1
|
Chaubey PM, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS One 2016; 11:e0158033. [PMID: 27347675 PMCID: PMC4922570 DOI: 10.1371/journal.pone.0158033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Transport processes in the canalicular membrane are key elements in bile formation and are the driving force of the enterohepatic circulation of bile salts. The canalicular membrane is constantly exposed to the detergent action of bile salts. One potential element protecting the canalicular membrane from the high canalicular bile salt concentrations may be bile salt resistant microdomains, however additional factors are likely to play a role. To obtain more insights into the molecular composition of the canalicular membrane, the proteome of highly purified rat canalicular membrane vesicles was determined. Isolated rat canalicular membrane vesicles were stripped from adhering proteins, deglycosylated and protease digested before subjecting the samples to shot gun proteomic analysis. The expression of individual candidates was studied by PCR, Western blotting and immunohistochemistry. A total of 2449 proteins were identified, of which 1282 were predicted to be membrane proteins. About 50% of the proteins identified here were absent from previously published liver proteomes. In addition to ATP8B1, four more P4-ATPases were identified. ATP8A1 and ATP9A showed expression specific to the canalicular membrane, ATP11C at the bLPM and ATP11A in an intracellular vesicular compartment partially colocalizing with RAB7A and EEA1 as markers of the endosomal compartment. This study helped to identify additional P4-ATPases from rat liver particularly in the canalicular membrane, previously not known to be expressed in liver. These P4-ATPases might be contributing for maintaining transmembrane lipid homeostasis in hepatocytes.
Collapse
Affiliation(s)
- Pururawa Mayank Chaubey
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Lia Hofstetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
2
|
Ismair MG, Häusler S, Stuermer CA, Guyot C, Meier PJ, Roth J, Stieger B. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 2009; 49:1673-82. [PMID: 19197976 DOI: 10.1002/hep.22807] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The canalicular plasma membrane is constantly exposed to bile acids acting as detergents. Bile acids are essential to mediate release of biliary lipids from the canalicular membrane. Membrane microdomains (previously called lipid rafts) are biochemically defined by their resistance to detergent solubilization at cold temperature. We aimed to investigate the canalicular plasma membrane for the presence of microdomains, which could protect this membrane against the detergent action of bile acids. Highly purified rat liver canalicular plasma membrane vesicles were extracted with 1% Triton X-100 or 1% Lubrol WX at 4 degrees C and subjected to flotation through sucrose step gradients. Both detergents yielded detergent-resistant membranes containing the microdomain markers alkaline phosphatase and sphingomyelin. However, cholesterol was resistant to Lubrol WX solubilization, whereas it was only marginally resistant to solubilization by Triton X-100. The microdomain marker caveolin-1 was localized to the canalicular plasma membrane domain and was resistant to Lubrol WX, but to a large extent solubilized by Triton X-100. The two additional microdomain markers, reggie-1 and reggie-2, were localized to the basolateral and canalicular plasma membrane and were partially resistant to Lubrol WX but resistant to Triton X-100. The canalicular transporters bile salt export pump, multidrug resistance protein 2, multidrug resistance-associated protein 2, and Abcg5 were largely resistant to Lubrol WX but were solubilized by Triton X-100. CONCLUSION These results indicate the presence of two different types of microdomains in the canalicular plasma membrane: "Lubrol-microdomains" and "Triton-microdomains". "Lubrol-microdomains" contain the machinery for canalicular bile formation and may be the starting place for canalicular lipid secretion.
Collapse
Affiliation(s)
- Manfred G Ismair
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
3
|
Kälin N, Fernandes J, Hrafnsdóttir S, van Meer G. Natural phosphatidylcholine is actively translocated across the plasma membrane to the surface of mammalian cells. J Biol Chem 2004; 279:33228-36. [PMID: 15175345 DOI: 10.1074/jbc.m401751200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell surface of eukaryotic cells is enriched in choline phospholipids, whereas the aminophospholipids are concentrated at the cytosolic side of the plasma membrane by the activity of one or more P-type ATPases. Lipid translocation has been investigated mostly by using short chain lipid analogs because assays for endogenous lipids are inherently complicated. In the present paper, we optimized two independent assays for the translocation of natural phosphatidylcholine (PC) to the cell surface based on the hydrolysis of outer leaflet phosphoglycerolipids by exogenous phospholipase A2 and the exchange of outer leaflet PC by a transfer protein. We report that PC reached the cell surface in the absence of vesicular traffic by a pathway that involved translocation across the plasma membrane. In erythrocytes, PC that was labeled at the inside of the plasma membrane was translocated to the cell surface with a half-time of 30 min. This translocation was probably mediated by an ATPase, because it required ATP and was vanadate-sensitive. The inhibition of PC translocation by glibenclamide, an inhibitor of various ATP binding cassette transporters, and its reduction in erythrocytes from both Abcb1a/1b and Abcb4 knockout mice, suggest the involvement of ATP binding cassette transporters in natural PC cell surface translocation. The relative importance of the outward translocation of PC as compared with the well characterized fast inward translocation of phosphatidylserine for the overall asymmetric phospholipid organization in plasma membranes remains to be established.
Collapse
Affiliation(s)
- Nanette Kälin
- Department of Membrane Enzymology, CBLE, Institute of Biomembranes, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
4
|
Sprong H, van der Sluijs P, van Meer G. How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2001; 2:504-13. [PMID: 11433364 DOI: 10.1038/35080071] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations recruit cytosolic proteins involved in structural functions or signal transduction. We describe here how the distribution of lipids is directed by proteins, and, conversely, how lipids influence the distribution and function of proteins.
Collapse
Affiliation(s)
- H Sprong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam
| | | | | |
Collapse
|
5
|
Stanca C, Jung D, Meier PJ, Kullak-Ublick GA. Hepatocellular transport proteins and their role in liver disease. World J Gastroenterol 2001; 7:157-69. [PMID: 11819755 PMCID: PMC4723517 DOI: 10.3748/wjg.v7.i2.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- C Stanca
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital, CH-8091 Zurich/Switzerland
| | | | | | | |
Collapse
|
6
|
Pomorski T, Hrafnsdóttir S, Devaux PF, van Meer G. Lipid distribution and transport across cellular membranes. Semin Cell Dev Biol 2001; 12:139-48. [PMID: 11292380 DOI: 10.1006/scdb.2000.0231] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, the membranes of different intracellular organelles have different lipid composition, and various biomembranes show an asymmetric distribution of lipid types across the membrane bilayer. Membrane lipid organization reflects a dynamic equilibrium of lipids moving across the bilayer in both directions. In this review, we summarize data supporting the role of specific membrane proteins in catalyzing transbilayer lipid movement, thereby controlling and regulating the distribution of lipids over the leaflets of biomembranes.
