1
|
Wang D, Li M, Yuan C, Fang Y, Zhang Z. Guaiacol as a natural melanin biosynthesis inhibitor to control northern corn leaf blight. PEST MANAGEMENT SCIENCE 2022; 78:4557-4568. [PMID: 35833811 DOI: 10.1002/ps.7075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The natural 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis inhibitors (MBIs) are one of the promising approaches to the integrated management of plant diseases but have received scarce attention until now. Herein, to explore the natural DHN MBIs used in the control of northern corn leaf blight (NCLB), a library of 53 essential oil compounds was used to screen the MBIs against Exserohilum turcicum, the causal pathogen of NCLB, using tricyclazole as a reference compound. RESULTS The results of morphological change in the colony, thermogravimetric analysis, ultraviolet-visible spectroscopy, and transmission electron microscopy confirmed that guaiacol could effectively inhibit the melanin production at 50 μg/mL under in vitro conditions. The in vitro bioassay results indicated that this inhibition effect was concentration-dependent and the minimum inhibition concentration of guaiacol was 50 μg/mL. The in vivo experimental results demonstrated that guaiacol significantly inhibited appressorium formation and penetration on corn leaf sheaths at the concentration of 500 μg/mL. The pot experiment results revealed that there were no differences between guaiacol (500 μg/mL) and tricyclazole (100 μg/mL) in control efficacy. The enzymatic assay suggested that guaiacol might exert the activity through inhibiting DHN polymerization to form melanins, which was distinct from tricyclazole. CONCLUSIONS Taken together, this study screened out guaiacol as a natural MBI from 53 essential oil compounds and verified its effectiveness in the control of NCLB at 500 μg/mL. Above all, this research opened an avenue for exploring natural DHN MBIs in the integrated management of plant diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Min Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Chunxia Yuan
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Yali Fang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
2
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
3
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|
4
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
5
|
Lu Z, Lightcap IV, Tennyson AG. An organometallic catalase mimic with exceptional activity, H 2O 2 stability, and catalase/peroxidase selectivity. Dalton Trans 2021; 50:15493-15501. [PMID: 34473153 DOI: 10.1039/d1dt02002a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-porphyrin and -salen redox therapeutics catalyze redox reactions involving O2˙-, H2O2, and other reactive oxygen species, thereby modulating cellular redox states. Many of these complexes perform catalase reactions via high-valent Mn-oxo or -hydroxo intermediates that oxidize H2O2 to O2, but these intermediates can also oxidize other molecules (e.g., thiols), which is peroxidase reactivity. Whether catalase or peroxidase reactivity predominates depends on the metal-ligand set and the local environment, complicating predictions of what therapeutic effects (e.g., promoting vs. suppressing apoptosis) a complex might produce in a given disease. We recently reported an organoruthenium complex (Ru1) that catalyzes ABTS˙- reduction to ABTS2- with H2O2 as the terminal reductant. Given that H2O2 is thermodynamically a stronger oxidant than ABTS˙-, we reasoned that the intermediate that reduced ABTS˙- would also be able to reduce H2O2 to H2O. Herein we demonstrate Ru1-catalyzed H2O2 disproportionation into O2 and H2O, exhibiting an 8,580-fold faster catalase TOF vs. peroxidase TOF, which is 89.2-fold greater than the highest value reported for a Mn-porphyin or -salen complex. Furthermore, Ru1 was 120-fold more stable to H2O2 than the best MnSOD mimic (TON = 4000 vs. 33.4) Mechanistic studies provide evidence that the mechanism for Ru1-catalyzed H2O2 disproportionation is conserved with the mechanism for ABTS˙- reduction. Therapeutic effects of redox catalysts can be predicted with greater accuracy for catalysts that exhibit exclusively catalase activity, thereby facilitating the development of future redox therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Zhuomin Lu
- Department of Chemistry, Clemson University, Clemson University, USA.
| | - Ian V Lightcap
- Center for Sustainable Energy, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew G Tennyson
- Department of Chemistry, Clemson University, Clemson University, USA.
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
Li H, Deng Y, Du S, Liu C, Li K, Xue X, Xu H, Zhang Y, Yi T, Gao X. Asymmetric Sulfoxidation of Thioether Catalyzed by Soybean Pod Shell Peroxidase to Form Enantiopure Sulfoxide in Water-in-Oil Microemulsions: A Kinetic Model. Chem Asian J 2021; 16:2075-2086. [PMID: 34121354 DOI: 10.1002/asia.202100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Esomeprazole with chiral sulfoxides structure is used to treat gastric ulcer disease. Soybean pod shell peroxidase (SPSP) is a peroxidase extracted from soybean pods shells which are one of the most abundant natural resources in the world. In the production of chiral sulfoxides catalyzed by SPSP, it is very important to establish the reaction kinetic model and explore the reaction mechanism for the development of the process, however, there is no report on the establishment of the model. Asymmetric sulfoxidation reactions catalyzed by SPSP in water-in-oil microemulsions were carried out, and the King-Altman approach was used to establish a kinetic model. A yield of 91% and e.e. value of 96% for esomeprazole were obtained at the activity of SPSP of 3200 U ml-1 and 50 °C for 5 h. The mechanism with a two-electron reduction of SPSP-I is accompanied with a single-electron transfer to SPSP-I and nonenzymatic reactions, indicating that three concomitant sub-mechanisms contribute to the asymmetric oxidation involving five enzymatic and two nonenzymatic reactions, which can represent the asymmetric sulfoxidation of organic sulfides to form enantiopure sulfoxides. With 5.44% of the average relative deviation, a kinetic model fitting experimental data was developed. The enzymatic reactions may follow ping-pong mechanism with substrate inhibition of H2 O2 and product inhibition of esomeprazole, while nonenzymatic reactions follow a power law. Those results indicate that SPSP with a lower cost and higher thermal stability may be used as an effective substitute for horseradish peroxidase.
