1
|
Pooley JR, Rivers CA, Kilcooley MT, Paul SN, Cavga AD, Kershaw YM, Muratcioglu S, Gursoy A, Keskin O, Lightman SL. Beyond the heterodimer model for mineralocorticoid and glucocorticoid receptor interactions in nuclei and at DNA. PLoS One 2020; 15:e0227520. [PMID: 31923266 PMCID: PMC6953809 DOI: 10.1371/journal.pone.0227520] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid (GR) and mineralocorticoid receptors (MR) are believed to classically bind DNA as homodimers or MR-GR heterodimers to influence gene regulation in response to pulsatile basal or stress-evoked glucocorticoid secretion. Pulsed corticosterone presentation reveals MR and GR co-occupy DNA only at the peaks of glucocorticoid oscillations, allowing interaction. GR DNA occupancy was pulsatile, while MR DNA occupancy was prolonged through the inter-pulse interval. In mouse mammary 3617 cells MR-GR interacted in the nucleus and at a chromatin-associated DNA binding site. Interactions occurred irrespective of ligand type and receptors formed complexes of higher order than heterodimers. We also detected MR-GR interactions ex-vivo in rat hippocampus. An expanded range of MR-GR interactions predicts structural allostery allowing a variety of transcriptional outcomes and is applicable to the multiple tissue types that co-express both receptors in the same cells whether activated by the same or different hormones.
Collapse
Affiliation(s)
- John R. Pooley
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline A. Rivers
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Michael T. Kilcooley
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Susana N. Paul
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Ayse Derya Cavga
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Serena Muratcioglu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Attila Gursoy
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Steinauer A, LaRochelle JR, Knox SL, Wissner RF, Berry S, Schepartz A. HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins. Proc Natl Acad Sci U S A 2019; 116:512-521. [PMID: 30610181 PMCID: PMC6329960 DOI: 10.1073/pnas.1812044116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.
Collapse
Affiliation(s)
- Angela Steinauer
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | - Jonathan R LaRochelle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Susan L Knox
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | | | - Samuel Berry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
3
|
Deng Q, Waxse B, Riquelme D, Zhang J, Aguilera G. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding. Mol Cell Endocrinol 2015; 408:23-32. [PMID: 25676569 PMCID: PMC4417367 DOI: 10.1016/j.mce.2015.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.
Collapse
Affiliation(s)
- Qiong Deng
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA; College of Animal Sciences, Jilin University, China
| | - Bennett Waxse
- Section on Organelle Biology, CBMP, NICHD, NIH, Bethesda, Maryland, USA
| | - Denise Riquelme
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, China
| | - Greti Aguilera
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Carter EL, Ragsdale SW. Modulation of nuclear receptor function by cellular redox poise. J Inorg Biochem 2014; 133:92-103. [PMID: 24495544 DOI: 10.1016/j.jinorgbio.2014.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/28/2013] [Accepted: 01/09/2014] [Indexed: 02/09/2023]
Abstract
Nuclear receptors (NRs) are ligand-responsive transcription factors involved in diverse cellular processes ranging from metabolism to circadian rhythms. This review focuses on NRs that contain redox-active thiol groups, a common feature within the superfamily. We will begin by describing NRs, how they regulate various cellular processes and how binding ligands, corepressors and/or coactivators modulate their activity. We will then describe the general area of redox regulation, especially as it pertains to thiol-disulfide interconversion and the cellular systems that respond to and govern this redox equilibrium. Lastly, we will discuss specific examples of NRs whose activities are regulated by redox-active thiols. Glucocorticoid, estrogen, and the heme-responsive receptor, Rev-erb, will be described in the most detail as they exhibit archetypal redox regulatory mechanisms.
Collapse
Affiliation(s)
- Eric L Carter
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Holub JM, Larochelle JR, Appelbaum JS, Schepartz A. Improved assays for determining the cytosolic access of peptides, proteins, and their mimetics. Biochemistry 2013; 52:9036-46. [PMID: 24256505 DOI: 10.1021/bi401069g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins and other macromolecules that cross biological membranes have great potential as tools for research and next-generation therapeutics. Here, we describe two assays that effectively quantify the cytosolic localization of a number of previously reported peptides and protein domains. One assay, which we call GIGI (glucocorticoid-induced eGFP induction), is an amplified assay that informs on relative cytosolic access without the need for sophisticated imaging equipment or adherent cells. The second, GIGT (glucocorticoid-induced eGFP translocation), is a nonamplified assay that informs on relative cytosolic access and exploits sophisticated imaging equipment to facilitate high-content screens in live cells. Each assay was employed to quantify the cytosolic delivery of several canonical "cell permeable peptides," as well as more recently reported minimally cationic miniature proteins and zinc finger nuclease domains. Our results show definitively that both overall charge as well as charge distribution influence cytosolic access and that small protein domains containing a discrete, helical, penta-Arg motif can dramatically improve the cytosolic delivery of small folded proteins such as zinc finger domains. We anticipate that the assays described herein will prove useful to explore and discover the fundamental physicochemical and genetic properties that influence both the uptake and endosomal release of peptidic molecules and their mimetics.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | | | | | |
Collapse
|
6
|
Abstract
The glucocorticoid receptor regulates the expression of a large number of genes in mammalian cells. The interaction of this receptor with regulatory elements has been discovered to be highly dynamic, with occupancy states measured in seconds, rather than minutes or hours. This finding has led to a paradigm shift in our understanding of receptor function throughout the genome. The mechanisms involved in these rapid exchange events, as well as the implications for receptor function, are discussed.
Collapse
Affiliation(s)
- Simon C Biddie
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | |
Collapse
|
7
|
Abstract
Steroid hormones working through their receptors regulate a wide variety of physiologic processes necessary for normal homeostasis. Recent years have witnessed great advances in our understanding of how these hormones interact with their receptors, and have brought us closer to the era of directed drug design. We previously described a novel intramolecular interaction between helix 3 and helix 5 which is responsible for a Mendelian form of human hypertension. Further studies revealed that this interaction is highly conserved throughout the steroid hormone receptor family and functions as a key regulator of steroid hormone receptor sensitivity and specificity. Here, we review the contribution of helix 3-helix 5 interaction to steroid hormone receptor activity, with an eye towards how this knowledge may aid in the creation of novel therapeutic agonists and antagonists.
Collapse
Affiliation(s)
- Junhui Zhang
- Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520-8029, USA
| | | |
Collapse
|
8
|
Kakar M, Cadwallader AB, Davis JR, Lim CS. Signal sequences for targeting of gene therapy products to subcellular compartments: the role of CRM1 in nucleocytoplasmic shuttling of the protein switch. Pharm Res 2007; 24:2146-55. [PMID: 17562146 DOI: 10.1007/s11095-007-9333-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/02/2007] [Indexed: 01/03/2023]
Abstract
PURPOSE The purpose of this study was to understand the mechanism of nuclear export of the protein switch, used for controlled intracellular delivery of gene products, by studying the involvement of classical export receptor CRM1. METHOD Transient transfections of protein switch constructs, isolated nuclear export and import signals were carried out. Effect of leptomycin B (inhibitor of export receptor) and geldanamycin (inhibitor of Hsp90) on localization of these constructs was studied using fluorescence microscopy. Putative nuclear export signals in the glucocorticoid and progesterone receptor ligand binding domains were identified and studied. RESULTS It was observed that treatment with leptomycin B caused nuclear accumulation of the protein switch constructs. However, geldanamycin did not have any pronounced effect on the localization. The isolated nuclear export signal from glucocorticoid receptor localized mostly in the cytoplasm, while its mutated version was present everywhere. CONCLUSION The localization controlled protein switch constructs are exported out of the nucleus by the classical CRM1 receptors. The ligand binding domain of these protein switch constructs plays an important role in maintaining these constructs in the cytoplasm in the absence of ligand, as well the re-export back to the cytoplasm from the nucleus after ligand washout.
