1
|
Kale D, Sachsenheimer T, Sickmann A, Brügger B. A New, Rapid Method for the Quantification of Dolichyl Phosphates in Cell Cultures Using TMSD Methylation Combined with LC-MS Analysis. Bio Protoc 2023; 13:e4880. [PMID: 38023789 PMCID: PMC10665631 DOI: 10.21769/bioprotoc.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
Dolichyl phosphates (DolP) are ubiquitous lipids that are present in almost all eukaryotic membranes. They play a key role in several protein glycosylation pathways and the formation of glycosylphosphatidylinositol anchors. These lipids constitute only ~0.1% of total phospholipids, and their analysis by reverse phase (RP) liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is challenging due to their high lipophilicity (log P > 20), poor ionization efficiency, and relatively low abundance. To overcome these challenges, we have introduced a new approach for DolP analysis by combining trimethylsilyldiazomethane (TMSD)-based phosphate methylation and HRMS analysis. The analytical method was validated for its reproducibility, sensitivity, and accuracy. The established workflow was successfully applied for the simultaneous characterization and quantification of DolP species with different isoprene units in lipid extracts of HeLa and Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Dipali Kale
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
2
|
Kale D, Kikul F, Phapale P, Beedgen L, Thiel C, Brügger B. Quantification of Dolichyl Phosphates Using Phosphate Methylation and Reverse-Phase Liquid Chromatography-High Resolution Mass Spectrometry. Anal Chem 2023; 95:3210-3217. [PMID: 36716239 PMCID: PMC9933046 DOI: 10.1021/acs.analchem.2c03623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dolichyl monophosphates (DolPs) are essential lipids in glycosylation pathways that are highly conserved across almost all domains of life. The availability of DolP is critical for all glycosylation processes, as these lipids serve as membrane-anchored building blocks used by various types of glycosyltransferases to generate complex post-translational modifications of proteins and lipids. The analysis of DolP species by reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) remains a challenge due to their very low abundance and wide range of lipophilicities. Until now, a method for the simultaneous qualitative and quantitative assessment of DolP species from biological membranes has been lacking. Here, we describe a novel approach based on simple sample preparation, rapid and efficient trimethylsilyl diazomethane-dependent phosphate methylation, and RPLC-MS analysis for quantification of DolP species with different isoprene chain lengths. We used this workflow to selectively quantify DolP species from lipid extracts derived of Saccharomyces cerevisiae, HeLa, and human skin fibroblasts from steroid 5-α-reductase 3- congenital disorders of glycosylation (SRD5A3-CDG) patients and healthy controls. Integration of this workflow with global lipidomics analyses will be a powerful tool to expand our understanding of the role of DolPs in pathophysiological alterations of metabolic pathways downstream of HMG-CoA reductase, associated with CDGs, hypercholesterolemia, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Dipali Kale
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany,Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44139Dortmund, Germany,
| | - Frauke Kikul
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Prasad Phapale
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44139Dortmund, Germany
| | - Lars Beedgen
- Centre
for Child and Adolescent Medicine, University
Hospital Heidelberg, 69120Heidelberg, Germany
| | - Christian Thiel
- Centre
for Child and Adolescent Medicine, University
Hospital Heidelberg, 69120Heidelberg, Germany
| | - Britta Brügger
- Heidelberg
University Biochemistry Center (BZH), 69120Heidelberg, Germany,
| |
Collapse
|
3
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Chen CC, Zhang L, Yu X, Ma L, Ko TP, Guo RT. Versatile cis-isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
5
|
Mule SN, Saad JS, Fernandes LR, Stolf BS, Cortez M, Palmisano G. Protein glycosylation inLeishmaniaspp. Mol Omics 2020; 16:407-424. [DOI: 10.1039/d0mo00043d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation is a co- and post-translational modification that, inLeishmaniaparasites, plays key roles in vector–parasite–vertebrate host interaction.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Joyce Silva Saad
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Livia Rosa Fernandes
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Beatriz S. Stolf
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Mauro Cortez
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| |
Collapse
|
6
|
Verdaguer IB, Zafra CA, Crispim M, Sussmann RA, Kimura EA, Katzin AM. Prenylquinones in Human Parasitic Protozoa: Biosynthesis, Physiological Functions, and Potential as Chemotherapeutic Targets. Molecules 2019; 24:molecules24203721. [PMID: 31623105 PMCID: PMC6832408 DOI: 10.3390/molecules24203721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human parasitic protozoa cause a large number of diseases worldwide and, for some of these diseases, there are no effective treatments to date, and drug resistance has been observed. For these reasons, the discovery of new etiological treatments is necessary. In this sense, parasitic metabolic pathways that are absent in vertebrate hosts would be interesting research candidates for the identification of new drug targets. Most likely due to the protozoa variability, uncertain phylogenetic origin, endosymbiotic events, and evolutionary pressure for adaptation to adverse environments, a surprising variety of prenylquinones can be found within these organisms. These compounds are involved in essential metabolic reactions in organisms, for example, prevention of lipoperoxidation, participation in the mitochondrial respiratory chain or as enzymatic cofactors. This review will describe several prenylquinones that have been previously characterized in human pathogenic protozoa. Among all existing prenylquinones, this review is focused on ubiquinone, menaquinone, tocopherols, chlorobiumquinone, and thermoplasmaquinone. This review will also discuss the biosynthesis of prenylquinones, starting from the isoprenic side chains to the aromatic head group precursors. The isoprenic side chain biosynthesis maybe come from mevalonate or non-mevalonate pathways as well as leucine dependent pathways for isoprenoid biosynthesis. Finally, the isoprenic chains elongation and prenylquinone aromatic precursors origins from amino acid degradation or the shikimate pathway is reviewed. The phylogenetic distribution and what is known about the biological functions of these compounds among species will be described, as will the therapeutic strategies associated with prenylquinone metabolism in protozoan parasites.
Collapse
Affiliation(s)
- Ignasi B. Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Camila A. Zafra
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Rodrigo A.C. Sussmann
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro 45810-000 Bahia, Brazil
| | - Emília A. Kimura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Alejandro M. Katzin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +5511-3091-7417
| |
Collapse
|
7
|
de Lima Stein ML, Icimoto MY, de Castro Levatti EV, Oliveira V, Straus AH, Schenkman S. Characterization and role of the 3-methylglutaconyl coenzyme A hidratase in Trypanosoma brucei. Mol Biochem Parasitol 2017; 214:36-46. [PMID: 28366667 DOI: 10.1016/j.molbiopara.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
Abstract
Trypanosoma brucei, the agent of African Trypanosomiasis, is a flagellated protozoan parasite that develops in tsetse flies and in the blood of various mammals. The parasite acquires nutrients such as sugars, lipids and amino acids from their hosts. Amino acids are used to generate energy and for protein and lipid synthesis. However, it is still unknown how T. brucei catabolizes most of the acquired amino acids. Here we explored the role of an enzyme of the leucine catabolism, the 3-methylglutaconyl-Coenzyme A hydratase (3-MGCoA-H). It catalyzes the hydration of 3-methylglutaconyl-Coenzyme A (3-MGCoA) into 3-hydroxymethylglutaryl-Coenzyme A (3-HMGCoA). We found that 3-MGCoA-H localizes in the mitochondrial matrix and is expressed in both insect and mammalian bloodstream forms of the parasite. The depletion of 3-MGCoA-H by RNA interference affected minimally the proliferation of both forms. However, an excess of leucine in the culture medium caused growth defects in cells depleted of 3-MGCoA-H, which could be reestablished by mevalonate, a precursor of isoprenoids and steroids. Indeed, procyclics depleted of the 3-MGCoA-H presented reduced levels of synthesized steroids relative to cholesterol that is scavenged by the parasite, and these levels were also reestablished by mevalonate. These results suggest that accumulation of leucine catabolites could affect the level of mevalonate and consequently inhibit the sterol biosynthesis, required for T. brucei growth.
