parenchymal nerve fibers were positively correlated to the number of multilocular adipocytes in mediastinal fat, and a similar trend was also observed in the perirenal fat.
Collapse
Affiliation(s)
- Agrafena Efremova
- Yakut Scientific Center of Complex Medical Problems, Yakutsk, Russia
| | - Martina Senzacqua
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Wiebe Venema
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Evgeny Isakov
- Yakut Scientific Center of Complex Medical Problems, Yakutsk, Russia
| | - Angelica Di Vincenzo
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Maria Cristina Zingaretti
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Marina Protasoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mikhail Thomski
- Yakut Scientific Center of Complex Medical Problems, Yakutsk, Russia
| | - Antonio Giordano
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy
| | - Saverio Cinti
- Department Experimental and Clinical Medicine, Center of Obesity, School of Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10a, 60020, Ancona, Italy.
| |
Collapse
|
13
|
Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue Development and Metabolism. Handb Exp Pharmacol 2019; 251:3-36. [PMID: 30203328 DOI: 10.1007/164_2018_168] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Reverte-Salisa L, Sanyal A, Pfeifer A. Role of cAMP and cGMP Signaling in Brown Fat. Handb Exp Pharmacol 2019; 251:161-182. [PMID: 29633180 DOI: 10.1007/164_2018_117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cold-induced activation of brown adipose tissue (BAT) is mediated by norepinephrine and adenosine that are released during sympathetic nerve activation. Both signaling molecules induce an increase in intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) in murine and human BAT. In brown adipocytes, cAMP plays a central role, because it activates lipolysis, glucose uptake, and thermogenesis. Another well-studied intracellular second messenger is 3',5'-cyclic guanosine monophosphate (cGMP), which closely resembles cAMP. Several studies have shown that intact cGMP signaling is essential for normal adipogenic differentiation and BAT-mediated thermogenesis in mice. This chapter highlights recent observations, demonstrating the physiological significance of cyclic nucleotide signaling in BAT as well as their potential to induce browning of white adipose tissue (WAT) in mice and humans.
Collapse
Affiliation(s)
- Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Abhishek Sanyal
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Evans BA, Merlin J, Bengtsson T, Hutchinson DS. Adrenoceptors in white, brown, and brite adipocytes. Br J Pharmacol 2019; 176:2416-2432. [PMID: 30801689 DOI: 10.1111/bph.14631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Adrenoceptors play an important role in adipose tissue biology and physiology that includes regulating the synthesis and storage of triglycerides (lipogenesis), the breakdown of stored triglycerides (lipolysis), thermogenesis (heat production), glucose metabolism, and the secretion of adipocyte-derived hormones that can control whole-body energy homeostasis. These processes are regulated by the sympathetic nervous system through actions at different adrenoceptor subtypes expressed in adipose tissue depots. In this review, we have highlighted the role of adrenoceptor subtypes in white, brown, and brite adipocytes in both rodents and humans and have included detailed analysis of adrenoceptor expression in human adipose tissue and clonally derived adipocytes. We discuss important considerations when investigating adrenoceptor function in adipose tissue or adipocytes. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
16
|
Karise I, Bargut TC, Del Sol M, Aguila MB, Mandarim-de-Lacerda CA. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother 2019; 111:1156-1165. [PMID: 30841429 DOI: 10.1016/j.biopha.2019.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 11/18/2022] Open
Abstract
AIMS We studied the effect of metformin on the brown adipose tissue (BAT) in a fructose-rich-fed model, focusing on BAT proliferation, differentiation, and thermogenic markers. MAIN METHODS C57Bl/6 mice received isoenergetic diets for ten weeks: control (C) or high-fructose (F). For additional eight weeks, animals received metformin hydrochloride (M, 250 mg/kg/day) or saline. After sacrifice, BAT and white fat pads were prepared for light microscopy and molecular analyses. KEY FINDINGS Body mass gain, white fat pads, and adiposity index were not different among the groups. There was a reduction in energy intake in the F group and energy expenditure in the F and FM groups. Metformin led to a more massive BAT in both groups CM and FM, associated with a higher adipocyte proliferation (β1-adrenergic receptor, proliferating cell nuclear antigen, and vascular endothelial growth factor), and differentiation (PR domain containing 16, bone morphogenetic protein 7), in part by activating 5' adenosine monophosphate-activated protein kinase. Metformin also enhanced thermogenic markers in the BAT (uncoupling protein type 1, peroxisome proliferator-activated receptor gamma coactivator-1 alpha) through adrenergic stimuli and fibroblast growth factor 21. Metformin might improve mitochondrial biogenesis in the BAT (nuclear respiratory factor 1, mitochondrial transcription factor A), lipolysis (perilipin, adipose triglyceride lipase, hormone-sensitive lipase), and fatty acid uptake (lipoprotein lipase, cluster of differentiation 36, adipocyte protein 2). SIGNIFICANCE Metformin effects are not linked to body mass changes, but affect BAT thermogenesis, mitochondrial biogenesis, and fatty acid uptake. Therefore, BAT may be a metformin adjuvant target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Iara Karise
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Thereza Cristina Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariano Del Sol