Collapse
Affiliation(s)
- Mudit Kakar
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way #318, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
9
|
Kakar M, Davis JR, Kern SE, Lim CS. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain. J Control Release 2007; 120:220-32. [PMID: 17574289 PMCID: PMC2041942 DOI: 10.1016/j.jconrel.2007.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/16/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100 nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adenocarcinoma/pathology
- Amino Acid Sequence
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dexamethasone
- Electroporation
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Ligands
- Mice
- Mifepristone
- Mitogen-Activated Protein Kinase Kinases/genetics
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Nuclear Export Signals/physiology
- Plasmids
- Protein Structure, Tertiary
- Protein Transport
- Proteins/genetics
- Proteins/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Mudit Kakar
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way # 318, Salt Lake City, UT 84108, USA
| | - James R. Davis
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way # 318, Salt Lake City, UT 84108, USA
| | - Steve E. Kern
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way # 318, Salt Lake City, UT 84108, USA
- Department of Anesthesiology, University of Utah, Salt Lake City UT 84132, USA
| | - Carol S. Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way # 318, Salt Lake City, UT 84108, USA
- Corresponding author. Tel: 801-587-9711 Fax: 801-585-3614, E-mail address:
| |
Collapse
|
10
|
van den Brandt J, Lühder F, McPherson KG, de Graaf KL, Tischner D, Wiehr S, Herrmann T, Weissert R, Gold R, Reichardt HM. Enhanced glucocorticoid receptor signaling in T cells impacts thymocyte apoptosis and adaptive immune responses. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1041-53. [PMID: 17322387 PMCID: PMC1864890 DOI: 10.2353/ajpath.2007.060804] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To study the effect of enhanced glucocorticoid signaling on T cells, we generated transgenic rats overexpressing a mutant glucocorticoid receptor with increased ligand affinity in the thymus. We found that this caused massive thymocyte apoptosis at physiological hormone levels, which could be reversed by adrenalectomy. Due to homeostatic proliferation, a considerable number of mature T lymphocytes accumulated in the periphery, responding normally to costimulation but exhibiting a perturbed T-cell repertoire. Furthermore, the transgenic rats showed increased resistance to experimental autoimmune encephalomyelitis, which manifests in a delayed onset and milder disease course, impaired leukocyte infiltration into the central nervous system and a distinct cytokine profile. In contrast, the ability of the transgenic rats to mount an allergic airway response to ovalbumin was not compromised, although isotype switching of antigen-specific immunoglobulins was altered. Collectively, our findings suggest that endogenous glucocorticoids impact T-cell development and favor the selection of Th2- over Th1-dominated adaptive immune responses.
Collapse
Affiliation(s)
- Jens van den Brandt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dirnberger D, Unsin G, Schlenker S, Reichel C. A small-molecule-protein interaction system with split-ubiquitin as sensor. Chembiochem 2006; 7:936-42. [PMID: 16680785 DOI: 10.1002/cbic.200500544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The identification of receptors for small molecules is of great pharmaceutical importance for drug-discovery research. Several systems for the identification of protein-small-molecule interactions have been developed in the past. These were modifications of the classical yeast two-hybrid system, relying on a transcriptional read-out following nuclear translocation of the complex. Here we present a novel three-hybrid technology based on the split-ubiquitin system for the analysis of protein-small-molecule interactions independently of a nuclear translocation of the complex. The performance of the system is compared to a method based on the classical yeast two-hybrid system by using a chemical inducer of dimerization (CID) comprised of methotrexate linked to dexamethasone. Steric issues are addressed by varying the linker length of the compounds, as well as by comparing the orientation of fusion proteins. The system is further extended to the analysis of a small-molecule inhibitor of human PCTAIRE protein kinase 3, which is related to cyclin-dependent kinases (CDKs), an important class of pharmaceutical targets.
Collapse
|
12
|
Zhang J, Simisky J, Tsai FTF, Geller DS. A critical role of helix 3-helix 5 interaction in steroid hormone receptor function. Proc Natl Acad Sci U S A 2005; 102:2707-12. [PMID: 15710879 PMCID: PMC549476 DOI: 10.1073/pnas.0409663102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ligand-binding domains of steroid hormone receptors possess a conserved structure with 12 alpha-helices surrounding a central hydrophobic core. On agonist binding, a repositioned helix 12 forms a pocket with helix 3 (H3) and helix 5 (H5), where transcriptional coactivators bind. The precise molecular interactions responsible for activation of these receptors remain to be elucidated. We previously identified a H3-H5 interaction that permits progesterone-mediated activation of a mutant mineralocorticoid receptor. We were intrigued to note that the potential for such interaction is widely conserved in the nuclear receptor family, indicating a possible functional significance. Here, we demonstrate via transcriptional activation studies in cell culture that alteration of residues involved in H3-H5 interaction consistently produces a gain of function in steroid hormone receptors. These data suggest that H3-H5 interaction may function as a molecular switch regulating the activity of nuclear receptors and suggest this site as a general target for pharmacologic intervention. Furthermore, they reveal a general mechanism for the creation of nuclear receptors bearing increased activity, providing a potentially powerful tool for the study of physiologic pathways in vivo.
Collapse
Affiliation(s)
- Junhui Zhang
- Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
13
|
Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann N Y Acad Sci 2004; 1024:102-23. [PMID: 15265776 DOI: 10.1196/annals.1321.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucocorticoid hormones are necessary for life and are essential in all aspects of human health and disease. The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), which binds glucocorticoid hormones and regulates gene expression, cell signaling, and homeostasis. Decades of research have focused on the mechanisms of action of one isoform of GR, GRa. However, in recent years, increasing numbers of human GR (hGR) isoforms have been reported. Evidence obtained from this and other laboratories indicates that multiple hGR isoforms are generated from one single hGR gene via mutations and/or polymorphisms, transcript alternative splicing, and alternative translation initiation. Each hGR protein, in turn, is subject to a variety of posttranslational modifications, and the nature and degree of posttranslational modification affect receptor function. We summarize here the processes that generate and modify various hGR isoforms with a focus on those that impact the ability of hGR to regulate target genes. We speculate that unique receptor compositions and relative receptor proportions within a cell determine the specific response to glucocorticoids. Unchecked expression of some isoforms, for example hGRbeta, has been implicated in various diseases.
Collapse
Affiliation(s)
- Nick Z Lu
- The Laboratory of Signal Transduction, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
14
|
Elbi C, Walker DA, Lewis M, Romero G, Sullivan WP, Toft DO, Hager GL, DeFranco DB. A novel in situ assay for the identification and characterization of soluble nuclear mobility factors. Sci Signal 2004; 2004:pl10. [PMID: 15213337 DOI: 10.1126/stke.2382004pl10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of green fluorescent protein (GFP) technology combined with live cell microscopy techniques have revealed the dynamic properties of GFP-tagged proteins in the nucleus. The mobility of a GFP-tagged protein can be assessed using a quantitative photobleaching technique, fluorescence recovery after photobleaching (FRAP) analysis. FRAP experiments demonstrate that many nuclear proteins are highly mobile within the nucleus. However, the factors within the nucleus that regulate this mobility are not known. This is partly due to an absence of protocols that can be used to identify such nuclear mobility factors. We developed a novel in situ assay that combines a biochemical permeabilization and extraction procedure with a quantitative FRAP technique, a method we used to uncover a new functional role for molecular chaperones in the nuclear mobility of steroid receptors. This assay can readily be adapted to identify and characterize other nuclear mobility factors.
Collapse
Affiliation(s)
- Cem Elbi
- Laboratory of Receptor Biology and Gene Expression, Building 41, Room B602, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nelson GM, Prapapanich V, Carrigan PE, Roberts PJ, Riggs DL, Smith DF. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol Endocrinol 2004; 18:1620-30. [PMID: 15071092 DOI: 10.1210/me.2004-0054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple molecular chaperones interact with steroid receptors to promote functional maturation and stability of receptor complexes. The heat shock protein (Hsp)70 cochaperone Hip has been identified in conjunction with Hsp70, Hsp90, and the Hsp70/Hsp90 cochaperone Hop/Sti1p in receptor complexes during an intermediate stage of receptor assembly, but a functional requirement for Hip in the receptor assembly process has not been established. Because the budding yeast Saccharomyces cerevisiae contains orthologs for most of the receptor-associated chaperones yet lacks an orthologous Hip gene, we exploited the well-established yeast model for steroid receptor function to ask whether Hip can alter steroid receptor function in vivo. Introducing human Hip into yeast enhances hormone-dependent activation of a reporter gene by glucocorticoid receptor (GR). Because Hip does not similarly enhance signaling by mineralocorticoid, progesterone, or estrogen receptors, a general effect on transcription can be excluded. Instead, Hip promotes functional maturation of GR without increasing steady-state levels of GR protein. Unexpectedly, Hip binding to Hsp70 is not critical for boosting GR responsiveness to hormone. In conclusion, Hip functions by a previously unrecognized mechanism to promote the efficiency of GR maturation in cells.