Collapse
Affiliation(s)
- Mariana Leão de Lima Stein
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anita Hilda Straus
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
9
|
Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J Lipid Res 2014; 56:331-41. [PMID: 25424002 DOI: 10.1194/jlr.m054643] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Craigen R Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Hosanna Anyatonwu
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Laurence Lecordier
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409 Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
10
|
Solanesyl diphosphate synthase, an enzyme of the ubiquinone synthetic pathway, is required throughout the life cycle of Trypanosoma brucei. EUKARYOTIC CELL 2013; 13:320-8. [PMID: 24376001 DOI: 10.1128/ec.00271-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.
Collapse
|
11
|
Kuettel S, Wadum MCT, Güther MLS, Mariño K, Riemer C, Ferguson MAJ. The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei. Mol Microbiol 2012; 84:340-51. [PMID: 22375793 PMCID: PMC3412276 DOI: 10.1111/j.1365-2958.2012.08026.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2012] [Indexed: 11/28/2022]
Abstract
The sugar nucleotide GDP-mannose is essential for Trypanosoma brucei. Phosphomannose isomerase occupies a key position on the de novo pathway to GDP-mannose from glucose, just before intersection with the salvage pathway from free mannose. We identified the parasite phosphomannose isomerase gene, confirmed that it encodes phosphomannose isomerase activity and localized the endogenous enzyme to the glycosome. We also created a bloodstream-form conditional null mutant of phosphomannose isomerase to assess the relative roles of the de novo and salvage pathways of GDP-mannose biosynthesis. Phosphomannose isomerase was found to be essential for parasite growth. However, supplementation of the medium with low concentrations of mannose, including that found in human plasma, relieved this dependence. Therefore, we do not consider phosphomannose isomerase to be a viable drug target. We further established culture conditions where we can control glucose and mannose concentrations and perform steady-state [U-(13) C]-D-glucose labelling. Analysis of the isotopic sugar composition of the parasites variant surface glycoprotein synthesized in cells incubated in 5 mM [U-(13) C]-D-glucose in the presence and absence of unlabelled mannose showed that, under physiological conditions, about 80% of GDP-mannose synthesis comes from the de novo pathway and 20% from the salvage pathway.
Collapse
Affiliation(s)
- Sabine Kuettel
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Majken C T Wadum
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Maria Lucia S Güther
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | | | - Carolin Riemer
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| |
Collapse
|
12
|
Jordão FM, Kimura EA, Katzin AM. Isoprenoid biosynthesis in the erythrocytic stages of Plasmodium falciparum. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:134-41. [PMID: 21881768 DOI: 10.1590/s0074-02762011000900018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022] Open
Abstract
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Collapse
Affiliation(s)
- Fabiana Morandi Jordão
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
13
|
Izquierdo L, Mehlert A, Ferguson MAJ. The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases. Glycobiology 2012; 22:696-703. [PMID: 22241825 PMCID: PMC3311286 DOI: 10.1093/glycob/cws003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man(5)GlcNAc(2) from the lipid-linked oligosaccharide (LLO) donor Man(5)GlcNAc(2)-PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man(9)GlcNAc(2) to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man(7)GlcNAc(2)-PP-Dol to Man(8)GlcNAc(2)-PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man(7)GlcNAc(2) as well as Man(5)GlcNAc(2) to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man(9)GlcNAc(2)-PP-Dol, TbSTT3B transfers both Man(7)GlcNAc(2) and Man(5)GlcNAc(2) to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man(9)GlcNAc(2) oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
14
|
Abstract
In the same way that peptide antigens are presented by major histocompatibility complex (MHC) molecules, glycolipid antigens can also activate the immune response via binding to CD1 proteins on antigen-presenting cells (APCs) and stimulate CD1-restricted T cells. In humans, there are five members of the CD1 family, termed CD1a–e, of which CD1a–d are involved in glycolipid presentation at the cell surface, while CD1e is involved in the intracellular trafficking of glycolipid antigens. Both endogenous (self-derived) and exogenous (non-self-derived) glycolipids have been shown to bind to members of the CD1 family with varying degrees of specificity. In this paper we focus on the key glycolipids that bind to the different members of the CD1 family.
Collapse
|
15
|
Debierre-Grockiego F, Schwarz RT. Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 2010; 20:801-11. [PMID: 20378610 DOI: 10.1093/glycob/cwq038] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan protozoa are a phylum of parasites that includes pathogens such as Plasmodium, the causative agent of the most severe form of malaria responsible for almost 1 million deaths per year and Toxoplasma gondii causing toxoplasmosis, a disease leading to cerebral meningitis in immunocompromised individuals or to abortion in farm animals or in women that are infected for the first time during pregnancy. The initial immune reactions developed by the host are similar in response to an infection with Plasmodium and Toxoplasma in the sense that the same cells of the innate immune system are stimulated to produce inflammatory cytokines. The glycosylphosphatidylinositol (GPI) anchor is the major carbohydrate modification in parasite proteins and the GPIs are essential for parasite survival. Two immediate GPI precursors with the structures ethanolamine phosphate-6(Manalpha1-2)Manalpha1-2Manalpha1-6Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6Man-alpha1-4-GlcN-PI are synthesized by P. falciparum. Two main structures are synthesized by T. gondii: ethanolamine phosphate-6Manalpha1-2Manalpha1-6(GalNAcbeta1-4)Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6(Glcalpha1-4GalNAcbeta1-4)Manalpha1-4GlcN-PI. This review describes the biosynthesis of the apicomplexan GPIs and their role in the activation of the host immune system.
Collapse
Affiliation(s)
- Françoise Debierre-Grockiego
- UMR Université-INRA 0483, Immunologie Parasitaire Vaccinologie et Biothérapies anti-infectieuses, UFR Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
| | | |
Collapse
|
16
|
Grabińska KA, Cui J, Chatterjee A, Guan Z, Raetz CRH, Robbins PW, Samuelson J. Molecular characterization of the cis-prenyltransferase of Giardia lamblia. Glycobiology 2010; 20:824-32. [PMID: 20308470 DOI: 10.1093/glycob/cwq036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, the protist that causes diarrhea, makes an Asn-linked-glycan (N-glycan) precursor that contains just two sugars (GlcNAc(2)) attached by a pyrophosphate linkage to a polyprenol lipid. Because the candidate cis-prenyltransferase of Giardia appears to be more similar to bacterial enzymes than to those of most eukaryotes and because Giardia is missing a candidate dolichol kinase (ortholog to Saccharomyces cerevisiae SEC59 gene product), we wondered how Giardia synthesizes dolichol phosphate (Dol-P), which is used to make N-glycans and glycosylphosphatidylinositol (GPI) anchors. Here we show that cultured Giardia makes an unsaturated polyprenyl pyrophosphate (dehydrodolichol), which contains 11 and 12 isoprene units and is reduced to dolichol. The Giardia cis-prenyltransferase that we have named Gl-UPPS because the enzyme primarily synthesizes undecaprenol pyrophosphate is phylogenetically related to those of bacteria and Trypanosoma rather than to those of other protists, metazoans and fungi. In transformed Saccharomyces, the Giardia cis-prenyltransferase also makes a polyprenol containing 11 and 12 isoprene units and supports normal growth, N-glycosylation and GPI anchor synthesis of a rer2Delta, srt1Delta double-deletion mutant. Finally, despite the absence of an ortholog to SEC59, Giardia has cytidine triphosphate-dependent dolichol kinase activity. These results suggest that the synthetic pathway for Dol-P is conserved in Giardia, even if some of the important enzymes are different from those of higher eukaryotes or remain unidentified.
