1
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
2
|
Zhang Y, Tang L, Liu H, Cheng Y. The Multiple Functions of HB-EGF in Female Reproduction and Related Cancer: Molecular Mechanisms and Targeting Strategies. Reprod Sci 2024; 31:2588-2603. [PMID: 38424408 DOI: 10.1007/s43032-024-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Heparin-binding growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) ligand family which has a crucial role in women's health. However, there is a lack of comprehensive review to summarize the significance of HB-EGF. Therefore, this work first described the expression patterns of HB-EGF in the endometrium and ovary of different species and gestational time. Then, the focus was on exploring how it promotes the successful implantation and regulates the process of decidualization and the function of ovarian granulosa cells as an intermediate molecule. Otherwise, we also focused on the clinical and prognostic significance of HB-EGF in female-related cancers (including ovarian cancer, cervical cancer, and endometrial cancer) and breast cancer. Lastly, the article also summarizes the current drugs targeting HB-EGF in the treatment of ovarian cancer and breast cancer. Overall, these studies found that the expression of HB-EGF in the endometrium is spatiotemporal and species-specific. And it mediates the dialogue between the blastocyst and endometrium, promoting synchronous development of the blastocyst and endometrium as an intermediate molecule. HB-EGF may serve as a potentially valuable prognostic clinical indicator in tumors. And the specific inhibitor of HB-EGF (CRM197) has a certain anti-tumor ability, which can exert synergistic anti-tumor effects with conventional chemotherapy drugs. However, it also suggests that more research is needed in the future to elucidate its specific mechanisms and to accommodate clinical studies with a larger sample size to clarify its clinical value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
3
|
Tokatlidis K, Haider A. Analysis of targeting signals for mitochondrial intermembrane space import. Methods Enzymol 2024; 706:243-262. [PMID: 39455218 DOI: 10.1016/bs.mie.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The mitochondrial intermembrane space (IMS) is the smallest sub-mitochondrial compartment, containing only 5%-10% of mitochondrial proteins. Despite its size, it exhibits the most diverse array of protein import mechanisms. These are underpinned by several different types of targeting signals that are quite distinct from targeting signals for other mitochondrial sub-compartments. In this chapter we outlined our current understanding of some of the main IMS import pathways, the primary oxidative protein folding targeting signal, and explore the remarkable variety of alternative import methods. Unlike proteins destined for the matrix or inner membrane (IM), IMS proteins need only traverse the outer mitochondrial membrane. This process doesn't require energy from ATP hydrolysis in the matrix or the IM electrochemical potential. We also examine unconventional IMS import pathways that remain poorly understood, often guided by ill-defined or unknown targeting peptides. Many IMS proteins are implicated in human diseases, making it crucial to comprehend how they reach their functional location within the IMS. The chapter concludes by discussing current insights into how understanding IMS targeting pathways can contribute to improved understanding of a wide range of human disorders.
Collapse
Affiliation(s)
- Kostas Tokatlidis
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Amiyo Haider
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
4
|
Hanada K. Metabolic channeling of lipids via the contact zones between different organelles. Bioessays 2024; 46:e2400045. [PMID: 38932642 DOI: 10.1002/bies.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Various lipid transfer proteins (LTPs) mediate the inter-organelle transport of lipids. By working at membrane contact zones between donor and acceptor organelles, LTPs achieve rapid and accurate inter-organelle transfer of lipids. This article will describe the emerging paradigm that the action of LTPs at organelle contact zones generates metabolic channeling events in lipid metabolism, mainly referring to how ceramide synthesized in the endoplasmic reticulum is preferentially metabolized to sphingomyelin in the distal Golgi region, how cholesterol and phospholipids receive specific metabolic reactions in mitochondria, and how the hijacking of host LTPs by intracellular pathogens may generate new channeling-like events. In addition, the article will discuss how the function of LTPs is regulated, exemplified by a few representative LTP systems, and will briefly touch on experiments that will be necessary to establish the paradigm that LTP-mediated inter-organelle transport of lipids is one of the mechanisms of compartmentalization-based metabolic channeling events.
Collapse
Affiliation(s)
- Kentaro Hanada
- Center for Quality Management Systems, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Su Y, Wu Y, Ye M, Zhao C, Li L, Cai J, Chakraborty T, Yang L, Wang D, Zhou L. Star1 gene mutation reveals the essentiality of 11-ketotestosterone and glucocorticoids for male fertility in Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110985. [PMID: 38729293 DOI: 10.1016/j.cbpb.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Steroidogenic acute regulatory protein (Star) plays an essential role in the biosynthesis of corticosteroids and sex steroids by mediating the transport of cholesterol from the outer to the inner membrane of mitochondria. Two duplicated Star genes, namely star1 and star2, have been identified in non-mammalian vertebrates. To investigate the roles of star genes in fish steriodogenesis, we generated two mutation lines of star1-/- and star1-/-/star2-/- in Nile tilapia (Oreochromis niloticus). Previous studies revealed that deficiency of star2 gene caused delayed spermatogenesis, sperm apoptosis and sterility in male tilapia. Our present data revealed that mutation of star genes impaired male fertility. Disordered seminiferous lobules and spermatic duct obstruction were found in the testis of both types of mutants. Moreover, significant decline in semen volume, sperm abnormality and impaired fertility were also detected in star1-/- and star1-/-/star2-/- males. In star1-/- male fish, lipid accumulation, up-regulation of steroidogenic enzymes, and significant decline of androgens were found. Additionally, hyperplasic interrenal cells, elevated steroidogenic gene expression level and decline of serum glucocorticoids were detected in star1 mutants. Intriguingly, either 11-KT or cortisol supplementation successfully rescued the impaired fertility of the star1-/- mutants. Taken together, these results further indicate that Star1 might play critical roles in the production of both 11-KT and glucocorticoids, which are indispensable for the maintenance of male fertility in fish.
Collapse
Affiliation(s)
- Yun Su
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | | | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China.
| |
Collapse
|
6
|
Bose HS. Dry molten globule conformational state of CYP11A1 (SCC) regulates the first step of steroidogenesis in the mitochondrial matrix. iScience 2024; 27:110039. [PMID: 38868187 PMCID: PMC11167429 DOI: 10.1016/j.isci.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple metabolic events occur in mitochondria. Mitochondrial protein translocation from the cytoplasm across compartments depends on the amino acid sequence within the precursor. At the mitochondria associated-ER membrane, misfolding of a mitochondrial targeted protein prior to import ablates metabolism. CYP11A1, cytochrome P450 cholesterol side chain cleavage enzyme (SCC), is imported from the cytoplasm to mitochondrial matrix catalyzing cholesterol to pregnenolone, an essential step for metabolic processes and mammalian survival. Multiple steps regulate the availability of an actively folded SCC; however, the mechanism is unknown. We identified that a dry molten globule state of SCC exists in the matrix by capturing intermediate protein folding steps dictated by its C-terminus. The intermediate dry molten globule state in the mitochondrial matrix of living cells is stable with a limited network of interaction and is inactive. The dry molten globule is activated with hydrogen ions availability, triggering cleavage of cholesterol sidechain, and initiating steroidogenesis.
Collapse
Affiliation(s)
- Himangshu S. Bose
- Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA 31404, USA
| |
Collapse
|
7
|
Liu B, Fu B, Zhou S, Wang H, Bi B, Guo M, Cheng JC, Fang L. Bone morphogenetic protein-9 downregulates StAR expression by inducing snail expression via SMAD1/5/8 signaling in human granulosa-lutein cells. Mol Cell Endocrinol 2024; 582:112126. [PMID: 38109991 DOI: 10.1016/j.mce.2023.112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Ovarian steroidogenesis mediated by granulosa cells is pivotal in maintaining normal female reproductive function. The steroidogenic acute regulatory protein (StAR) regulates the rate-limiting step in steroidogenesis. Bone morphogenetic protein-9 (BMP-9), also known as growth differentiation factor-2 (GDF-2), is a member of the transforming growth factor-beta (TGF-β) superfamily. BMP-9 induces epithelial-mesenchymal transition (EMT) that contributes to cancer progression. However, the function of BMP-9 in the female reproductive system remains largely unknown. It has been recently shown that BMP-9 is expressed in human follicular fluid and can downregulate StAR expression in human ovarian granulosa cells. However, the underlying molecular mechanisms warrant investigation. Our results show that treatment of primary granulosa-lutein (hGL) cells with BMP-9 downregulates StAR expression. In addition, two EMT-related transcription factors, Snail and Slug, are upregulated by the treatment of BMP-9. Using pharmacological inhibitors and a siRNA-mediated knockdown approach, we show that BMP-9 upregulates Snail and Slug expression by activating SMAD1/5/8 signaling. We also examine the effects of BMP-9 on SMAD-independent signaling pathways, including ERK1/2, p38, JNK, AKT, and CREB. However, none of them is affected by the BMP-9. Moreover, we use gain- and loss-of-function approaches to reveal that only Snail, not Slug, is required for the BMP-9-induced downregulation of StAR expression in hGL cells. This study increases the understanding of the physiology function of BMP-9 in hGL cells and provides important insights into the regulation of StAR expression.