- Doctoral Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Yoneshiro T, Shin W, Machida K, Fukano K, Tsubota A, Chen Y, Yasui H, Inanami O, Okamatsu-Ogura Y, Kimura K. Differentiation of bone marrow-derived cells toward thermogenic adipocytes in white adipose tissue induced by the β3 adrenergic stimulation. FASEB J 2019; 33:5196-5207. [PMID: 30624970 DOI: 10.1096/fj.201801757rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone marrow provides progenitors of several types of cells, including muscle and white adipocytes, ensuring peripheral tissue homeostasis. However, the role of bone marrow-derived cells (BMCs) in induction of thermogenic adipocytes is unresolved. The purpose of this study is to examine whether BMCs are involved in the emergence of thermogenic adipocytes through adrenergic activation. Irradiation of mice with 8 Gy of X-ray-depleted BMCs and peripheral blood mononucleated cells (PBMCs), which in turn impaired induction of uncoupling protein 1 (UCP1) through administration of β3 adrenergic receptor agonist, CL 316,243 (CL), in inguinal white adipose tissue (iWAT). In contrast, CL-induced UCP1 induction in brown adipose tissue was unaffected by BMC depletion. Transplantation of normal BMCs into mice depleted of BMCs recovered PBMC levels and rescued the ability of iWAT browning by CL. Furthermore, analyses of mice transplanted with green fluorescent protein (GFP)-labeled BMCs revealed that the number of GFP-positive BMCs and PBMCs were significantly decreased by CL and that GFP-positive stromal cells and GFP-positive UCP1-expressing multilocular adipocytes appeared in iWAT after CL administration, demonstrating differentiation of BMC-derived preadipocytes into UCP1-expressing thermogenic adipocytes. These results unveiled a crucial role of the BMC as a nonresident origin for a subset of thermogenic adipocytes, contributing to browning of white adipose tissue.-Yoneshiro, T., Shin, W., Machida, K., Fukano, K., Tsubota, A., Chen, Y., Yasui, H., Inanami, O., Okamatsu-Ogura, Y., Kimura, K. Differentiation of bone marrow-derived cells toward thermogenic adipocytes in white adipose tissue induced by the β3 adrenergic stimulation.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Woongchul Shin
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Machida
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Keigo Fukano
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yong Chen
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Huang J, Diaz-Meco MT, Moscat J. The macroenviromental control of cancer metabolism by p62. Cell Cycle 2018; 17:2110-2121. [PMID: 30198373 DOI: 10.1080/15384101.2018.1520566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, but most studies focus on the molecular alterations in cancer cells and much less is known on the role of cancer metabolism, from a holistic perspective, for tumor initiation and progression. Increasing epidemiological evidence highlights the tremendous impact that cancer progression has on the host metabolism, especially in cachexia. However, how this benefits the tumor still is not completely understood. Here we review current studies on fatty acid oxidation in tumor cells as a potential therapeutic target in cancer, and how the redistribution of lipids from fat reservoirs to the cancer cell in the micro- and macro-environment impacts tumorigenesis by helping the tumor fulfill its energetic demands at the expense of fat. In this context, we also discuss the critical role of the signaling adaptor p62/Sequestosome 1(SQSTM1) in adipocytes in mediating tumor-induced fat reprograming and the feedback of adipose tissue on tumor aggressiveness via osteopontin and its potential implications in obesity-promoted cancer and fat cachexia. Collectively these studies highlight the importance of the symbiotic collaboration between adipose tissue and tumor to modulate the cancer metabolic fitness.
Collapse
Affiliation(s)
- Jianfeng Huang
- a Cancer Metabolism and Signaling Networks Program , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| | - Maria T Diaz-Meco
- a Cancer Metabolism and Signaling Networks Program , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| | - Jorge Moscat
- a Cancer Metabolism and Signaling Networks Program , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| |
Collapse
|
19
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
20
|
Paulo E, Wu D, Wang Y, Zhang Y, Wu Y, Swaney DL, Soucheray M, Jimenez-Morales D, Chawla A, Krogan NJ, Wang B. Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis. Sci Rep 2018; 8:11001. [PMID: 30030465 PMCID: PMC6054673 DOI: 10.1038/s41598-018-29333-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Various physiological stimuli, such as cold environment, diet, and hormones, trigger brown adipose tissue (BAT) to produce heat through sympathetic nervous system (SNS)- and β-adrenergic receptors (βARs). The βAR stimulation increases intracellular cAMP levels through heterotrimeric G proteins and adenylate cyclases, but the processes by which cAMP modulates brown adipocyte function are not fully understood. Here we described that specific ablation of cAMP production in brown adipocytes led to reduced lipolysis, mitochondrial biogenesis, uncoupling protein 1 (Ucp1) expression, and consequently defective adaptive thermogenesis. Elevated cAMP signaling by sympathetic activation inhibited Salt-inducible kinase 2 (Sik2) through protein kinase A (PKA)-mediated phosphorylation in brown adipose tissue. Inhibition of SIKs enhanced Ucp1 expression in differentiated brown adipocytes and Sik2 knockout mice exhibited enhanced adaptive thermogenesis at thermoneutrality in an Ucp1-dependent manner. Taken together, our data indicate that suppressing Sik2 by PKA-mediated phosphorylation is a requisite for SNS-induced Ucp1 expression and adaptive thermogenesis in BAT, and targeting Sik2 may present a novel therapeutic strategy to ramp up BAT thermogenic activity in humans.
Collapse
Affiliation(s)
- Esther Paulo
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Dongmei Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 52 Haidian Road, Beijing, 100871, China
| | - Yangmeng Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Yun Zhang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yixuan Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
21
|
Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat Med 2018; 24:1372-1383. [PMID: 29988127 DOI: 10.1038/s41591-018-0102-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022]
Abstract
Recent research has focused on environmental effects that control tissue functionality and systemic metabolism. However, whether such stimuli affect human thermogenesis and body mass index (BMI) has not been explored. Here we show retrospectively that the presence of brown adipose tissue (BAT) and the season of conception are linked to BMI in humans. In mice, we demonstrate that cold exposure (CE) of males, but not females, before mating results in improved systemic metabolism and protection from diet-induced obesity of the male offspring. Integrated analyses of the DNA methylome and RNA sequencing of the sperm from male mice revealed several clusters of co-regulated differentially methylated regions (DMRs) and differentially expressed genes (DEGs), suggesting that the improved metabolic health of the offspring was due to enhanced BAT formation and increased neurogenesis. The conclusions are supported by cell-autonomous studies in the offspring that demonstrate an enhanced capacity to form mature active brown adipocytes, improved neuronal density and more norepinephrine release in BAT in response to cold stimulation. Taken together, our results indicate that in humans and in mice, seasonal or experimental CE induces an epigenetic programming of the sperm such that the offspring harbor hyperactive BAT and an improved adaptation to overnutrition and hypothermia.