Collapse
Affiliation(s)
- Gregory M Nelson
- S.C. Johnson Research Center, Mayo Clinic Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bledsoe RK, Stewart EL, Pearce KH. Structure and function of the glucocorticoid receptor ligand binding domain. VITAMINS AND HORMONES 2004; 68:49-91. [PMID: 15193451 DOI: 10.1016/s0083-6729(04)68002-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
After binding to an activating ligand, such as corticosteroid, the glucocorticoid receptor (GR) performs an impressive array of functions ranging from nuclear translocation, oligomerization, cofactor/kinase/transcription factor association, and DNA binding. One of the central functions of the receptor is to regulate gene expression, an activity triggered by ligand binding. In this role, GR acts as an adapter molecule by encoding the ligand's message within the structural flexibility of the ligand binding domain (LBD). The purpose of this review is to discuss the many structural and functional features of the GR LBD in light of recent successful biochemical and crystallographic studies. Progress in this area of research promises to reveal new strategies and insights allowing for the design of novel drugs to treat inflammatory diseases, diabetic conditions, steroid resistance, and cancers.
Collapse
Affiliation(s)
- Randy K Bledsoe
- Department of Gene Expression and Protein Biochemistry, Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
17
|
Abstract
Steroid hormone receptors comprise a major class of therapeutic drug targets that control gene expression by binding steroid hormone ligands. These small molecule-protein interactions are typically characterized in living cells by quantification of ligand-mediated reporter gene expression. As an alternative, non-transcriptional approach, we constructed fluorescent cellular sensors by expressing yellow fluorescent protein (YFP) fused to the ligand binding domains (LBDs) of estrogen receptor-alpha (ERalpha), estrogen receptor-beta (ERbeta), androgen receptor (AR), and the glucocorticoid receptor (GR). These proteins were tethered through a short two amino acid linker and expressed in S. cerevisiae yeast. Recombinant yeast treated with cognate steroid receptor ligands exhibited dose-dependent fluorescence enhancements that were correlated with known relative receptor binding affinity values. These effects generally paralleled ligand-mediated receptor dimerization quantified with analogous yeast two-hybrid transcriptional assays, suggesting that the majority of the observed fluorescence enhancements were conferred by conformational changes coupled with receptor dimerization, such as ligand-mediated stabilization of protein folding. Remarkably, certain interactions such as the binding of cortisol, progesterone, and dexamethasone to the GR were undetectable with yeast two-hybrid assays. However, these interactions were detected with the fluorescent cellular sensors, indicating the sensitivity of this system to subtle ligand-induced conformational effects. These sensors provide a novel, non-transcriptional, and high-throughput method to identify and analyze ligands of nuclear hormone receptors.
Collapse
Affiliation(s)
- Smita S Muddana
- Department of Chemistry, The Pennsylvania State University, 152 Davey Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
18
|
Kauppi B, Jakob C, Färnegårdh M, Yang J, Ahola H, Alarcon M, Calles K, Engström O, Harlan J, Muchmore S, Ramqvist AK, Thorell S, Ohman L, Greer J, Gustafsson JA, Carlstedt-Duke J, Carlquist M. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J Biol Chem 2003; 278:22748-54. [PMID: 12686538 DOI: 10.1074/jbc.m212711200] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe the three-dimensional crystal structures of human glucocorticoid receptor ligand-binding domain (GR-LBD) in complex with the antagonist RU-486 at 2.3 A resolution and with the agonist dexamethasone ligand together with a coactivator peptide at 2.8 A. The RU-486 structure was solved in several different crystal forms, two with helix 12 intact (GR1 and GR3) and one with a protease-digested C terminus (GR2). In GR1, part of helix 12 is in a position that covers the co-activator pocket, whereas in the GR3, domain swapping is seen between the crystallographically identical subunits in the GR dimer. An arm consisting of the end of helix 11 and beyond stretches out from one molecule, and helix 12 binds to the other LBD, partly blocking the coactivator pocket of that molecule. This type of GR-LBD dimer has not been described before but might be an artifact from crystallization. Furthermore, the subunits of the GR3 dimers are covalently connected via a disulfide bond between the Cys-736 residues in the two molecules. All three RU-486 GR-LBD structures show that GR has a very flexible region between the end of helix 11 and the end of helix 12.
Collapse
Affiliation(s)
- Björn Kauppi
- Structure Biology, Karo Bio AB, Novum, SE-141 57 Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bray PJ, Cotton RGH. Variations of the human glucocorticoid receptor gene (NR3C1): pathological and in vitro mutations and polymorphisms. Hum Mutat 2003; 21:557-68. [PMID: 12754700 DOI: 10.1002/humu.10213] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glucocorticoid (GC) resistance can occur in a number of diseases. It can be either generalized (i.e., familial glucocorticoid resistance) or localized (i.e., asthma). In many cases, a reason for this resistance to steroids lies with mutations or polymorphisms present in the glucocorticoid receptor gene (GR/NR3C1) that belongs to a large family of nuclear receptors. A number of GC-resistant cell lines have been isolated in vitro, some of which arose or may have arisen in vivo. These and the mutations defined in them are included in this review as well as mutations engineered in plasmids and expressed in vitro. It also lists polymorphisms and the individual studies where association-related studies have been performed. NR3C1 is located on chromosome 5q31 and contains 10 exons that code for a 777 amino acid protein. There are two naturally occurring isoforms of the NR3C1, GRalpha (functional) and GRbeta (no hormone-binding ability). A total of 15 missense, three nonsense, three frameshift, one splice site, and two alternative spliced mutations have been reported in the NR3C1 gene associated with glucocorticoid resistance as well as 16 polymorphisms. Mutation and polymorphism data for NR3C1 will soon be found on the newly created locus-specific database.
Collapse
Affiliation(s)
- Paula J Bray
- Genomic Disorders Research Centre, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | | |
Collapse
|
20
|
Keeton EK, Fletcher TM, Baumann CT, Hager GL, Smith CL. Glucocorticoid receptor domain requirements for chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter in different nucleoprotein contexts. J Biol Chem 2002; 277:28247-55. [PMID: 12029095 DOI: 10.1074/jbc.m203898200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucocorticoid receptor (GR) contains several activation domains, tau1 (AF-1), tau2, and AF-2, which were initially defined using transiently transfected reporter constructs. Using domain mutations in the context of full-length GR, this study defines those domains required for activation of the mouse mammary tumor virus (MMTV) promoter in two distinct nucleoprotein configurations. A transiently transfected MMTV template with a disorganized, accessible chromatin structure was largely dependent on the AF-2 domain for activation. In contrast, activation of an MMTV template in organized, replicated chromatin requires both domains but has a relatively larger dependence on the tau1 domain. Domain requirements for GR-induced chromatin remodeling of the latter template were also investigated. Mutation of the AF-2 helix 12 domain partially inhibits the induction of nuclease hypersensitivity, but the inhibition was relieved in the absence of tau1, suggesting the occurrence of an important interaction between the two domains. Further mutational analysis indicates that GR-induced chromatin remodeling requires the ligand-binding domain in the region of helix 3. Our study shows that the GR activation surfaces required for transcriptional modulation of a target promoter were determined in part by its chromatin structure. Within a particular cellular environment the GR appears to possess a significant degree of versatility in the mechanism by which it activates a target promoter.
Collapse
MESH Headings
- Alanine
- Amino Acid Substitution
- Animals
- Base Sequence
- Binding Sites
- Chromatin/physiology
- Chromatin/ultrastructure
- Cloning, Molecular
- Dexamethasone/pharmacology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Nuclear Proteins/metabolism
- Nucleoproteins/metabolism
- Oligodeoxyribonucleotides
- Promoter Regions, Genetic
- Protein Structure, Secondary
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Interferon/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Serine
- Templates, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
|
21
|
Kucera T, Waltner-Law M, Scott DK, Prasad R, Granner DK. A point mutation of the AF2 transactivation domain of the glucocorticoid receptor disrupts its interaction with steroid receptor coactivator 1. J Biol Chem 2002; 277:26098-102. [PMID: 12118039 DOI: 10.1074/jbc.m204013200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids cause a 10-fold increase in hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene transcription through two low affinity glucocorticoid receptor (GR) binding sites and a complex array of accessory factor DNA elements and associated proteins. To analyze how co-activators interact with the GR in this context, we took advantage of the C656G GR mutant that binds ligand with very high affinity. This GR activates PEPCK gene transcription at a 500-fold lower dexamethasone concentration than does wild type GR. Transfected C656G GR containing additional mutations or deletions was tested on PEPCK gene expression in H4IIE hepatoma cells. We found that the AF2 domain is the only one of the three defined transactivation domains in GR that is required for PEPCK gene expression and that mutation of this domain disrupts the direct interaction of GR with steroid receptor coactivator 1 (SRC-1). These data help define the functional interaction between GR and SRC-1 and further define the role of the GR in glucocorticoid-mediated expression of the PEPCK gene.