Collapse
Affiliation(s)
- Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Beibei Bi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Manman Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Zhang D, Hu J, Li H. Perfluorooctanoic acid inhibits androgen biosynthesis in rat immature Leydig cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1700-1714. [PMID: 38050817 DOI: 10.1002/tox.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a commonly used short-chain synthetic perfluoroalkyl agent. Immature Leydig cells (ILCs) are localized in the testis and responsible for androgen biosynthesis and metabolism. Although PFOA shows toxicity in the reproductive system, it is not clear if it disrupts the function of ILCs. In the present study, primary ILCs were isolated from 35-day-old rats and exposed to a range of PFOA concentrations (0, 0.01, 0.1, or 1 μM). It was determined that 0.1 or 1 μM PFOA reduced total androgen biosynthesis in ILCs. Specifically, 22R-hydroxycholesterol (22R), and pregnenolone (P5) mediated androgen biosynthesis were reduced by 0.1 μM PFOA. PFOA also selectively downregulated mRNA and protein expressions of steroidogenic enzymes including LHCGR, CYP11A1, 3β-HSD1, and NR5A1 at 0.01, 0.1, or 1 μM. Further analysis revealed that 0.1 μM PFOA inhibited CYP11A1 and 3β-HSD1 enzyme activities. However, PFOA did not significantly affect androgen metabolism and turnover under any of the conditions tested. And PFOA gavaging to 35-day-old rats at 5 or 10 mg/kg for 7 or 14 days also reduced serum androgen levels secreted by ILCs. Moreover, PFOA gavaging also downregulated the mRNA and protein expression levels of LHCGR, CYP11A1, 3β-HSD1, and NR5A1 in vivo. Taken together, these findings suggest that PFOA inhibits androgen biosynthesis in ILCs by selectively targeting key enzymes in the synthesis pathway.
Collapse
Affiliation(s)
- Dongxu Zhang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiasheng Hu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Heming Li
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Wijesena HR, Keel BN, Nonneman DJ, Cushman RA, Lents CA. Clustering of multi-tissue transcriptomes in gilts with normal cyclicity or delayed puberty reveals genes related to pubertal development†. Biol Reprod 2024; 110:261-274. [PMID: 37870496 DOI: 10.1093/biolre/ioad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
In gilts, puberty is marked by standing estrus in the presence of a boar. Delayed puberty (DP; failure to display pubertal estrus) is a major reason for gilt removal. To investigate the physiological determinants underlying DP in gilts, transcriptomic data from tissues relevant to estrus and puberty, such as mediobasal hypothalamus, anterior pituitary gland, ovarian cortex, olfactory bulb, amygdala, and hippocampus, were obtained from age-matched DP (n = 8) and cyclic control gilts at follicular phase (n = 8) and luteal phase (n = 8) of the estrous cycle. A gene expression module analysis via three-way gene × individual × tissue clustering using tensor decomposition identified pituitary and ovary gene modules contributing to regulation of pubertal development. Analysis of gene expression in the hypothalamic-pituitary-ovary axis identified reduced expression of hypothalamic genes critical for stimulating gonadotropin secretion (KISS1 and TAC3) and reduced expression of LHB in the anterior pituitary of DP gilts compared with their cyclic counterparts. Consequently, luteinizing hormone-induced genes in the ovary important for folliculogenesis (OXTR, RUNX2, and PTX3) were less expressed in DP gilts. Other intrafollicular genes (AHR, PTGS2, PTGFR, and IGFBP7) and genes in the steroidogenesis pathways (STAR and CYP11A1) necessary to complete the ovulatory cascade were also less expressed in DP gilts. This is the first clustering of multi-tissue expression data from DP and cyclic gilts to identify genes differentially expressed in gilts of similar ages but at different levels of sexual development. A critical lack of gonadotropin support and reduced ovarian responsiveness underlie DP in gilts.
Collapse
Affiliation(s)
| | - Brittney N Keel
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| | - Dan J Nonneman
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| | | | - Clay A Lents
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
10
|
Rawan AF, Langar H, Munetomo M, Yamamoto Y, Kawano K, Kimura K. Effects of insulin-like growth factor-1 on the mRNA expression of estradiol receptors, steroidogenic enzymes, and steroid production in bovine follicles. J Reprod Dev 2023; 69:337-346. [PMID: 37940556 PMCID: PMC10721850 DOI: 10.1262/jrd.2023-047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17β (E2) assumes a central role in follicular development and selection by activating estrogen receptors β (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.
Collapse
Affiliation(s)
- Ahmad Farid Rawan
- Laboratory of Reproductive Physiology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Pre-Clinic Department, Veterinary Science Faculty, Nangarhar University, 2603, Afghanistan
| | - Hikmatullah Langar
- Laboratory of Reproductive Physiology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Maho Munetomo
- Laboratory of Reproductive Physiology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive Physiology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| | - Kohei Kawano
- Laboratory of Reproductive Physiology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Chen Y, Liu Y, Wang Y, Zhang Y, Xie W, Zhang H, Weng Q, Xu M. Expression of cholesterol synthesis and steroidogenic markers in females of the Chinese brown frog ( Rana dybowskii) during prespawning and prehibernation. Am J Physiol Regul Integr Comp Physiol 2023; 325:R750-R758. [PMID: 37867473 DOI: 10.1152/ajpregu.00296.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 10/24/2023]
Abstract
The oviduct of the Chinese brown frog (Rana dybowskii) expands in prehibernation rather than in prespawning, which is one of the physiological phenomena that occur in the preparation for hibernation. Steroid hormones are known to regulate oviductal development. Cholesterol synthesis and steroidogenesis may play an important role in the expansion of the oviduct before hibernation. In this study, we investigated the expression patterns of the markers that are involved in the de novo steroid synthesis pathway in the oviduct of R. dybowskii during prespawning and prehibernation. According to histological analysis, the oviduct of R. dybowskii contains epithelial cells, glandular cells, and tubule lumens. During prehibernation, oviductal pipe diameter and weight were significantly larger than during prespawning. 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR), low-density lipoprotein receptor (LDLR), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) were detected in epithelial cells in prehibernation and glandular cells during prespawning. HMGCR, LDLR, StAR, and P450scc protein expression levels were higher in prehibernation than during prespawning, but the SF-1 protein expression level did not significantly differ. HMGCR, LDLR, StAR, P450scc (CYP11A1), and SF-1 (NR5A1) mRNA expression levels were significantly higher in prehibernation compared with prespawning. The transcriptome results showed that the steroid synthesis pathway was highly expressed during prehibernation. Existing results indicate that the oviduct is able to synthesize steroid hormones using cholesterol, and that steroid hormones may affect the oviductal functions of R. dybowskii.
Collapse
Affiliation(s)
- Yuan Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yankun Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yue Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Meiyu Xu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Paradiso E, Lazzaretti C, Sperduti S, Melli B, Trenti T, Tagliavini S, Roli L, D'Achille F, Beltrán-Frutos E, Simoni M, Casarini L. Protein kinase B (Akt) blockade inhibits LH/hCG-mediated 17,20-lyase, but not 17α-hydroxylase activity of Cyp17a1 in mouse Leydig cell steroidogenesis. Cell Signal 2023; 111:110872. [PMID: 37640196 DOI: 10.1016/j.cellsig.2023.110872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Androgens are produced by adrenal and gonadal cells thanks to the action of specific enzymes. We investigated the role of protein kinase B (Akt) in the modulation of Δ4 steroidogenic enzymes' activity, in the mouse Leydig tumor cell line mLTC1. Cells were treated for 0-24 h with the 3 × 50% effective concentration of human luteinizing hormone (LH) and choriogonadotropin (hCG), in the presence and in the absence of the specific Akt inhibitor 3CAI. Cell signaling analysis was performed by bioluminescence resonance energy transfer (BRET) and Western blotting, while the expression of key target genes was investigated by real-time PCR. The synthesis of progesterone, 17α-hydroxy (OH)-progesterone and testosterone was measured by immunoassay. Control experiments for cell viability and caspase 3 activation were performed as well. We found that both hormones activated cAMP and downstream effectors, such as extracellularly-regulated kinase 1/2 (Erk1/2) and cAMP response element-binding protein (Creb), as well as Akt, and the transcription of Stard1, Hsd3b1, Cyp17a1 and Hsd17b3 genes, boosting the Δ4 steroidogenic pathway. Interestingly, Akt blockade decreased selectively Cyp17a1 expression levels, inhibiting its 17,20-lyase, but not the 17-hydroxylase activity. This effect is consistent with lower Cyp17a1 affinity to 17α-OH-progesterone than progesterone. As a result, cell treatment with 3CAI resulted in 17α-OH-progesterone accumulation at 16-24 h and decreased testosterone levels after 24 h. In conclusion, in the mouse Leydig cell line mLTC1, we found substantial Akt dependence of the 17,20-lyase activity and testosterone synthesis. Our results indicate that different intracellular pathways modulate selectively the dual activity of Cyp17a1.
Collapse
Affiliation(s)
- Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy.