Collapse
Affiliation(s)
- T Pomorski
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
7
|
Abstract
From the multiple mechanisms of cholestasis presented in this article, a unifying hypothesis may be deduced by parsimony. The disturbance of the flow of bile must inevitably lead to the intracellular retention of biliary constituents. Alternatively, the lack of specific components of bile unmasks the toxic potential of other components, as in the case of experimental mdr2 deficiency. In the sequence of events that leads to liver injury, the cytotoxic action of bile salts is pivotal to all forms of cholestasis. The inhibition of the bsep by drugs, sex steroids, or monohydroxy bile salts is an example of direct toxicity to the key mediator in canalicular bile salt excretion. In other syndromes, the dysfunction of distinct hepatocellular transport systems is the primary pathogenetic defect leading to cholestasis. Such dysfunctions include the genetic defects in PFIC and the direct inhibition of gene transcription by cytokines. Perturbations in the short-term regulation of transport protein function are exemplified by the cholestasis of endotoxinemia. The effect of bile salts on signal transduction, gene transcription, and transport processes in hepatocytes and cholangiocytes has become the focus of intense research in recent years. The central role of bile salts in the pathogenesis of cholestasis has, ironically, become all the more evident from the improvement of many cholestatic syndromes with oral bile salt therapy.
Collapse
Affiliation(s)
- G A Kullak-Ublick
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zurich, Switzerland.
| | | |
Collapse
|
8
|
Marx U, Lassmann G, Holzhütter HG, Wüstner D, Müller P, Höhlig A, Kubelt J, Herrmann A. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J 2000; 78:2628-40. [PMID: 10777759 PMCID: PMC1300852 DOI: 10.1016/s0006-3495(00)76807-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The transbilayer movement of short-chain spin-labeled and fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) phospholipid analogs in rat liver microsomes is measured by stopped-flow mixing of labeled microsomes with bovine serum albumin (BSA) solution. Extraction of analogs from the outer leaflet of microsomes to BSA can be directly monitored in conjunction with electron paramagnetic resonance or fluorescence spectroscopy by taking advantage of the fact that the signal of spin-labeled or fluorescent analogs bound to BSA is different from that of the analogs inserted into membranes. From the signal kinetics, the transbilayer movement and the distribution of analogs in microsomal membranes can be derived provided the extraction of analogs by BSA is much faster in comparison to the transbilayer movement of analogs. Half-times of the back-exchange for spin-labeled and fluorescent analogs were <3.5 and <9.5 s, respectively. The unprecedented time resolution of the assay revealed that the transbilayer movement of spin-labeled analogs is much faster than previously reported. The half-time of the movement was about 16 s or even less at room temperature. Transmembrane movement of NBD-labeled analogs was six- to eightfold slower than that of spin-labeled analogs.
Collapse
Affiliation(s)
- U Marx
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The alterations of hepatobiliary transport that occur in cholestasis can be divided into primary defects, such as mutations of transporter genes or acquired dysfunctions of transport systems that cause defective canalicular or cholangiocellular secretion, and secondary defects, which result from biliary obstruction. The dysfunction of distinct biliary transport systems as a primary cause of cholestasis is exemplified by the genetic defects in progressive familial intrahepatic cholestasis or by the direct inhibition of transporter gene expression by cytokines. In both, the hepatocellular accumulation of toxic cholephilic compounds causes multiple alterations of hepatocellular transporter expression. In addition, lack of specific components of bile caused by a defective transporter, as in the case of mdr2/MDR3 deficiency, unmasks the toxic potential of other components. The production of bile is critically dependent upon the coordinated regulation and function of sinusoidal and canalicular transporters, for instance of Na+-taurocholate cotransporting polypeptide (NTCP) and bile salt export pump (BSEP). Whereas the downregulation of the unidirectional sinusoidal uptake system NTCP protects the hepatocyte from further intracellular accumulation of bile salts, the relative preservation of canalicular BSEP expression serves to uphold bile salt secretion, even in complete biliary obstruction. Conversely, the strong downregulation of canalicular MRP2 (MRP, multidrug resistance protein) in cholestasis forces the hepatocyte to upregulate basolateral efflux systems such as MRP3 and MRP1, indicating an inverse regulation of basolateral and apical transporters The regulation of hepatocellular transporters in cholestasis adheres to the law of parsimony, since many of the cellular mechanisms are pivotally governed by the effect of bile salts. The discovery that bile salts are the natural ligand of the farnesoid X receptor has shown us how the major bile component is able to regulate its own enterohepatic circulation by affecting transcription of the genes critically involved in transport and metabolism.
Collapse
|
10
|
Abstract
Membrane lipids do not spontaneously exchange between the two leaflets of lipid bilayers because the polar headgroups cannot cross the hydrophobic membrane interior. Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other. In addition, cellular membranes contain proteins that facilitate a passive equilibration of lipids between the two membrane halves. In recent years, a growing number of proteins have been put forward as lipid translocators or facilitators. Unexpectedly, some of these appear to be required for efficient translocation of lipids lacking bulky headgroups, like cholesterol and fatty acids. The candidate lipid translocators identified so far belong to large protein families whose other members include pumps for amphiphilic molecules like bile salts and drugs.
Collapse
Affiliation(s)
- R J Raggers
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Jaeger H, Wilcox HG, Bitterle T, Mössner J, Berr F. Intracellular supply of phospholipids for biliary secretion: evidence for a nonvesicular transport component. Biochem Biophys Res Commun 2000; 268:790-7. [PMID: 10679284 DOI: 10.1006/bbrc.2000.2220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipids (PL) for biliary secretion could be supplied from the endoplasmic reticulum (ER) to the plasma membrane by cytosolic transfer proteins or transport vesicles. Therefore, we studied whether biliary secretions of PL and apolipoprotein A-I (apo A-I), as markers for the ER-to-Golgi vesicular transport pathway, are tightly coupled in isolated perfused rat livers with enhanced secretion (+60%) of PL after withdrawal of the cholesterol synthesis inhibitor pravastatin (0.1% of chow, fed for 7 days). Blocking agents dissociated the secretion of apo A-I and PL. Brefeldin A as well as cycloheximide inhibited biliary secretion of apo A-I (-52%; -68%), however, not of PL. Both bilirubin ditaurate and taurodehydrocholic acid reduced biliary secretion of PL (-27%; -79%), but not of apo A-I. The data support the concept that PL destined for biliary secretion bypass the vesicular transport pathway of apo A-I through the Golgi compartment, most likely via cytosolic transfer proteins.