Collapse
Affiliation(s)
- Tomas Kucera
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
22
|
Mackem S, Baumann CT, Hager GL. A glucocorticoid/retinoic acid receptor chimera that displays cytoplasmic/nuclear translocation in response to retinoic acid. A real time sensing assay for nuclear receptor ligands. J Biol Chem 2001; 276:45501-4. [PMID: 11585812 DOI: 10.1074/jbc.c100269200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the nuclear receptor superfamily play key roles in a host of physiologic and pathologic processes from embryogenesis to cancer. Some members, including the retinoic acid receptor (RAR), are activated by ligand binding but are unaffected in their subcellular distribution, which is predominantly nuclear. In contrast, several members of the steroid receptor family, including the glucocorticoid receptor, are cytoplasmic and only translocate to the nucleus after ligand binding. We have constructed chimeras between RAR and glucocorticoid receptor that selectively respond to RAR agonists but display cytoplasmic localization in the absence of ligand. These chimeric receptors manifest both nuclear translocation and gene activation functions in response to physiological concentrations of RAR ligands. The ability to achieve regulated subcellular trafficking with a heterologous ligand binding domain has implications both for current models of receptor translocation and for structural-functional conservation of ligand binding domains broadly across the receptor superfamily. When coupled to the green fluorescent protein, chimeric receptors offer a powerful new tool to 1) study mechanisms of steroid receptor translocation, 2) detect dynamic and graded distributions of ligands in complex microenvironments such as embryos, and 3) screen for novel ligands of "orphan" receptors in vivo.
Collapse
Affiliation(s)
- S Mackem
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
Wurtz JM, Moras D. Molecular determinants for agonist and antagonist binding to steroid nuclear receptors. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:167-80. [PMID: 11394044 DOI: 10.1007/978-3-662-04645-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Humans
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/antagonists & inhibitors
- Receptors, Steroid/chemistry
- Receptors, Steroid/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- J M Wurtz
- Laboratoire de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, 1 rue Laurent Fries BP 163, 67404 Illkrich Cedex, France
| | | |
Collapse
|
24
|
Griffith EC, Licitra EJ, Liu JO. Yeast three-hybrid system for detecting ligand-receptor interactions. Methods Enzymol 2001; 328:89-103. [PMID: 11075340 DOI: 10.1016/s0076-6879(00)28392-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- E C Griffith
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
25
|
Chen S, Sarlis NJ, Simons SS. Evidence for a common step in three different processes for modulating the kinetic properties of glucocorticoid receptor-induced gene transcription. J Biol Chem 2000; 275:30106-17. [PMID: 10899170 DOI: 10.1074/jbc.m005418200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dose-response curve of steroid hormones and the associated EC(50) value are critical parameters both in the development of new pharmacologically active compounds and in the endocrine therapy of various disease states. We have recently described three different variables that can reposition the dose-response curve of agonist-bound glucocorticoid receptors (GRs): a 21-base pair sequence of the rat tyrosine aminotransferase gene called a glucocorticoid modulatory element (GME), GR concentration, and coactivator concentration. At the same time, each of these three components was found to influence the partial agonist activity of antiglucocorticoids. In an effort to determine whether these three processes proceed via independent pathways or a common intermediate, we have examined several mechanistic details. The effects of increasing concentrations of both GR and the coactivator TIF2 are found to be saturable. Furthermore, saturating levels of either GR or TIF2 inhibit the ability of each protein, and the GME, to affect further changes in the dose-response curve or partial agonist activity of antisteroids. This competitive inhibition suggests that all three modulators proceed through a common step involving a titratable factor. Support for this hypothesis comes from the observation that a fragment of the coactivator TIF2 retaining intrinsic transactivation activity is a dominant negative inhibitor of each component (GME, GR, and coactivator). This inhibition was not due to nonspecific effects on the general transcription machinery as the VP16 transactivation domain was inactive. The viral protein E1A also prevented the action of each of the three components in a manner that was independent of E1A's ability to block the histone acetyltransferase activity of CBP. Collectively, these results suggest that three different inputs (GME, GR, and coactivator) for perturbing the dose-response curve, and partial agonist activity, of GR-steroid complexes act by converging at a single step that involves a limiting factor prior to transcription initiation.
Collapse
Affiliation(s)
- S Chen
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
26
|
Lin H, Abida WM, Sauer RT, Cornish VW. Dexamethasone−Methotrexate: An Efficient Chemical Inducer of Protein Dimerization In Vivo. J Am Chem Soc 2000. [DOI: 10.1021/ja9941532] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hening Lin
- Department of Chemistry, Columbia University New York, New York 10027 Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139
| | - Wassim M. Abida
- Department of Chemistry, Columbia University New York, New York 10027 Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139
| | - Robert T. Sauer
- Department of Chemistry, Columbia University New York, New York 10027 Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University New York, New York 10027 Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139
| |
Collapse
|
27
|
Menaa C, Barsony J, Reddy SV, Cornish J, Cundy T, Roodman GD. 1,25-Dihydroxyvitamin D3 hypersensitivity of osteoclast precursors from patients with Paget's disease. J Bone Miner Res 2000; 15:228-36. [PMID: 10703924 DOI: 10.1359/jbmr.2000.15.2.228] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous studies suggested that increased osteoclast formation and activity in Paget's disease may be related in part to increased responsiveness of highly purified osteoclast precursors to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. However, the basis for this enhanced sensitivity to 1,25-(OH)2D3 is unclear. To address this question, we examined 24-hydroxylase and 1,25-(OH)2D3 receptor (VDR) messenger RNA (mRNA) expression during human osteoclast differentiation from normal subjects and patients with Paget's disease in response to 1,25-(OH)2D3 as well as VDR content and affinity. Reverse-transcription polymerase chain reaction (RT-PCR) analysis of granulocyte-macrophage colony-forming unit (GM-CFU), the earliest identifiable osteoclast precursor, derived from patients with Paget's disease demonstrated 24-hydroxylase mRNA expression in response to 1,25-(OH)2D3 was induced at concentrations of 1,25-(OH)2D3 that were at least one log less than that required for normal GM-CFU. VDR mRNA and VDR protein were detected in both immature and more differentiated osteoclast precursors, as well as in osteoclast-like multinucleated cells (MNCs). However, VDR expression was lower in MNCs than the mononuclear precursor cells. Osteoclast precursors and MNCs from patients with Paget's disease had levels of VDR expression similar to those of normal subjects but showed increased VDR affinity for 1,25-(OH)2D3. Because the effects of 1,25-(OH)2D3 are in part mediated by induction of expression of RANK ligand on marrow stromal cells, which in turn stimulates osteoclast formation, we examined expression of RANK ligand mRNA by marrow stromal cell lines derived from patients with Paget's disease and normal subjects in response to 1,25-(OH)2D3. RT-PCR analysis showed no difference in sensitivity of marrow stromal cells to 1,25-(OH)2D3 from normal subjects or patients with Paget's disease although the Paget's stromal cells expressed increased basal levels of RANK ligand mRNA. These results show that VDR protein is expressed in early and more differentiated osteoclast precursors, that expression levels of VDR decline with osteoclast differentiation, and that 1,25-(OH)2D3 has direct effects on osteoclast precursors. The enhanced sensitivity to 1,25-(OH)2D3 is an intrinsic property of osteoclast precursors from patients with Paget's disease that distinguishes them from normal osteoclast precursors. Furthermore, our results suggest that an increased affinity of VDR for 1,25-(OH)2D3 may be responsible for the enhanced 1,25-(OH)2D3 sensitivity of osteoclast precursors in patients with Paget's disease compared with normal subjects.