Collapse
|
22
|
Jung S, Han M, Korm S, Lee SI, Noh S, Phorl S, Naskar R, Lee KS, Kim GH, Choi YJ, Lee JY. HDAC6 regulates thermogenesis of brown adipocytes through activating PKA to induce UCP1 expression. Biochem Biophys Res Commun 2018; 503:285-290. [PMID: 29890133 DOI: 10.1016/j.bbrc.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). UCP1 increases the conductance of the inner mitochondrial membrane (IMM) for protons to make BAT mitochondria generate heat rather than ATP. HDAC6 is a cytosolic deacetylase for non-histone substrates to regulate various cellular processes, including mitochondrial quality control and dynamics. Here, we showed that the body temperature of HDAC6 knockout mice is slightly decreased in normal hosing condition. Interestingly, UCP1 was downregulated in BAT of HDAC6 knockout mice, which extensively linked mitochondrial thermogenesis. Mechanistically, we showed that cAMP-PKA signaling plays a key role in HDAC6-dependent UCP1 expression. Notably, the size of brown adipocytes and lipid droplets in HDAC6 knockout BAT is increased. Taken together, our findings suggested that HDAC6 contributes to mitochondrial thermogenesis in BAT by increasing UCP1 expression through cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- Suna Jung
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea; Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Miae Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Sovannarith Korm
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Se-In Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Solhee Noh
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Sophors Phorl
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Rema Naskar
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Kye-Sung Lee
- Division of Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Geon-Hee Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea; Division of Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea; Division of Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, Republic of Korea.
| |
Collapse
|
23
|
Nedergaard J, Wang Y, Cannon B. Cell proliferation and apoptosis inhibition: essential processes for recruitment of the full thermogenic capacity of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:51-58. [PMID: 29908367 DOI: 10.1016/j.bbalip.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
In mice living under normal animal house conditions, the brown adipocytes in classical brown adipose tissue depots are already essentially fully differentiated: UCP1 mRNA and UCP1 protein levels are practically saturated. This means that any further recruitment - in response to cold exposure or any other browning agent - does not result in significant augmentation of these parameters. This may easily be construed to indicate that classical brown adipose tissue cannot be further recruited. However, this is far from the case: the capacity for further recruitment instead lies in the ability of the tissue to increase the number of brown-fat cells, a remarkable and highly controlled physiological recruitment process. We have compiled here the available data concerning the unique ability of norepinephrine to increase cell proliferation and inhibit apoptosis in brown adipocytes. Adrenergically stimulated cell proliferation is fully mediated via β1-adrenoceptors and occurs through activation of stem cells in the tissue; intracellular mediation of the signal involves cAMP and protein kinase A activation, but activation of Erk1/2 is not part of the pathway. Apoptosis inhibition in brown adipocytes is induced by both β- and α1-adrenergic receptors and here the intracellular pathway includes Erk1/2 activation. This unique ability of norepinephrine to increase cell number in an apparently mitogenically dormant tissue provides possibilities to augment the metabolic capacity of brown adipose tissue, also for therapeutic purposes.
Collapse
Affiliation(s)
- Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Yanling Wang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
24
|
Davis EA, Zhou W, Dailey MJ. Evidence for a direct effect of the autonomic nervous system on intestinal epithelial stem cell proliferation. Physiol Rep 2018; 6:e13745. [PMID: 29932493 PMCID: PMC6014443 DOI: 10.14814/phy2.13745] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 12/16/2022] Open
Abstract
The sympathetic (SNS) and parasympathetic (PNS) branches of the autonomic nervous system have been implicated in the modulation of the renewal of many tissues, including the intestinal epithelium. However, it is not known whether these mechanisms are direct, requiring an interaction between autonomic neurotransmitters and receptors on proliferating epithelial cells. To evaluate the existence of a molecular framework for a direct effect of the SNS or PNS on intestinal epithelial renewal, we measured gene expression for the main autonomic neurotransmitter receptors in this tissue. We separately evaluated intestinal epithelial regions comprised of the stem, progenitor, and mature cells, which allowed us to investigate the distinct contributions of each cell population to this proposed autonomic effect. Notably, we found that the stem cells expressed the receptors for the SNS-associated alpha2A adrenoreceptor and the PNS-associated muscarinic acetylcholine receptors (M1 and M3). In a separate experiment, we found that the application of norepinephrine or acetylcholine decreases the expression of cyclin D1, a gene necessary for cell cycle progression, in intestinal epithelial organoids compared with controls (P < 0.05). Together, these results provide evidence of a direct mechanism for the autonomic nervous system influence on intestinal epithelial stem cell proliferation.