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Beatrice Melli
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Fabio D'Achille
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30120 Murcia, Spain
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
13
|
Wang W, Wu B, Liu Z, Sun X, Zhou L, Xu W, Yu T, Zheng Y, Zhang S. Comprehensive analysis on the regulation of differentially expressed of mRNA and ncRNA in different ovarian stages of ark shell Scapharca broughtonii. BMC Genomics 2023; 24:563. [PMID: 37736709 PMCID: PMC10515027 DOI: 10.1186/s12864-023-09648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Ovarian development is an important prerequisite and basis for animal reproduction. In many vertebrates, it is regulated by multiple genes and influenced by sex steroid hormones and environmental factors. However, relative information is limited in shellfish. To explore the biological functions and molecular mechanisms of mRNA and non-coding RNA that regulate ovarian development in Scapharca broughtonii, we performed whole transcriptome sequencing analysis on ovaries at three developmental stages. Furthermore, the biological processes involved in the differential expression of mRNA and ncRNA were analyzed. RESULTS A total of 11,342 mRNAs, 6897 lncRNAs, 135 circRNAs, and 275 miRNAs were differentially expressed. By mapping the differentially expressed RNAs from the three developmental stages of Venn diagram, multiple groups of shared mRNAs and lncRNAs were found to be associated with ovarian development, with some mRNA and ncRNA functions associated with steroid hormone. In addition, we constructed and visualized the lncRNA/circRNA-miRNA-mRNA network based on ceRNA targeting relationships. CONCLUSIONS These findings may facilitate our further understanding the mRNA and ncRNAs roles in the regulation of shellfish reproduction.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China.
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 266237, Qingdao, China
| | - Wandong Xu
- Administrative Examination and Approval Service Bureau of Kenli District, Dongying, China, 257500
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China, 265800
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China, 265800
| | - Shihao Zhang
- Shandong Anhai lnvestment , Jinan, China, Co., Ltd, 250013
| |
Collapse
|
14
|
Dotania K, Tripathy M, Rai U. Nesfatin-1 in a reptile: its role and hormonal regulation in wall lizard testis. Gen Comp Endocrinol 2023; 341:114337. [PMID: 37348681 DOI: 10.1016/j.ygcen.2023.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Nesfatin-1 is a pleiotropic hormone implicated in various physiological functions including reproduction. Studies though limited, have established an important role of the peptide in regulation of testicular functions in mammals and fishes. However, role of nesfatin-1 in regulation of spermatogenesis and testicular steroidogenesis remains completely unexplored in reptiles. Therefore, present study aimed to develop an insight into reproductive phase-dependent testicular expression, function and regulation of nucb2/nesfatin-1 in a reptile, Hemidactylus flaviviridis. Expression of nucb2/nesfatin-1 in testis of wall lizard varied significantly depending upon reproductive phase, being highest in the active phase while lowest during regressed phase. Further, in vitro treatment of wall lizard testis with nesfatin-1 showed a concentration- and time-dependent stimulatory effect of the peptide on expression of cell proliferation and differentiation markers like scf, c-kit and pcna suggesting a spermatogenic role of nesfatin-1 in wall lizard. Also, nesfatin-1 stimulated the anti-apoptotic marker, bcl-2 while inhibited the apoptotic marker, caspase-3, suggesting its role as an inhibitor of apoptosis of testicular cells. Further, treatment with nesfatin-1 resulted in significantly higher expression of star along with a concomitant increase in testosterone production by the lizard testis. The present study also demonstrates hormonal regulation of testicular nucb2/nesfatin-1 wherein follicle-stimulating hormone (FSH) inhibited while sex steroids like dihydrotestosterone (DHT) and 17β-estradiol-3-benzoate (E2) stimulated the mRNA expression of nesfatin-1. Observations from the current study for the first time provide comprehensive evidence of spermatogenic and steroidogenic role of nesfatin-1 as well as its hormonal regulation in the testis of a reptile, H. flaviviridis.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir 180006, India.
| |
Collapse
|
15
|
de Mattos K, Dumas FO, Campolina-Silva GH, Belleannée C, Viger RS, Tremblay JJ. ERK5 Cooperates With MEF2C to Regulate Nr4a1 Transcription in MA-10 and MLTC-1 Leydig Cells. Endocrinology 2023; 164:bqad120. [PMID: 37539861 PMCID: PMC10435423 DOI: 10.1210/endocr/bqad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Félix-Olivier Dumas
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Gabriel Henrique Campolina-Silva
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Clémence Belleannée
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
16
|
Mahtha SK, Kumari K, Gaur V, Yadav G. Cavity architecture based modulation of ligand binding tunnels in plant START domains. Comput Struct Biotechnol J 2023; 21:3946-3963. [PMID: 37635766 PMCID: PMC10448341 DOI: 10.1016/j.csbj.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
The Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain represents an evolutionarily conserved superfamily of lipid transfer proteins widely distributed across the tree of life. Despite significant expansion in plants, knowledge about this domain remains inadequate in plants. In this work, we explore the role of cavity architectural modulations in START protein evolution and functional diversity. We use deep-learning approaches to generate plant START domain models, followed by surface accessibility studies and a comprehensive structural investigation of the rice START family. We validate 28 rice START domain models, delineate binding cavities, measure pocket volumes, and compare these with mammalian counterparts to understand evolution of binding preferences. Overall, plant START domains retain the ancestral α/β helix-grip signature, but we find subtle variation in cavity architectures, resulting in significantly smaller ligand-binding tunnels in the plant kingdom. We identify cavity lining residues (CLRs) responsible for reduction in ancestral tunnel space, and these appear to be class specific, and unique to plants, providing a mechanism for the observed shift in domain function. For instance, mammalian cavity lining residues A135, G181 and A192 have evolved to larger CLRs across the plant kingdom, contributing to smaller sizes, minimal STARTs being the largest, while members of type-IV HD-Zip family show almost complete obliteration of lipid binding cavities, consistent with their present-day DNA binding functions. In summary, this work quantifies plant START structural & functional divergence, bridging current knowledge gaps.
Collapse
Affiliation(s)
| | - Kamlesh Kumari
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
17
|
Mori Sequeiros Garcia MM, Paz C, Castillo AF, Benzo Y, Belluno MA, Balcázar Martínez A, Maloberti PM, Cornejo Maciel F, Poderoso C. New insights into signal transduction pathways in adrenal steroidogenesis: role of mitochondrial fusion, lipid mediators, and MAPK phosphatases. Front Endocrinol (Lausanne) 2023; 14:1175677. [PMID: 37223023 PMCID: PMC10200866 DOI: 10.3389/fendo.2023.1175677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Hormone-receptor signal transduction has been extensively studied in adrenal gland. Zona glomerulosa and fasciculata cells are responsible for glucocorticoid and mineralocorticoid synthesis by adrenocorticotropin (ACTH) and angiotensin II (Ang II) stimulation, respectively. Since the rate-limiting step in steroidogenesis occurs in the mitochondria, these organelles are key players in the process. The maintenance of functional mitochondria depends on mitochondrial dynamics, which involves at least two opposite events, i.e., mitochondrial fusion and fission. This review presents state-of-the-art data on the role of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1), in Ang II-stimulated steroidogenesis in adrenocortical cells. Both proteins are upregulated by Ang II, and Mfn2 is strictly necessary for adrenal steroid synthesis. The signaling cascades of steroidogenic hormones involve an increase in several lipidic metabolites such as arachidonic acid (AA). In turn, AA metabolization renders several eicosanoids released to the extracellular medium able to bind membrane receptors. This report discusses OXER1, an oxoeicosanoid receptor which has recently arisen as a novel participant in adrenocortical hormone-stimulated steroidogenesis through its activation by AA-derived 5-oxo-ETE. This work also intends to broaden knowledge of phospho/dephosphorylation relevance in adrenocortical cells, particularly MAP kinase phosphatases (MKPs) role in steroidogenesis. At least three MKPs participate in steroid production and processes such as the cellular cycle, either directly or by means of MAP kinase regulation. To sum up, this review discusses the emerging role of mitochondrial fusion proteins, OXER1 and MKPs in the regulation of steroid synthesis in adrenal cortex cells.
Collapse
Affiliation(s)
- María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana Fernanda Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Matías A. Belluno
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ariana Balcázar Martínez
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula Mariana Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
18
|
Aghaei S, Farrokhi E, Saffari-Chaleshtori J, Hoseinzadeh M, Molavi N, Hashemipour M, Rostampour N, Asgharzadeh S, Tabatabaiefar MA. New molecular insights into the A218V variant impact on the steroidogenic acute regulatory protein (STAR) associated with 46, XY disorders of sexual development. Mol Genet Genomics 2023; 298:693-708. [PMID: 37004560 DOI: 10.1007/s00438-023-02006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Disorders of sexual development (DSD) are an abnormal congenital conditions associated with atypical development of the urogenital tract and external genital structures. The steroidogenic acute regulatory (STAR) gene, associated with congenital lipoid adrenal hyperplasia (CLAH), is included in the targeted gene panel for the DSD diagnosis. Therefore, the genetic alterations of the STAR gene and their molecular effect were examined in the CLAH patients affected with DSD. Ten different Iranian families including twelve male pseudo-hermaphroditism patients with CLAH phenotype were studied using genetic linkage screening and STAR gene sequencing in the linked families to the STAR locus. Furthermore, the structural, dynamical, and functional impacts of the variants on the STAR in silico were analyzed. Sanger sequencing showed the pathogenic variant p.A218V in STAR gene, as the first report in Iranian population. Moreover, modeling and simulation analysis were performed using tools such as radius of gyration, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and molecular docking showed that p.A218V variant affects the residues interaction in cholesterol-binding site and the proper folding of STAR through increasing H-bound and the amount of α-Helix, deceasing total flexibility and changing fluctuations in some residues, resulting in reduced steroidogenic activity of the STAR protein. The study characterized the structural and functional changes of STAR caused by pathogenic variant p.A218V. It leads to limited cholesterol-binding activity of STAR, ultimately leading to the CLAH disease. Molecular dynamics simulation of STAR variants could help explain different clinical manifestations of CLAH disease.