Collapse
Affiliation(s)
- Kariona A Grabińska
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kalinowska-Tłuścik J, Miallau L, Gabrielsen M, Leonard GA, McSweeney SM, Hunter WN. A triclinic crystal form of Escherichia coli 4-diphosphocytidyl-2C-methyl-D-erythritol kinase and reassessment of the quaternary structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:237-41. [PMID: 20208151 PMCID: PMC2833027 DOI: 10.1107/s1744309109054591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/18/2009] [Indexed: 11/10/2022]
Abstract
4-Diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE; EC 2.7.1.148) contributes to the 1-deoxy-D-xylulose 5-phosphate or mevalonate-independent biosynthetic pathway that produces the isomers isopentenyl diphosphate and dimethylallyl diphosphate. These five-carbon compounds are the fundamental building blocks for the biosynthesis of isoprenoids. The mevalonate-independent pathway does not occur in humans, but is present and has been shown to be essential in many dangerous pathogens, i.e. Plasmodium species, which cause malaria, and gram-negative bacteria. Thus, the enzymes involved in this pathway have attracted attention as potential drug targets. IspE produces 4-diphosphosphocytidyl-2C-methyl-D-erythritol 2-phosphate by ATP-dependent phosphorylation of 4-diphosphocytidyl-2C-methyl-D-erythritol. A triclinic crystal structure of the Escherichia coli IspE-ADP complex with two molecules in the asymmetric unit was determined at 2 A resolution and compared with a monoclinic crystal form of a ternary complex of E. coli IspE also with two molecules in the asymmetric unit. The molecular packing is different in the two forms. In the asymmetric unit of the triclinic crystal form the substrate-binding sites of IspE are occluded by structural elements of the partner, suggesting that the ;triclinic dimer' is an artefact of the crystal lattice. The surface area of interaction in the triclinic form is almost double that observed in the monoclinic form, implying that the dimeric assembly in the monoclinic form may also be an artifact of crystallization.
Collapse
Affiliation(s)
- Justyna Kalinowska-Tłuścik
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Linda Miallau
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 9, France
| | - Mads Gabrielsen
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Gordon A. Leonard
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 9, France
| | - Sean M. McSweeney
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 9, France
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
18
|
Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol Int 2010; 59:278-82. [PMID: 20178862 DOI: 10.1016/j.parint.2010.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 01/25/2010] [Accepted: 02/16/2010] [Indexed: 11/22/2022]
Abstract
Nerolidol is a sesquiterpene present in the essential oils of many plants, approved by the U.S. FDA as a food flavoring agent. Nerolidol interferes with the isoprenoid biosynthetic pathway in the apicoplast of P. falciparum. In the present study, the in vitro growth of four Babesia species was significantly (P<0.05) inhibited in the presence of nerolidol (IC(50)s values=21+/-1, 29.6+/-3, 26.9+/-2, and 23.1+/-1microM for B. bovis, B. bigemina, B. ovata, and B. caballi, respectively). Parasites from treated cultures failed to grow in the subsequent viability test at a concentration of 50microM. Nerolidol significantly (P<0.05) inhibited the growth of B. microti at the dosage of 10 and 100mg/kg BW, while the inhibition was low compared with the high doses used. Therefore, nerolidol could not be used as a chemotherapeutic drug for babesiosis.
Collapse
|
19
|
Chapter 9 GPIs of Apicomplexan Protozoa. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
D'Alexandri FL, Tonhosolo R, Kimura EA, Katzin AM. Mass spectrometry analysis of polyisoprenoids alcohols and carotenoids via ESI(Li(+))-MS/MS. Methods Mol Biol 2009; 580:109-128. [PMID: 19784596 DOI: 10.1007/978-1-60761-325-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Direct analysis of polyisoprenoid alcohols by electrospray ionization mass spectrometry (ESI-MS) often produces poor results requiring off-line time- and sample-consuming derivatization techniques. In this chapter, we describe a simple ESI-MS approach for the direct analysis of polyisoprenoid alcohols from biological samples. Lithium iodide is used to promote cationization by intense formation of [M+Li](+) adducts. Detection of polyisoprenoids with mass determination can thus be performed with high sensitivity (LOD near 100 pM), whereas characteristic collision-induced dissociations observed for both dolichols and polyprenols permit investigation of their structure. We also describe a simple ESI-MS approach for the direct analysis of carotenoids in biological samples using lithium iodide to promote their ionization and the analysis of several carotenoids as proof-of-principle cases. Finally, we applied ESI(Li(+))-MS and ESI(Li(+))-MS/MS to investigate the presence of carotenoids in Plasmodium falciparum.
Collapse
Affiliation(s)
- Fabio Luiz D'Alexandri
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
21
|
Dolichyl-phosphate-glucose is used to make O-glycans on glycoproteins of Trichomonas vaginalis. EUKARYOTIC CELL 2008; 7:1344-51. [PMID: 18552282 DOI: 10.1128/ec.00061-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Trichomonas vaginalis, the protist that causes vaginal itching, has a huge genome with numerous gene duplications. Recently we found that Trichomonas has numerous genes encoding putative dolichyl-phosphate-glucose (Dol-P-Glc) synthases (encoded by ALG5 genes) despite the fact that Trichomonas lacks the glycosyltransferases (encoded by ALG6, ALG8, and ALG10 genes) that use Dol-P-Glc to glucosylate dolichyl-PP-linked glycans. In addition, Trichomonas does not have a canonical DPM1 gene, encoding a dolichyl-P-mannose (Dol-P-Man) synthase. Here we show Trichomonas membranes have roughly 300 times the Dol-P-Glc synthase activity of Saccharomyces cerevisiae membranes and about one-fifth the Dol-P-Man synthase activity of Saccharomyces membranes. Endogenous Dol-P-hexoses of Trichomonas are relatively abundant and contain 16 isoprene units. Five paralogous Trichomonas ALG5 gene products have Dol-P-Glc synthase activity when expressed as recombinant proteins, and these Trichomonas Alg5s correct a carboxypeptidase N glycosylation defect in a Saccharomyces alg5 mutant in vivo. A recombinant Trichomonas Dpm1, which is deeply divergent in its sequence, has Dol-P-Man synthase activity. When radiolabeled Dol-P-Glc is incubated with Trichomonas membranes, Glc is incorporated into reducing and nonreducing sugars of O-glycans of endogenous glycoproteins. To our knowledge, this is the first demonstration of Dol-P-Glc as a sugar donor for O-glycans on glycoproteins.
Collapse
|
22
|
Skorupinska-Tudek K, Wojcik J, Swiezewska E. Polyisoprenoid alcohols--recent results of structural studies. CHEM REC 2008; 8:33-45. [PMID: 18302278 DOI: 10.1002/tcr.20137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polyisoprenoid alcohols (polyprenols and dolichols) are linear polymers of from several up to more than 100 isoprene units identified in almost all living organisms. Studies of their chemical structures have resulted in the discovery of new variants such as the recently described alloprenols with reversed configuration of the double bond in the alpha-isoprene unit. In parallel, structural elucidation of metabolically labeled plant dolichols has indicated that both the mevalonate and methylerythritol phosphate pathways are involved in the biosynthesis of dolichols in roots, leading to the construction of a spatial model of their biosynthesis. According to this model, in root cells, synthesis of the dolichol molecule is initiated in the plastids, and the resulting intermediates, oligoprenyl diphosphates, are exported to the cytoplasm and are elongated up to the desired chain length. The metabolic consequences of this putative model are discussed in the context of the enzymatic machinery involved.
Collapse
Affiliation(s)
- Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
23
|
Stokes MJ, Güther MLS, Turnock DC, Prescott AR, Martin KL, Alphey MS, Ferguson MAJ. The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation. J Biol Chem 2008; 283:16147-61. [PMID: 18381290 PMCID: PMC2414269 DOI: 10.1074/jbc.m709581200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.