Collapse
Affiliation(s)
- H Jaeger
- Department of Medicine II, University of Leipzig, Leipzig, D-04103, Germany
| | | | | | | | | |
Collapse
|
12
|
Verma A, Ahmed HA, Davis T, Jazrawi RP, Northfield TC. Demonstration and partial characterisation of phospholipid methyltransferase activity in bile canalicular membrane from hamster liver. J Hepatol 1999; 31:852-9. [PMID: 10580582 DOI: 10.1016/s0168-8278(99)80286-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Methylation of phosphatidylethanolamine to phosphatidylcholine predominantly takes place in mitochondrial-associated membrane and the endoplasmic reticulum of the liver. The transport of the phospholipids from endoplasmic reticulum to the bile canalicular membrane is via vesicular and protein transporters. In the bile canalicular membrane a flippase enzyme helps to transport phosphatidylcholine specifically to the biliary leaflet. The phosphatidylcholine then enters the bile where it accounts for about 95% of the phospholipids. We postulated that the increased proportion of phosphatidylcholine in the bile canalicular membrane and the bile compared to the transport vesicles may be due to a methyltransferase activity in the bile canalicular membrane which, using s-adenosyl methionine as the substrate, converts phosphatidylethanolamine on the cytoplasmic leaflet to phosphatidylcholine, which is transported to the biliary leaflet. The aim of our study was to demonstrate and partially characterise methyltransferase activity in the bile canalicular membrane. METHODS Organelles were obtained from hamster liver by homogenisation and separation by sucrose gradient ultracentrifugation. These, along with phosphatidylethanolamine, were incubated with radiolabelled s-adenosyl methionine. Phospholipids were separated by thin-layer chromatography and radioactivity was counted by scintigraphy. RESULTS We demonstrated methyltransferase activity (nmol of SAMe converted/mg of protein/h at 37 degrees C) in the bile canalicular membrane of 0.442 (SEM 0.077, n=8), which is more than twice that found in the microsomes at 0.195 (SEM 0.013, n=8). The Km and pH optimum for the methyltransferase in the bile canalicular membrane and the microsomes were similar (Km 25 and 28 microM, respectively, pH 9.9 for both). The Vmax was different at 0.358 and 0.168 nmol of SAMe converted/mg of protein/h for the bile canalicular membrane and the microsomes, respectively. CONCLUSION The presence of the methyltransferase activity in the bile canalicular membrane may be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- A Verma
- Division of Gastroenterology, Endocrinology & Metabolism, St. George's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|
13
|
Carrella M, Feldman D, Cogoi S, Csillaghy A, Weinhold PA. Enhancement of mdr2 gene transcription mediates the biliary transfer of phosphatidylcholine supplied by an increased biosynthesis in the pravastatin-treated rat. Hepatology 1999; 29:1825-32. [PMID: 10347126 DOI: 10.1002/hep.510290620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
An increase of biliary lipid secretion is known to occur in the rat under sustained administration of statin-type 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase inhibitors. The present study has addressed critical mechanisms of hepatic lipid synthesis and phosphatidylcholine (PC) biliary transport in the rat fed with a 0.075% pravastatin diet for 3 weeks. After treatment, biliary secretion of PC and cholesterol increased to 233% and 249% of controls, while that of bile salts was unchanged. Activity of cytidylyltransferase (CT), a major regulatory enzyme in the CDP-choline pathway of PC synthesis, was raised in both microsomal and cytosolic fractions (226% and 150% of controls), and there was an increase to 187% in the mass of active enzyme as determined by Western blot of microsomal protein using an antibody specific to CT. Cytosolic activity of choline kinase, another enzyme of the CDP-choline pathway, also increased to 175% of controls. In addition, there was an over eightfold increase in the HMG CoA reductase activity and mRNA. Thus, an increased PC and cholesterol synthetic supply to hepatocytes appeared as a basic mechanism for the biliary hypersecretion of these lipids. Notwithstanding the increased synthesis, hepatic PC content was unchanged, suggesting an enhanced transfer of this lipid into bile. Indeed, there was a sevenfold increase of multidrug resistance gene 2 (mdr2) gene mRNA coding for a main PC canalicular translocase. Thus, hypersecretion of biliary PC in the model studied can be explained by an up-regulation of mdr2 gene transcription and its P-glycoprotein product mediating the biliary transfer of PC supplied by an increased biosynthesis.
Collapse
Affiliation(s)
- M Carrella
- Cattedra di Gastroenterologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Udine, Italy
| | | | | | | | | |
Collapse
|
14
|
Wüstner D, Pomorski T, Herrmann A, Müller P. Release of phospholipids from erythrocyte membranes by taurocholate is determined by their transbilayer orientation and hydrophobic backbone. Biochemistry 1998; 37:17093-103. [PMID: 9836604 DOI: 10.1021/bi981608b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile salts mediate a specific release of phosphatidylcholine (PC) from the canalicular membrane into the bile fluid. We utilized human red blood cells (RBC) as a model system to study the release of endogenous phospholipids as well as phospholipid analogues from plasma membranes in the presence of the bile salt taurocholate (TC). Short- and long-chain fluorescent as well as spin-labeled analogues with various headgroups were chosen. RBC were labeled either on the exoplasmic or on the cytoplasmic leaflet with the analogues and incubated with various concentrations of TC. Analogues on the exoplasmic layer could be readily released by TC. Release was most efficient above the critical micellar concentration (CMC) of TC. Release was independent of the headgroup, but depended on the fatty acid chain length of the analogues; i.e., it was lower for long-chain than for short-chain labeled phospholipids. Analogues on the cytoplasmic leaflet were efficiently shielded from TC-mediated release. The preferential release of endogenous PC and sphingomyelin (SM) from the erythrocyte membrane above the CMC supports the conclusion that TC-mediated release of phospholipids occurs preferentially from the exoplasmic leaflet independent of their headgroup. However, the extent of release of endogenous phospholipids was significantly lower in comparison to that of analogues, endorsing the relevance of the hydrophobic backbone for bile salt mediated release of phospholipids. Implications for the mechanism of the release of PC from the canalicular membrane into the bile fluid are discussed.