Collapse
Affiliation(s)
- C Menaa
- Department of Medicine/Hematology, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | |
Collapse
|
28
|
Huang Y, Simons SS. Functional analysis of R651 mutations in the putative helix 6 of rat glucocorticoid receptors. Mol Cell Endocrinol 1999; 158:117-30. [PMID: 10630412 DOI: 10.1016/s0303-7207(99)00171-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trypsin digestion of steroid-free, but not steroid-bound, rat glucocorticoid receptor (GR) has recently been reported to occur at arginine-651 (R651). This residue is close to the affinity labeled Cys-656 and thus could be a sensitive probe of steroid binding. This hypothesis is supported by the current model of the GR ligand binding domain (LBD), which is based on the X-ray structures of several related receptor LBDs and places R651 in the middle of the putative alpha-helix 6 (649-EQRMS-653 of rat GR), close to the bound steroid. To test this model, R651, which could be involved in hydrophilic and/or hydrogen bonding, was mutated to alanine (A), which favors alpha-helices, the helix breakers proline (P) and glycine (G), or tryptophan (W). All receptors were expressed at about the same level, as determined by Western blots, but the cell-free binding activity of R651P was reduced twofold. The cell-free binding affinities were all within a factor of 10 of wild type receptors. Whole cell biological activity with transiently transfected receptors was determined with a variety of GR agonists (dexamethasone and deacylcortivazol) or antagonists (dexamethasone mesylate, RU486, and progesterone). Reporters containing both simple (GRE) and complex (MMTV) enhancers were used to test for alterations in GR interactions with enhancer/promoter complexes. Surprisingly, no correlation was observed between biological activity and ability to preserve alpha-helical structures for each point mutation. Finally, similar trypsin digestion patterns indicated no major differences in the tertiary structure of the mutant receptors. Collectively, these results argue that the polar/ionizable residue R651 is not required for GR activity and is not part of an alpha-helix in the steroid-free or bound GR. The effect of these mutations on GR structure and activity may result from a cascade of initially smaller perturbations. These LBD alterations were the most varied for interactions with deacylcortivazol and RU 486, which have recently been predicted to be sub-optimal binders due to their large size. However, further analyses of ligand size versus affinity suggest that there is no narrowly defined optimal size for ligand binding, although larger ligands may be more sensitive to modifications of LBD structure. Finally, the changes in GR activity with the various mutations seem to result from altered LBD interactions with common, as opposed to enhancer specific, transcription factors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Blotting, Western
- Cell Line
- Enhancer Elements, Genetic
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Steroids/metabolism
- Steroids/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Huang
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Giannoukos G, Silverstein AM, Pratt WB, Simons SS. The seven amino acids (547-553) of rat glucocorticoid receptor required for steroid and hsp90 binding contain a functionally independent LXXLL motif that is critical for steroid binding. J Biol Chem 1999; 274:36527-36. [PMID: 10593951 DOI: 10.1074/jbc.274.51.36527] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 association with glucocorticoid receptors (GRs) is required for steroid binding. We recently reported that seven amino acids (547-553) overlapping the amino-terminal end of the rat GR ligand-binding domain are necessary for hsp90 binding, and consequently steroid binding. The role of a LXXLL motif at the COOH terminus of this sequence has now been analyzed by determining the properties of Leu to Ser mutations in full-length GR and glutathione S-transferase chimeras. Surprisingly, these mutations decreased steroid binding capacity without altering receptor levels, steroid binding affinity, or hsp90 binding. Single mutations in the context of the full-length receptor did not affect the transcriptional activity but the double mutant (L550S/L553S) was virtually inactive. This biological inactivity was found to be due to an increased rate of steroid dissociation from the activated mutant complex. These results, coupled with those from trypsin digestion studies, suggest a model in which the GR ligand-binding domain is viewed as having a "hinged pocket," with the hinge being in the region of the trypsin digestion site at Arg(651). The pocket would normally be kept shut via the intramolecular interactions of the LXXLL motif at amino acids 550-554 acting as a hydrophobic clasp.
Collapse
Affiliation(s)
- G Giannoukos
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | | | |
Collapse
|
30
|
Szapary D, Huang Y, Simons SS. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol 1999; 13:2108-21. [PMID: 10598585 DOI: 10.1210/mend.13.12.0384] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A distinguishing, but unexplained, characteristic of steroid hormone action is the dose-response curve for the regulation of gene expression. We have previously reported that the dose-response curve for glucocorticoid induction of a transfected reporter gene in CV-1 and HeLa cells is repositioned in the presence of increasing concentrations of glucocorticoid receptors (GRs). This behavior is now shown to be independent of the reporter, promoter, or enhancer, consistent with our proposal that a transacting factor(s) was being titrated by added receptors. Candidate factors have been identified by the observation that changes in glucocorticoid induction parameters in CV-1 cells could be reproduced by varying the cellular levels of coactivators [transcriptional intermediary factor 2 (TIF2), steroid receptor coactivator 1 (SRC-1), and amplified in breast cancer 1 (AIB1)], comodulator [CREB-binding protein (CBP)], or corepressor [silencing mediator for retinoid and thyroid-hormone receptors (SMRT)] without concomitant increases in GR. Significantly, the effects of TIF2 and SMRT were mutually antagonistic. Similarly, additional SMRT could reverse the action of increased levels of GRs in HeLa cells, thus indicating that the effects of cofactors on transcription may be general for GR in a variety of cells. These data further indicate that GRs are yet an additional target of the corepressor SMRT. At the same time, these cofactors were found to be capable of regulating the level of residual agonist activity displayed by antiglucocorticoids. Finally, these observations suggest that a novel role for cofactors is to participate in processes that determine the dose-response curve, and partial agonist activity, of GR-steroid complexes. This new activity of cofactors is disconnected from their ability to increase or decrease GR transactivation. An equilibrium model is proposed in which the ratio of coactivator-corepressor bound to either receptor-agonist or -antagonist complexes regulates the final transcriptional properties.
Collapse
Affiliation(s)
- D Szapary
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | |
Collapse
|
31
|
Sheldon LA, Smith CL, Bodwell JE, Munck AU, Hager GL. A ligand binding domain mutation in the mouse glucocorticoid receptor functionally links chromatin remodeling and transcription initiation. Mol Cell Biol 1999; 19:8146-57. [PMID: 10567540 PMCID: PMC84899 DOI: 10.1128/mcb.19.12.8146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We utilized the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) in vivo to understand how the interaction of the glucocorticoid receptor (GR) with a nucleosome-assembled promoter allows access of factors required for the transition from a repressed promoter to a derepressed, transcriptionally competent promoter. A mutation (C644G) in the ligand binding domain (LBD) of the mouse GR has provided information regarding the steps required in the derepression/activation process and in the functional significance of the two major transcriptional activation domains, AF1 and AF2. The mutant GR activates transcription from a transiently transfected promoter that has a disordered nucleosomal structure, though significantly less well than the wild-type GR. With an integrated, replicated promoter, which is assembled in an ordered nucleosomal array, the mutant GR does not activate transcription, and it fails to induce chromatin remodeling of the MMTV LTR promoter, as indicated by nuclease accessibility assays. Together, these findings support a two-step model for the transition of a nucleosome-assembled, repressed promoter to its transcriptionally active, derepressed form. In addition, we find that the C-terminal GR mutation is dominant over the transcription activation function of the N-terminal GR activation domain. These findings suggest that the primary activation function of the C-terminal activation domain is different from the function of the N-terminal activation domain and that it is required for derepression of the chromatin-repressed MMTV promoter.
Collapse
Affiliation(s)
- L A Sheldon
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA. Lynn.A.Sheldon.@Dartmouth.edu
| | | | | | | | | |
Collapse
|
32
|
Walker D, Htun H, Hager GL. Using inducible vectors to study intracellular trafficking of GFP-tagged steroid/nuclear receptors in living cells. Methods 1999; 19:386-93. [PMID: 10579933 DOI: 10.1006/meth.1999.0874] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular trafficking and localization of proteins can now be efficiently visualized by fusion of a polypeptide to the green fluorescent protein (GFP). Many spectral variants of this reagent are now available, providing powerful tools for studies in living cells. This approach is particularly useful for members of the steroid/nuclear receptor superfamily, since these molecules frequently undergo rapid subcellular redistribution on ligand activation. A major roadblock in the application of this technology concerns problems associated with transient transfections. This technique produces cell populations that are highly heterogeneous with respect to the newly introduced protein and usually contain the protein in a highly overexpressed state. In addition, long-term studies related to cell cycle and cellular differentiation are essentially impossible with this approach. These problems can be overcome by introduction of the GFP fusion into cells under appropriate induction control. We describe application of the tetracycline regulatory system to inducible control of a glucocorticoid receptor (GR)/GFP chimera. Intracellular concentrations of GFP-GR can be very effectively controlled in this system, providing an ideal environment in which to study subcellular trafficking of the receptor and interactions with a variety of intracellular targets.