Collapse
Affiliation(s)
- Huiling Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yashan Deng
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - ShanShan Du
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Cui Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Kaiyuan Li
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Xiao Xue
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Hui Xu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio, 43210, USA
| | - Tingting Yi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong St, Tai'an, Shandong, 271018, P. R. China
| | - Xin Gao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
- Kekulé-Institut für Organische Chemie und Biochemieder Rheinischen, Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Tang H, Zhang Y, Deng Y, Du S, Li D, Wang Z, Li H, Gao X, Wang F. Optimization of Synthesis of (S)-Omeprazole Catalyzed by Soybean Pod Peroxidase in Water-in-Oil Microemulsions Using RSM. Catal Letters 2021. [DOI: 10.1007/s10562-021-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Heine T, Scholtissek A, Hofmann S, Koch R, Tischler D. Accessing Enantiopure Epoxides and Sulfoxides: Related Flavin‐Dependent Monooxygenases Provide Reversed Enantioselectivity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Heine
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Anika Scholtissek
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Sarah Hofmann
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Rainhard Koch
- Engineering & TechnologyBayer AG Leverkusen 51368 Germany
| | - Dirk Tischler
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
- Microbial BiotechnologyRuhr University Bochum Bochum 44780 Germany
| |
Collapse
|
9
|
ZnO–Fe3O4–Au Hybrid Composites for Thioanisole Oxidation Under Visible Light: Experimental and Theoretical Studies. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1189-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Goundry WRF, Adams B, Benson H, Demeritt J, McKown S, Mulholland K, Robertson A, Siedlecki P, Tomlin P, Vare K. Development and Scale-up of a Biocatalytic Process To Form a Chiral Sulfoxide. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William R. F. Goundry
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Bradley Adams
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Helen Benson
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Julie Demeritt
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Steven McKown
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Keith Mulholland
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Amy Robertson
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Paul Siedlecki
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Paula Tomlin
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Kevin Vare
- The Departments
of Pharmaceutical
Sciences and Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, United Kingdom
| |
Collapse
|
11
|
Barbieri A, De Carlo Chimienti R, Del Giacco T, Di Stefano S, Lanzalunga O, Lapi A, Mazzonna M, Olivo G, Salamone M. Oxidation of Aryl Diphenylmethyl Sulfides Promoted by a Nonheme Iron(IV)-Oxo Complex: Evidence for an Electron Transfer-Oxygen Transfer Mechanism. J Org Chem 2016; 81:2513-20. [PMID: 26886491 DOI: 10.1021/acs.joc.6b00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidation of a series of aryl diphenylmethyl sulfides (4-X-C6H4SCH(C6H5)2, where X = OCH3 (1), X = CH3 (2), X = H (3), and X = CF3 (4)) promoted by the nonheme iron(IV)-oxo complex [(N4Py)Fe(IV)═O](2+) occurs by an electron transfer-oxygen transfer (ET-OT) mechanism as supported by the observation of products (diphenylmethanol, benzophenone, and diaryl disulfides) deriving from α-C-S and α-C-H fragmentation of radical cations 1(+•)-4(+•), formed besides the S-oxidation products (aryl diphenylmethyl sulfoxides). The fragmentation/S-oxidation product ratios regularly increase through a decrease in the electron-donating power of the aryl substituents, that is, by increasing the fragmentation rate constants of the radical cations as indicated by a laser flash photolysis (LFP) study of the photochemical oxidation of 1-4 carried out in the presence of N-methoxyphenanthridinium hexafluorophosphate (MeOP(+)PF6(-)).
Collapse
Affiliation(s)
- Alessia Barbieri
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Rosemilia De Carlo Chimienti
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Del Giacco
- Dipartimento di Chimica, Biologia e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati, Università di Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Lapi
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Marco Mazzonna
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" , P. le A. Moro 5, 00185 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata" , Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| |
Collapse
|
12
|
Biotechnological production of chiral organic sulfoxides: current state and perspectives. Appl Microbiol Biotechnol 2014; 98:7699-706. [PMID: 25073518 DOI: 10.1007/s00253-014-5932-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Chiral organic sulfoxides (COSs) are important compounds that act as chiral auxiliaries in numerous asymmetric reactions and as intermediates in chiral drug synthesis. In addition to their optical resolution, stereoselective oxidation of sulfides can be used for COS production. This reaction is facilitated by oxygenases and peroxidases from various microbial resources. To meet the current demand for esomeprazole, a proton pump inhibitor used in the treatment of gastric-acid-related disorders, and the (S)-isomer of an organic sulfoxide compound, omeprazole, a successful biotechnological production method using a Baeyer-Villiger monooxygenase (BVMO), was developed. In this review, we summarize the recent advancements in COS production using biocatalysts, including enzyme identification, protein engineering, and process development.
Collapse
|
13
|
Ueda T, Kitagishi H, Kano K. Intramolecular Direct Oxygen Transfer from Oxoferryl Porphyrin to a Sulfide Bond. Inorg Chem 2013; 53:543-51. [DOI: 10.1021/ic4026393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takunori Ueda
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
14
|
Srour H, Le Maux P, Chevance S, Simonneaux G. Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Srour H, Jalkh J, Le Maux P, Chevance S, Kobeissi M, Simonneaux G. Asymmetric oxidation of sulfides by hydrogen peroxide catalyzed by chiral manganese porphyrins in water/methanol solution. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2012.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D. Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 2011; 133:1877-84. [PMID: 21265562 DOI: 10.1021/ja108571a] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diverse guanine-rich RNAs and DNAs that fold to form guanine quadruplexes are known to form tight complexes with Fe(III) heme. We show here that a wide variety of such complexes robustly catalyze two-electron oxidations, transferring oxygen from hydrogen peroxide to thioanisole, indole, and styrene substrates. Use of (18)O-labeled hydrogen peroxide reveals the source of the oxygen transferred to form thioanisole sulfoxide and styrene oxide to be the activated ferryl moiety within these systems. Hammett analysis of the kinetics of thioanisole sulfoxide formation is unable to distinguish between a one-step, direct oxygen transfer and a two-step, oxygen rebound mechanism for this catalysis. Oxygen transfer to indole produces a range of products, including indigo and related dyes. Docking of heme onto a high-resolution structure of the G-quadruplex fold of Bcl-2 promoter DNA, which both binds heme and transfers oxygen, suggests a relatively open active site for this class of ribozymes and deoxyribozymes. That heme-dependent catalysis of oxygen transfer is a property of many RNAs and DNAs has ramifications for primordial evolution, enzyme design, cellular oxidative disease, and anticancer therapeutics.