Collapse
Affiliation(s)
- Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marziyeh Hoseinzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Newsha Molavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Rostampour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Asgharzadeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine and Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Milosevic A, Lavrnja I, Savic D, Milosevic K, Skuljec J, Bjelobaba I, Janjic MM. Rat Ovarian Function Is Impaired during Experimental Autoimmune Encephalomyelitis. Cells 2023; 12:cells12071045. [PMID: 37048118 PMCID: PMC10093247 DOI: 10.3390/cells12071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the CNS and occurring far more prevalently in women than in men. In both MS and its animal models, sex hormones play important immunomodulatory roles. We have previously shown that experimental autoimmune encephalomyelitis (EAE) affects the hypothalamic-pituitary-gonadal axis in rats of both sexes and induces an arrest in the estrous cycle in females. To investigate the gonadal status in female rats with EAE, we explored ovarian morphometric parameters, circulating and intraovarian sex steroid levels, and the expression of steroidogenic machinery components in the ovarian tissue. A prolonged state of diestrus was recorded during the peak of EAE, with maintenance of the corpora lutea, elevated intraovarian progesterone levels, and increased gene and protein expression of StAR, similar to the state of pseudopregnancy. The decrease in CYP17A1 protein expression was followed by a decrease in ovarian testosterone and estradiol levels. On the contrary, serum testosterone levels were slightly increased. With unchanged serum estradiol levels, these results point at extra-gonadal sites of sex steroid biosynthesis and catabolism as important regulators of their circulating levels. Our study suggests alterations in the function of the female reproductive system during central autoimmunity and highlights the bidirectional relationships between hormonal status and EAE.
Collapse
Affiliation(s)
- Ana Milosevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Katarina Milosevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Skuljec
- Department of Neurology, University Medicine Essen, 45147 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147 Essen, Germany
| | - Ivana Bjelobaba
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija M Janjic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Bose HS, Doetch NE. Protocol for direct measurement of stability and activity of mitochondria electron transport chain complex II. STAR Protoc 2023; 4:101996. [PMID: 36620990 PMCID: PMC9841272 DOI: 10.1016/j.xpro.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Mitochondria electron transport chain (ETC) complex II is essential for steroid metabolism. Here, we present a protocol to measure the stability and activity of mitochondria ETC complex II. We first describe mitochondria isolation from cell lines and tissues. We then detail how to determine the stability of ETC complex II using isothermal calorimetry and quantification of steroidogenesis using activity assays in parallel. Finally, we describe the steps to perform radioimmunoassay (RIA) to confirm the activity of ETC complex II. For complete details on the use and execution of this protocol, please refer to Bose et al. (2020).1.
Collapse
Affiliation(s)
- Himangshu S Bose
- Laboratory of Biochemistry and Cell Biology, Department of Biomedical Sciences, Mercer University School of Medicine, Hoskins Research Building 1250 East 66th Street, Savannah, GA 31404, USA; Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA 31404, USA.
| | - Nicole E Doetch
- Laboratory of Biochemistry and Cell Biology, Department of Biomedical Sciences, Mercer University School of Medicine, Hoskins Research Building 1250 East 66th Street, Savannah, GA 31404, USA
| |
Collapse
|
21
|
Kennelly JP, Tontonoz P. Cholesterol Transport to the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041263. [PMID: 35940908 PMCID: PMC9899650 DOI: 10.1101/cshperspect.a041263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most cholesterol in mammalian cells is stored in the plasma membrane (PM). Cholesterol transport from the PM to low-sterol regulatory regions of the endoplasmic reticulum (ER) controls cholesterol synthesis and uptake, and thereby influences the rates of cholesterol flux between tissues of complex organisms. Cholesterol transfer to the ER is also required for steroidogenesis, oxysterol and bile acid synthesis, and cholesterol esterification. The ER-resident Aster proteins (Aster-A, -B, and -C) form contacts with the PM to move cholesterol to the ER in mammals. Mice lacking Aster-B have low adrenal cholesteryl ester stores and impaired steroidogenesis because of a defect in cholesterol transport from high-density lipoprotein (HDL) to the ER. This work reviews the molecular characteristics of Asters, their role in HDL- and low-density lipoprotein (LDL)-cholesterol movement, and how cholesterol transferred to the ER is utilized by cells. The roles of other lipid transporters and of membrane lipid organization in maintaining aspects of cholesterol homeostasis are also highlighted.
Collapse
Affiliation(s)
- John P Kennelly
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Miller WL, White PC. History of Adrenal Research: From Ancient Anatomy to Contemporary Molecular Biology. Endocr Rev 2023; 44:70-116. [PMID: 35947694 PMCID: PMC9835964 DOI: 10.1210/endrev/bnac019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 01/20/2023]
Abstract
The adrenal is a small, anatomically unimposing structure that escaped scientific notice until 1564 and whose existence was doubted by many until the 18th century. Adrenal functions were inferred from the adrenal insufficiency syndrome described by Addison and from the obesity and virilization that accompanied many adrenal malignancies, but early physiologists sometimes confused the roles of the cortex and medulla. Medullary epinephrine was the first hormone to be isolated (in 1901), and numerous cortical steroids were isolated between 1930 and 1949. The treatment of arthritis, Addison's disease, and congenital adrenal hyperplasia (CAH) with cortisone in the 1950s revolutionized clinical endocrinology and steroid research. Cases of CAH had been reported in the 19th century, but a defect in 21-hydroxylation in CAH was not identified until 1957. Other forms of CAH, including deficiencies of 3β-hydroxysteroid dehydrogenase, 11β-hydroxylase, and 17α-hydroxylase were defined hormonally in the 1960s. Cytochrome P450 enzymes were described in 1962-1964, and steroid 21-hydroxylation was the first biosynthetic activity associated with a P450. Understanding of the genetic and biochemical bases of these disorders advanced rapidly from 1984 to 2004. The cloning of genes for steroidogenic enzymes and related factors revealed many mutations causing known diseases and facilitated the discovery of new disorders. Genetics and cell biology have replaced steroid chemistry as the key disciplines for understanding and teaching steroidogenesis and its disorders.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Perrin C White
- Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
24
|
Abaffy T, Lu HY, Matsunami H. Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 2023; 391:19-42. [PMID: 36401093 PMCID: PMC9676892 DOI: 10.1007/s00441-022-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hsiu-Yi Lu
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
25
|
Gatta E, Camussi D, Auta J, Guidotti A, Pandey SC. Neurosteroids (allopregnanolone) and alcohol use disorder: From mechanisms to potential pharmacotherapy. Pharmacol Ther 2022; 240:108299. [PMID: 36323379 PMCID: PMC9810076 DOI: 10.1016/j.pharmthera.2022.108299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Alcohol Use Disorder (AUD) is a multifaceted relapsing disorder that is commonly comorbid with psychiatric disorders, including anxiety. Alcohol exposure produces a plethora of effects on neurobiology. Currently, therapeutic strategies are limited, and only a few treatments - disulfiram, acamprosate, and naltrexone - are available. Given the complexity of this disorder, there is a great need for the identification of novel targets to develop new pharmacotherapy. The GABAergic system, the primary inhibitory system in the brain, is one of the well-known targets for alcohol and is responsible for the anxiolytic effects of alcohol. Interestingly, GABAergic neurotransmission is fine-tuned by neuroactive steroids that exert a regulatory role on several endocrine systems involved in neuropsychiatric disorders including AUD. Mounting evidence indicates that alcohol alters the biosynthesis of neurosteroids, whereas acute alcohol increases and chronic alcohol decreases allopregnanolone levels. Our recent work highlighted that chronic alcohol-induced changes in neurosteroid levels are mediated by epigenetic modifications, e.g., DNA methylation, affecting key enzymes involved in neurosteroid biosynthesis. These changes were associated with changes in GABAA receptor subunit expression, suggesting an imbalance between excitatory and inhibitory signaling in AUD. This review will recapitulate the role of neurosteroids in the regulation of the neuroendocrine system, highlight their role in the observed allostatic load in AUD, and develop a framework from mechanisms to potential pharmacotherapy.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Diletta Camussi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA; Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612, USA.
| |
Collapse
|
26
|
A 35-bp Conserved Region Is Crucial for Insl3 Promoter Activity in Mouse MA-10 Leydig Cells. Int J Mol Sci 2022; 23:ijms232315060. [PMID: 36499388 PMCID: PMC9738330 DOI: 10.3390/ijms232315060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The peptide hormone insulin-like 3 (INSL3) is produced almost exclusively by Leydig cells of the male gonad. INSL3 has several functions such as fetal testis descent and bone metabolism in adults. Insl3 gene expression in Leydig cells is not hormonally regulated but rather is constitutively expressed. The regulatory region of the Insl3 gene has been described in various species; moreover, functional studies have revealed that the Insl3 promoter is regulated by various transcription factors that include the nuclear receptors AR, NUR77, COUP-TFII, LRH1, and SF1, as well as the Krüppel-like factor KLF6. However, these transcription factors are also found in several tissues that do not express Insl3, indicating that other, yet unidentified factors, must be involved to drive Insl3 expression specifically in Leydig cells. Through a fine functional promoter analysis, we have identified a 35-bp region that is responsible for conferring 70% of the activity of the mouse Insl3 promoter in Leydig cells. All tri- and dinucleotide mutations introduced dramatically reduced Insl3 promoter activity, indicating that the entire 35-bp sequence is required. Nuclear proteins from MA-10 Leydig cells bound specifically to the 35-bp region. The 35-bp sequence contains GC- and GA-rich motifs as well as potential binding elements for members of the CREB, C/EBP, AP1, AP2, and NF-κB families. The Insl3 promoter was indeed activated 2-fold by NF-κB p50 but not by other transcription factors tested. These results help to further define the regulation of Insl3 gene transcription in Leydig cells.