Collapse
Affiliation(s)
- D Walker
- Laboratory of Receptor Biology and Gene Expression, Building 41, Room B602, National Cancer Institute, Bethesda, Maryland 20892-5055, USA
| | | | | |
Collapse
|
33
|
Xu M, Modarress KJ, Meeker JE, Simons SS. Steroid-induced conformational changes of rat glucocorticoid receptor cause altered trypsin cleavage of the putative helix 6 in the ligand binding domain. Mol Cell Endocrinol 1999; 155:85-100. [PMID: 10580842 DOI: 10.1016/s0303-7207(99)00110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Steroid-induced changes in receptor protein conformation constitute a logical means of translating the variations in steroid structures into the observed array of whole cell biological activities. One conformational change in the rat glucocorticoid receptor (GR) can be readily discerned by following the ability of trypsin digestion to afford a 16-kDa fragment. This fragment is seen after proteolysis of steroid-free receptors but disappears in digests of either glucocorticoid- or antiglucocorticoid-bound receptors. The location of this cleavage site has now been located unambiguously as R651, in helix 6 of the ligand binding domain, by a combination of point mutagenesis, arginine specific protease digestion, and radiochemical sequencing. This 16-kDa species, corresponding to amino acids 652-795, was non-covalently associated with another, approximately 17-kDa species that was determined to be amino acids 518-651 after a comparison of co-immunoprecipitated fragments from wild type and two chimeric receptors. These assignments revise our earlier report of amino acids 537-673 being the 16-kDa fragment and suggest that sequences of the entire ligand binding domain are required for high affinity and specificity binding. This was supported by the observation that trypsin digestion of the steroid-free R651A mutant GR gave rise to the 30-kDa meroreceptor (amino acids 518-795), which displayed wild type affinity. This 30-kDa species is thus the smallest non-associated fragment of GR possessing wild type steroid binding affinity. This suggests that other GR regions do not influence steroid binding affinity. The above results are reminiscent of those observed for the estrogen receptor. However, unlike the estrogen receptor or the more closely related progesterone receptor, the precise proteolytic cleavage points of both the steroid-free and -bound GR fall within regions that are predicted, on the basis of X-ray crystal structures of related receptors, to be alpha-helical and resistant to proteolysis. Thus, the tertiary structure of the GR ligand binding domain may be distinctly different from that of estrogen and progesterone receptors.
Collapse
Affiliation(s)
- M Xu
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Lind U, Greenidge P, Gustafsson JA, Wright AP, Carlstedt-Duke J. Valine 571 functions as a regional organizer in programming the glucocorticoid receptor for differential binding of glucocorticoids and mineralocorticoids. J Biol Chem 1999; 274:18515-23. [PMID: 10373460 DOI: 10.1074/jbc.274.26.18515] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucocorticoid receptor (GR) interacts specifically with glucocorticoids, whereas its closest relative, the mineralocorticoid receptor (MR), interacts with both glucocorticoids and mineralocorticoids, such as aldosterone. To investigate the mechanism underlying the glucocorticoid/mineralocorticoid specificity of the GR, we used a yeast model system to screen for GR ligand-binding domain mutants, substituted with MR residues in the segment 565-574, that can be efficiently activated by aldosterone. In all such increased activity mutants, valine 571 was replaced by methionine, even though most mutants also contained substitutions of other residues with their MR counterparts. Further analysis in yeast and COS-7 cells has revealed that the identity of residue 571 determines the behavior of other MR substituted residues in the 565-574 segment. Generally, MR substitutions in this region are only consistent with aldosterone binding if residue 571 is also replaced with methionine (MR conformation). If residue 571 is valine (GR conformation), most other MR substitution mutants drastically reduce interaction with both mineralocorticoid and glucocorticoid hormones. Based on these functional data, we hypothesize that residue 571 functions as a regional organizer involved in discriminating between glucocorticoid and mineralocorticoid hormones. We have used a molecular model of the GR ligand-binding domain in an attempt to interpret our functional data in structural terms.
Collapse
Affiliation(s)
- U Lind
- Department of Medical Nutrition, Karolinska Institutet, Huddinge Hospital, Novum, S-141 86, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Rana S, Bisht D, Chakraborti PK. Synergistic activation of yeast-expressed rat androgen receptor by modulators of protein kinase-A. J Mol Biol 1999; 286:669-81. [PMID: 10024442 DOI: 10.1006/jmbi.1998.2505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have employed a yeast (Saccharomyces cerevisiae) based rat androgen receptor expression system to examine the cross-talk between different signalling pathways. We report here the synergistic modulation of androgen regulated transcriptional activation of beta-galactosidase reporter activity by the activators of protein kinase-A, like forskolin and 8-bromo-cyclic AMP. A similar ligand-dependent enhancement of reporter activity compared to a DHT treated control has been noticed with okadaic acid, which is a potent inhibitor of protein phosphatase. The activation could be blocked by protein kinase-A/C inhibitor, H7. Forskolin treatment neither altered levels of receptor mRNA nor [3H]R1881 binding to the receptor. Although it promotes binding of receptor to an androgen response element, forskolin was unable to activate subsequent interaction with the transcription machinery in the absence of androgen. Additionally, the synergistic actions of these activators were independent of the degree of androgen response element occupancy. Anti-androgens, cyproterone acetate and flutamide, which failed to exhibit antagonistic behaviour with yeast expressed receptor, were able to antagonize only the forskolin mediated augmentation of reporter activity. Finally, analyses of mutants established the role of DNA and steroid binding domains of receptor for this synergism.
Collapse
Affiliation(s)
- S Rana
- Institute of Microbial Technology, Sector 39A, Chandigarh, 160 036, India
| | | | | |
Collapse
|
36
|
Sarlis NJ, Bayly SF, Szapary D, Simons SS. Quantity of partial agonist activity for antiglucocorticoids complexed with mutant glucocorticoid receptors is constant in two different transactivation assays but not predictable from steroid structure. J Steroid Biochem Mol Biol 1999; 68:89-102. [PMID: 10369406 DOI: 10.1016/s0960-0760(99)00021-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An unsolved question in steroid hormone action is why the amount of agonist activity displayed by antisteroids is not constant but varies with the assay conditions. Receptor mutations have provided insight into hormone action, presumably due to changes in the tertiary structure of the receptor that alter its interaction surfaces with the transcriptional machinery or/and co-factors. We have now employed two mechanistically different induction assays to determine whether disparate transactivation processes are similarly altered by receptor mutations. The two activation assays studied were (i) the standard induction of GREtkLUC in transiently transfected CV-1 cells and (ii) a novel modulation of endogenous receptor activity by transiently transfected receptors in HeLa cells. Five different mutations in the ligand binding and DNA binding domains of the rat glucocorticoid receptor (CS1, CS1/CD, 451/9, C656G, and R732Q) and seven steroids of varied structures (five antagonists and two agonists) were selected for use. The results in both induction assays were the same. However, no generalizations regarding steroid structure and activity emerged. Neither of two potent glucocorticoids were active with GR-CS1, or GR-CS1/CD, while RU 486 was the only antisteroid with appreciable agonist activity. With the GR-451/9 mutant, three antagonists afforded partial agonist activity. We confirmed that the C656G mutant is both "super-sensitive" and "super-selective" for transactivation. In contrast, the R732Q mutation caused significant decreases in activity with both antagonists and subsaturating concentrations of agonists. This inability to generalize about the behavior of any class of steroids with mutant receptors may reflect an induced fit for each receptor steroid complex. Nevertheless, the activity of a given steroid appeared to be constant in two different transactivation assays for a given mutant receptor. Thus, disparate transactivation processes may utilize identical receptor surfaces, even in the expression of partial agonist activity for specific antiglucocorticoids.