Collapse
Affiliation(s)
- D Wüstner
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, Invalidenstrasse 43, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Gerloff T, Meier PJ, Stieger B. Taurocholate induces preferential release of phosphatidylcholine from rat liver canalicular vesicles. LIVER 1998; 18:306-12. [PMID: 9831358 DOI: 10.1111/j.1600-0676.1998.tb00810.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS/BACKGROUND Biliary phospholipid secretion involves predominant segregation of canalicular phosphatidylcholine into bile. We tested the hypothesis that micellar concentrations of the major physiologic bile salt taurocholate can preferentially solubilize phosphatidylcholine from the canalicular rat liver plasma membrane. METHODS Subcellular fractions from rat liver and kidney were isolated with standardized procedures, incubated in vitro with taurocholate or 3-[(3-cholamidopropyl)dimethylammonio]-propane-1-sulphonate (CHAPS) and released phospholipids determined after centrifugation. RESULTS After incubation of canalicular (cLPM) and basolateral (blLPM) rat liver plasma membrane vesicles with 6 and 8 mM taurocholate, the proportion of phosphatidylcholine released was about two-fold higher as compared with its relative contribution to the overall lipid composition of the membranes. Quantitatively, this taurocholate-induced preferential phosphatidylcholine release was about four-fold higher in cLPM (117 nmol) as compared with blLPM (28 nmol). Comparison of membranes from different organs showed that increased sphingomyelin content reduced taurocholate-induced phosphatidylcholine release. Furthermore, phosphatidylcholine release from cLPM did not fit an inverse exponential relationship between membrane sphingomyelin content and phosphatidylcholine release from different starting material, indicating that cLPM is especially prone to taurocholate-induced phosphatidylcholine release. In contrast, in rat liver microsomes and kidney brush border membranes, taurocholate released phospholipids in proportion of their membrane contents, indicating an unspecific membrane solubilizing effect only. Similarly, CHAPS had an unselective lipid solubilizing effects in cLPM and blLPM. CONCLUSION These results support the concept that the very last step of canalicular phospholipid secretion is mediated in vivo by bile salt-induced vesiculation of phosphatidylcholine-enriched microdomains from the outer leaflet of cLPM.
Collapse
Affiliation(s)
- T Gerloff
- Department of Internal Medicine, University Hospital, Zürich, Switzerland
| | | | | |
Collapse
|
16
|
Abstract
Identification of transporters involved in bile formation in liver is rapidly progressing. It is now clear that these transporters are also important in drug disposition in the body. Significant recent advances include the cloning of an ATP-dependent bile acid transporter, related to the p-glycoprotein family, in the canalicular plasma membrane of hepatocytes. In addition, liver transporter genes responsible for hereditary forms of cholestatic liver disease have been identified and found to belong to the superfamily of ATP-binding cassette proteins.
Collapse
Affiliation(s)
- B Stieger
- University Hospital, Department of Medicine, Zürich, Switzerland.
| | | |
Collapse
|
17
|
Deyrup-Olsen I, Luchtel DL. Secretion of mucous granules and other membrane-bound structures: a look beyond exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 183:95-141. [PMID: 9666566 DOI: 10.1016/s0074-7696(08)60143-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The substances that animals secrete at epithelial surfaces include not only small molecules and ions delivered by exocytosis, but also a wide variety of materials in membrane-bound form. The latter include mucous granules of pulmonate molluscs, milk fat globules, and products of apocrine and holocrine secretion. Contents include hydrophobic entities (e.g., lipids, hydrocarbons), protective substances (e.g., mucus), and potentially injurious substances (e.g., digestive enzymes, toxins). In some cases vesicles or granules perform significant functions through enzymatic or other properties of the membrane itself (e.g., mammalian prostasome). Much work is still needed to elucidate the ways in which cells release membrane-bound products and how these products are deployed. The current concentration of research effort on exocytosis as a secretory modus should not divert attention from the remarkable versatility of epithelial cells that are capable of utilizing a variety of ways besides exocytosis to transfer materials and information to the external environment.
Collapse
Affiliation(s)
- I Deyrup-Olsen
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- M Müller
- Department of Internal Medicine, University Hospital, Groningen, The Netherlands.
| | | |
Collapse
|
19
|
Fuchs M, Carey MC, Cohen DE. Evidence for an ATP-independent long-chain phosphatidylcholine translocator in hepatocyte membranes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G1312-9. [PMID: 9435556 DOI: 10.1152/ajpgi.1997.273.6.g1312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transport of phosphatidylcholine (PC) molecules across canalicular plasma membranes of the liver is essential for their secretion into bile. To test for evidence of protein-mediated translocation of natural long-chain PCs, we investigated whether hepatocyte membrane subfractions reconstituted into proteoliposomes promoted transmembrane translocation of radiolabeled PCs. Translocation of PC molecules in proteoliposomes was measured by an assay that employed multilamellar acceptor vesicles and the specific PC transfer protein purified from liver. As inferred from the percentage of radiolabel removed from proteoliposomes, facilitated PC translocation occurred in microsomes and canalicular and basolateral plasma membranes from rat liver but not in erythrocyte ghosts, microsomes, homogenates of COS and H35 cells, or Xenopus laevis oocytes. Heat denaturation in the presence of 2-mercaptoethanol and Pronase digestion of solubilized membrane proteins inhibited translocation. In contrast to the mdr2 gene product (Mdr2), which promotes ATP-dependent, verapamil-inhibitable PC translocation, ATP did not enhance and verapamil failed to block PC translocation. These data support the possibility that an ATP-independent PC translocator, possibly distinct from Mdr2, may be present in hepatocyte canalicular plasma membranes.
Collapse
Affiliation(s)
- M Fuchs
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
20
|
Miura H, Tazuma S, Yamashita G, Hatsushika S, Kajiyama G. Effect of cholestasis induced by organic anion on the lipid composition of hepatic membrane subfractions and bile in rats. J Gastroenterol Hepatol 1997; 12:734-9. [PMID: 9430038 DOI: 10.1111/j.1440-1746.1997.tb00361.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several organic anions inhibit the secretion of cholesterol and phospholipid into bile without affecting total bile acid secretion (uncoupling). The uncoupling induced by sulphobromophthalein (BSP) alters the fatty acid composition of biliary lecithin. The purpose of this study was to investigate the relationship between the lipid composition of bile and of liver subcellular membrane fractions during BSP-induced uncoupling. After depletion of the bile salt pool, rats fitted with a bile duct cannulus were infused with sodium taurocholate given either alone or with BSP. Bile was collected and liver microsomes and canalicular membranes were isolated for analysis of lipid composition. In bile, uncoupling increased the cholesterol/phospholipid ratio (C/P ratio) and the saturated/unsaturated fatty acid ratio (S/U ratio) in phosphatidylcholine. The C/P ratio was increased in the canalicular membrane, but the membrane phosphatidylcholine S/U ratio was decreased during uncoupling. In microsomes, the S/U ratio of membrane phosphatidylcholine was slightly increased, but the C/P ratio was unaffected during uncoupling. These results support the hypothesis that an increased secretion of hydrophobic phosphatidylcholine species from the canalicular membrane into bile reduces the proportion of hydrophobic phosphatidylcholine species in the canalicular membrane during uncoupling. The decreased contribution of hydrophobic phosphatidylcholine species may ameliorate the decrease in membrane fluidity resulting from the accumulation of cholesterol in the canalicular membrane and stimulate the synthesis of hydrophobic phosphatidylcholine species in the microsomes.