Collapse
Affiliation(s)
- Lester C-H Poon
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Le Maux P, Simonneaux G. First enantioselective iron-porphyrin-catalyzed sulfide oxidation with aqueous hydrogen peroxide. Chem Commun (Camb) 2011; 47:6957-9. [DOI: 10.1039/c1cc11675d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Gorris HH, Walt DR. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc 2009; 131:6277-82. [PMID: 19338338 DOI: 10.1021/ja9008858] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many individual horseradish peroxidase (HRP) molecules were isolated and observed simultaneously by fluorescence microscopy in an array of 50 000 femtoliter chambers chemically etched into the surface of a glass optical fiber bundle. The substrate turnovers of hundreds of individual HRP molecules were readily analyzed, and the large number of molecules observed provided excellent statistics. In contrast to other enzymes used for single-molecule studies, the rates of product formation in the femtoliter array were, on average, 10 times lower than in bulk solution. We attribute this phenomenon to the particular redox-reaction mechanism of HRP that involves two separate steps of product formation. HRP first oxidizes fluorogenic substrate molecules like Amplex Red to radical intermediates. Two radical molecules subsequently undergo an enzyme-independent dismutation reaction, the rate of which is decreased when confined to a femtoliter chamber resulting in less product. This two-step reaction mechanism of the widely used Amplex Red, as well as other fluorogenic substrates, is often overlooked. The mechanism not only affects single-molecule studies with HRP but also bulk reactions at low substrate turnover rates.
Collapse
Affiliation(s)
- Hans H Gorris
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
19
|
Fruk L, Kuo CH, Torres E, Niemeyer CM. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew Chem Int Ed Engl 2009; 48:1550-74. [PMID: 19165853 DOI: 10.1002/anie.200803098] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many enzymes contain a nondiffusible organic cofactor, often termed a prosthetic group, which is located in the active site and essential for the catalytic activity of the enzyme. These cofactors can often be extracted from the protein to yield the respective apoenzyme, which can subsequently be reconstituted with an artificial analogue of the native cofactor. Nowadays a large variety of synthetic cofactors can be used for the reconstitution of apoenzymes and, thus, generate novel semisynthetic enzymes. This approach has been refined over the past decades to become a versatile tool of structural enzymology to elucidate structure-function relationships of enzymes. Moreover, the reconstitution of apoenzymes can also be used to generate enzymes possessing enhanced or even entirely new functionality. This Review gives an overview on historical developments and the current state-of-the-art on apoenzyme reconstitution.
Collapse
Affiliation(s)
- Ljiljana Fruk
- Universität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
20
|
Fruk L, Kuo CH, Torres E, Niemeyer C. Rekonstitution von Apoenzymen als chemisches Werkzeug für die strukturelle Enzymologie und Biotechnologie. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200803098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase. Proc Natl Acad Sci U S A 2008; 105:15654-9. [PMID: 18840691 DOI: 10.1073/pnas.0804279105] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlorite dismutase (Cld) is a heme b-dependent, O-O bond forming enzyme that transforms toxic chlorite (ClO(2)(-)) into innocuous chloride and molecular oxygen. The mechanism and specificity of the reaction with chlorite and alternate oxidants were investigated. Chlorite is the sole source of dioxygen as determined by oxygen-18 labeling studies. Based on ion chromatography and mass spectrometry results, Cld is highly specific for the dismutation of chlorite to chloride and dioxygen with no other side products. Cld does not use chlorite as an oxidant for oxygen atom transfer and halogenation reactions (using cosubstrates guaiacol, thioanisole, and monochlorodimedone, respectively). When peracetic acid or H(2)O(2) was used as an alternative oxidant, oxidation and oxygen atom transfer but not halogenation reactions occurred. Monitoring the reaction of Cld with peracetic acid by rapid-mixing UV-visible spectroscopy, the formation of the high valent compound I intermediate, [(Por(*+))Fe(IV) = O], was observed [k(1) = (1.28 +/- 0.04) x 10(6) M(-1) s(-1)]. Compound I readily decayed to form compound II in a manner that is independent of peracetic acid concentration (k(2) = 170 +/- 20 s(-1)). Both compound I and a compound II-associated tryptophanyl radical that resembles cytochrome c peroxidase (Ccp) compound I were observed by EPR under freeze-quench conditions. The data collectively suggest an O-O bond-forming mechanism involving generation of a compound I intermediate via oxygen atom transfer from chlorite, and subsequent recombination of the resulting hypochlorite and compound I.