Collapse
Affiliation(s)
- Elizabeth A. Davis
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Weinan Zhou
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Megan J. Dailey
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
25
|
Law J, Chalmers J, Morris DE, Robinson L, Budge H, Symonds ME. The use of infrared thermography in the measurement and characterization of brown adipose tissue activation. Temperature (Austin) 2018; 5:147-161. [PMID: 30393752 DOI: 10.1080/23328940.2017.1397085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
Abstract
Interest in brown adipose tissue has increased in recent years as a potential target for novel obesity, diabetes and metabolic disease treatments. One of the significant limitations to rapid progress has been the difficulty in measuring brown adipose tissue activity, especially in humans. Infrared thermography (IRT) is being increasingly recognized as a valid and complementary method to standard imaging modalities, such as positron emission tomography-computed tomography (PET/CT). In contrast to PET/CT, it is non-invasive, cheap and quick, allowing, for the first time, the possibility of large studies of brown adipose tissue (BAT) on healthy populations and children. Variations in study protocols and analysis methods currently limit direct comparison between studies but IRT following appropriate BAT stimulation consistently shows a change in supraclavicular skin temperature and a close association with results from BAT measurements from other methods.
Collapse
Affiliation(s)
- James Law
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jane Chalmers
- Nottingham Digestive Diseases Centre, University of Nottingham and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham
| | - David E Morris
- Department of Electrical & Electronic Engineering, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Lindsay Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, University of Nottingham and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham
| |
Collapse
|
26
|
Radi ZA, Vogel WM, Bartholomew PM, Koza-Taylor P, Papanikolaou A, Wisialowski T, Nambiar P, Ball DJ. Cellular and functional actions of tofacitinib related to the pathophysiology of hibernoma development. Regul Toxicol Pharmacol 2017; 91:93-102. [PMID: 29074274 DOI: 10.1016/j.yrtph.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis. In the 2-year carcinogenicity study with tofacitinib, increased incidence of hibernoma (a neoplasm of brown adipose tissue [BAT]) was noted in female rats at ≥30 mg/kg/day (≥41x human exposure multiples). Thus, signaling pathways within BAT were investigated by measuring BAT: weight, cell proliferation biomarkers, content of basal and prolactin-induced phosphorylated Signal Transducer and Activator of Transcription (STAT), and uncoupling protein 1 (UCP-1). The relationship between cardiovascular hemodynamics and plasma norepinephrine (NE) levels was also investigated. Tofacitinib administered to female rats at doses of 10, 30, or 75 mg/kg/day for 14 days increased BAT weight at 75 mg/kg/day and cell proliferation at ≥30 mg/kg/day. JAK inhibition, observed as lower pSTAT3 and pSTAT5 in BAT, was noted at ≥10 mg/kg/day, while lower activity of BAT was observed as lower UCP-1 protein at ≥30 mg/kg/day. In cultured brown adipocytes, prolactin-induced increase in pSTAT5 and pSTAT3 were inhibited by tofacitinib in a concentration-dependent manner. Tofacitinib lowered blood pressure, increased heart rate, and resulted in dose-dependent increases in circulating NE. Thus, JAK/STAT inhibition in BAT and sympathetic stimulation are two factors which might contribute to the genesis of hibernomas by tofacitinib in rats.
Collapse
Affiliation(s)
- Zaher A Radi
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Burtt Road, Andover, MA 01810, USA.
| | - W Mark Vogel
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Burtt Road, Andover, MA 01810, USA
| | - Phillip M Bartholomew
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Petra Koza-Taylor
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Alexandros Papanikolaou
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Todd Wisialowski
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Prashant Nambiar
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Burtt Road, Andover, MA 01810, USA
| | - Douglas J Ball
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
27
|
Jiang Y, Berry DC, Graff JM. Distinct cellular and molecular mechanisms for β3 adrenergic receptor-induced beige adipocyte formation. eLife 2017; 6:30329. [PMID: 29019320 PMCID: PMC5667933 DOI: 10.7554/elife.30329] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/05/2017] [Indexed: 12/02/2022] Open
Abstract
Beige/brite adipocytes are induced within white adipose tissues (WAT) and, when activated, consume glucose and fatty acids to produce heat. Classically, two stimuli have been used to trigger a beiging response: cold temperatures and β3-adrenergic receptor (Adrb3) agonists. These two beiging triggers have been used interchangeably but whether these two stimuli may induce beiging differently at cellular and molecular levels remains unclear. Here, we found that cold-induced beige adipocyte formation requires Adrb1, not Adrb3, activation. Adrb1 activation stimulates WAT resident perivascular (Acta2+) cells to form cold-induced beige adipocytes. In contrast, Adrb3 activation stimulates mature white adipocytes to convert into beige adipocytes. Necessity tests, using mature adipocyte-specific Prdm16 deletion strategies, demonstrated that adipocytes are required and are predominant source to generate Adrb3-induced, but not cold-induced, beige adipocytes. Collectively, we identify that cold temperatures and Adrb3 agonists activate distinct cellular populations that express different β-adrenergic receptors to induce beige adipogenesis. Excess accumulation of a type of fat called white fat is associated with obesity and metabolic problems. White fat cells store energy. White fat tissue also contains some beige fat cells, which burn fats and sugars to produce heat. Cold temperatures trigger the production and activity of beige fat cells, which allows the body to stay warm. People with obesity tend to have less beige fat and more white fat. This has led scientists to test whether treatments that increase the number of beige fat cells a person has could reduce fat mass and improve metabolism. To develop treatments that increase beige fat, scientists must first understand where it comes from and how cold and other factors stimulate its growth. Recent studies have shown that smooth muscle cells, which surround blood vessel walls, make cold-induced beige fat cells. A widely used drug that turns on the β3 adrenergic receptor, which is found in the cell membrane, also boosts the creation of beige fat cells. Yet, it was not clear exactly how cold or this drug triggers the production of beige fat. Now, Jiang et al. show that drugs that target β3 adrenergic receptors cause white fat cells in mice to change into beige fat cells. The experiments also showed that cold turns on a different receptor called the β1 adrenergic receptor on smooth muscle cells causing them to make beige fat cells. This shows that there is more than one source for beige fat cells in the body and that different strategies for increasing beige fat cell numbers do not work the same way. More studies are needed to learn whether beige fat cells produced after exposure to cold or drugs behave in the same way and have similar affects on metabolism. This could help scientists determine if one of these strategies could make a better treatment for obesity or other metabolic disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