Collapse
|
27
|
Chen Y, Li Q, Li X, Liu H, Li P, Hai R, Guo Y, Wang S, Wang K, Du C. Amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice. Neuropeptides 2022; 96:102288. [PMID: 36279616 DOI: 10.1016/j.npep.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Amylin is a peripheral satiation signal polypeptide co-secreted with insulin by pancreatic β-cells in response to nutrient ingestion. Amylin participates in the eating-inhibitory effect and regulates energy metabolism by acting on the central nervous system (CNS). However, the role of amylin in regulating the biosynthesis of steroid hormones, such as testosterone, through the hypothalamic-pituitary-gonadal axis (HPG) remains unexplored. However, only limited evidence is available on the involvement of amylin in steroid synthesis, we hypothesize that amylin regulates testosterone levels via steroidogenesis-related enzymes in the CNS. In this study, we elucidated the effect of intraperitoneal injection of amylin on the protein expression of steroidogenesis-related enzymes, including 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17A1 (CYP17A1), and steroidogenic acute regulatory protein (StAR), and phospho-extracellular signal-regulated kinase (pERK). Additionally, the effect of amylin on testosterone levels in male mice was examined. Our results suggested that 3β-HSD and CYP17A1 neurons were widely expressed in the CNS of male mice, whereas StAR neurons were mainly expressed in the zona incerta (ZI) and locus coeruleus (LC) regions. Intraperitoneal injection of amylin significantly reduced (p < 0.01) the expression of 3β-HSD, CYP17A1, and StAR in ZI and other areas near the third ventricle (3 V) but increased (p < 0.01) pERK expression, brain testosterone levels, serum FSH, serum LH, and decreased (p < 0.01) serum testosterone levels in mice. In conclusion, amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice.
Collapse
Affiliation(s)
- Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Yongqing Guo
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Siwei Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Chenguang Du
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
28
|
Carrageta DF, Guerra-Carvalho B, Spadella MA, Yeste M, Oliveira PF, Alves MG. Animal models of male reproductive ageing to study testosterone production and spermatogenesis. Rev Endocr Metab Disord 2022; 23:1341-1360. [PMID: 35604584 DOI: 10.1007/s11154-022-09726-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/11/2023]
Abstract
Ageing is the time-dependent gradual decline of the functional characteristics in an organism. It has been shown that it results in the loss of reproductive health and fertility. The age-dependent decline of fertility is a potential issue as the parenthood age is increasing in Western countries, mostly due to socioeconomic factors. In comparison to women, for whom the consequences of ageing are well documented and general awareness of the population is extensively raised, the effects of ageing for male fertility and the consequences of advanced paternal age for the offspring have not been widely studied. Studies with humans are welcome but it is hard to implement relevant experimental approaches to unveil the molecular mechanisms by which ageing affects male reproductive potential. Animal models have thus been extensively used. These models are advantageous due to their reduced costs, general easy maintenance in laboratory facilities, rigorous manipulation tools, short lifespan, known genetic backgrounds, and reduced ethical constraints. Herein, we discuss animal models for the study of male reproductive ageing. The most well-known and studied reproductive ageing models are rodents and non-human primates. The data collected from these models, particularly studies on testicular ageing, steroidogenesis, and genetic and epigenetic changes in spermatogenesis are detailed. Notably, some species challenge the currently accepted ageing theories and the concept of senescence itself, which renders them interesting animal models for the study of male reproductive ageing.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Bárbara Guerra-Carvalho
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | | | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
| |
Collapse
|
29
|
Structural basis for the carotenoid binding and transport function of a START domain. Structure 2022; 30:1647-1659.e4. [DOI: 10.1016/j.str.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
|
30
|
Differential Response of Transcription Factors to Activated Kinases in Steroidogenic and Non-Steroidogenic Cells. Int J Mol Sci 2022; 23:ijms232113153. [DOI: 10.3390/ijms232113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.
Collapse
|
31
|
Cheng JC, Han X, Meng Q, Guo Y, Liu B, Song T, Jia Y, Fang L, Sun YP. HB-EGF upregulates StAR expression and stimulates progesterone production through ERK1/2 signaling in human granulosa-lutein cells. Cell Commun Signal 2022; 20:166. [PMID: 36284301 PMCID: PMC9598000 DOI: 10.1186/s12964-022-00983-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heparin-binding epidermal growth factor-like growth factor (HB-EGF) belongs to the epidermal growth factor (EGF) family of growth factors. HB-EGF and its receptors, epidermal growth factor receptor (EGFR) and HER4, are expressed in the human corpus luteum. HB-EGF has been shown to regulate luteal function by preventing cell apoptosis. Steroidogenesis is the primary function of the human corpus luteum. Steroidogenic acute regulatory protein (StAR) plays a critical role in steroidogenesis. StAR expression and progesterone (P4) production in human granulosa-lutein (hGL) cells have been shown to be upregulated by a ligand of EGFR, amphiregulin. However, whether HB-EGF can achieve the same effects remains unknown. Methods A steroidogenic human ovarian granulosa-like tumor cell line, KGN, and primary culture of hGL cells obtained from patients undergoing in vitro fertilization treatment were used as experimental models. The underlying molecular mechanisms mediating the effects of HB-EGF on StAR expression and P4 production were explored by a series of in vitro experiments. Results Western blot showed that EGFR, HER2, and HER4 were expressed in both KGN and hGL cells. Treatment with HB-EGF for 24 h induced StAR expression but did not affect the expression of steroidogenesis-related enzymes, P450 side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, and aromatase. Using pharmacological inhibitors and a siRNA-mediated knockdown approach, we showed that EGFR, HER4, but not HER2, were required for HB-EGF-stimulated StAR expression and P4 production. In addition, HB-EGF-induced upregulations of StAR expression and P4 production were mediated by the activation of the ERK1/2 signaling pathway. Conclusion This study increases the understanding of the physiological role of HB-EGF in human luteal functions. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00983-4.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Xiaoyu Han
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Qingxue Meng
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Yanjie Guo
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Boqun Liu
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Tinglin Song
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Yuanyuan Jia
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Lanlan Fang
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| | - Ying-Pu Sun
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan China
| |
Collapse
|
32
|
Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. Int J Mol Sci 2022; 23:ijms232012115. [PMID: 36292972 PMCID: PMC9602805 DOI: 10.3390/ijms232012115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is a lipid molecule essential for several key cellular processes including steroidogenesis. As such, the trafficking and distribution of cholesterol is tightly regulated by various pathways that include vesicular and non-vesicular mechanisms. One non-vesicular mechanism is the binding of cholesterol to cholesterol transport proteins, which facilitate the movement of cholesterol between cellular membranes. Classic examples of cholesterol transport proteins are the steroidogenic acute regulatory protein (STAR; STARD1), which facilitates cholesterol transport for acute steroidogenesis in mitochondria, and sterol carrier protein 2/sterol carrier protein-x (SCP2/SCPx), which are non-specific lipid transfer proteins involved in the transport and metabolism of many lipids including cholesterol between several cellular compartments. This review discusses the roles of STAR and SCP2/SCPx in cholesterol transport as model cholesterol transport proteins, as well as more recent findings that support the role of these proteins in the transport and/or metabolism of other lipids.
Collapse
|
33
|
A Short Promoter Region Containing Conserved Regulatory Motifs Is Required for Steroidogenic Acute Regulatory Protein ( Star) Gene Expression in the Mouse Testis. Int J Mol Sci 2022; 23:ijms231912009. [PMID: 36233310 PMCID: PMC9569709 DOI: 10.3390/ijms231912009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
In the testis, Leydig cells produce steroid hormones that are needed to masculinize typical genetic males during fetal development and to initiate and maintain spermatogenesis at puberty and adulthood, respectively. Steroidogenesis is initiated by the transfer of cholesterol from the outer to the inner mitochondrial membrane through the action of steroidogenic acute regulatory protein (STAR). Given its importance for the steroidogenic process, the regulation of STAR gene expression has been the subject of numerous studies. These studies have involved the characterization of key promoter sequences through the identification of relevant transcription factors and the nucleotide motifs (regulatory elements) that they bind. This work has traditionally relied on in vitro studies carried out in cell cultures along with reconstructed promoter sequences. While this approach has been useful for developing models of how a gene might be transcriptionally regulated, one must ultimately validate that these modes of regulation occur in an endogenous context. We have used CRISPR/Cas9 genome editing to modify a short region of the mouse Star promoter (containing a subset of regulatory elements, including conserved CRE, C/EBP, AP1, and GATA motifs) that has been proposed to be critical for Star transcription. Analysis of the resultant mutant mice showed that this short promoter region is indeed required for maximal STAR mRNA and protein levels in the testis. Analysis also showed that both basal and hormone-activated testosterone production in mature mice was unaffected despite significant changes in Star expression. Our results therefore provide the first in vivo validation of regulatory sequences required for Star gene expression.