Collapse
|
22
|
Feng JY, Liu JZ, Ji LN. Thermostability, solvent tolerance, catalytic activity and conformation of cofactor modified horseradish peroxidase. Biochimie 2008; 90:1337-46. [PMID: 18439429 DOI: 10.1016/j.biochi.2008.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Artificial prosthetic groups, HeminD1 and HeminD2, were designed and synthesized, which contain one benzene ring and one carboxylic group or two carboxylic groups at the terminal of each propionate side chain of hemin, respectively. HeminD1 and HeminD2 were reconstituted with apo-HRP successfully to produce the two novel HRPs, rHRP1 and rHRP2, respectively. The thermal and solvent tolerances of native and reconstituted HRPs were compared. The cofactor modification increased the thermostability both in aqueous buffer and some organic solvents, and also enhanced the tolerance of some organic solvents. To determine the conformation stability, the unfolding of native and reconstituted HRPs by heat was investigated. Tm was increased from 70.0 degrees C of nHRP to 75.4 degrees C of rHRP1 and 76.5 degrees C of rHRP2 after cofactor modification. Kinetic studies indicated that the cofactor modification increased the substrate affinity and catalytic efficiency both in aqueous buffer and some organic solvents. The catalytic efficiency for phenol oxidation was increased by approximately 55% for rHRP1 in aqueous buffer, and it was also increased by approximately 70% for rHRP1 in 10% ACN. Spectroscopic studies proved that the cofactor modification changed the microenvironment of both heme and tryptophan, increased alpha-helix content, and increased the tertiary structure around the aromatic residue in HRP. The improvements of catalytic properties are related to these changes of the conformation. The introduction of the hydrophobic domain as well as the retention of the moderate carboxylic group in active site is an efficient method to improve the thermodynamic and catalytic efficiency of HRP.
Collapse
Affiliation(s)
- Jiu-Ying Feng
- Key Laboratory of Gene Engineering of Ministry of Education and Biotechnology Research Center, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | |
Collapse
|
23
|
Wertz DL, Valentine JS. Nucleophilicity of Iron-Peroxo Porphyrin Complexes. STRUCTURE AND BONDING 2007. [DOI: 10.1007/3-540-46592-8_2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Nazari K, Esmaeili N, Mahmoudi A, Rahimi H, Moosavi-Movahedi A. Peroxidative phenol removal from aqueous solutions using activated peroxidase biocatalyst. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Molaei Rad A, Ghourchian H, Moosavi-Movahedi AA, Hong J, Nazari K. Spectrophotometric assay for horseradish peroxidase activity based on pyrocatechol–aniline coupling hydrogen donor. Anal Biochem 2007; 362:38-43. [PMID: 17234148 DOI: 10.1016/j.ab.2006.11.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 11/29/2022]
Abstract
The hydrogen donor couples pyrocatechol-aniline and phenol-aminoantipyrine in the presence of hydrogen peroxide were compared as chromogens for horseradish peroxidase (HRP) assay. UV-Visible spectroscopy and high-performance liquid chromatography analysis indicated that during the HRP biocatalytic process, pyrocatechol-aniline was converted to a pink-colored reagent with a lambda(max) of 510 nm, which was used in the assay of HRP activity. Electrochemical studies revealed adequate electron transfer ability for this color reagent to serve as a proper mediator for HRP also. Using pyrocatechol-aniline a higher sensitivity and lower detection limit was obtained relative to those of the phenol-aminoantipyrine couple, which is commonly used for HRP assay. A relative standard deviation of 2.9% was obtained for 20 HRP activity measurements, indicating a satisfactory reproducibility for this method. In addition, kinetic parameters of K(m) (12.5mM) and V(max) (12.2 mM min(-1)mg(-1)) were calculated for pyrocatechol-aniline. Regarding the superiority of pyrocatechol-aniline, this couple is suggested to be a better hydrogen donor for the HRP spectrophotometric assay.
Collapse
Affiliation(s)
- A Molaei Rad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
26
|
Fruk L, Müller J, Niemeyer CM. Kinetic Analysis of Semisynthetic Peroxidase Enzymes Containing a Covalent DNA–Heme Adduct as the Cofactor. Chemistry 2006; 12:7448-57. [PMID: 16832798 DOI: 10.1002/chem.200501613] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The reconstitution of apo enzymes with DNA oligonucleotide-modified heme (protoporphyrin IX) cofactors has been employed as a tool to produce artificial enzymes that can be specifically immobilized at the solid surfaces. To this end, covalent heme-DNA adducts were synthesized and subsequently used in the reconstitution of apo myoglobin (aMb) and apo horseradish peroxidase (aHRP). The reconstitution produced catalytically active enzymes that contained one or two DNA oligomers coupled to the enzyme in the close proximity to the active site. Kinetic studies of these DNA-enzyme conjugates, carried out with two substrates, ABTS and Amplex Red, showed a remarkable increase in peroxidase activity of the DNA-Mb enzymes while a decrease in enzymatic activity was observed for the DNA-HRP enzymes. All DNA-enzyme conjugates were capable of specific binding to a solid support containing complementary DNA oligomers as capture probes. Kinetic analysis of the enzymes immobilized by the DNA-directed immobilization method revealed that the enzymes remained active after hybridization to the capture oligomers. The programmable binding properties enabled by DNA hybridization make such semisynthetic enzyme conjugates useful for a broad range of applications, particularly in biocatalysis, electrochemical sensing, and as building blocks for biomaterials.