Collapse
Affiliation(s)
- Matthew J Stokes
- Division of Biological Chemistry and Drug Discovery, The Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Manthri S, Güther MLS, Izquierdo L, Acosta-Serrano A, Ferguson MAJ. Deletion of the TbALG3 gene demonstrates site-specific N-glycosylation and N-glycan processing in Trypanosoma brucei. Glycobiology 2008; 18:367-83. [PMID: 18263655 DOI: 10.1093/glycob/cwn014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently suggested a novel site-specific N-glycosylation mechanism in Trypanosoma brucei whereby some protein N-glycosylation sites selectively receive Man9GlcNAc2 from Man9GlcNAc2-PP-Dol while others receive Man5GlcNA(2 from Man5GlcNAc2-PP-Dol. In this paper, we test this model by creating procyclic and bloodstream form null mutants of TbALG3, the gene that encodes the alpha-mannosyltransferase that converts Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol. The procyclic and bloodstream form TbALG3 null mutants grow with normal kinetics, remain infectious to mice and tsetse flies, respectively, and have normal morphology. However, both forms display aberrant N-glycosylation of their major surface glycoproteins, procylcin, and variant surface glycoprotein, respectively. Specifically, procyclin and variant surface glycoprotein N-glycosylation sites that are modified with Man9GlcNAc2 and processed no further than Man5GlcNAc2 in the wild type are glycosylated less efficiently but processed to complex structures in the mutant. These data confirm our model and refine it by demonstrating that the biantennary glycan transferred from Man5GlcNAc2-PP-Dol is the only route to complex N-glycans in T. brucei and that Man9GlcNAc2-PP-Dol is strictly a precursor for oligomannose structures. The origins of site-specific Man5GlcNAc2 or Man9GlcNAc2 transfer are discussed and an updated model of N-glycosylation in T. brucei is presented.
Collapse
Affiliation(s)
- Sujatha Manthri
- The Division of Biological Chemistry and Drug Discovery, The Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
25
|
Byres E, Alphey MS, Smith TK, Hunter WN. Crystal structures of Trypanosoma brucei and Staphylococcus aureus mevalonate diphosphate decarboxylase inform on the determinants of specificity and reactivity. J Mol Biol 2007; 371:540-53. [PMID: 17583736 DOI: 10.1016/j.jmb.2007.05.094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/24/2007] [Accepted: 05/29/2007] [Indexed: 11/27/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyzes the ATP-dependent decarboxylation of mevalonate 5-diphosphate (MDP) to form isopentenyl pyrophosphate, a ubiquitous precursor for isoprenoid biosynthesis. MDD is a poorly understood component of this important metabolic pathway. Complementation of a temperature-sensitive yeast mutant by the putative mdd genes of Trypanosoma brucei and Staphylococcus aureus provides proof-of-function. Crystal structures of MDD from T. brucei (TbMDD, at 1.8 A resolution) and S. aureus (SaMDD, in two distinct crystal forms, each diffracting to 2.3 A resolution) have been determined. Gel-filtration chromatography and analytical ultracentrifugation experiments indicate that TbMDD is predominantly monomeric in solution while SaMDD is dimeric. The new crystal structures and comparison with that of the yeast Saccharomyces cerevisiae enzyme (ScMDD) reveal the structural basis for this variance in quaternary structure. The presence of an ordered sulfate in the structure of TbMDD reveals for the first time details of a ligand binding in the MDD active site and, in conjunction with well-ordered water molecules, comparisons with the related enzyme mevalonate kinase, structural and biochemical data derived on ScMDD and SaMDD, allows us to model a ternary complex with MDP and ATP. This model facilitates discussion of the molecular determinants of substrate recognition and contributions made by specific residues to the enzyme mechanism.
Collapse
Affiliation(s)
- Emma Byres
- Division of Biological Chemistry and Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
26
|
Ferella M, Montalvetti A, Rohloff P, Miranda K, Fang J, Reina S, Kawamukai M, Búa J, Nilsson D, Pravia C, Katzin A, Cassera MB, Aslund L, Andersson B, Docampo R, Bontempi EJ. A solanesyl-diphosphate synthase localizes in glycosomes of Trypanosoma cruzi. J Biol Chem 2006; 281:39339-48. [PMID: 17062572 DOI: 10.1074/jbc.m607451200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning of a Trypanosoma cruzi gene encoding a solanesyl-diphosphate synthase, TcSPPS. The amino acid sequence (molecular mass approximately 39 kDa) is homologous to polyprenyl-diphosphate synthases from different organisms, showing the seven conserved motifs and the typical hydrophobic profile. TcSPPS preferred geranylgeranyl diphosphate as the allylic substrate. The final product, as determined by TLC, had nine isoprene units. This suggests that the parasite synthesizes mainly ubiquinone-9 (UQ-9), as described for Trypanosoma brucei and Leishmania major. In fact, that was the length of the ubiquinone extracted from epimastigotes, as determined by high-performance liquid chromatography. Expression of TcSPPS was able to complement an Escherichia coli ispB mutant. A punctuated pattern in the cytoplasm of the parasite was detected by immunofluorescence analysis with a specific polyclonal antibody against TcSPPS. An overlapping fluorescence pattern was observed using an antibody directed against the glycosomal marker pyruvate phosphate dikinase, suggesting that this step of the isoprenoid biosynthetic pathway is located in the glycosomes. Co-localization in glycosomes was confirmed by immunogold electron microscopy and subcellular fractionation. Because UQ has a central role in energy production and in reoxidation of reduction equivalents, TcSPPS is promising as a new chemotherapeutic target.
Collapse
Affiliation(s)
- Marcela Ferella
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, Av. Paseo Colón 568, Administración Nacional de Laboratorios e Institutos de Salud, Ministerio de Salud, Buenos Aires 1063, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Hellemond JJ, Tielens AGM. Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett 2006; 580:5552-8. [PMID: 16920110 DOI: 10.1016/j.febslet.2006.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
Trypanosomes are unicellular parasites and like all decent parasites, they try to obtain from the host as much material as possible, including lipids. However, the needs of a parasite are not always the same as those of the host, and therefore, mostly, some biosynthetic work still has to be done by the parasite itself. Very often at least modifications of the lipid components that are acquired from the host have to be made. Furthermore, next to the lipids Trypanosoma brucei indeed obtains from the host, some other lipid components have to be synthesized de novo. Especially the processes where the metabolism of T. brucei differs from that of the host, will be discussed, as at least some of them are excellent targets for the development of urgently needed new chemotherapeutics.
Collapse
Affiliation(s)
- Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | | |
Collapse
|
28
|
D'Alexandri FL, Gozzo FC, Eberlin MN, Katzin AM. Electrospray ionization mass spectrometry analysis of polyisoprenoid alcohols via Li+ cationization. Anal Biochem 2006; 355:189-200. [PMID: 16842733 DOI: 10.1016/j.ab.2006.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 06/12/2006] [Indexed: 11/16/2022]
Abstract
Direct analysis of polyisoprenoids by electrospray ionization mass spectrometry (ESI-MS) often produces poor results requiring off-line time and sample-consuming derivatization techniques. We describe a simple ESI-MS approach for the direct analysis of polyisoprenoids using several dolichols and polyprenols with different chain sizes as proof-of-principle cases. Lithium iodide is used to promote cationization by intense formation of [M+Li]+ adducts. Thus, detection of polyisoprenoids with mass determination can be performed with high sensitivity (limit of detection [LOD] approximately 100 rhoM), whereas characteristic collision-induced dissociations observed for both dolichols and polyprenols permit investigation of their structure. Using ESI(Li+)-MS and ESI(Li+)-MS/MS analysis, we screened for polyprenol products of an octaprenyl pyrophosphate synthase of Plasmodium falciparum and dolichols in a complex mixture of compounds produced by Leishmania amazonensis and P. falciparum.