Collapse
Affiliation(s)
- N J Sarlis
- Steroid Hormones Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
37
|
Lupo B, Mesnier D, Auzou G. Cysteines 849 and 942 of human mineralocorticoid receptor are crucial for steroid binding. Biochemistry 1998; 37:12153-9. [PMID: 9724527 DOI: 10.1021/bi980593e] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To assess the role of each of the four cysteine residues in the hormone binding domain (HBD) of the human mineralocorticoid receptor (hMR), we have separately substituted C808, C849, C910, and C942 into serine. These mutations were created in the G595-K984 hMR receptor fragment which encompasses the DNA binding domain, the hinge region, and the hormone binding domain. Each mutant was further analyzed by steroid binding assays and transactivation assays using wild-type and mutant proteins expressed in vitro in the reticulocyte lysate. While the C910S mutant exhibited similar wild-type G595-K984 receptor binding properties for aldosterone, the C808S mutant affinity was 3.5-fold higher. In contrast, the C849S mutant showed a drastic drop in affinity for aldosterone and the mutant C942S was unable to bind the steroid. Affinities for the antagonist progesterone were also determined. C808S, C849S, and C910S were found to bind progesterone better than aldosterone (about a 2-fold increase in their affinities). Mutant C942S failed to bind any steroid tested (aldosterone, progesterone, cortisol, and the synthetic antagonist RU26752). No change in the specificity toward various agonists and antagonists could be observed with the mutants when compared to the wild-type G595-K984. When transactivation assays were performed, the properties of mutants C808S and C910S were similar to those of the wild-type G595-K984, while mutant C849S showed reduced sensitivity and C942S was devoid of any transcriptional activity. Our data indicate that C849 and C942 are critical for the ligand binding process of hMR. Moreover, C942 might be involved in a direct contact with the 20-keto group of the steroid.
Collapse
Affiliation(s)
- B Lupo
- INSERM U300, Faculté de Pharmacie Bat K, Montpellier, France.
| | | | | |
Collapse
|
38
|
Rana S, Bisht D, Chakraborti PK. Activation of rat androgen receptor by androgenic ligands is unaffected by antiandrogens in Saccharomyces cerevisiae. Gene 1998; 209:247-54. [PMID: 9524277 DOI: 10.1016/s0378-1119(98)00054-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The E. coli lacZ has been utilized as a reporter to evaluate ligand-mediated activation of the rat androgen receptor (AR) in Saccharomyces cerevisiae strain YCR1. beta-galactosidase activity was androgen-specific and was found to be inducible approximately 260-fold by dihydrotestosterone (DHT), testosterone and R1881. None of the antiandrogens tested was able to antagonize the DHT-dependent induction of beta-galactosidase activity. In the gel retardation assay, exposure of the receptor to DHT in vitro led to the formation of a protein-DNA complex that was not detected in yeast extracts unexposed to hormone. However, activation of AR by a steroidal (cyproterone acetate) and a non-steroidal antiandrogen (flutamide) either alone or in combination with DHT also results in a similar migration pattern. Additionally, LEM1, the ABC transporter that selectively modulates the biological potency of steroids in yeast, although operative in YCR1, was not responsible for antiandrogen resistance. These results thus indicate the involvement of other non-receptor factor(s) in mediating the effect of antiandrogens in yeast.
Collapse
Affiliation(s)
- S Rana
- Institute of Microbial Technology, Sector 39A, Chandigarh, 160 036, India
| | | | | |
Collapse
|
39
|
Smith CL, Htun H, Wolford RG, Hager GL. Differential activity of progesterone and glucocorticoid receptors on mouse mammary tumor virus templates differing in chromatin structure. J Biol Chem 1997; 272:14227-35. [PMID: 9162055 DOI: 10.1074/jbc.272.22.14227] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vivo, transcription factors interact with promoters having complex nucleoprotein structures. The transiently expressed progesterone receptor (PR) efficiently activates a transfected mouse mammary tumor virus (MMTV) promoter but is a poor activator of the MMTV promoter when it acquires an ordered chromatin structure as an endogenous, replicating gene. We show that the deficiency in PR activity is not due to insufficient expression of either B or A isoforms or competition between the two types of MMTV templates. Rather, this deficiency reflects an inability to induce the chromatin remodeling event that is required for activation of the replicated MMTV template. To determine whether this characteristic is common to transiently expressed steroid receptors or specific to the PR, we examined the activity of transiently expressed glucocorticoid (GR) receptor. Unlike the PR, the transiently expressed GR is an effective activator of both MMTV templates and efficiently induces the necessary chromatin remodeling event at the replicated template. These results indicate that the GR and PR have unique requirements for activation of promoters with ordered chromatin structure. These differences may provide a mechanism for establishing target gene specificity in vivo for steroid receptors that recognize and bind to identical DNA sequences.
Collapse
Affiliation(s)
- C L Smith
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | | | |
Collapse
|
40
|
Kasperk CH, Wakley GK, Hierl T, Ziegler R. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 1997; 12:464-71. [PMID: 9076590 DOI: 10.1359/jbmr.1997.12.3.464] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Androgens stimulate bone formation and play an important role in the maintenance of bone mass. Clinical observations suggest that both gonadal and adrenal androgens contribute to the positive impact of androgenic steroids on bone metabolism. We investigated the mechanism of action of the adrenal androgen dehydroepiandrosterone (DHEA) and its sulfated compound dehydroepiandrosterone sulfate (DHEAS) on human osteoblastic cells (HOCs) in vitro. The DHEA- and DHEAS-induced effects were analyzed in parallel with the actions elicited by the gonadal androgen dihydrotestosterone (DHT). There was no qualitative difference between the effects of gonadal and adrenal androgens on HOC metabolism in vitro. Both were stimulatory as regards cell proliferation and differentiated functions, but the gonadal androgen DHT was significantly more potent than DHEA. The actions of DHT and DHEA on HOC proliferation and alkaline phosphatase (ALP) production could be prevented by the androgen receptor antagonist hydroxyflutamide and inhibitory transforming growth factor beta antibodies (TGF-beta ab), respectively, but were not affected by the presence of the 3 beta-hydroxysteroid dehydrogenase (3 beta HSD) and 5-alpha-reductase (5-AR) inhibitor 17 beta-N,N-diethylcarbamoyl-4-methyl- 4aza-5 alpha-androstan-3-one (4-MA). This indicates that DHT and DHEA (1) exert their mitogenic effects by androgen receptor-mediated mechanisms, (2) stimulate ALP production by increased TGF-beta expression, (3) that the action of DHT is not affected by the presence of 4-MA, and that (4) DHEA does not need to be metabolized by 3 beta HSD or 5-AR first to exert its effects on HOCs in vitro.
Collapse
Affiliation(s)
- C H Kasperk
- Ruprecht-Karls-University of Heidelberg, Department of Medicine, Germany
| | | | | | | |
Collapse
|
41
|
Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci U S A 1996; 93:12817-21. [PMID: 8917502 PMCID: PMC24003 DOI: 10.1073/pnas.93.23.12817] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Small ligand-receptor interactions underlie many fundamental processes in biology and form the basis for pharmacological intervention of human diseases in medicine. We report herein a genetic system, named the yeast three-hybrid system, for detecting ligand-receptor interactions in vivo. This system is adapted from the yeast two-hybrid system with which a third synthetic hybrid ligand is combined. The feasibility of this system was demonstrated using as the hybrid ligand a heterodimer of covalently linked dexamethasone and FK506. Yeast expressing fusion proteins of the hormone binding domain of the rat glucocorticoid receptor fused to the LexA DNA-binding domain and FKBP12 fused to a transcriptional activation domain activated reporter genes when plated on medium containing the dexamethasone-FK506 heterodimer. The reporter gene activation is completely abrogated in a competitive manner by the presence of excess FK506. Using this system, we screened a Jurkat cDNA library fused to the transcriptional activation domain in yeast expressing the hormone binding domain of rat glucocorticoid receptor-LexA DNA binding domain fusion protein in the presence of dexamethasone-FK506 heterodimer. We isolated overlapping clones of human FKBP12. These results demonstrate that the three-hybrid system can be used to discover receptors for small ligands and to screen for new ligands to known receptors.