Collapse
Affiliation(s)
- Ljiljana Fruk
- Universität Dortmund, Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Ernesto G. Mata
- a Instituto de Química Orgánica de Síntesis (CONICET-UNR), Facultad de Ciencias Bioguímicas y Farmacéuticas. Universidad Nacional de Rosario , Casilla de Correo 991, 2000, Rosario, Argentina
| |
Collapse
|
28
|
Manohar TC, Rajkumar M, Rajagopal S. Effect of Added Pyridine Bases on the Electron Transfer Reaction of Chromium(VI) with Organic Sulfides. Spectral Evidence for the Formation of a Chromium(V) Intermediate. TRANSIT METAL CHEM 2006. [DOI: 10.1007/s11243-006-0028-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ling KQ, Sayre LM. Horseradish peroxidase-mediated aerobic and anaerobic oxidations of 3-alkylindoles. Bioorg Med Chem 2005; 13:3543-51. [PMID: 15848767 DOI: 10.1016/j.bmc.2005.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 02/05/2005] [Accepted: 02/09/2005] [Indexed: 11/29/2022]
Abstract
Little is known about the HRP-mediated oxidations of 3-alkylindoles. Whereas 3-methylindole and 3-ethylindole were found to be turned over smoothly by HRP, reactions of tryptophol and N-acetyltryptamine were inefficient. Oxidations of the former two indoles by HRP under aerobic conditions led to the corresponding ring-opened o-acylformanilides and oxindoles, whereas anaerobic oxidations resulted in oxidative dimerization. The major products of anaerobic oxidation of 3-methylindole were shown to be two hydrated dimers, while anhydrodimers were obtained in the 3-ethyl case. The proposed mechanism involves HRP-mediated one-electron oxidation to give an indole radical that either dimerizes (anaerobic conditions) or reacts with O2 (aerobic conditions). Measured kinetics of indole oxidation by HRP compounds I and II mirrored their relative reactivities under turnover conditions. The observed comparable binding affinities for all four indole substrates investigated suggest that the low reactivity of tryptophol and N-acetyltryptamine reflect binding to HRP in an orientation that is disadvantageous to electron transfer oxidation of the indole ring.
Collapse
Affiliation(s)
- Ke-Qing Ling
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
30
|
Electron transfer reactions of tris(polypyridine)ruthenium(III) complexes with organic sulfides: importance of hydrophobic interaction. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.02.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Mahammed A, Gross Z. Albumin-Conjugated Corrole Metal Complexes: Extremely Simple Yet Very Efficient Biomimetic Oxidation Systems. J Am Chem Soc 2005; 127:2883-7. [PMID: 15740123 DOI: 10.1021/ja045372c] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extremely simple biomimetic oxidation system, consisting of mixing metal complexes of amphiphilic corroles with serum albumins, utilizes hydrogen peroxide for asymmetric sulfoxidation in up to 74% ee. The albumin-conjugated manganese corroles also display catalase-like activity, and mechanistic evidence points toward oxidant-coordinated manganese(III) as the prime reaction intermediate.
Collapse
Affiliation(s)
- Atif Mahammed
- Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
32
|
Peñéñory A, Argüello J, Puiatti M. Novel Model Sulfur Compounds as Mechanistic Probes for Enzymatic and Biomimetic Oxidations. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Mashima R, Tilley L, Siomos MA, Papalexis V, Raftery MJ, Stocker R. Plasmodium falciparum histidine-rich protein-2 (PfHRP2) modulates the redox activity of ferri-protoporphyrin IX (FePPIX): peroxidase-like activity of the PfHRP2-FePPIX complex. J Biol Chem 2002; 277:14514-20. [PMID: 11859069 DOI: 10.1074/jbc.m109386200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histidine-rich protein-2 from Plasmodium falciparum (PfHRP2) binds up to 50 molecules of ferri-protoporphyrin IX (FePPIX) (Choi, C. Y., Cerda, J. F., Chu, H. A., Babcock, G. T., and Marletta, M. A. (1999) Biochemistry 38, 16916-16924). We reasoned that the PfHRP2-FePPIX complex has antioxidant properties that could be beneficial to the parasite. Therefore, we examined whether binding to PfHRP2 modulated the redox properties of FePPIX. We observed that PfHRP2 completely inhibited the auto-oxidation of ascorbate mediated by free FePPIX. We also investigated the peroxidase activity of PfHRP2-FePPIX using 13-hydroperoxy-9,11-octadienoate (18:2-OOH) as substrate. Reaction of PfHRP2-FePPIX with 18:2-OOH in the presence of added reducing agents gave 13-hydroxy-9,11-octadienoate (18:2-OH) as a major product and 13-keto-9,11-octadienoate (18:2=O) and 9,12,13-trihydroxy-10-octadecaenoate as minor products. Binding of FePPIX to PfHRP2 lowered the rate of decomposition of 18:2-OOH and increased the 18:2-OH to 18:2=O ratio. Similar to other authentic peroxidases, phenols, amines, and biological reductants like ascorbate promoted 18:2-OH production, and NaCN inhibited 18:2-OH production. Thioanisole also acted as a reductant and was converted to thioanisole sulfoxide, suggesting formation of compound I during the reaction. These data show that PfHRP2 modulates the redox activity of FePPIX and that the PfHRP2-FePPIX complex may have previously unrecognized antioxidant properties.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Biochemistry Group, The Heart Research Institute, 145 Missenden Road, Camperdown, New South Wales 2050, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Hiner AN, Hernández-Ruiz J, Williams GA, Arnao MB, García-Cánovas F, Acosta M. Catalase-like oxygen production by horseradish peroxidase must predominantly be an enzyme-catalyzed reaction. Arch Biochem Biophys 2001; 392:295-302. [PMID: 11488605 DOI: 10.1006/abbi.2001.2460] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When hydrogen peroxide (H2O2) was provided as the only substrate for horseradish peroxidase C (HRP-C) the catalase-like emission of oxygen gas was observed. The reaction was favored at neutral compared to acidic pH. Addition of the superoxide radical scavengers tetranitromethane (TNM) or superoxide dismutase (SOD) increased activity. TNM's effect was concentration dependent but SOD's was not, indicating that only some of the superoxide generated was released into solution. Manganous ions (Mn2+) react with superoxide radicals to regenerate H2O2 but not oxygen; when added to the reaction medium oxygen production was reduced but not abolished. The effect was essentially concentration independent, suggesting that most oxygen was produced enzymatically and not by chemical disproportionation of superoxide. The catalase-like activities of some site-directed mutants of HRP-C suggest that active site residues histidine 42 and arginine 38 are influential in determining this activity. A clear correlation also existed between catalase activity and the enzymes' resistance to inactivation by H2O2. Computer simulation of a reaction scheme that included catalase-like activity agreed well with experimental data.