28
|
de Jong JMA, Wouters RTF, Boulet N, Cannon B, Nedergaard J, Petrovic N. The β 3-adrenergic receptor is dispensable for browning of adipose tissues. Am J Physiol Endocrinol Metab 2017; 312:E508-E518. [PMID: 28223294 DOI: 10.1152/ajpendo.00437.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022]
Abstract
Brown and brite/beige adipocytes are attractive therapeutic targets to treat metabolic diseases. To maximally utilize their functional potential, further understanding is required about their identities and their functional differences. Recent studies with β3-adrenergic receptor knockout mice reported that brite/beige adipocytes, but not classical brown adipocytes, require the β3-adrenergic receptor for cold-induced transcriptional activation of thermogenic genes. We aimed to further characterize this requirement of the β3-adrenergic receptor as a functional distinction between classical brown and brite/beige adipocytes. However, when comparing wild-type and β3-adrenergic receptor knockout mice, we observed no differences in cold-induced thermogenic gene expression (Ucp1, Pgc1a, Dio2, and Cidea) in brown or white (brite/beige) adipose tissues. Irrespective of the duration of the cold exposure or the sex of the mice, we observed no effect of the absence of the β3-adrenergic receptor. Experiments with the β3-adrenergic receptor agonist CL-316,243 verified the functional absence of β3-adrenergic signaling in these knockout mice. The β3-adrenergic receptor knockout model in the present study was maintained on a FVB/N background, whereas earlier reports used C57BL/6 and 129Sv mice. Thus our data imply background-dependent differences in adrenergic signaling mechanisms in response to cold exposure. Nonetheless, the present data indicate that the β3-adrenergic receptor is dispensable for cold-induced transcriptional activation in both classical brown and, as opposed to earlier studies, brite/beige cells.
Collapse
MESH Headings
- Adipogenesis/drug effects
- Adipose Tissue, Beige/cytology
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Cold-Shock Response/drug effects
- Dioxoles/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Intra-Abdominal Fat/cytology
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Male
- Mice
- Mice, Knockout
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-3/chemistry
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Reproducibility of Results
- Signal Transduction/drug effects
- Species Specificity
- Time Factors
Collapse
Affiliation(s)
- Jasper M A de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - René T F Wouters
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nathalie Boulet
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
Fukano K, Okamatsu-Ogura Y, Tsubota A, Nio-Kobayashi J, Kimura K. Cold Exposure Induces Proliferation of Mature Brown Adipocyte in a ß3-Adrenergic Receptor-Mediated Pathway. PLoS One 2016; 11:e0166579. [PMID: 27846311 PMCID: PMC5112994 DOI: 10.1371/journal.pone.0166579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022] Open
Abstract
Hyperplasia of brown adipose tissue (BAT) is a fundamental mechanism for adaptation to survive in the cold environment in rodents. To determine which cell types comprising BAT contribute to tissue hyperplasia, immunohistochemical analysis using a proliferative marker Ki67 was performed on the BAT from 6-week-old C57BL/6J mice housed at 23°C (control) or 10°C (cold) for 5 days. Interestingly, in the control group, the cell proliferative marker Ki67 was detected in the nuclei of uncoupling protein 1-positive mature brown adipocytes (7.2% ± 0.4% of brown adipocyte), as well as in the non-adipocyte stromal-vascular (SV) cells (19.6% ± 2.3% of SV cells), which include preadiopocytes. The percentage of Ki67-positive brown adipocytes increased to 25.6% ± 1.8% at Day 1 after cold exposure and was significantly higher than the non-cold acclimated control until Day 5 (21.8% ± 1.7%). On the other hand, the percentage of Ki67-positive SV cells gradually increased by a cold exposure and peaked to 42.1% ± 8.3% at Day 5. Injection of a ß3-adrenergic receptor (ß3-AR) agonist for continuous 5 days increased the number of Ki67-positive brown adipocytes even at Day 1 but not that of SV cells. In addition, the ß3-AR antagonist, but not ß1-AR antagonist, attenuated the cold exposure-induced increase in the number of Ki67-positive brown adipocytes. These results suggest that mature brown adipocytes proliferate immediately after cold exposure in a ß3-AR-mediated pathway. Thus, proliferation of mature brown adipocytes as well as preadipocytes in SV cells may contribute to cold exposure-induced BAT hyperplasia.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/physiology
- Adrenergic beta-3 Receptor Agonists/administration & dosage
- Animals
- Cell Proliferation/genetics
- Cold Temperature
- Gene Expression Regulation
- Hyperplasia/genetics
- Ki-67 Antigen/biosynthesis
- Ki-67 Antigen/genetics
- Mice
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-3/biosynthesis
- Receptors, Adrenergic, beta-3/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Keigo Fukano
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
- * E-mail:
| | - Ayumi Tsubota
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo 065–0013, Japan
| | - Kazuhiro Kimura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| |
Collapse
|
30
|
Abstract
Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli - notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells, and have revealed unanticipated cell-lineage relationships between vascular smooth muscle cells and beige adipocytes, and between skeletal muscle cells and brown fat. In addition, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells, have crucial roles in regulating the differentiation and function of brown and beige fat.