Collapse
Affiliation(s)
- Fabio Luiz D'Alexandri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
29
|
Tonhosolo R, D'Alexandri F, Genta F, Wunderlich G, Gozzo F, Eberlin M, Peres V, Kimura E, Katzin A. Identification, molecular cloning and functional characterization of an octaprenyl pyrophosphate synthase in intra-erythrocytic stages of Plasmodium falciparum. Biochem J 2006; 392:117-26. [PMID: 15984931 PMCID: PMC1317670 DOI: 10.1042/bj20050441] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoprenoids play important roles in all living organisms as components of structural cholesterol, steroid hormones in mammals, carotenoids in plants, and ubiquinones. Significant differences occur in the length of the isoprenic side chains of ubiquinone between different organisms, suggesting that different enzymes are involved in the synthesis of these side chains. Whereas in Plasmodium falciparum the isoprenic side chains of ubiquinone contain 7-9 isoprenic units, 10-unit side chains are found in humans. In a search for the P. falciparum enzyme responsible for the biosynthesis of isoprenic side chains attached to the benzoquinone ring of ubiquinones, we cloned and expressed a putative polyprenyl synthase. Polyclonal antibodies raised against the corresponding recombinant protein confirmed the presence of the native protein in trophozoite and schizont stages of P. falciparum. The recombinant protein, as well as P. falciparum extracts, showed an octaprenyl pyrophosphate synthase activity, with the formation of a polyisoprenoid with eight isoprenic units, as detected by reverse-phase HPLC and reverse-phase TLC, and confirmed by electrospray ionization and tandem MS analysis. The recombinant and native versions of the enzyme had similar Michaelis constants with the substrates isopentenyl pyrophosphate and farnesyl pyrophosphate. The recombinant enzyme could be competitively inhibited in the presence of the terpene nerolidol. This is the first report that directly demonstrates an octaprenyl pyrophosphate synthase activity in parasitic protozoa. Given the rather low similarity of the P. falciparum enzyme to its human counterpart, decaprenyl pyrophosphate synthase, we suggest that the identified enzyme and its recombinant version could be exploited in the screening of novel drugs.
Collapse
Affiliation(s)
- Renata Tonhosolo
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Fabio L. D'Alexandri
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Fernando A. Genta
- †Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Gerhard Wunderlich
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Fabio C. Gozzo
- ‡Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, 13083-970 Campinas, Brazil
| | - Marcos N. Eberlin
- ‡Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, 13083-970 Campinas, Brazil
| | - Valnice J. Peres
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Emilia A. Kimura
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Alejandro M. Katzin
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Zhou W, Lepesheva GI, Waterman MR, Nes WD. Mechanistic analysis of a multiple product sterol methyltransferase implicated in ergosterol biosynthesis in Trypanosoma brucei. J Biol Chem 2006; 281:6290-6. [PMID: 16414960 DOI: 10.1074/jbc.m511749200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol methyltransferase (SMT) plays a key role in sterol biosynthesis in different pathogenic organisms by setting the pattern of the side chain structure of the final product. This catalyst, absent in humans, provides critical pathway-specific enzymatic steps in the production of ergosterol in fungi or phytosterols in plants. The new SMT gene was isolated from Trypanosoma brucei genomic DNA and cloned into an Escherichia coli expression system. The recombinant SMT was purified to homogeneity to give a band at 40.0 kDa upon SDS-PAGE and showed a tetrameric subunit organization by gel chromatography. It has a pH optimum of 7.5, an apparent kcat value of 0.01 s(-1), and a Km of 47 +/- 4 microm for zymosterol. The products of the reaction were a mixture of C24-monoalkylated sterols, ergosta-8,24 (25)-dienol, ergosta-8,25 (27)-dienol, and ergosta-8,24 (28)-dienol (fecosterol), and an unusual double C24-alkylated sterol, 24,24-dimethyl ergosta-8,25 (27)-dienol, typically found in plants. Inhibitory profile studies with 25-azalanosterol (Ki value of 39 nm) or 24(R,S), 25-epiminolanosterol (Ki value of 49 nm), ergosterol (Ki value of 27 microm) and 26,27-dehydrozymosterol (Ki and kinact values of 29 microm and 0.26 min(-1), respectively) and data showing zymosterol as the preferred acceptor strongly suggest that the protozoan SMT has an active site topography combining properties of the SMT1 from plants and yeast (37-47% identity). The enzymatic activation of this and other SMTs reveals that the catalytic requirements for the C-methyl reaction are remarkably versatile, whereas the inhibition studies provide a powerful approach to rational design of new anti-sleeping sickness chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1064, USA
| | | | | | | |
Collapse
|
31
|
Jones DC, Mehlert A, Güther MLS, Ferguson MAJ. Deletion of the Glucosidase II Gene in Trypanosoma brucei Reveals Novel N-Glycosylation Mechanisms in the Biosynthesis of Variant Surface Glycoprotein. J Biol Chem 2005; 280:35929-42. [PMID: 16120601 DOI: 10.1074/jbc.m509130200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.
Collapse
Affiliation(s)
- Deuan C Jones
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, The Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
32
|
Arruda DC, D'Alexandri FL, Katzin AM, Uliana SRB. Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother 2005; 49:1679-87. [PMID: 15855481 PMCID: PMC1087654 DOI: 10.1128/aac.49.5.1679-1687.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 10/26/2004] [Accepted: 01/10/2005] [Indexed: 11/20/2022] Open
Abstract
The activity of nerolidol, a sesquiterpene used as a food-flavoring agent and currently under testing as a skin penetration enhancer for the transdermal delivery of therapeutic drugs, was evaluated against Leishmania species. Nerolidol inhibited the growth of Leishmania amazonensis, L. braziliensis, and L. chagasi promastigotes and L. amazonensis amastigotes with in vitro 50% inhibitory concentrations of 85, 74, 75, and 67 microM, respectively. The treatment of L. amazonensis-infected macrophages with 100 microM nerolidol resulted in 95% reduction in infection rates. Inhibition of isoprenoid biosynthesis, as shown by reduced incorporation of [2-(14)C]mevalonic acid (MVA) or [1-(14)C]acetic acid precursors into dolichol, ergosterol, and ubiquinone, was observed in nerolidol-treated promastigotes. This drug effect can be attributed to the blockage of an early step in the mevalonate pathway, since incorporation of the precursor [1(n)-(3)H]farnesyl pyrophosphate in polyisoprenoids is not inhibited by nerolidol. L. amazonensis-infected BALB/c mice were treated with intraperitoneal doses of 100 mg/kg/day for 12 days or topically with 5 or 10% ointments for 4 weeks. Significant reduction of lesion sizes in nerolidol treated mice was observed for both treatment routes. However, long-term follow up indicated that the disease was not cured in this highly susceptible animal model. Nonetheless, the in vitro activity of nerolidol against these parasites may prove a useful tool for the development of new drugs for the treatment of leishmaniasis. In addition, biosynthesis of dolichols with 11 and 12 isoprene units was identified in Leishmania, as described for other trypanosomatids and Apicomplexa.
Collapse
Affiliation(s)
- Denise C Arruda
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes, 1374, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
33
|
Acosta-Serrano A, O'Rear J, Quellhorst G, Lee SH, Hwa KY, Krag SS, Englund PT. Defects in the N-linked oligosaccharide biosynthetic pathway in a Trypanosoma brucei glycosylation mutant. EUKARYOTIC CELL 2004; 3:255-63. [PMID: 15075256 PMCID: PMC387663 DOI: 10.1128/ec.3.2.255-263.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Accepted: 02/19/2004] [Indexed: 11/20/2022]
Abstract
Concanavalin A (ConA) kills the procyclic (insect) form of Trypanosoma brucei by binding to its major surface glycoprotein, procyclin. We previously isolated a mutant cell line, ConA 1-1, that is less agglutinated and more resistant to ConA killing than are wild-type (WT) cells. Subsequently we found that the ConA resistance phenotype in this mutant is due to the fact that the procyclin either has no N-glycan or has an N-glycan with an altered structure. Here we demonstrate that the alteration in procyclin N-glycosylation correlates with two defects in the N-linked oligosaccharide biosynthetic pathway. First, ConA 1-1 has a defect in activity of polyprenol reductase, an enzyme involved in synthesis of dolichol. Metabolic incorporation of [3H]mevalonate showed that ConA 1-1 synthesizes equal amounts of dolichol and polyprenol, whereas WT cells make predominantly dolichol. Second, we found that ConA 1-1 synthesizes and accumulates an oligosaccharide lipid (OSL) precursor that is smaller in size than that from WT cells. The glycan of OSL in WT cells is apparently Man9GlcNAc2, whereas that from ConA 1-1 is Man7GlcNAc2. The smaller OSL glycan in the ConA 1-1 explains how some procyclin polypeptides bear a Man4GlcNAc2 modified with a terminal N-acetyllactosamine group, which is poorly recognized by ConA.