Collapse
Affiliation(s)
- A N Hiner
- Departamento de Biología Vegetal, Fisiología Vegetal, Universidad de Murcia, Espinardo, Murcia, E-30100, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Hiner AN, Hernández-Ruiz J, Rodríguez-López JN, Arnao MB, Varón R, García-Cánovas F, Acosta M. The inactivation of horseradish peroxidase isoenzyme A2 by hydrogen peroxide: an example of partial resistance due to the formation of a stable enzyme intermediate. J Biol Inorg Chem 2001; 6:504-16. [PMID: 11472014 DOI: 10.1007/s007750100219] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inactivation of horseradish peroxidase A2 (HRP-A2) with H2O2 as the sole substrate has been studied. In incubation experiments it was found that the fall in HRP-A2 activity was non-linearly dependent on H2O2 concentrations and that a maximum level of inactivation of approximately 80% (i.e. approximately 20% residual activity) was obtained with 2,000 or more equivalents of H2O2. Further inactivation was only induced at much higher H2O2 concentrations. Spectral changes during incubations of up to 5 days showed the presence of a compound III-like species whose abundance was correlated to the level of resistance observed. Inactivation was pH dependent, the enzyme being much more sensitive under acid conditions. A partition ratio (r1 approximately equals 1,140 at pH 6.5) between inactivation and catalysis was calculated from the data. The kinetics of inactivation followed single exponential time curves and were H2O2 concentration dependent. The apparent maximum rate constant of inactivation was lambdamax=3.56+/-0.07x10(-4)s(-1) and the H2O2 concentration required to give lambdamax/2 was K2=9.94+/-0.52 mM. The relationship lambdamax<ki has been shown to apply and thus the rate constant of inactivation has been calculated as ki=1.9x10(-3)s(-1). HRP-A2 possessed catalase-like oxygen gas-releasing activity, the catalytic constant being k3=2.2 s(-1), and the affinity for H2O2 as K2=23 mM. Catalase-like activity was pH dependent and favoured under more basic conditions. A mechanistic model has been developed and used to explain the behaviour of HRP-A2. The model suggests that, in common with HRP-C, mechanism-based (suicide) inactivation is being observed but that a fraction of the HRP-A2 is protected from inactivation in the form of a modified compound III species.
Collapse
Affiliation(s)
- A N Hiner
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Espinardo, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Celik A, Cullis PM, Sutcliffe MJ, Sangar R, Raven EL. Engineering the active site of ascorbate peroxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:78-85. [PMID: 11121105 DOI: 10.1046/j.1432-1327.2001.01851.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oxidation of a number of thioethers, namely methyl phenyl sulphide (1), ethyl phenyl sulphide (2), isopropyl phenyl sulphide (3), n-propyl phenyl sulphide (4), p-chlorophenyl methyl sulphide (5), p-nitrophenyl methyl sulphide (6) and methyl naphthalene sulphide (7), by recombinant pea cytosolic ascorbate peroxidase (rAPX) and a site-directed variant of rAPX in which the distal tryptophan 41 residue has been replaced with an alanine (W41A) has been examined. The electronic spectrum (pH 7.0, mu = 0.10 M, 25.0 degrees C) for the ferric derivative of W41A (lambda(max)/nm = 411, 534, 560, 632) is indicative of an increased quantity of 6-coordinate, high-spin and/or 6-coordinate, low-spin haem compared to rAPX. Steady state oxidation of sulphides 1-4 and 7, gave values for kcat that are approximately 10-fold and 100-fold, respectively, higher for W41A than for rAPX. For rAPX, essentially racemic mixtures of R- and S-sulphoxides were obtained for all sulphides. With the exception of sulphide 7, the W41A variant shows substantial enhancements in enantioselectivity, with R : S ratios varying between R : S = 63 : 37 (sulphides 1 and 4) and R : S = 85 : 15 (sulphide 6). Incubation of sulphide 2 with rAPX or W41A and [(18)O] H(2)O(2) shows 95% (rAPX) and 96% (W41A) transfer of labelled oxygen to the substrate. Structure-based modelling techniques have provided a fully quantitative rationalization of all the experimentally determined R : S ratios and have indicated that reorientation of the sidechain of Arg38, such that access to the haem is much less restricted, is influential in controlling the stereoselectivity for both rAPX and W41A.
Collapse
Affiliation(s)
- A Celik
- Department of Chemistry, University of Leicester, University Road, Leicester, England, UK
| | | | | | | | | |
Collapse
|
37
|
Abstract
Peroxidase-catalyzed asymmetric sulfoxidations, while synthetically attractive, suffer from relatively low reaction rates due to poor substrate solubilities in water and from appreciable spontaneous oxidation of substrates (especially aryl alkyl sulfides) with H(2)O(2). In this work, we found that both of these shortcomings could be alleviated by switching from aqueous solutions to certain nearly anhydrous (99.7%) organic solvents as sulfoxidation reaction media. The rates of spontaneous oxidation of the model prochiral substrate thioanisole in several organic solvents were observed to be some 100- to 1000-fold slower than in water. In addition, the rates of asymmetric sulfoxidation of thioanisole in isopropyl alcohol and in methanol catalyzed by horseradish peroxidase (HRP) were determined to be tens to hundreds of times faster than in water under otherwise identical conditions. This dramatic activation is due to a much higher substrate solubility in organic solvents than in water and occurs even though the intrinsic reactivity of HRP in isopropyl alcohol and in methanol is hundreds of times lower than in water. Sulfoxidation of thioanisole catalyzed by four other hemoproteins (soybean peroxidase, myoglobin, hemoglobin, and cytochrome c) is also much faster in isopropyl alcohol than in water.