Collapse
Affiliation(s)
- Wenshan Wang
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
31
|
Bargut TCL, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 2016; 48:452-60. [PMID: 27561621 DOI: 10.1016/j.tice.2016.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 01/12/2023]
Abstract
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, State University of Rio de Janeiro, Brazil
| | | |
Collapse
|
32
|
Forest C, Joffin N, Jaubert AM, Noirez P. What induces watts in WAT? Adipocyte 2016; 5:136-52. [PMID: 27386158 PMCID: PMC4916896 DOI: 10.1080/21623945.2016.1187345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells ("beige" or "brite") in WAT, a process named "browning." Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.
Collapse
Affiliation(s)
- Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
- Faculté des Sciences et Techniques des Activités Physiques et Sportives, Université Paris Descartes, Paris, France
| |
Collapse
|
33
|
Ramseyer VD, Granneman JG. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte 2016; 5:119-29. [PMID: 27386156 DOI: 10.1080/21623945.2016.1145846] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.
Collapse
Affiliation(s)
- Vanesa D. Ramseyer
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James G. Granneman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
- John Dingell Vet Administration Medical Center, Detroit, MI, USA
| |
Collapse
|
34
|
Critical roles of nardilysin in the maintenance of body temperature homoeostasis. Nat Commun 2015; 5:3224. [PMID: 24492630 PMCID: PMC3926010 DOI: 10.1038/ncomms4224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/09/2014] [Indexed: 01/15/2023] Open
Abstract
Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. The precise regulation of mammalian body temperature is important for survival. Here the authors show that the peptidase nardilysin represses the transcription factor PGC-1α, and identify nardilysin as a regulator of basal body temperature, cold-induced thermogenesis and body insulation.
Collapse
|
35
|
Sun F, Yang XJ, Lv HY, Tang YB, An SM, Ding XP, Li WB, Teng L, Shen Y, Chen HZ, Zhu L. β2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. J Cell Physiol 2015; 230:2640-6. [PMID: 25639860 DOI: 10.1002/jcp.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/16/2015] [Indexed: 01/19/2023]
Abstract
Adrenoreceptors (ARs) are widely expressed and play essential roles throughout the body. Different subtype adrenoceptors elicit distinct effects on cell proliferation, but knowledge remains scarce about the subtype-specific effects of β2-ARs on the proliferation of embryonic pluripotent stem (PS) cells that represent different characteristics of proliferation and cell cycle regulation with the somatic cells. Herein, we identified a β2-AR/AC/cAMP/PKA signaling pathway in embryonic PS cells and found that the pathway stimulation inhibited proliferation and cell cycle progression involving modulating the stem cell growth and cycle regulatory machinery. Embryonic stem (ES) cells and embryonal carcinoma stem (ECS) cells expressed functional β-ARs coupled to AC/cAMP/PKA signaling. Agonistic activation of β-ARs led to embryonic PS cell cycle arrest and proliferation inhibition. Pharmacological and genetic analyzes using receptor subtype blocking and RNA interference approaches revealed that this effect selectively depended on β2-AR signaling involving the regulation of AKT, ERK, Rb, and Cyclin E molecules. Better understanding of the effects of β2-ARs on embryonic PS cell proliferation and cycle progression may provide new insights into stem cell biology and afford the opportunity for exploiting more selective ligands targeting the receptor subtype for the modulation of stem cells.
Collapse
Affiliation(s)
- Fan Sun
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Jie Yang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Yu Lv
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Bin Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Lin Teng
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| |
Collapse
|
36
|
Abstract
Since brown adipose tissue (BAT) dissipates energy through UCP1, BAT has garnered attention as a therapeutic intervention for obesity and metabolic diseases including type 2 diabetes. As we better understand the physiological roles of classical brown and beige adipocytes, it is becoming clear that BAT is not simply a heat-generating organ. Increased beige fat mass in response to a variety of external/internal cues is associated with significant improvements in glucose and lipid homeostasis that may not be entirely mediated by UCP1. We aim to discuss recent insights regarding the developmental lineages, molecular regulation, and new functions for brown and beige adipocytes.
Collapse
Affiliation(s)
- Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA.
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Blondin DP, Labbé SM, Turcotte EE, Haman F, Richard D, Carpentier AC. A critical appraisal of brown adipose tissue metabolism in humans. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Jeanson Y, Carrière A, Casteilla L. A New Role for Browning as a Redox and Stress Adaptive Mechanism? Front Endocrinol (Lausanne) 2015; 6:158. [PMID: 26500607 PMCID: PMC4598589 DOI: 10.3389/fendo.2015.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 01/27/2023] Open
Abstract
The worldwide epidemic of obesity and metabolic disorders is focusing the attention of the scientific community on white adipose tissue (WAT) and its biology. This tissue is characterized not only by its capability to change in size and shape but also by its heterogeneity and versatility. WAT can be converted into brown fat-like tissue according to different physiological and pathophysiological situations. The expression of uncoupling protein-1 in brown-like adipocytes changes their function from energy storage to energy dissipation. This plasticity, named browning, was recently rediscovered and convergent recent accounts, including in humans, have revived the idea of using these oxidative cells to fight against metabolic diseases. Furthermore, recent reports suggest that, beside the increased energy dissipation and thermogenesis that may have adverse effects in situations such as cancer-associated cachexia and massive burns, browning could be also considered as an adaptive stress response to high redox pressure and to major stress that could help to maintain tissue homeostasis and integrity. The aim of this review is to summarize the current knowledge concerning brown adipocytes and the browning process and also to explore unexpected putative role(s) for these cells. While it is important to find new browning inducers to limit energy stores and metabolic diseases, it also appears crucial to develop new browning inhibitors to limit adverse energy dissipation in wasting-associated syndromes.