Collapse
Affiliation(s)
- Alvaro Acosta-Serrano
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Green HP, Del Pilar Molina Portela M, St Jean EN, Lugli EB, Raper J. Evidence for a Trypanosoma brucei lipoprotein scavenger receptor. J Biol Chem 2003; 278:422-7. [PMID: 12401813 DOI: 10.1074/jbc.m207215200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes are lipid auxotrophs that live in the bloodstream of their human and animal hosts. Trypanosomes require lipoproteins in addition to other serum components in order to multiply under axenic culture conditions. Delipidation of the lipoproteins abrogates their capacity to support trypanosome growth. Both major classes of serum lipoproteins, LDL and HDL, are primary sources of lipids, delivering cholesterol esters, cholesterol, and phospholipids to trypanosomes. We show evidence for the existence of a trypanosome lipoprotein scavenger receptor, which facilitates the endocytosis of both native and modified lipoproteins, including HDL and LDL. This lipoprotein scavenger receptor also exhibits selective lipid uptake, whereby the uptake of the lipid components of the lipoprotein exceeds that of the protein components. Trypanosome lytic factor (TLF1), an unusual HDL found in human serum that protects from infection by lysing Trypanosoma brucei brucei, is also bound and endocytosed by this lipoprotein scavenger receptor. HDL and LDL compete for the binding and uptake of TLF1 and thereby attenuate the trypanosome lysis mediated by TLF1. We also show that a mammalian scavenger receptor facilitates lipid uptake from TLF1 in a manner similar to the trypanosome scavenger receptor. Based on these results we propose that HDL, LDL, and TLF1 are all bound and taken up by a lipoprotein scavenger receptor, which may constitute the parasite's major pathway mediating the uptake of essential lipids.
Collapse
Affiliation(s)
- Heather P Green
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, New York 10010, USA
| | | | | | | | | |
Collapse
|
35
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
36
|
de Macedo CS, Uhrig ML, Kimura EA, Katzin AM. Characterization of the isoprenoid chain of coenzyme Q in Plasmodium falciparum. FEMS Microbiol Lett 2002; 207:13-20. [PMID: 11886744 DOI: 10.1111/j.1574-6968.2002.tb11021.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Little is known about isoprenoid biosynthesis in parasitic protozoa. The presence of dolichol and isoprenylated proteins has been detected in Plasmodium falciparum, but no studies are available about the biosynthesis of the isoprenic side chain attached to the benzoquinone ring of coenzyme Q. In the present study, using metabolic labelling with different intermediates, we demonstrated the presence of an active isoprenoid pathway for the biosynthesis of the isoprenic chain of coenzyme Q. Our results show that P. falciparum is able to synthesize different homologs (coenzyme Q(8) and coenzyme Q(9)), depending on the given intermediate. Parasites treated with nerolidol at doses 2.2 times below the IC(50) showed a decreased ability to synthesize the isoprenic chain attached to coenzyme Q at all intraerythrocytic stages. Treatment with nerolidol arrested development of the intraerythrocytic stages of the parasites, indicating that the drug may have an antimalarial potential.
Collapse
Affiliation(s)
- Cristiana Santos de Macedo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, CEP 05508-900, SP, Brazil
| | | | | | | |
Collapse
|
37
|
Schenk B, Fernandez F, Waechter CJ. The ins(ide) and out(side) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology 2001; 11:61R-70R. [PMID: 11425794 DOI: 10.1093/glycob/11.5.61r] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The precursor oligosaccharide donor for protein N-glycosylation in eukaryotes, Glc3Man9GlcNAc(2)-P-P-dolichol, is synthesized in two stages on both leaflets of the rough endoplasmic reticulum (ER). There is good evidence that the level of dolichyl monophosphate (Dol-P) is one rate-controlling factor in the first stage of the assembly process. In the current topological model it is proposed that ER proteins (flippases) then mediate the transbilayer movement of Man-P-Dol, Glc-P-Dol, and Man5GlcNAc(2)-P-P-Dol from the cytoplasmic leaflet to the lumenal leaflet. The rate of flipping of the three intermediates could plausibly influence the conversion of Man5GlcNAc(2)-P-P-Dol to Glc3Man(9)GlcNAc(2)-P-P-Dol in the second stage on the lumenal side of the rough ER. This article reviews the current understanding of the enzymes involved in the de novo biosynthesis of Dol-P and other polyisoprenoid glycosyl carrier lipids and speculates about the role of membrane proteins and enzymes that could be involved in the transbilayer movement of the lipid intermediates and the recycling of Dol-P and Dol-P-P discharged during glycosylphosphatidylinositol anchor biosynthesis, N-glycosylation, and O- and C-mannosylation reactions on the lumenal surface of the rough ER.
Collapse
Affiliation(s)
- B Schenk
- Institute for Microbiology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Coppens I, Courtoy PJ. The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 2001; 54:129-56. [PMID: 11018126 DOI: 10.1146/annurev.micro.54.1.129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloodstream forms of Trypanosoma brucei do not synthesize sterols de novo and therefore cannot survive in medium devoid of lipoproteins. Growth of parasites is essentially supported by receptor-mediated endocytosis of low-density lipoproteins (LDLs), which carry phospholipids and cholesteryl esters. These lipids are released from internalized LDL after apoprotein B-100 is degraded by acidic thiol-proteases in the endolysosomal apparatus and then metabolized, as in mammalian cells. The LDL receptor is recycled and its expression is regulated by the sterol stores. Documented pharmacological and immunological interferences with LDL receptor-mediated lipid supply to the bloodstream forms are summarized, and the potential for new approaches to fight against these parasites is evaluated. In contrast to bloodstream forms, cultured procyclic forms can acquire sterols from both exogenous (lipoprotein endocytosis) and endogenous (biosynthesis of ergosterol) sources. The rate-limiting steps of both endocytosis (surface LDL receptor expression) and biosynthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase activity) are regulated by the cellular content of sterol. These two pathways thus complement each other to yield a balanced sterol supply, which demonstrates adaptative capacities to survive in totally different environments and fine regulatory mechanisms of sterol homeostasis.
Collapse
Affiliation(s)
- I Coppens
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA.
| | | |
Collapse
|
39
|
Moody DB, Ulrichs T, Mühlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000; 404:884-8. [PMID: 10786796 DOI: 10.1038/35009119] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of the CD1 antigen presentation pathway has expanded the spectrum of T-cell antigens to include lipids, but the range of natural lipid antigens and functions of CD1-restricted T cells in vivo remain poorly understood. Here we show that the T-cell antigen receptor and the CD1c protein mediate recognition of an evolutionarily conserved family of isoprenoid glycolipids whose members include essential components of protein glycosylation and cell-wall synthesis pathways. A CD1c-restricted, mycobacteria-specific T-cell line recognized two previously unknown mycobacterial hexosyl-1-phosphoisoprenoids and structurally related mannosyl-beta1-phosphodolichols. Responses to mannosyl-beta1-phosphodolichols were common among CD1c-restricted T-cell lines and peripheral blood T lymphocytes of human subjects recently infected with M. tuberculosis, but were not seen in naive control subjects. These results define a new class of broadly distributed lipid antigens presented by the CD1 system during infection in vivo and suggest an immune mechanism for recognition of senescent or transformed cells that are known to have altered dolichol lipids.