Collapse
|
34
|
Zamalutdinova SV, Isaeva LV, Zamalutdinov AV, Faletrov YV, Rubtsov MA, Novikova LA. Analysis of Activity of Human Steroidogenic Acute Regulatory Protein (STARD1) Expressed in Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1015-1020. [PMID: 36180996 DOI: 10.1134/s0006297922090127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
One of the main obstacles to the successful use of Escherichia coli cells for steroid transformation in biotechnological processes is inefficient transport of steroid substrates into the cells. Here, we tested the possibility of using human cholesterol transfer protein STARD1 (steroidogenic acute regulatory protein) to increase the efficiency of steroid uptake by bacterial cells. Genetic constructs were obtained for the synthesis in E. coli BL21 (DE3) cells of a truncated version of STARD1 containing protein functional domain (residues 66-285) and STARD1 (66-285)-GFP fusion protein, both carrying bacterial periplasmic targeting sequence pelB at the N-terminus. Analysis of preparations of E. coli/pET22b/STARD1-GFP cells by fluorimetry and Western blotting confirmed that the used expression system ensured the synthesis of the heterologous protein. Using fluorescence spectroscopy, it was demonstrated that the presence of STARD1 in the cells increased the efficiency of assimilation of NBD-labeled cholesterol analogues by E. coli/pET22b/STARD1 cells 1.3-1.6 times (p < 0.05) compared to the wild-type cells, thus demonstrating that human STARD1 exhibits its functional activity in bacterial cells. This opens prospects for optimizing and using a fundamentally new approach to increase the efficiency of steroid uptake by cells - the inclusion of a specific carrier protein in the cell membrane, which can expand the arsenal of methods used to obtain strains of microorganisms for synthesis.
Collapse
Affiliation(s)
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, 220030, Belarus.
| | - Mikhail A Rubtsov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
35
|
Koganti PP, Zhao AH, Selvaraj V. Exogenous cholesterol acquisition signaling in LH-responsive MA-10 Leydig cells and in adult mice. J Endocrinol 2022; 254:187-199. [PMID: 35900012 PMCID: PMC9840751 DOI: 10.1530/joe-22-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
MA-10 cells, established 4 decades ago from a murine Leydig cell tumor, has served as a key model system for studying steroidogenesis. Despite a precipitous loss in their innate ability to respond to luteinizing hormone (LH), the use of a cell-permeable cAMP analog for induction ensured their continued use. In parallel, a paradigm that serum-free conditions are essential for trophic steroidogenic stimulation was rationalized. Through the selection of LH-responsive single-cell MA-10Slip clones, we uncovered that Leydig cells remain responsive in the presence of serum in vitro and that exogenous cholesterol delivery by lipoproteins provided a significantly elevated steroid biosynthetic response (>2-fold). In scrutinizing the underlying regulation, systems biology of the MA-10 cell proteome identified multiple Rho-GTPase signaling pathways as highly enriched. Testing Rho function in steroidogenesis revealed that its modulation can negate the specific elevation in steroid biosynthesis observed in the presence of lipoproteins/serum. This signaling modality primarily linked to the regulation of endocytic traffic is evident only in the presence of exogenous cholesterol. Inhibiting Rho function in vivo also decreased hCG-induced testosterone production in mice. Collectively, our findings dispel a long-held view that the use of serum could confound or interfere with trophic stimulation and underscore the need for exogenous lipoproteins when dissecting physiological signaling and cholesterol trafficking for steroid biosynthesis in vitro. The LH-responsive MA-10Slip clones derived in this study present a reformed platform enabling biomimicry to study the cellular and molecular basis of mammalian steroidogenesis.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Amy H. Zhao
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence should be addressed to: Vimal Selvaraj, Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853; ; Tel. 607-255-6138; Fax. 607-255-9829
| |
Collapse
|
36
|
Koganti PP, Tu LN, Selvaraj V. Functional metabolite reserves and lipid homeostasis revealed by the MA-10 Leydig cell metabolome. PNAS NEXUS 2022; 1:pgac215. [PMID: 36714831 PMCID: PMC9802464 DOI: 10.1093/pnasnexus/pgac215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
In Leydig cells, intrinsic factors that determine cellular steroidogenic efficiency is of functional interest to decipher and monitor pathophysiology in many contexts. Nevertheless, beyond basic regulation of cholesterol storage and mobilization, systems biology interpretation of the metabolite networks in steroidogenic function is deficient. To reconstruct and describe the different molecular systems regulating steroidogenesis, we profiled the metabolites in resting MA-10 Leydig cells. Our results identified 283-annotated components (82 neutral lipids, 154 membrane lipids, and 47 other metabolites). Neutral lipids were represented by an abundance of triacyglycerols (97.1%), and low levels of cholesterol esters (2.0%). Membrane lipids were represented by an abundance of glycerophospholipids (77.8%), followed by sphingolipids (22.2%). Acylcarnitines, nucleosides, amino acids and their derivatives were the other metabolite classes identified. Among nonlipid metabolites, we recognized substantial reserves of aspartic acid, choline, creatine, betaine, glutamine, homoserine, isoleucine, and pantothenic acid none of which have been previously considered as a requirement in steroidogenic function. Individually limiting use of betaine, choline, or pantothenic acid, during luteinizing hormone-induced steroidogenesis in MA-10 cells resulted in substantial decreases to acute steroidogenic capacity, explained by intermediary metabolite imbalances affecting homeostasis. As such, our dataset represents the current level of baseline characterization and unravels the functional resting state of steroidogenic MA-10 Leydig cells. In identifying metabolite stockpiles and causal mechanisms, these results serve to further comprehend the cellular setup and regulation of steroid biosynthesis.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
38
|
Galano M, Papadopoulos V. Role of Constitutive STAR in Mitochondrial Structure and Function in MA-10 Leydig Cells. Endocrinology 2022; 163:6608928. [PMID: 35704520 DOI: 10.1210/endocr/bqac091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 11/19/2022]
Abstract
The steroidogenic acute regulatory protein (STAR; STARD1) is critical for the transport of cholesterol into the mitochondria for hormone-induced steroidogenesis. Steroidogenic cells express STAR under control conditions (constitutive STAR). On hormonal stimulation, STAR localizes to the outer mitochondrial membrane (OMM) where it facilitates cholesterol transport and where it is processed to its mature form. Here, we show that knockout of Star in MA-10 mouse tumor Leydig cells (STARKO1) causes defects in mitochondrial structure and function under basal conditions. We also show that overexpression of Star in STARKO1 cells exacerbates, rather than recovers, mitochondrial structure and function, which further disrupts the processing of STAR at the OMM. Our findings suggest that constitutive STAR is necessary for proper mitochondrial structure and function and that mitochondrial dysfunction leads to defective STAR processing at the OMM.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
39
|
The Urokinase-Type Plasminogen Activator Contributes to cAMP-Induced Steroidogenesis in MA-10 Leydig Cells. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leydig cells produce androgens which are essential for male sex differentiation and reproductive functions. Steroidogenesis, as well as expression of several genes in Leydig cells, are stimulated by LH/cAMP and repressed by AMP/AMPK. One of those genes is Plau, which codes for the urokinase-type plasminogen activator (uPA), a secreted serine protease. The role of uPA and the regulation of Plau expression in Leydig cells remain unknown. Using siRNA-mediated knockdown, uPA was required for maximal cAMP-induced STAR and steroid hormone production in MA-10 Leydig cells. Analysis of Plau mRNA levels and promoter activity revealed that its expression is strongly induced by cAMP; this induction is blunted by AMPK. The cAMP-responsive region was located, in part, in the proximal Plau promoter that contains a species-conserved GC box at −56 bp. The transcription factor Krüppel-like factor 6 (KLF6) activated the Plau promoter. Mutation of the GC box at −56 bp abolished KLF6-mediated activation and significantly reduced cAMP-induced Plau promoter activity. These data define a role for uPA in Leydig cell steroidogenesis and provide insights into the regulation of Plau gene expression in these cells.
Collapse
|
40
|
Crites BR, Carr SN, Anderson LH, Matthews JC, Bridges PJ. Form of dietary selenium affects mRNA encoding interferon-stimulated and progesterone-induced genes in the bovine endometrium and conceptus length at maternal recognition of pregnancy. J Anim Sci 2022; 100:skac137. [PMID: 35772751 PMCID: PMC9246668 DOI: 10.1093/jas/skac137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) concentrations of progesterone (P4) above that in cows on ISe or OSe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effects of the form of Se on the development of the bovine conceptus and the endometrium using targeted real-time PCR (qPCR) on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-cross yearling heifers underwent 45-d Se-depletion then repletion periods, then at least 90 d of supplementation (TRT) with 35 ppm Se per day as either ISe (n = 10) or MIX (n = 10). Heifers were inseminated to a single sire after detected estrus (day 0). On day 17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrial samples and the developing conceptus were recovered from pregnant heifers (ISe, n = 6 and MIX, n = 6). qPCR was performed to determine the relative abundance of targeted transcripts in CAR and ICAR samples, with the expression data subjected to one-way ANOVA to determine TRT effects. The effect of TRT on conceptus development was analyzed using a one-tailed Student's t-test. When compared with ISe-treated heifers, MIX heifers had decreased (P < 0.05) abundance of several P4-induced and interferon-stimulated mRNA transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and DKK1 in ICAR samples and tended (P ≤ 0.10) to have decreased mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR samples, and HOXA10 and PAQR7 in ICAR samples. In contrast, MIX-supplemented heifers had increased (P < 0.05) mRNA abundance of MSTN in ICAR samples and an increase in conceptus length (ISe: 17.45 ± 3.08 cm vs. MIX: 25.96 ± 3.95 cm; P = 0.05). Notably, myostatin increases glucose secretion into histotroph and contributes to advanced conceptus development. This advancement in conceptus development occurred in the presence of similar concentrations of serum P4 (P = 0.88) and whole blood Se (P = 0.07) at MRP.