Collapse
Affiliation(s)
- H Miura
- First Department of Internal Medicine, Hiroshima University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
21
|
Berr F, Jaeger HC, Bitterle T, Mössner J. Evidence for secretory coupling of phosphatidylcholine molecular species to cholesterol in rat bile. J Hepatol 1997; 26:1069-78. [PMID: 9186838 DOI: 10.1016/s0168-8278(97)80116-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Hepatocytes secrete cholesterol into bile within lipid vesicles of selected phosphatidylcholines, mainly palmitoyl-linoleoyl-phosphatidylcholines, palmitoleoyl-oleoyl-phosphatidylcholines and palmitoleoyl-arachidonyl-phosphatidylcholines, which could in part determine the secreted amount of cholesterol. AIMS To study whether increased secretion of cholesterol, as caused by manipulation of cholesterol synthesis rate, changes the composition of phosphatidylcholines secreted in bile. METHODS Livers from control rats (Control), rats fed pravastatin for 7 days (Pravastatin) and livers isolated 5-7 or 8-11 hours after pravastatin had been withdrawn (Rebound5-7h; Rebound8-11h) were isolated perfused during infusion of taurocholic acid (400 nmol/min/100 g rat), to study biliary secretion of bile salts, cholesterol and phosphatidylcholine molecular species. RESULTS Bile salt secretion rate was similar in all four groups, secretion of cholesterol and phosphatidylcholines was similar in Control and Pravastatin. With duration of pravastatin withdrawal the secretion rates of phosphatidylcholine and cholesterol progressively increased by +38% and +122% in Rebound5-7h and by +70% and +300% in Rebound8-11h (vs Control), respectively. In parallel, the secretion rates of palmitoleoyl-oleoyl- and palmitoleoyl-arachidonyl-phosphatidylcholines rose up to sixfold and twofold, respectively, while the secretion rate of palmitoyl-linoleoylphospatidylcholines remained constant. The secretion rate of cholesterol was correlated (p < 0.01) with the secretion rates of palmitoleoyl-oleoyl-phosphatidylcholines (r = 0.83) and palmitoleoyl-arachidonyl-phosphatidylcholines (r = 0.81). Bilirubin ditaurate or taurodehydrocholate reduced (p < 0.05) biliary secretion of phosphatidylcholines (-33%; -72%) without changes in cholesterol/phosphatidylcholine secretory ratio or phosphatidylcholine species. CONCLUSIONS The secretion of the major molecular species of phosphatidylcholine in bile could be coregulated with the amount of cholesterol destined for biliary secretion.
Collapse
Affiliation(s)
- F Berr
- Dept. of Medicine II, University of Leipzig, Germany
| | | | | | | |
Collapse
|
22
|
MDR2 P-glycoprotein-mediated lipid secretion and its relevance to biliary drug transport. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00499-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Hepatobiliary elimination of cationic drugs: the role of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00498-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Bjłrnbeth BA, Villanger O, Christensen T, Lyberg T, Raeder MG. Large intravenous loads of bilirubin photoconversion products, in contrast to bilirubin, do not cause cholestasis in bile acid-depleted pigs. Scand J Gastroenterol 1997; 32:246-53. [PMID: 9085462 DOI: 10.3109/00365529709000202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Large intravenous bilirubin infusions in bile acid-depleted pigs (BADP) destroy hepatocyte canalicular membrane microvilli (CMV) and cause cholestasis. This study examines whether bilirubin photoconversion product infusions do the same. METHODS The effects of systemic infusion of 135 mumol.kg-1 body weight bilirubin photoconversion products on CMV density and choleretic response to intraportal bile acid infusion were studied in BADP. Furthermore, the effects of 135 mumol.kg-1 b.w. bilirubin infusion, either through an arteriovenous bilirubin photoconversion shunt device (PCD) or intravenously, were measured in PCD-connected BADP. RESULTS Intravenous bilirubin photoconversion product infusions affected neither the CMV density nor the choleretic response to cholic acid infusion, and neither did bilirubin infusion through the PCD. In contrast, intravenous bilirubin infusion caused canalicular injury and cholestasis in four of six PCD-connected BADP. CONCLUSION Bilirubin photoconversion products do not destroy CMV or cause cholestasis in BADP. A bilirubin photoconversion shunt device can confer cholestasis protection to bilirubin-loaded BADP.
Collapse
Affiliation(s)
- B A Bjłrnbeth
- Institute for Experimental Medical Research, Ulleval Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
25
|
Cornacchia L, Domdey H, Mössner J, Berr F. Expression of a non-MDR2-coded liver phosphatidylcholine membrane transport protein in Xenopus laevis oocytes. Biochem Biophys Res Commun 1997; 231:277-82. [PMID: 9070263 DOI: 10.1006/bbrc.1997.6081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphatidylcholines (PC) are secreted into the bile via a membrane transport protein(s). Recently, evidence for ATP-dependent mdr2-encoded PC transport as well as for carrier-mediated PC transport had been reported. Therefore, we investigated whether mdr2 P-glycoprotein is involved in the transport of a water-soluble short chain phosphatidylcholine analogue L-alpha-dibutyroyl-PC (diC4PC) induced by expression of liver mRNA in Xenopus laevis oocytes. Expression of mouse and rat mdr2 cRNA did not result in diC4PC net uptake in Xenopus laevis oocytes. By contrast oocytes showed a similar carrier-mediated uptake activity for diC4PC after injection of mouse, rat and human liver total mRNA (Km 7.7, 9.6, and 11.6 mM). Antisense inhibition of mdr2 mRNA expression increased diC4PC uptake induced by total liver mRNA from mouse and rat. The present data prove the existence of a specific mRNA for a non-mdr2-coded cell membrane PC carrier in mouse, rat, and human liver which exhibits similar transport affinity for diC4PC as the PC carrier in rat liver canalicular membranes.