Collapse
Affiliation(s)
- Yannick Jeanson
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- UMR STROMALab, CNRS 5273, INSERM U1031, Université Toulouse III – Paul Sabatier, Toulouse, France
- *Correspondence: Louis Casteilla,
| |
Collapse
|
39
|
Abstract
The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT and the presence of BAT in humans and its relevance.
Collapse
Affiliation(s)
- Maria-Jesus Obregon
- Department of Molecular Physiopathology, Instituto de Investigaciones Biomedicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid Madrid, Spain
| |
Collapse
|
40
|
Lee YH, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 2014; 29:286-99. [PMID: 25392270 DOI: 10.1096/fj.14-263038] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.
Collapse
Affiliation(s)
- Yun-Hee Lee
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anelia P Petkova
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anish A Konkar
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
41
|
Protein kinase a-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI3K and mTOR. Exp Cell Res 2014; 328:143-155. [PMID: 25102377 DOI: 10.1016/j.yexcr.2014.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 02/03/2023]
Abstract
The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI3K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias.
Collapse
|
42
|
Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 2014; 170:R159-71. [PMID: 24468979 DOI: 10.1530/eje-13-0945] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammals, adipocytes are lipid-laden cells making up the parenchyma of the multi-depot adipose organ. White adipocytes store lipids for release as free fatty acids during fasting periods; brown adipocytes burn glucose and lipids to maintain thermal homeostasis. A third type of adipocyte, the pink adipocyte, has recently been characterised in mouse subcutaneous fat depots during pregnancy and lactation. Pink adipocytes are mammary gland alveolar epithelial cells whose role is to produce and secrete milk. Emerging evidence suggests that they derive from the transdifferentiation of subcutaneous white adipocytes. The functional response of the adipose organ to a range of metabolic and environmental challenges highlights its extraordinary plasticity. Cold exposure induces an increase in the 'brown' component of the organ to meet the increased thermal demand; in states of positive energy balance, the 'white' component expands to store excess nutrients; finally, the 'pink' component develops in subcutaneous depots during pregnancy to ensure litter feeding. At the cell level, plasticity is provided not only by stem cell proliferation and differentiation but also, distinctively, by direct transdifferentiation of fully differentiated adipocytes by the stimuli that induce genetic expression reprogramming and through it a change in phenotype and, consequently function. A greater understanding of adipocyte transdifferentiation mechanisms would have the potential to shed light on their biology as well as inspire novel therapeutic strategies against metabolic syndrome (browning) and breast cancer (pinking).
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Transdifferentiation
- Female
- Humans
- Lactation
- Lipid Metabolism
- Male
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Obesity/metabolism
- Obesity/pathology
- Organ Specificity
- Pigmentation
- Pregnancy
- Sex Characteristics
- Subcutaneous Fat, Abdominal/cytology
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
Collapse
Affiliation(s)
- Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy and
| | | | | | | | | |
Collapse
|
43
|
Abstract
Brown adipose tissue (BAT) has emerged as a therapeutic target for the treatment of obesity. Activation of BAT in human beings could also have beneficial metabolic effects that might resolve common complications of obesity, such as type 2 diabetes, by ameliorating the glucolipotoxic pathological changes that underlie the development of peripheral insulin resistance and impaired insulin secretion due to pancreatic β-cell failure. Evidence from rodent models suggests that BAT activation improves glucose homoeostasis through several mechanisms, which could point to new strategies to optimise stimulation of BAT in human beings and reverse insulin resistance in peripheral tissues.
Collapse
Affiliation(s)
- Vivian Peirce
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol 2013; 76:225-49. [PMID: 24188710 DOI: 10.1146/annurev-physiol-021113-170252] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brown adipose tissue (BAT) is specialized to dissipate chemical energy in the form of heat as a defense against cold and excessive feeding. Interest in the field of BAT biology has exploded in the past few years because of the therapeutic potential of BAT to counteract obesity and obesity-related diseases, including insulin resistance. Much progress has been made, particularly in the areas of BAT physiology in adult humans, developmental lineages of brown adipose cell fate, and hormonal control of BAT thermogenesis. As we enter into a new era of brown fat biology, the next challenge will be to develop strategies for activating BAT thermogenesis in adult humans to increase whole-body energy expenditure. This article reviews the recent major advances in this field and discusses emerging questions.
Collapse
Affiliation(s)
- Shingo Kajimura
- Diabetes Center, Department of Cell and Tissue Biology, University of California, San Francisco, California 94143-0669;
| | | |
Collapse
|
45
|
Radi Z, Bartholomew P, Elwell M, Vogel WM. Comparative pathophysiology, toxicology, and human cancer risk assessment of pharmaceutical-induced hibernoma. Toxicol Appl Pharmacol 2013; 273:456-63. [PMID: 24141031 DOI: 10.1016/j.taap.2013.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 01/26/2023]
Abstract
In humans, hibernoma is a very rare, benign neoplasm of brown adipose tissue (BAT) that typically occurs at subcutaneous locations and is successfully treated by surgical excision. No single cause has been accepted to explain these very rare human tumors. In contrast, spontaneous hibernoma in rats is rare, often malignant, usually occurs in the thoracic or abdominal cavity, and metastases are common. In recent years, there has been an increased incidence of spontaneous hibernomas in rat carcinogenicity studies, but overall the occurrence remains relatively low and highly variable across studies. There have only been four reported examples of pharmaceutical-induced hibernoma in rat carcinogenicity studies. These include phentolamine, an alpha-adrenergic antagonist; varenicline, a nicotine partial agonist; tofacitinib, a Janus kinase (JAK) inhibitor; and hydromorphone, an opiod analgesic. Potential non-genotoxic mechanisms that may contribute to the pathogenesis of BAT activation/proliferation and/or subsequent hibernoma development in rats include: (1) physiological stimuli, (2) sympathetic stimulation, (3) peroxisome proliferator-activated receptor (PPAR) agonism, and/or (4) interference or inhibition of JAK/Signal Transducer and Activator of Transcription (JAK/STAT) signaling. The evaluation of an apparent increase of hibernoma in rats from 2-year carcinogenicity studies of novel pharmaceutical therapeutics and its relevance to human safety risk assessment is complex. One should consider: the genotoxicity of the test article, dose/exposure and safety margins, and pathophysiologic and morphologic differences and similarities of hibernoma between rats and humans. Hibernomas observed to date in carcinogenicity studies of pharmaceutical agents do not appear to be relevant for human risk at therapeutic dosages.