Collapse
Affiliation(s)
- D B Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Labriola C, Cazzulo JJ, Parodi AJ. Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins. Mol Biol Cell 1999; 10:1381-94. [PMID: 10233151 PMCID: PMC25283 DOI: 10.1091/mbc.10.5.1381] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite that belongs to an early branch in evolution. Although it lacks several features of the pathway of protein N-glycosylation and oligosaccharide processing present in the endoplasmic reticulum of higher eukaryotes, it displays UDP-Glc:glycoprotein glucosyltransferase and glucosidase II activities. It is herewith reported that this protozoan also expresses a calreticulin-like molecule, the third component of the quality control of glycoprotein folding. No calnexin-encoding gene was detected. Recombinant T. cruzi calreticulin specifically recognized free monoglucosylated high-mannose-type oligosaccharides. Addition of anti-calreticulin serum to extracts obtained from cells pulse-chased with [35S]Met plus [35S]Cys immunoprecipitated two proteins that were identified as calreticulin and the lysosomal proteinase cruzipain (a major soluble glycoprotein). The latter but not the former protein disappeared from immunoprecipitates upon chasing cells. Contrary to what happens in mammalian cells, addition of the glucosidase II inhibitor 1-deoxynojirimycin promoted calreticulin-cruzipain interaction. This result is consistent with the known pathway of protein N-glycosylation and oligosaccharide processing occurring in T. cruzi. A treatment of the calreticulin-cruzipain complexes with endo-beta-N-acetylglucosaminidase H either before or after addition of anti-calreticulin serum completely disrupted calreticulin-cruzipain interaction. In addition, mature monoglucosylated but not unglucosylated cruzipain isolated from lysosomes was found to interact with recombinant calreticulin. It was concluded that the quality control of glycoprotein folding appeared early in evolution, and that T. cruzi calreticulin binds monoglucosylated oligosaccharides but not the protein moiety of cruzipain. Furthermore, evidence is presented indicating that glucosyltransferase glucosylated cruzipain at its last folding stages.
Collapse
Affiliation(s)
- C Labriola
- Instituto de Investigaciones Bioquímicas Fundación Campomar, 1405 Buenos Aires, Argentina
| | | | | |
Collapse
|
41
|
Quellhorst GJ, Piotrowski JS, Steffen SE, Krag SS. Identification of Schizosaccharomyces pombe prenol as dolichol-16,17. Biochem Biophys Res Commun 1998; 244:546-50. [PMID: 9514857 DOI: 10.1006/bbrc.1998.8098] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identity of the prenol involved in N-linked glycosylation in the fission yeast Schizosaccharomyces pombe was unknown. In order to determine the identity of the prenol, S. pombe cells were incubated with a metabolic precursor of prenol, tritiated mevalonolactone. The cells incorporated only a modest amount of label, about 1000 dpm per million cells, into base-stable lipid and only 1% of that radioactivity was incorporated into prenol. We found by normal phase silica HPLC and more directly by the lack of reactivity with MnO2 that the labeled lipid was predominantly dolichol, not polyprenol. Reverse phase HPLC demonstrated that in S. pombe dolichol ranged between 14 and 18 isoprene units with dolichol-16,17 being the most abundant prenol. This dolichol is of an intermediate length, between the dolichol of S. cerevisiae and that of mammalian cells.
Collapse
Affiliation(s)
- G J Quellhorst
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- S S Krag
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
43
|
Harmon MA, Scott TC, Li Y, Boehm MF, Phillips MA, Mangelsdorf DJ. Trypanosoma brucei: effects of methoprene and other isoprenoid compounds on procyclic and bloodstream forms in vitro and in mice. Exp Parasitol 1997; 87:229-36. [PMID: 9371088 DOI: 10.1006/expr.1997.4196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug therapy for the treatment of African sleeping sickness is limited by toxicity and resistance and in the last 50 years only one new drug has been introduced for the treatment of the human disease. We report that the juvenile hormone analog, methoprene, and several structurally related isoprenoid compounds kill Trypanosoma brucei in culture. Of the other isoprenoids tested, juvenile hormone III and mammalian retinoid X receptor ligands were the most potent trypanocides. Both the procyclic forms and the bloodstream trypomastigotes are killed by these compounds with LD50 values of 5-30 microM. Of the two methoprene stereoisomers, the EE form was the most active, suggesting that a protein target may be involved in mediating effects of these analogues against the parasite. Methoprene was not, however, able to clear trypanosomes from the blood of infected mice. Methoprene acid, the immediate downstream metabolite of methoprene, is not an effective anti-trypanosomal agent, suggesting that in the mice methoprene is converted to an inactive compound. Since methoprene and its analogues have low and well characterized toxicity in mammals these studies stress the importance of further exploring these isoprenoids as lead compounds for the treatment of African sleeping sickness.
Collapse
Affiliation(s)
- M A Harmon
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA
| | | | | | | | | | | |
Collapse
|
44
|
Field H, Blench I, Croft S, Field MC. Characterisation of protein isoprenylation in procyclic form Trypanosoma brucei. Mol Biochem Parasitol 1996; 82:67-80. [PMID: 8943151 DOI: 10.1016/0166-6851(96)02723-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein modification by isoprenylation is essential in mammals and other eukaryotes, but has not been demonstrated in the parasitic protozoa of the order kinetoplastida. A key regulatory enzyme of the mevalonate pathway, hydroxymethylglutaryl-coenzyme A reductase (HMG-R), and end products of the path, including dolichols, are present in Trypanosoma brucei. By metabolical labelling of procyclic form trypanosomes in the presence of compactin, an efficient inhibitor of HMG-R, followed by one-dimensional gel electrophoresis, we demonstrate that protein isoprenylation indeed takes place in this organism and at least 14 polypeptides bear the modification. Further characterization of labelled isoprenyl groups by methyl iodide cleavage and high pressure liquid chromatography identified both the farnesyl and geranylgeranyl moieties found covalently attached to proteins in other eukaryotes. The latter moiety was more abundant, as found in mammalian systems. Prolonged incubation with compactin grossly affected cell morphology and altered a number of subcellular structures as seen by electron microscopy. High concentrations of compactin were toxic, whilst lower concentrations were cytostatic. The primary morphological lesion is distinct from that of synvinolin, another inhibitor of HMG-R. The morphological changes correlated with a complete inhibition of HMG-R activity by compactin. Surprisingly there was a complete lack of HMG-R activity in procyclic cells grown for 1 or several days in 100 microM compactin, suggesting that degradation of the enzyme had occurred and compensatory upregulation mechanisms could not be successfully exploited by the parasite to overcome HMG-R inhibition. Subsequent alterations to the overall cell shape are seen after 3 days of compactin exposure. Overall these data indicate that T. brucei has an essential protein isoprenylation pathway that is conserved with the higher eukaryotes. Additionally, products of the MVA pathway are implicated in maintenance of cell architecture.