Collapse
Affiliation(s)
- L Cornacchia
- Department of Medicine II, University of Leipzig, Germany
| | | | | | | |
Collapse
|
26
|
Verkade HJ, Kuipers F, Domingo N, Havinga R, Léonardi J, Vonk RJ, Lafont H. Biliary secretion of anionic polypeptide fraction is not coupled to that of phospholipids and cholesterol in rats. Hepatology 1997; 25:38-47. [PMID: 8985262 DOI: 10.1002/hep.510250108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Anionic polypeptide fraction (APF) is a phospholipid- and calcium-binding apoprotein present in animal and human bile, predominantly associated with cholesterol-phospholipid vesicles. In bile, the protein may play a physiological role in preventing precipitation of calcium salts. APF has also been suggested to be of regulatory importance in the process of biliary lipid secretion. The aim of the present study was to investigate whether the secretion rates of APF and that of biliary lipids are coupled, which would support a physiological role of APF in biliary lipid secretion. Biliary secretion rates of bile acids, phospholipids, and cholesterol were experimentally modulated in three different rat models. Secretion rates of APF were compared with that of bile acids, lipids, and with that of two other biliary proteins, the lysosomal protein beta-glucuronidase and apolipoprotein A-I (apo A-I). Model 1: diurnal variation in bile formation during chronic bile diversion; model 2: specific inhibition of biliary phospholipid and cholesterol, but not of bile acid secretion by infusion of the organic anion, sulfated lithocholyltaurine; model 3: acute interruption of the enterohepatic circulation in unanesthetized rats. The diurnal variation in bile formation involved a parallel increase of the biliary secretion rates of bile acids (+56 +/- 7%, mean +/- SD), phospholipids (+53 +/- 29%), cholesterol (+73 +/- 54%), and APF (+72 +/- 86%) during the night phase of the cycle. Infusion of sulfated lithocholyltaurine inhibited biliary phospholipid and cholesterol secretion (-78 +/- 15%, and -54 +/- 25%, respectively), but did not affect biliary bile acid or APF secretion rate (-19 +/- 14%, and +12 +/- 107%, respectively). Within 4 hours after interruption of the enterohepatic circulation, bile secretion rates for bile acids (-92 +/- 3%), phospholipids (-74 +/- 13%), cholesterol (-64 +/- 8%), and APF (-58 +/- 24%) rapidly declined to a new steady-state level. Correlation analysis using the data from the three experimental models indicated that the biliary secretion rate of APF was independent from that of phospholipids, cholesterol, beta-glucuronidase, and, presumably, apolipoprotein A-I, and positively correlated to bile acid secretion rate and bile flow. The data from three experimental models indicate that the biliary secretion rates of APF and of phospholipids/cholesterol are not coupled and, therefore, do not support a direct physiological role of APF secretion in biliary lipid secretion. APF secretion into bile may, at least partially, be controlled by biliary bile acid secretion.
Collapse
Affiliation(s)
- H J Verkade
- Department of Pediatrics, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Strandvik B, Svensson E, Seyberth HW. Prostanoid biosynthesis in patients with cystic fibrosis. Prostaglandins Leukot Essent Fatty Acids 1996; 55:419-25. [PMID: 9014220 DOI: 10.1016/s0952-3278(96)90125-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The urinary excretion rate (ng/h/1.73 m2) of prostanoids was determined with a capillary gas-liquid chromatographic mass spectrometric method in 19 patients with cystic fibrosis (CF) aged 1-29 years. Patients with CF showed an increased excretion of prostaglandin E2 metabolites (PGE-M) and thromboxane B2 and its metabolites at all ages. An imbalance in the excretion pattern of thromboxane B2 metabolites also suggested a relative impairment of beta-oxidation. There was no increased excretion of dinor-6-keto-PGF1 alpha, indicating normal prostacyclin biosynthesis. No correlation was found to genotype, clinical score, lung function or bacterial colonization but a significant negative relation was found between the main prostanoids in the urine and serum phospholipid levels of essential fatty acids. The results show that, contrary to the generally accepted decrease of prostanoid excretion in essential fatty acid deficiency, patients with CF increase their production parallel to the development of the deficiency. Since prostanoid synthesis is rate limited by arachidonic acid release, our data support a previously presented hypothesis about a pathological regulation of the release of arachidonic acid in CF.
Collapse
Affiliation(s)
- B Strandvik
- Department of Pediatrics, Faculty of Medicine, Göteborg University, Sweden
| | | | | |
Collapse
|
28
|
van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P, van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996; 87:507-17. [PMID: 8898203 DOI: 10.1016/s0092-8674(00)81370-7] [Citation(s) in RCA: 614] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human MDR1 P-glycoprotein (Pgp) extrudes a variety of drugs across the plasma membrane. The homologous MDR3 Pgp is required for phosphatidylcholine secretion into bile. After stable transfection of epithelial LLC-PK1 cells, MDR1 and MDR3 Pgp were localized in the apical membrane. At 15 degrees C, newly synthesized short-chain analogs of various membrane lipids were recovered in the apical albumin-containing medium of MDR1 cells but not control cells. MDR inhibitors and energy depletion reduced apical release. MDR3 cells exclusively released a short-chain phosphatidylcholine. Since no vesicular secretion occurs at 15 degrees C, the short-chain lipids must have been translocated by the Pgps across the plasma membrane before extraction into the medium by the lipid-acceptor albumin.