Collapse
Affiliation(s)
- Benjamin R Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sarah N Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Leslie H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
41
|
Bishop CV, Selvaraj V, Townson DH, Pate JL, Wiltbank MC. History, insights, and future perspectives on studies into luteal function in cattle. J Anim Sci 2022; 100:skac143. [PMID: 35772753 PMCID: PMC9246667 DOI: 10.1093/jas/skac143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
The corpus luteum (CL) forms following ovulation from the remnant of the Graafian follicle. This transient tissue produces critical hormones to maintain pregnancy, including the steroid progesterone. In cattle and other ruminants, the presence of an embryo determines if the lifespan of the CL will be prolonged to ensure successful implantation and gestation, or if the tissue will undergo destruction in the process known as luteolysis. Infertility and subfertility in dairy and beef cattle results in substantial economic loss to producers each year. In addition, this has the potential to exacerbate climate change because more animals are needed to produce high-quality protein to feed the growing world population. Successful pregnancies require coordinated regulation of uterine and ovarian function by the developing embryo. These processes are often collectively termed "maternal recognition of pregnancy." Research into the formation, function, and destruction of the bovine CL by the Northeast Multistate Project, one of the oldest continuously funded Hatch projects by the USDA, has produced a large body of evidence increasing our knowledge of the contribution of ovarian processes to fertility in ruminants. This review presents some of the seminal research into the regulation of the ruminant CL, as well as identifying mechanisms that remain to be completely validated in the bovine CL. This review also contains a broad discussion of the roles of prostaglandins, immune cells, as well as mechanisms contributing to steroidogenesis in the ruminant CL. A triadic model of luteolysis is discussed wherein the interactions among immune cells, endothelial cells, and luteal cells dictate the ability of the ruminant CL to respond to a luteolytic stimulus, along with other novel hypotheses for future research.
Collapse
Affiliation(s)
- Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, State College, PA 16802, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Molecular characterization of TRIB1 gene and its role in regulation of steroidogenesis in bos grunniens granulosa cells. Theriogenology 2022; 191:1-9. [DOI: 10.1016/j.theriogenology.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
|
43
|
Riviere E, Rossi SP, Tavalieri YE, Muñoz de Toro MM, Calandra RS, Mayerhofer A, Matzkin ME, Frungieri MB. Pleiotropic actions of melatonin in testicular peritubular myoid cells of immature Syrian hamsters. Biochim Biophys Acta Gen Subj 2022; 1866:130187. [PMID: 35691458 DOI: 10.1016/j.bbagen.2022.130187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Peritubular myoid cells are emerging as key regulators of testicular function in adulthood. However, little is known about the role of testicular peritubular myoid cells (TPMCs) in the development of the male gonad. We found that, compared to testes of young adult hamsters, gonads of 21 day-old animals show increased melatonin concentration, seminiferous tubular wall thickening and a heterogeneous packaging of its collagen fibers thus raising the question whether melatonin may be involved in the regulation of TPMCs. METHODS We established primary cultures of TPMCs from immature hamsters (ihaTPMCs), which we found express melatonergic receptors. RESULTS Exogeneous melatonin decreased the levels of inflammatory markers (NLRP3 inflammasome, IL1β) but increased the expression of cyclooxygenase 2 (COX2, key enzyme mediating prostaglandin synthesis) and of the glial cell line-derived neurotrophic factor (GDNF) in ihaTPMCs. Melatonin also stimulated ihaTPMCs proliferation and the expression of extracellular matrix proteins such as collagen type I and IV. Furthermore, collagen gel contraction assays revealed an enhanced ability of ihaTPMCs to contract in the presence of melatonin. CONCLUSION Melatonin regulates immune and inflammatory functions as well as contractile phenotype of the peritubular wall in the hamster testis. GENERAL SIGNIFICANCE If transferable to the in vivo situation, melatonin-dependent induction of ihaTPMCs to produce factors known to exert paracrine effects in other somatic cell populations of the gonad suggests that the influence of melatonin may go beyond the peritubular wall and indicates its contribution to testicular development and the establishment of a normal and sustainable spermatogenesis.
Collapse
Affiliation(s)
- Eugenia Riviere
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina
| | - Soledad P Rossi
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Mónica M Muñoz de Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Faculty of Medicine, Biomedical Center Munich (BMC), Ludwig-Maximilian-University (LMU), 82152 Martinsried, Germany
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires C1405CAE, Argentina.
| |
Collapse
|
44
|
Zhai X, Li XY, Wang YJ, Qin KR, Hu JR, Li MN, Wang HL, Guo R. Fancd2os Reduces Testosterone Production by Inhibiting Steroidogenic Enzymes and Promoting Cellular Apoptosis in Murine Testicular Leydig Cells. Endocrinol Metab (Seoul) 2022; 37:533-546. [PMID: 35798552 PMCID: PMC9262688 DOI: 10.3803/enm.2022.1431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGRUOUND It is well-established that serum testosterone in men decreases with age, yet the underlying mechanism of this change remains elusive. METHODS The expression patterns of Fancd2 opposite-strand (Fancd2os) in BALB/c male mice and testicular tissue derived cell lines (GC-1, GC-2, TM3, and TM4) were assessed using real-time polymerase chain reaction (RT-PCR), Western blot and immunofluorescence. The Fancd2os-overexpressing or knockdown TM3 cells were constructed by infecting them with lentivirus particles and were used to evaluated the function of Fancd2os. The testosterone production was measured using enzyme linked immunosorbent assay (ELISA) and the steroidogenic enzymes such as steroidogenic acute regulatory protein (StAR), P450 cholesterol side-chain cleavage (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) were analysed using RT-PCR. The apoptosis of TM3 cells induced by ultraviolet light or testicular tissues was detected using flow cytometry, Western blot or dUTP-biotin nick end labeling (TUNEL) assays. Pearson correlation analysis was used to assess the correlation between the Fancd2os expression and TUNEL-positive staining in mouse testicular Leydig cells. RESULTS The Fancd2os protein was predominantly expressed in mouse testicular Leydig cells and its expression increased with age. Fancd2os overexpression inhibited testosterone levels in TM3 Leydig cells, whereas knockdown of Fancd2os elevated testosterone production. Fancd2os overexpression downregulated the levels of StAR, P450scc and 3β-HSD, while Fancd2os knockdown reversed this effect. Fancd2os overexpression promoted ultraviolet light-induced apoptosis of TM3 cells. In contrast, Fancd2os knockdown restrained apoptosis in TM3 cells. In vivo assays revealed that higher Fancd2os levels and mouse age were associated with increased apoptosis in Leydig cells and decreased serum testosterone levels. Pearson correlation analysis exhibited a strong positive correlation between the expression of Fancd2os and TUNEL-positive staining in mouse testicular Leydig cells. CONCLUSION Our findings suggest that Fancd2os regulates testosterone synthesis via both steroidogenic enzymes and the apoptotic pathway.
Collapse
Affiliation(s)
- Xiang Zhai
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Xin-yang Li
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yu-jing Wang
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Ke-ru Qin
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jin-rui Hu
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Mei-ning Li
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Hai-long Wang
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
- Corresponding authors: Hai-long Wang Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China Tel: +86-351-3985176, Fax: +86-351-3985176, E-mail:
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Basic Medical Science Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, China
- Rui Guo Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Jinzhong, Shanxi, 030600, China Tel: +86-351-3985176, Fax: +86-351-3985176, E-mail:
| |
Collapse
|
45
|
Bu Q, Liu S, Wang Z, Zou J, Wang P, Cao H, Li D, Cao B, An X, Song Y, Li G. PITX2 regulates steroidogenesis in granulosa cells of dairy goat by the WNT/β-catenin pathway. Gen Comp Endocrinol 2022; 321-322:114027. [PMID: 35300988 DOI: 10.1016/j.ygcen.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2), a major driver of multiple tissue development, is a transcription factor that regulates gene expression in organisms. However, it is unknown if PITX2 regulates goat granulosa cell (GC) steroidogenesis. Therefore, we investigated the role and mechanism of PITX2 in GC steroidogenesis. In our study, PITX2 significantly facilitated the secretion level of estrogen and progesterone through increasing CYP11A1, CYP19A1, and STAR mRNA and protein expressions in GCs. Furthermore, PITX2 participated in the WNT pathway, enhancing the production of E2 and P4 in GCs. PITX2 in GCs increased the DVL-1 and CTNNB1 expression, involved in the WNT/β-catenin signaling pathway related to steroidogenesis. Moreover, GC steroidogenesis-related gene translation was decreased by CTNNB1-siRNA but enhanced when transfected with PITX2. PITX2 regulates secretion of E2 and P4 from GCs via the WNT/β-catenin pathway and alters GC proliferation and steroidogenesis. These findings will help understand the role of PITX2 in goat ovarian follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiahao Zou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dexian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
46
|
Abdel-Latif R, Fathy M, Anwar HA, Naseem M, Dandekar T, Othman EM. Cisplatin-Induced Reproductive Toxicity and Oxidative Stress: Ameliorative Effect of Kinetin. Antioxidants (Basel) 2022; 11:antiox11050863. [PMID: 35624727 PMCID: PMC9137797 DOI: 10.3390/antiox11050863] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt;
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
| | - Hend Ali Anwar
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, University of Minia, Minia 61519, Egypt; (M.F.); (H.A.A.)