Collapse
Affiliation(s)
- H Field
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
45
|
Wolucka BA, Rozenberg R, de Hoffmann E, Chojnacki T. Desorption chemical ionization tandem mass spectrometry of polyprenyl and dolichyl phosphates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:958-964. [PMID: 24203610 DOI: 10.1016/1044-0305(96)80514-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/1995] [Revised: 04/03/1996] [Accepted: 04/03/1996] [Indexed: 06/02/2023]
Abstract
Negative-ion desorption chemical ionization (DCI) tandem mass spectrometry was applied to the analysis of nanomole quantities of semisynthetic polyisoprenyl phosphates, the chain length of which ranged from 7 to 20 isoprene units. The DCI spectrum of all the compounds tested show the presence of independently generated ions [M-HPO3-H](-), [M-H3PO2-H](-) and [M-H3PO4-H](-) resulting from the loss of a part of or the entire phosphate group of a polyisoprenyl-P. In tandem mass spectrometry, the [M-H3PO4-H](-) fragment produces series of ions 68 mass units apart, indicative of the polyisoprenoid nature of a compound. Studies with deuterated and α-saturated polyisoprenyl phosphates demonstrated that fragmentations of the [M-H3PO4-H](-) ion proceed from both ends (α and ω) of a polyisoprenoid chain and may occur at either allylic (A) or vinylic (V) sites. Fragments of masses equal to [n×68 - 1] and [n×68 - 13] (where n is the number of isoprene units and 3≤n is less than the total number of isoprene residues within a polyisoprenoid chain) comprise the αA and ωV series, respectively, and represent the most abundant ions in tandem mass spectra of the [M-H3PO4-H](-) fragment of polyprenyl phosphates, α-Saturated dolichyl phosphates can be distinguished easily from corresponding polyprenyl phosphates not only on the basis of a 2-u shift of the [M-H3PO4-H](-) ion and the α series of fragments, but also because of the presence of an additional (A+14) series of ions 14 u heavier than fragments resulting from the allylic cleavages of an α-saturated polyisoprenoid chain. Possible mechanisms of the collision-induced dissociation reactions of polyprenyl phosphates are discussed.
Collapse
Affiliation(s)
- B A Wolucka
- Department of Chemistry, University of Louvain, Place Louis Pasteur 1/1B, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
46
|
Andersson M, Löw P, Bakhiet M. Lovastatin inhibits interferon-gamma-induced Trypanosoma brucei brucei proliferation: evidence for mevalonate pathway involvement. J Interferon Cytokine Res 1996; 16:435-9. [PMID: 8807496 DOI: 10.1089/jir.1996.16.435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interferon-gamma (IFN-gamma) is an essential immunoregulating molecule that has recently been shown to have a growth stimulatory effect on Trypanosoma brucei brucei (T. b. brucei). The signalling pathway(s) involved during this triggering are unknown. Since the different products from the biosynthesis pathway utilizing mevalonate have several important cellular functions, ranging from cholesterol synthesis to growth control, we here investigate the possible role for the mevalonate pathway in IFN-gamma-driven parasite proliferation. Thus, lovastatin, a hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase-inhibiting drug, was incubated at different concentrations in vitro with T. b. brucei. The parasites were then stimulated with a broad concentration range of rIFN-gamma. The effect on proliferation or growth was measured either by the tritium-labeled thymidine incorporation assay or by direct counting of parasites from the cultures using light microscopy. The maximum proliferative response was obtained with IFN-gamma at a concentration of 10(3) U/ml added to 10(6) parasites. This response was markedly decreased with lovastatin, even at a low concentration (0.1 mM). The effect of lovastatin was reversed by the addition of 10 mM mevalonate. IFN-gamma at a concentration of 10(4) U/ml showed no proliferative effect. Addition of mevalonate to this concentration of IFN-gamma gave a threefold increase in parasite proliferation. Our data suggest that a low concentration of IFN-gamma induces parasite growth, a high concentration has the opposite effect, and both these events are regulated by activity or inactivity of the mevalonate pathway.
Collapse
Affiliation(s)
- M Andersson
- Department of Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Luján HD, Mowatt MR, Chen GZ, Nash TE. Isoprenylation of proteins in the protozoan Giardia lamblia. Mol Biochem Parasitol 1995; 72:121-7. [PMID: 8538683 DOI: 10.1016/0166-6851(94)00070-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the ability of Giardia lamblia to modify several of its cellular proteins by isoprenylation. Trophozoites cultured in the presence of [3H]mevalonate synthesized radiolabeled proteins of approx. 50 and 21-26 kDa. Chemical analysis indicated that farnesyl and geranylgeranyl isoprenoids comprised the majority of the radiolabel covalently associated with trophozoite proteins. In addition, antibodies to human p21ras immunoprecipitated mevalonate-labelled species of approx. 21 kDa. Inhibitors of several enzymatic steps of the mevalonate pathway dramatically affected Giardia metabolism. Protein isoprenylation and cell growth were blocked by compactin and mevinolin, competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme in isoprenoid biosynthesis. In the presence of these inhibitors, Giardia growth was restored by the addition of mevalonate to the culture medium. In contrast, cell growth was blocked irreversibly by inhibitors of subsequent steps in the protein isoprenylation pathway. Trophozoite growth inhibition by limonene, perillic acid, perillyl alcohol and N-acetyl-S-farnesyl-L-cysteine was not reversed after the addition of mevalonate, dolichol, ubiquinone or cholesterol to the medium. These observations constitute the first description of protein isoprenylation in any protozoan and indicate that this post-translational modification is an important step in the regulation of the growth of this primitive eukaryote.
Collapse
Affiliation(s)
- H D Luján
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | |
Collapse
|
48
|
Coppens I, Bastin P, Levade T, Courtoy PJ. Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Mol Biochem Parasitol 1995; 69:29-40. [PMID: 7723786 DOI: 10.1016/0166-6851(94)00192-p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activity of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the key enzyme in the biosynthesis of steroids and polyisoprenoids in mammalian cells, has been detected in both the bloodstream form and the culture-adapted procyclic form of Trypanosoma brucei (3.7 +/- 0.6 and 12.7 +/- 1.8 pmol mevalonate produced min-1 (mg cell protein)-1, respectively). The enzyme activity is enriched 6-fold in microsomal fractions. Several competitive inhibitors of mammalian HMG-CoA reductase, including synvinolin (simvastatin), inhibit the multiplication of both forms of trypanosome in vitro (IC50, approx. 25-50 microM after 2-3 days). This growth inhibition is potentiated by agents interfering with the exogenous supply of cholesterol, such as antibodies blocking the low-density lipoprotein (LDL) receptor, or 5 microM chloroquine. Conversely, growth inhibition by synvinolin can be largely reverted either by 300 nM LDL or by products of the mevalonate pathway, such as 20 mM mevalonate and in procyclics by 100 microM squalene or cholesterol. In procyclics, low concentrations of synvinolin selectively inhibit the incorporation of [14C]acetate into sterols, but not into fatty acids. These results argue for a critical role in trypanosomes of a mevalonate pathway, that is involved in the biosynthesis of sterol and probably of other metabolites. The HMG-CoA reductase activity is decreased 2-fold in procyclics incubated with 4 mM mevalonate and increased 2-fold in the presence of 2.5 microM synvinolin. Synvinolin also upregulates LDL binding up to 4-fold. These data suggest that HMG-CoA reductase and LDL receptor expression are regulated in T. brucei as in mammalian cells, to ensure sterol homeostasis.
Collapse
Affiliation(s)
- I Coppens
- Cell Biology Unit, University of Louvain Medical School, Brussels, Belgium
| | | | | | | |
Collapse
|
49
|
Wolucka B, McNeil M, de Hoffmann E, Chojnacki T, Brennan P. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31657-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Marino M, Bruscalupi G, Manzi P, Rivabene R, Trentalance A. Changes in plasma dolichol levels, transport, and hepatic delivery during rat liver regeneration. Metabolism 1994; 43:677-80. [PMID: 8201955 DOI: 10.1016/0026-0495(94)90114-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the proliferative process that follows partial hepatectomy in the rat, the dolichol content increases in both plasma and liver. Its transport in the blood by lipoproteins also changes. The difference in the distribution of dolichols of various chain lengths in plasma and in the liver is further enhanced during liver regeneration. The dolichol released by perfused liver shows a homologue distribution more similar to that observable in blood than in the liver, thus confirming the importance of the liver as a regulatory site for the blood dolichol supply.
Collapse
Affiliation(s)
- M Marino
- Dipartimento di Biologia Cellulare e dello Sviluppo, Universita La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|