Collapse
Affiliation(s)
- L Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
38
|
Ozaki SI, Matsui T, Roach MP, Watanabe Y. Rational molecular design of a catalytic site: engineering of catalytic functions to the myoglobin active site framework. Coord Chem Rev 2000. [DOI: 10.1016/s0010-8545(00)00234-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
ten Brink HB, Holland HL, Schoemaker HE, van Lingen H, Wever R. Probing the scope of the sulfoxidation activity of vanadium bromoperoxidase from Ascophyllum nodosum. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0957-4166(99)00514-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Zenser TV, Lakshmi VM, Hsu FF, Davis BB. Peroxygenase metabolism of N-acetylbenzidine by prostaglandin H synthase. Formation of an N-hydroxylamine. J Biol Chem 1999; 274:14850-6. [PMID: 10329684 DOI: 10.1074/jbc.274.21.14850] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of prostaglandin H2 by prostaglandin H synthase (PHS) results in a two-electron oxidation of the enzyme. An active reduced enzyme is regenerated by reducing cofactors, which become oxidized. This report examines the mechanism by which PHS from ram seminal vesicle microsomes catalyzes the oxidation of the reducing cofactor N-acetylbenzidine (ABZ). During the conversion of 0.06 mM ABZ to its final end product, 4'-nitro-4-acetylaminobiphenyl, a new metabolite was observed when 1 mM ascorbic acid was present. Similar results were observed whether 0.2 mM arachidonic acid or 0.5 mM H2O2 was used as the substrate. This metabolite co-eluted with synthetic N'-hydroxy-N-acetylbenzidine (N'HA), but not with N-hydroxy-N-acetylbenzidine. The new metabolite was identified as N'HA by electrospray ionization/MS/MS. N'HA represented as much as 10% of the total radioactivity recovered by high pressure liquid chromatography. When N'HA was substituted for ABZ, PHS metabolized N'HA to 4'-nitro-4-acetylaminobiphenyl. Inhibitor studies demonstrated that metabolism was due to PHS, not cytochrome P-450. The lack of effect of 5,5-dimethyl-1-pyrroline N-oxide, mannitol, and superoxide dismutase suggests the lack of involvement of one-electron transfer reactions and suggests that hydroxyl radicals and superoxide are not sources of oxygen or oxidants. Oxygen uptake studies did not demonstrate a requirement for molecular oxygen. When [18O]H2O2 was used as the substrate, 18O enrichment was observed for 4'-nitro-4-acetylaminobiphenyl, but not for N'HA. A 97% enrichment was observed for one atom of 18O, and a 17 +/- 7% enrichment was observed for two 18O atoms. The rapid exchange of 18O-N'HA with water was suggested to explain the lack of enrichment of N'HA and the low enrichment of two 18O atoms into 4'-nitro-4-acetylaminobiphenyl. Results demonstrate a peroxygenase oxidation of ABZ and N'HA by PHS and suggest a stepwise oxidation of ABZ to N'-hydroxy, 4'-nitroso, and 4'-nitro products.
Collapse
Affiliation(s)
- T V Zenser
- VA Medical Center, Division of Geriatric Medicine, St. Louis University School of Medicine, St. Louis, Missouri 63125, USA.
| | | | | | | |
Collapse
|
41
|
Colonna S, Gaggero N, Richelmi C, Pasta P. Recent biotechnological developments in the use of peroxidases. Trends Biotechnol 1999; 17:163-8. [PMID: 10203775 DOI: 10.1016/s0167-7799(98)01288-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxidases are ubiquitous oxidoreductases that use hydrogen peroxide or alkyl peroxides as oxidants. Advances have recently been made in using them to prepare, under mild and controlled conditions, chiral organic molecules that are valuable for the chemoenzymatic synthesis of a wide range of useful compounds. Horseradish peroxidase can be converted into a peroxygenative enzyme by molecular engineering. Chloroperoxidase, the most versatile peroxidase, behaves like a 'true' monooxygenase in sulfoxidations with molecular oxygen and an external reductant, with substantial increases in enantioselectivity and enzyme stability.
Collapse
Affiliation(s)
- S Colonna
- Centro CNR and Istituto di Chimica Organica, Facoltà di Farmacia, Università degli Studi di Milano, via Venezian 21, I-20133 Milano,
| | | | | | | |
Collapse
|
42
|
|
43
|
|
44
|
|
45
|
Oxidations of benzyl and phenethyl phenyl sulfides. Implications for the mechanism of the microsomal and biomimetic oxidation of sulfides. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)00560-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Adak S, Mazumdar A, Banerjee RK. Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation. Evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocyanate. J Biol Chem 1997; 272:11049-56. [PMID: 9110998 DOI: 10.1074/jbc.272.17.11049] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The catalytic turnover of horseradish peroxidase (HRP) to oxidize SCN- is a hundredfold lower than that of lactoperoxidase (LPO) at optimum pH. While studying the mechanism, HRP was found to be reversibly inactivated following pseudo-first order kinetics with a second order rate constant of 400 M-1 min-1 when incubated with SCN- and H2O2. The slow rate of SCN- oxidation is increased severalfold in the presence of free radical traps, 5-5-dimethyl-1-pyrroline N-oxide or alpha-phenyl-tert-butylnitrone, suggesting the plausible role of free radical or radical-derived product in the inactivation. Spectral studies indicate that SCN- at a lower concentrations slowly reduces compound II to native state by one-electron transfer as evidenced by a time-dependent spectral shift from 418 to 402 nm through an isosbestic point at 408 nm. In the presence of higher concentrations of SCN-, a new stable Soret peak appears at 421 nm with a visible peak at 540 nm, which are the characteristics of the inactivated enzyme. The one-electron oxidation product of SCN- was identified by electron spin resonance spectroscopy as 5-5-dimethyl-1-pyrroline N-oxide adduct of the sulfur-centered thiocyanate radical (aN = 15.0 G and abetaH = 16.5 G). The inactivation of the enzyme in the presence of SCN- and H2O2 is prevented by electron donors such as iodide or guaiacol. Binding studies indicate that both iodide and guaiacol compete with SCN- for binding at or near the SCN- binding site and thus prevent inactivation. The spectral characteristics of the inactivated enzyme are exactly similar to those of the native HRP-CN- complex. Quantitative measurements indicate that HRP produces a 10-fold higher amount of CN- than LPO when incubated with SCN- and H2O2. As HRP has higher affinity for CN- than LPO, it is concurrently inactivated by CN- formed during SCN- oxidation, which is not observed in case of LPO. This study further reveals that HRP catalyzes SCN- oxidation by two one-electron transfers with the intermediate formation of thiocyanate radicals. The radicals dimerize to form thiocyanogen, (SCN)2, which is hydrolyzed to form CN-. As LPO forms OSCN- as the major stable oxidation product through a two-electron transfer mechanism, it is not significantly inactivated by CN- formed in a small quantity.