Collapse
Affiliation(s)
- A van Helvoort
- Department of Cell Biology, Faculty of Medicine and Institute of Biomembranes, Universiteit Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Intracellular traffic and plasma membrane secretion of small organic solutes involved in hepatocellular bile formation. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/s0305-0491(96)00181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Kwon Y, Kamath AV, Morris ME. Inhibitors of P-glycoprotein-mediated daunomycin transport in rat liver canalicular membrane vesicles. J Pharm Sci 1996; 85:935-9. [PMID: 8877882 DOI: 10.1021/js9600540] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
P-glycoprotein (P-gp), the multidrug resistance (MDR) gene product, is exclusively located on the canalicular membrane of hepatocytes. Recent studies using isolated rat canalicular liver plasma membrane (cLPM) vesicles indicate that daunomycin (DNM) is a substrate for the ATP-dependent P-gp efflux system in the rat liver. The isoforms of P-gp present in cLPM and in cancer cell lines differ in that the major form present in the liver represents the gene product of mdr2 in mice (MDR3 in humans; class III) while the isoform of P-gp in cancer cells is the gene product of mdr1 in mice (MDR1 in humans, class I). The objective of this study was to examine the inhibitory effects of various organic compounds, most of which have been studied previously in MDR cancer cells, on P-gp-mediated [3H]DNM uptake into cLPM. Also, the stereospecificity of P-gp for its substrates was investigated by comparing the inhibitory effects of the enantiomers and the racemic mixtures of verapamil and propranolol. DNM exhibited ATP-dependent active transport into rat liver cLPM with a Km of 26.8 +/- 13.4 microM and a Vmax of 4.9 +/- 0.8 nmol/45 s/mg of protein (n = 4). ADP, AMP, and a nonhydrolyzable ATP analogue did not increase DNM transport over the control value. Thirty-one potential inhibitors were examined; only acridine orange, doxorubicin, verapamil, propranolol, phosphatidylcholine, beta-estradiol glucuronide, and DNM itself showed statistically significant inhibition of [3H]DNM uptake into cLPM. These results suggest that only a limited number of substrates bind to or are transported across the hepatic canalicular membrane via P-gp. Phosphatidylcholine, a substrate for the gene product of the class III P-gp gene, produced significant inhibition of [3H]DNM transport (30.6% at a 10-fold-higher substrate concentration), suggesting that transport may be mediated, at least in part, by this P-gp gene product. There were no statistically significant differences in the inhibitory effects of the enantiomers and racemate of verapamil on [3H]DNM transport into cLPM, but the enantiomers of propranolol exhibited stereospecific inhibition of DNM transport. (R)-(+)-Propranolol produced a statistically significant inhibition of [3H]DNM transport similar to that observed with the racemic mixture, while (S)(-)-propranolol showed no inhibition. These findings suggest that bile canalicular P-gp may exhibit stereospecificity of binding or transport for its substrates.
Collapse
Affiliation(s)
- Y Kwon
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, Amherst 14260, USA
| | | | | |
Collapse
|
31
|
Ohshima A, Cohen BI, Ayyad N, Mosbach EH. Effect of a synthetic androgen on biliary lipid secretion in the female hamster. Lipids 1996; 31:879-86. [PMID: 8869891 DOI: 10.1007/bf02522984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was designed to elucidate the effect of the synthetic androgen, methyltestosterone, on bile flow and biliary lipid secretion in female hamsters. Animals were divided into four groups and fed the following diets: group 1, lithogenic diet for three weeks; group 2, lithogenic diet + 0.05% methyltestosterone for three weeks; group 3, lithogenic diet for six weeks; group 4, lithogenic diet + 0.05% methyltestosterone for six weeks. At the end of each experimental period, the hamsters were operated on to establish external biliary fistulas. During the depletion of the endogenous bile acid pool (for two hours), the basal bile flow of group 4 was significantly smaller than that of group 3. Basal bile acid output was significantly lower in the methyltestosterone-fed groups 2 and 4 than in control groups 1 and 3. In contrast, groups 2 and 4 secreted more cholesterol than groups 1 and 3. Group 4 had a higher ratio of cholesterol output to phospholipid output than group 3. Increasing doses of taurocholate were infused after the bile acid depletion period, and it was found that methyltestosterone did not change the bile acid independent bile flow. The increments in cholesterol or phospholipid output induced per increment of bile acid output (linkage coefficients) were analyzed by linear regression. The methyltestosterone-fed groups (groups 2 and 4) had a higher linkage coefficient of cholesterol output to bile acid output than the control groups (groups 1 and 3). The linkage coefficients of phospholipid output to bile acid output of groups 2 and 4 were also higher compared to groups 1 and 3. The linkage coefficient of cholesterol output to phospholipid output of group 2 was higher than that of group 1. These results suggest that methyltestosterone stimulated the cosecretion mechanism of cholesterol and phospholipid in bile associated with an increasing ratio of cholesterol to phospholipid. In conclusion, the synthetic androgen, methyltestosterone, caused a decrease in basal bile flow and bile acid secretion, and an increase in basal cholesterol secretion and the biliary cholesterol-to-phospholipid ratio. These findings explain, in part, how methyltestosterone intensifies the formation of cholesterol gallstones in female hamsters.
Collapse
Affiliation(s)
- A Ohshima
- Department of Surgery, Beth Israel Medical Center, New York 10003, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
ATP-dependent phosphatidylcholine translocation in rat liver canalicular plasma membrane vesicles. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42021-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Oude Elferink RP, Ottenhoff R, van Wijland M, Frijters CM, van Nieuwkerk C, Groen AK. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42016-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Abstract
The liver was used widely in early studies of polarised transport but has been largely overlooked in recent years, mostly because of the development of epithelial cell lines which provide more tractable experimental systems. The majority of membrane proteins and lipids reach the hepatocyte apical membrane by transcytosis and it remains unclear whether there is a direct route for apical targeting, although the pathways present have yet to be fully characterised. The recent development of systems that allow hepatocyte transport processes to be studied in culture and the observation that transcytosis can be significantly stimulated under physiological conditions suggest that hepatocytes have a role to play in future studies of polarised transport. This review discusses the known features of polarised membrane traffic in hepatocytes and contrasts them with the characteristics of vesicular transport in other epithelial cell types.
Collapse
Affiliation(s)
- J C Wilton
- Department of Pre-Clinical Sciences, University of Leicester, UK
| | | |
Collapse
|
36
|
Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39199-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Ahmed H, Jazrawi R, Goggin P, Dormandy J, Northfield TC. Intrahepatic biliary cholesterol and phospholipid transport in humans: effect of obesity and cholesterol cholelithiasis. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41092-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
38
|
Oude Elferink RP, Groen AK. The role of mdr2 P-glycoprotein in biliary lipid secretion. Cross-talk between cancer research and biliary physiology. J Hepatol 1995; 23:617-25. [PMID: 8583153 DOI: 10.1016/0168-8278(95)80071-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Oude Elferink RP, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:215-68. [PMID: 7640297 DOI: 10.1016/0304-4157(95)00006-d] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R P Oude Elferink
- Department of Gastrointestinal and Liver Diseases, Academic Medical Center, AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Roman ID, Thewles A, Coleman R. Fractionation of livers following diosgenin treatment to elevate biliary cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1255:77-81. [PMID: 7893741 DOI: 10.1016/0005-2760(94)00212-h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The plant saponin, diosgenin, is known to induce a marked increase in biliary cholesterol/phospholipid ratio. We reasoned that putative biliary lipid supply vesicles might be similarly enriched with cholesterol. Seven-day diosgenin feeding to rats resulted in significantly increased biliary cholesterol and cholesterol/phospholipid ratio, but had no effect on total cholesterol or phospholipid content of the liver. Subcellular fractionation of livers showed no selective increase in any fraction (nuclear, mitochondrial, lysosomal, microsomal) of the homogenate. Further subfractionation of microsomal or nuclear (plasma membrane) fractions also showed no difference between control and diosgenin groups. Thus, no intracellular vesicle fraction has been identified with the provision of the enhanced biliary cholesterol and the results are discussed in terms of the possible involvement of cytosolic lipid-binding proteins as putative lipid carriers to the canalicular membrane as an alternative to the presence of the lipid in lipid supply vesicles.