Collapse
Affiliation(s)
- E J Licitra
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
42
|
Xu M, Chakraborti PK, Garabedian MJ, Yamamoto KR, Simons SS. Modular structure of glucocorticoid receptor domains is not equivalent to functional independence. Stability and activity of the steroid binding domain are controlled by sequences in separate domains. J Biol Chem 1996; 271:21430-8. [PMID: 8702925 DOI: 10.1074/jbc.271.35.21430] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A long-standing conundrum of glucocorticoid receptors has been why the steroid binding domain is active in hybrid proteins but not in isolation. For this reason, the precise boundaries of the steroid binding domain have not been defined. These questions have now been systematically examined with a variety of receptor deletion constructs. Plasmids encoding amino acids 537-673 and 537-795 of the rat receptor did not yield stable proteins, while the fusion of receptor or non-receptor sequences upstream of 537-673 afforded stable proteins that did not bind steroid. Wild type steroid binding affinity could be obtained, however, when proteins such as beta-galactosidase or dihydrofolate reductase were fused upstream of receptor amino acids 537-795. Studies of a series of dhfr/receptor constructs with deletions at the amino- and carboxyl-terminal ends of the receptor sequence localized the boundaries of the steroid binding domain to 550-795. The absence of steroid binding upon deletion of sequences in the carboxyl-terminal half of this domain was consistent with improperly folded receptor sequences. This conclusion was supported by analyses of the proteolysis and thermal stability of the mutant receptors. Thus, three independent regions appear to be required for the generation of the steroid binding form of receptors: 1) a protein sequence upstream of the steroid binding domain, which conveys stability to the steroid binding domain, 2) sequences of the carboxyl-terminal amino acids (674-795), which are required for the correct folding of the steroid binding domain, and 3) amino-terminal sequences (550-673), which may be sufficient for steroid binding after the entire steroid binding domain is properly folded. These results establish that the steroid binding domain of glucocorticoid receptors is not independently functional and illustrate the importance of both protein stability and protein folding when constructing mutant proteins.
Collapse
Affiliation(s)
- M Xu
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | | | | | |
Collapse
|
43
|
Oakley RH, Sar M, Cidlowski JA. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem 1996; 271:9550-9. [PMID: 8621628 DOI: 10.1074/jbc.271.16.9550] [Citation(s) in RCA: 389] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alternative splicing of the human glucocorticoid receptor (hGR) primary transcript produces two receptor isoforms, hGRalpha and hGRbeta, which differ at their carboxyl termini. The hGRalpha isoform conveys endocrine information to target tissues by altering patterns of gene expression in a hormone-dependent fashion. In contrast to hGRalpha, very little is known about the hGRbeta splice variant. Using hGRalpha- and hGRbeta-specific riboprobes on human multiple tissue Northern blots, we show that the hGRbeta message has a widespread tissue distribution. We also prove by reverse transcriptase-polymerase chain reaction that the alternative splicing event underlying the formation of the hGRbeta message occurs in these tissues. Because the hGRbeta protein differs from hGRalpha at the extreme COOH terminus, we investigated several of the biochemical properties of hGRbeta expressed in transfected cells. hGRbeta does not bind the glucocorticoid agonist dexamethasone nor the glucocorticoid antagonist RU38486 in vivo. Moreover, in contrast to hGRalpha, hGRbeta is located primarily in the nucleus of transfected cells independent of hormone administration. Finally, in the absence of hGRalpha, hGRbeta is transcriptionally inactive on a glucocorticoid-responsive enhancer. However, when both isoforms are expressed in the same cell, hGRbeta inhibits the hormone-induced, hGRalpha-mediated stimulation of gene expression. Thus, hGRbeta potentially functions as a dominant negative inhibitor of hGRalpha activity.
Collapse
Affiliation(s)
- R H Oakley
- Laboratory of Integrative Biology , National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
44
|
Abstract
Generalized inherited glucocorticoid resistance (GIGR) is a rare syndrome characterized by elevated levels of plasma cortisol but lacking the symptoms of Cushing's syndrome. Biochemically, the condition is characterized by a relative resistance to glucocorticoids that can be compensated for by the elevated levels of cortisol. The inheritance pattern of GIGR is incompletely understood, and one of the central questions is whether there is a correlation between genotype and phenotype. Analysis of mutations within the receptor resulting in relative glucocorticoid resistance has identified two regions of clustered mutations in the proximity of previously identified affinity-labeled residues, the putative steroid-binding site. In the majority of cases, the mutation affects steroid binding and transactivation to the same degree, with the exceptions suggesting an explanation for the variability of the clinical manifestations. From a clinical point of view, in addition to preexisting genetic resistance to glucocorticoids, it is important to consider acquired changes in glucocorticoid receptor (GR) gene structure and organization, including alterations of noncoding sequences, and the importance of the resultant mutations, deletions, and other changes affecting receptor function. Finally, studies of New World primates and cell lines derived from hematologic malignancies constitute animal and human models for the molecular basis of glucocorticoid resistance where a number of inherited and acquired mutations in the GR gene have been demonstrated.
Collapse
Affiliation(s)
- S Werner
- Department of Endocrinology and Diabetology, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
45
|
Nakajima S, Hsieh JC, Jurutka PW, Galligan MA, Haussler CA, Whitfield GK, Haussler MR. Examination of the Potential Functional Role of Conserved Cysteine Residues in the Hormone Binding Domain of the Human 1,25-Dihydroxyvitamin D3 Receptor. J Biol Chem 1996. [DOI: 10.1074/jbc.271.9.5143] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Abstract
Familial glucocorticoid resistance is a rare syndrome characterized by elevated levels of plasma cortisol but lacking the symptoms of Cushing's syndrome. Biochemically, the condition is characterized by a relative resistance to glucocorticoids that can be compensated for by the elevated levels of cortisol. Analysis of mutations within the receptor resulting in relative glucocorticoid resistance, both familial glucocorticoid resistance and directed mutagenesis, has identified two regions of clustered mutations in the proximity of previously identified affinity-labeled residues. In the majority of cases, the mutation affects steroid binding and transactivation to the same degree, but this is not always the case.
Collapse
Affiliation(s)
- M Brönnegård
- The Department of Pediatrics, the Karolinska Institute, Huddinge University Hospital, Huddinge, Sweden
| | | |
Collapse
|
47
|
Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 1995; 375:377-82. [PMID: 7760929 DOI: 10.1038/375377a0] [Citation(s) in RCA: 806] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The crystal structure of the human retinoid-X receptor RXR-alpha ligand-binding domain reveals a previously undiscovered fold of an antiparallel alpha-helical sandwich, packed as dimeric units. Two helices and one loop form the homodimerization surface, and hydrophobic heptad repeats participate in stabilizing the fold. The existence of a ligand-binding pocket is proposed that would allow 9-cis retinoic acid to interact with different functional modules, including the AF-2 activating domain. Several lines of evidence indicate that the overall structure is a prototype fold of ligand-binding domains of nuclear receptors.
Collapse
Affiliation(s)
- W Bourguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, Illkirch, CU de Strasbourg
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- S S Simons
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
49
|
Abstract
The guinea pig has been employed as a model to study the structure/function relationships of the glucocorticoid receptor (GR), and to determine the regions of the receptor important for binding hormone and antihormone. Guinea pigs have high levels of circulating cortisol and GR with a approximately 20-fold lower affinity for dexamethasone than mouse GR. Cloning and sequencing of guinea pig GR has identified 24 amino acid changes in the ligand-binding domain (LBD) compared to the human GR. By substituting the guinea pig GR LBD for the human LBD in a human GR expression vector we have shown in cotransfection studies that guinea pig GR LBD confers glucocorticoid resistance as observed in vivo. In initial studies guinea pig GR LBD appeared constitutively active; in subsequent studies to determine which of the 24 amino acid changes present in the guinea pig GR LBD conferred resistance, it became apparent that the guinea pig LBD (LBD delta), amplified by PCR for subcloning into the human GR expression vector, contained a single adenine deletion in the hinge region within ten bases of the PCR primer. This single base deletion resulted in a frameshift bringing a stop codon into frame one codon after the deletion. While this now clearly accounts for the observed constitutive activity, since it is known that C-terminally truncated steroid receptors exhibit constitutive activation such a truncation is more difficult to reconcile with the repeatedly demonstrable hormone dose-response curves obtained with this guinea pig GR LBD delta.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Keightley
- Prince Henry's Institute of Medical Research, Clayton, Australia
| | | |
Collapse
|
50
|
Warriar N, Yu C, Govindan MV. Hormone binding domain of human glucocorticoid receptor. Enhancement of transactivation function by substitution mutants M565R and A573Q. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)62006-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|