Collapse
Affiliation(s)
- S Adak
- Department of Physiology, Indian Institute of Chemical Biology, Calcutta 700 032, India
| | | | | |
Collapse
|
47
|
Horseradish peroxidase — a biocatalyst for the one-pot synthesis of enantiomerically pure hydroperoxides and alcohols. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1381-1169(96)00247-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Fukuyama K, Sato K, Itakura H, Takahashi S, Hosoya T. Binding of iodide to Arthromyces ramosus peroxidase investigated with X-ray crystallographic analysis, 1H and 127I NMR spectroscopy, and steady-state kinetics. J Biol Chem 1997; 272:5752-6. [PMID: 9038188 DOI: 10.1074/jbc.272.9.5752] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The site and characteristics of iodide binding to Arthromyces ramosus peroxidase were examined by x-ray crystallographic analysis, 1H and 127I NMR, and kinetic studies. X-ray analysis of an A. ramosus peroxidase crystal soaked in a KI solution at pH 5.5 showed that a single iodide ion is located at the entrance of the access channel to the distal side of the heme and lies between the two peptide segments, Phe90-Pro91-Ala92 and Ser151-Leu152-Ile153, 12.8 A from the heme iron. The distances between the iodide ion and heme peripheral methyl groups were all more than 10 A. The findings agree with the results obtained with 1H NMR in which the chemical shift and intensity of the methyl groups in the hyperfine shift region of A. ramosus peroxidase were hardly affected by the addition of iodide, unlike the case of horseradish peroxidase. Moreover, 127I NMR and steady-state kinetics showed that the binding of iodide depends on protonation of an amino acid residue with a pKa of about 5.3, which presumably is the distal histidine (His56), 7.8 A away from the iodide ion. The mechanism of electron transfer from the iodide ion to the heme iron is discussed on the basis of these findings.
Collapse
Affiliation(s)
- K Fukuyama
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan
| | | | | | | | | |
Collapse
|
49
|
Savenkova MI, Newmyer SL, Montellano PR. Rescue of His-42 --> Ala horseradish peroxidase by a Phe-41 --> His mutation. Engineering of a surrogate catalytic histidine. J Biol Chem 1996; 271:24598-603. [PMID: 8798724 DOI: 10.1074/jbc.271.40.24598] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Formation of the ferryl (FeIV=O) porphyrin radical cation known as Compound I in the reaction of horseradish peroxidase (HRP) with H2O2 is catalyzed by His-42, a residue that facilitates the binding of H2O2 to the iron and subsequent rupture of the dioxygen bond. An H42A mutation was shown earlier to decrease the rate of Compound I formation by a factor of approximately 10(6) and of guaiacol oxidation by a factor of approximately 10(4). In contrast, an F41A mutation has little effect on peroxidative catalysis (Newmyer, S. L., and Ortiz de Montellano, P. R. (1995) J. Biol. Chem. 270, 19430-19438). We report here construction, expression, and characterization of the F41H/H42A double mutant. The pH profile for guaiacol oxidation by this double mutant has a broad maximum at approximately pH 6.3. Addition of H2O2 produces a Compound I species (lambdamax = 406 nm) that is reduced by 1 eq of K4Fe(CN)6 to the ferric state (lambdamax = 407 nm) without the detectable formation of Compound II. A fraction of the heme chromophore is lost in the process. The rate of Compound I formation for the F41H/H42A double mutant is 3.0 x 10(4) M-1 s-1. This is to be compared with 0.9 x 10(7) M-1 s-1 for wild-type HRP and 19 M-1 s-1 for the H42A mutant. The kcat values for guaiacol oxidation by wild-type, H42A, and F41H/H42A HRP are 300, 0.015, and 1.8 s-1. The corresponding kcat values for ABTS oxidation are 4900, 0.41, and 100 s-1, respectively. These results show that a histidine at position 41 substitutes, albeit imperfectly, for His-42 in peroxidative turnover of the enzyme. The F41H/H42A double mutant has peroxidative properties intermediate between those of the native enzyme and the H42A mutant. The F41H/H42A double mutant, however, is a considerably better thioanisole sulfoxidation and styrene epoxidation catalyst than native or H42A HRP. The surrogate catalytic residue introduced by the F41H mutation thus partially compensates for the H42A substitution used to increase access to the ferryl oxygen.
Collapse
Affiliation(s)
- M I Savenkova
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
50
|
Baciocchi E, Lanzalunga O, Malandrucco S, Ioele M, Steenken S. Oxidation of Sulfides by Peroxidases. Involvement of Radical Cations and the Rate of the Oxygen Rebound Step. J Am Chem Soc 1996. [DOI: 10.1021/ja9608003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|