Collapse
Affiliation(s)
- I D Roman
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
42
|
Shustik C, Dalton W, Gros P. P-glycoprotein-mediated multidrug resistance in tumor cells: biochemistry, clinical relevance and modulation. Mol Aspects Med 1995; 16:1-78. [PMID: 7783568 DOI: 10.1016/0098-2997(94)00040-a] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C Shustik
- Department of Medicine, McGill Cancer Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
43
|
|
44
|
Farge E. Scale-dependent elastic response of closed phospholipid bilayers to transmembrane molecular pumping activity: a key for exo-endocytosis physiological process. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf02462030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
|
46
|
Cohen DE, Leonard MR, Carey MC. In vitro evidence that phospholipid secretion into bile may be coordinated intracellularly by the combined actions of bile salts and the specific phosphatidylcholine transfer protein of liver. Biochemistry 1994; 33:9975-80. [PMID: 8061007 DOI: 10.1021/bi00199a021] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using model systems, we explored a potential function of hepatic phosphatidylcholine transfer protein to extract biliary-type phosphatidylcholines from intracellular membranes (e.g., smooth endoplasmic reticulum) and deliver them to canalicular plasma membranes where biliary secretion occurs. We measured transfer rates of parinaroyl phosphatidylcholine, a naturally fluorescent phospholipid, from small unilamellar vesicles composed of sn-1 palmitoyl, sn-2 parinaroyl phosphatidylcholine, and egg yolk phosphatidylcholine (molar ratio 75:25) wherein the fluorophore is self-quenched to small unilamellar vesicles composed of phosphatidylethanolamine, sphingomyelin, phosphatidylserine, phosphatidylinositol, and cholesterol (molar ratios 22:22:10:8:38) representing model microsomal and canalicular plasma membranes, respectively. Following addition of phosphatidylcholine transfer protein (purified from bovine liver), fluorescence intensity increased exponentially indicating net phosphatidylcholine transfer from donor to acceptor vesicles. Submicellar concentrations of a wide hydrophobicity range of common and uncommon taurine and glycine conjugated bile salts species (anionic steroid detergent-like molecules), sodium taurofusidate (a conjugated fungal bile salt analog), and sodium dodecyl sulfate and octylglucoside, anionic and nonionic straight chain detergents, respectively, markedly stimulated phosphatidylcholine transfer protein activity. This 40-115-fold effect was most pronounced for the common bile salts and correlated positively with bile salt hydrophobicity. Thermodynamic analysis of net transfer revealed that the rate-limiting step was extraction of phosphatidylcholine molecules from donor vesicles and that bile salts facilitated their capture by enhancing both phosphatidylcholine transfer protein binding as well as perturbing phospholipid packing in vesicle bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D E Cohen
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
47
|
Leveille-Webster CR, Arias IM. Mdr 2 knockout mice link biliary phospholipid deficiency with small bile duct destruction. Hepatology 1994; 19:1528-31. [PMID: 7910576 DOI: 10.1002/hep.1840190631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C R Leveille-Webster
- Department of Physiology, Tufts University of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
48
|
Hofmann AF. Pharmacology of ursodeoxycholic acid, an enterohepatic drug. SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY. SUPPLEMENT 1994; 204:1-15. [PMID: 7824870 DOI: 10.3109/00365529409103618] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pharmacokinetics, metabolism, as well as the pharmacodynamic actions of ursodeoxycholic acid are reviewed and related to its physicochemical properties. Ursodeoxycholic acid is absorbed incompletely because of its low aqueous solubility. After absorption, it is conjugated with glycine or taurine and circulates with the endogenous bile acids. At usual doses (8-10 mg/kg/day), the pool of ursodeoxycholyl conjugates constitutes 30-60% of circulating bile acids. Ursodeoxycholic acid is metabolized by intestinal bacteriae to lithocholic acid which does not accumulate in the circulating bile acids because of efficient hepatic sulfation. Administration of ursodeoxycholic acid causes decreased cholesterol absorption, increased bile acid biosynthesis, and decreased biliary cholesterol secretion. Ursodeoxycholic acid is a choleretic agent, as all bile acids, but differs from other dihydroxy-bile acids in being non-cytotoxic because it has less affinity for membranes, and when present at micellar concentrations does not solubilize membranes. Chronic administration of ursodeoxycholic acid appears to increase canalicular transport.
Collapse
Affiliation(s)
- A F Hofmann
- Dept. of Medicine, University of California, San Diego, La Jolla 92093-0813
| |
Collapse
|
49
|
Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993; 75:451-62. [PMID: 8106172 DOI: 10.1016/0092-8674(93)90380-9] [Citation(s) in RCA: 1040] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two types of P-glycoprotein have been found in mammals: the drug-transporting P-glycoproteins and a second type, unable to transport hydrophobic anticancer drugs. The latter is encoded by the human MDR3 (also called MDR2) and the mouse mdr2 genes, and its tissue distribution (bile canalicular membrane of hepatocytes, B cells, heart, and muscle) suggests a specialized metabolic function. We have generated mice homozygous for a disruption of the mdr2 gene. These mice develop a liver disease that appears to be caused by the complete inability of the liver to secrete phospholipid into the bile. Mice heterozygous for the disrupted allele had no detectable liver pathology, but half the level of phospholipid in bile. We conclude that the mdr2 P-glycoprotein has an essential role in the secretion of phosphatidylcholine into bile and hypothesize that it may be a phospholipid transport protein or phospholipid flippase.
Collapse
Affiliation(s)
- J J Smit
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Devaux PF. Lipid transmembrane asymmetry and flip-flop in biological membranes and in lipid bilayers. Curr Opin Struct Biol 1993. [DOI: 10.1016/0959-440x(93)90072-s] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|