Collapse
Affiliation(s)
- Zaher Radi
- Pfizer Worldwide Research and Development, Drug Safety R&D, 1 Burtt Rd., Andover, MA 01810, USA.
| | | | | | | |
Collapse
|
46
|
In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation. Exp Cell Res 2013; 319:2718-27. [DOI: 10.1016/j.yexcr.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/15/2022]
|
47
|
Abstract
Classic brown fat and inducible beige fat both dissipate chemical energy in the form of heat through the actions of mitochondrial uncoupling protein 1. This nonshivering thermogenesis is crucial for mammals as a defense against cold and obesity/diabetes. Cold is known to act indirectly through the sympathetic nervous systems and β-adrenergic signaling, but here we report that cool temperature (27-33 °C) can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner. White and beige fat cells respond to cool temperatures, but classic brown fat cells do not. Importantly, this activation in isolated cells is independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors. These findings provide an unusual insight into the role of adipose tissues in thermoregulation, as well as an alternative way to target nonshivering thermogenesis for treatment of obesity and metabolic diseases.
Collapse
|
48
|
Jonckheere AI, Huigsloot M, Lammens M, Jansen J, van den Heuvel LP, Spiekerkoetter U, von Kleist-Retzow JC, Forkink M, Koopman WJ, Szklarczyk R, Huynen MA, Fransen JA, Smeitink JA, Rodenburg RJ. Restoration of complex V deficiency caused by a novel deletion in the human TMEM70 gene normalizes mitochondrial morphology. Mitochondrion 2011; 11:954-63. [DOI: 10.1016/j.mito.2011.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
|
49
|
Ruan X, Li Z, Zhang Y, Yang L, Pan Y, Wang Z, Feng GS, Chen Y. Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and up-regulation of UCP1 in brown fat. J Cell Mol Med 2011; 15:763-72. [PMID: 20193037 PMCID: PMC3922665 DOI: 10.1111/j.1582-4934.2010.01045.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein A-I (ApoA-I) is the most abundant protein constituent of high-density lipoprotein (HDL). Reduced plasma HDL and ApoA-I levels have been found to be associated with obesity and metabolic syndrome in human beings. However, whether or not ApoA-I has a direct effect on obesity is largely unknown. Here we analysed the anti-obesity effect of ApoA-I using two mouse models, a transgenic mouse with overexpression of ApoA-I and the mice administered with an ApoA-I mimetic peptide D-4F. The mice were induced to develop obesity by feeding with high fat diet. Both ApoA-I overexpression and D-4F treatment could significantly reduce white fat mass and slightly improve insulin sensitivity in the mice. Metabolic analyses revealed that ApoA-I overexpression and D-4F treatment enhanced energy expenditure in the mice. The mRNA level of uncoupling protein (UCP)1 in brown fat tissue was elevated by ApoA-I transgenic mice. ApoA-I and D-4F treatment was able to increase UCP1 mRNA and protein levels as well as to stimulate AMP-activated protein kinase (AMPK) phosphorylation in brown adipocytes in culture. Taken together, our results reveal that ApoA-I has an anti-obesity effect in the mouse and such effect is associated with increases in energy expenditure and UCP1 expression in the brown fat tissue.
Collapse
Affiliation(s)
- Xiangbo Ruan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cannon B, Nedergaard J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond) 2011; 34 Suppl 1:S7-16. [PMID: 20935668 DOI: 10.1038/ijo.2010.177] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Only with the development of the uncoupling protein 1 (UCP1)-ablated mouse has it become possible to strictly delineate the physiological significance of the thermogenic capacity of brown adipose tissue. Considering the presence of active brown adipose tissue in adult humans, these insights may have direct human implications. In addition to classical nonshivering thermogenesis, all adaptive adrenergic thermogeneses, including diet-induced thermogenesis, is fully dependent on brown adipocyte activity. Any weight-reducing effect of β(3)-adrenergic agonists is fully dependent on UCP1 activity, as is any weight-reducing effect of leptin (in excess of its effect on reduction of food intake). Consequently, in the absence of the thermogenic activity of brown adipose tissue, obesity develops spontaneously. The ability of brown adipose tissue to contribute to glucose disposal is also mainly related to thermogenic activity. However, basal metabolic rate, cold-induced thermogenesis, acute cold tolerance, fevers, nonadaptive adrenergic thermogenesis and processes such as angiogenesis in brown adipose tissue itself are not dependent on UCP1 activity. Whereas it is likely that these conclusions are also qualitatively valid for adult humans, the quantitative significance of brown adipose tissue for human metabolism--and the metabolic consequences for a single individual possessing more or less brown adipose tissue--awaits clarification.
Collapse
Affiliation(s)
- B Cannon
- Department of Physiology, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|