- Department of Bioinformatics, Biocenter, Am Hubland University of Wuerzburg, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
47
|
Mechanism of Action of an Environmentally Relevant Organochlorine Mixture in Repressing Steroid Hormone Biosynthesis in Leydig Cells. Int J Mol Sci 2022; 23:ijms23073997. [PMID: 35409357 PMCID: PMC8999779 DOI: 10.3390/ijms23073997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Within Leydig cells, steroidogenesis is induced by the pituitary luteinizing hormone (LH). The binding of LH to its receptor increases cAMP production, which then activates the expression of genes involved in testosterone biosynthesis. One of these genes codes for the steroidogenic acute regulatory (STAR) protein. STAR is part of a complex that shuttles cholesterol, the precursor of all steroid hormones, through the mitochondrial membrane where steroidogenesis is initiated. Organochlorine chemicals (OCs) are environmental persistent organic pollutants that are found at high concentrations in Arctic areas. OCs are known to affect male reproductive health by decreasing semen quality in different species, including humans. We previously showed that an environmentally relevant mixture of OCs found in Northern Quebec disrupts steroidogenesis by decreasing STAR protein levels without affecting the transcription of the gene. We hypothesized that OCs might affect STAR protein stability. To test this, MA-10 Leydig cell lines were incubated for 6 h with vehicle or the OCs mixture in the presence or absence of 8Br-cAMP with or without MG132, an inhibitor of protein degradation. We found that MG132 prevented the OC-mediated decrease in STAR protein levels following 8Br-cAMP stimulation. However, progesterone production was still decreased by the OC mixture, even in the presence of MG132. This suggested that proteins involved in steroid hormone production in addition to STAR are also affected by the OC mixture. To identify these proteins, a whole cell approach was used and total proteins from MA-10 Leydig cells exposed to the OC mixture with or without stimulation with 8Br-cAMP were analyzed by 2D SDS-PAGE and LC-MS/MS. Bioinformatics analyses revealed that several proteins involved in numerous biological processes are affected by the OC mixture, including proteins involved in mitochondrial transport, lipid metabolism, and steroidogenesis.
Collapse
|
48
|
Jia Q, Liu B, Dang X, Guo Y, Han X, Song T, Cheng JC, Fang L. Growth differentiation factor-11 downregulates steroidogenic acute regulatory protein expression through ALK5-mediated SMAD3 signaling pathway in human granulosa-lutein cells. Reprod Biol Endocrinol 2022; 20:34. [PMID: 35183204 PMCID: PMC8857810 DOI: 10.1186/s12958-022-00912-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Growth differentiation factor-11 (GDF-11) belongs to the transforming growth factor-β (TGF-β) superfamily. To date, the expression of GDF-11 in the ovary and its role in regulating ovarian function are completely unknown. Ovarian granulosa cell-mediated steroidogenesis plays a pivotal role in maintaining normal female reproductive function. GDF-11 and GDF-8 share high sequence similarity and exhibit many similar features and functions. Steroidogenic acute regulatory protein (StAR) regulates the rate-limiting step in steroidogenesis and its expression can be downregulated by GDF-8. Polycystic ovary syndrome (PCOS) is the most common cause of female infertility. The expression levels of GDF-8 are upregulated in the human follicular fluid and granulosa-lutein (hGL) cells of PCOS patients. However, whether similar results can be observed for the GDF-11 needs to be determined. METHODS The effect of GDF-11 on StAR expression and the underlying molecular mechanisms were explored by a series of in vitro experiments in a primary culture of hGL cells obtained from patients undergoing in vitro fertilization (IVF) treatment. Human follicular fluid samples were obtained from 36 non-PCOS patients and 36 PCOS patients. GDF-11 levels in follicular fluid were measured by ELISA. RESULTS GDF-11 downregulates StAR expression, whereas the expression levels of the P450 side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) are not affected by GDF-11 in hGL cells. Using pharmacological inhibitors and a siRNA-mediated approach, we reveal that ALK5 but not ALK4 mediates the suppressive effect of GDF-11 on StAR expression. Although GDF-11 activates both SMAD2 and SMAD3 signaling pathways, only SMAD3 is involved in the GDF-11-induced downregulation of StAR expression. In addition, we show that SMAD1/5/8, ERK1/2, and PI3K/AKT signaling pathways are not activated by GDF-11 in hGL cells. RT-qPCR and ELISA detect GDF-11 mRNA expression in hGL cells and GDF-11 protein expression in human follicular fluid, respectively. Interestingly, unlike GDF-8, the expression levels of GDF-11 are not varied in hGL cells and follicular fluid between non-PCOS and PCOS patients. CONCLUSIONS This study increases the understanding of the biological function of GDF-11 and provides important insights into the regulation of ovarian steroidogenesis.
Collapse
Affiliation(s)
- Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Xuan Dang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Tinglin Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Hébert-Mercier PO, Bergeron F, Robert NM, Mehanovic S, Pierre KJ, Mendoza-Villarroel RE, de Mattos K, Brousseau C, Tremblay JJ. Growth Hormone-induced STAT5B Regulates Star Gene Expression Through a Cooperation With cJUN in Mouse MA-10 Leydig Cells. Endocrinology 2022; 163:6490116. [PMID: 34967898 PMCID: PMC8765792 DOI: 10.1210/endocr/bqab267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/01/2023]
Abstract
Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown. The STAT5B transcription factor is a downstream effector of GH signaling in other systems. While STAT5B is present in both primary and Leydig cell lines, its function in these cells has yet to be ascertained. Here we report that treatment of MA-10 Leydig cells with GH or overexpression of STAT5B induces Star messenger RNA levels and increases steroid hormone output. The mouse Star promoter contains a consensus STAT5B element (TTCnnnGAA) at -756 bp to which STAT5B binds in vitro (electrophoretic mobility shift assay and supershift) and in vivo (chromatin immunoprecipitation) in a GH-induced manner. In functional promoter assays, STAT5B was found to activate a -980 bp mouse Star reporter. Mutating the -756 bp element prevented STAT5B binding but did not abrogate STAT5B-responsiveness. STAT5B was found to functionally cooperate with DNA-bound cJUN. The STAT5B/cJUN cooperation was only observed in Leydig cells and not in Sertoli or fibroblast cells, indicating that additional Leydig cell-enriched transcription factors are required. The STAT5B/cJUN cooperation was lost only when both STAT5B and cJUN elements were mutated. In addition to identifying the Star gene as a novel target for STAT5B in Leydig cells, our data provide important new insights into the mechanism of GH and STAT5B action in the regulation of Leydig cell function.
Collapse
Affiliation(s)
- Pierre-Olivier Hébert-Mercier
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec – Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Correspondence: Jacques J. Tremblay, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de recherche du CHU de Québec – Université Laval CHUL, 2705 Laurier Blvd, Québec City, QC, G1V 4G2, Canada.
| |
Collapse
|
50
|
Li SJ, Chang HM, Wang JH, Yang J, Leung PCK. The Interleukin-6 trans-signaling promotes progesterone production in human granulosa-lutein cells. Biol Reprod 2022; 106:953-967. [PMID: 35098302 DOI: 10.1093/biolre/ioac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
As a critical paracrine regulator of multiple reproductive functions, the cytokine interleukin-6 (IL-6) is expressed in human granulosa cells and can be detected in follicular fluid. At present, the functional role of IL-6 in the regulation of ovarian steroidogenesis is controversial. Moreover, the detailed molecular mechanisms by which IL-6 regulates the production of progesterone in human granulosa cells remain to be elucidated. In the present study, we used primary and immortalized human granulosa-lutein (hGL) cells to investigate the effects of IL-6 on progesterone synthesis and the underlying molecular mechanisms. We found that IL-6 trans-signaling by the combined addition of IL-6 and soluble IL-6 receptor (sIL-6Rα) induced StAR expression and progesterone production in hGL cells. Additionally, IL-6/sIL-6Rα activated the phosphorylation of Janus activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), and the cellular effects were abolished by AG490 (JAK2 inhibitor), C188–9 (STAT3 inhibitor), or siRNA-mediated knockdown of STAT3. IL-6 trans-signaling-induced activation of JAK2/STAT3 also upregulated the expression of suppressor of cytokine signaling 3 (SOCS3), which, in turn, negatively regulated the JAK2/STAT3 pathway by suppressing STAT3 activation and its downstream effects. Our findings provide insight into the molecular mechanisms by which IL-6 trans-signaling modulates steroidogenesis in hGL cells.
Collapse
Affiliation(s)
- Sai-Jiao Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jeremy H Wang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|