1
|
Yuan Y, Cao X, Zhang H, Liu C, Zhang Y, Song XL, Gai S. Genome-wide identification and analysis of Oleosin gene family in four cotton species and its involvement in oil accumulation and germination. BMC PLANT BIOLOGY 2021; 21:569. [PMID: 34863105 PMCID: PMC8642851 DOI: 10.1186/s12870-021-03358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. RESULTS An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. CONCLUSION We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.
Collapse
Affiliation(s)
- Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xian-Liang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
2
|
Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Semin Cell Dev Biol 2020; 108:82-93. [PMID: 32147380 DOI: 10.1016/j.semcdb.2020.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
Plant oils represent an energy-rich and carbon-dense group of hydrophobic compounds. These oils are not only of economic interest, but also play important, fundamental roles in plant and algal growth and development. The subcellular storage compartments of plant lipids, referred to as lipid droplets (LDs), have long been considered relatively inert oil vessels. However, research in the last decade has revealed that LDs play far more dynamic roles in plant biology than previously appreciated, including transient neutral lipid storage, membrane remodeling, lipid signaling, and stress responses. Here we discuss recent developments in the understanding of LD formation, turnover and function in land plants and algae.
Collapse
Affiliation(s)
- Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany.
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular Cell Biology, Guelph, Ontario, N1G 2W1, Canada
| | - John M Dyer
- United States Department of Agriculture, Agriculture Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, TX, 76203, USA
| |
Collapse
|
3
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
4
|
Shao Q, Liu X, Su T, Ma C, Wang P. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1568. [PMID: 31921234 PMCID: PMC6914826 DOI: 10.3389/fpls.2019.01568] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 05/10/2023]
Abstract
Oil bodies (OBs) are ubiquitous dynamic organelles found in plant seeds. They have attracted increasing attention recently because of their important roles in plant physiology. First, the neutral lipids stored within these organelles serve as an initial, essential source of energy and carbon for seed germination and post-germinative growth of the seedlings. Secondly, they are involved in many other cellular processes such as stress responses, lipid metabolism, organ development, and hormone signaling. The biological functions of seed OBs are dependent on structural proteins, principally oleosins, caleosins, and steroleosins, which are embedded in the OB phospholipid monolayer. Oleosin and caleosin proteins are specific to plants and mainly act as OB structural proteins and are important for the biogenesis, stability, and dynamics of the organelle; whereas steroleosin proteins are also present in mammals and play an important role in steroid hormone metabolism and signaling. Significant progress using new genetic, biochemical, and imaging technologies has uncovered the roles of these proteins. Here, we review recent work on the structural or metabolic roles of these proteins in OB biogenesis, stabilization and degradation, lipid homeostasis and mobilization, hormone signal transduction, stress defenses, and various aspects of plant growth and development.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC PLANT BIOLOGY 2019; 19:294. [PMID: 31272381 PMCID: PMC6610931 DOI: 10.1186/s12870-019-1891-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rapeseed is the third largest oil seed crop in the world. The seeds of this plant store lipids in oil bodies, and oleosin is the most important structural protein in oil bodies. However, the function of oleosin in oil crops has received little attention. RESULTS In the present study, 48 oleosin sequences from the Brassica napus genome were identified and divided into four lineages (T, U, SH, SL). Synteny analysis revealed that most of the oleosin genes were conserved, and all of these genes experienced purifying selection during evolution. Three and four important oleosin genes from Arabidopsis and B. napus, respectively, were cloned and analyzed for function in Arabidopsis. Overexpression of these oleosin genes in Arabidopsis increased the seed oil content slightly, except for BnaOLE3. Further analysis revealed that the average oil body size of the transgenic seeds was slightly larger than that of the wild type (WT), except for BnaOLE1. The fatty acid profiles showed that the linoleic acid content (13.3% at most) increased and the peanut acid content (11% at most) decreased in the transgenic lines. In addition, the seed size and thousand-seed weight (TSW) also increased in the transgenic lines, which could lead to increased total lipid production. CONCLUSION We identified oleosin genes in the B. napus genome, and overexpression of oleosin in Arabidopsis seeds increased the seed weight and linoleic acid content (13.3% at most).
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
6
|
Bhutada G, Kavšček M, Hofer F, Gogg-Fassolter G, Schweiger M, Darnhofer B, Kordiš D, Birner-Gruenberger R, Natter K. Characterization of a lipid droplet protein from Yarrowia lipolytica that is required for its oleaginous phenotype. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1193-1205. [DOI: 10.1016/j.bbalip.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/26/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
7
|
Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I. Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC PLANT BIOLOGY 2017; 17:98. [PMID: 28587627 PMCID: PMC5461629 DOI: 10.1186/s12870-017-1042-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/22/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lobosphaera incisa (L. incisa) is an oleaginous microalga that stores triacylglycerol (TAG) rich in arachidonic acid in lipid bodies (LBs). This organelle is gaining attention in algal research, since evidence is accumulating that proteins attached to its surface fulfill important functions in TAG storage and metabolism. RESULTS Here, the composition of the LB proteome in L incisa was investigated by comparing different cell fractions in a semiquantitative proteomics approach. After applying stringent filters to the proteomics data in order to remove contaminating proteins from the list of possible LB proteins (LBPs), heterologous expression of candidate proteins in tobacco pollen tubes, allowed us to confirm 3 true LBPs: A member of the algal Major Lipid Droplet Protein family, a small protein of unknown function and a putative lipase. In addition, a TAG lipase that belongs to the SUGAR DEPENDENT 1 family of TAG lipases known from oilseed plants was identified. Its activity was verified by functional complementation of an Arabidopsis thaliana mutant lacking the major seed TAG lipases. CONCLUSIONS Here we describe 3 LBPs as well as a TAG lipase from the oleaginous microalga L. incisa and discuss their possible involvement in LB metabolism. This study highlights the importance of filtering LB proteome datasets and verifying the subcellular localization one by one, so that contaminating proteins can be recognized as such. Our dataset can serve as a valuable resource in the identification of additional LBPs, shedding more light on the intriguing roles of LBs in microalgae.
Collapse
Affiliation(s)
- Heike Siegler
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Oliver Valerius
- University of Goettingen, Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen, Germany
| | - Till Ischebeck
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Jennifer Popko
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Nicolas J. Tourasse
- UMR7141, CNRS/Université Pierre et Marie Curie, Paris, France
- Present address: Laboratoire ARNA, INSERM U1212, CNRS UMR5320, Université Bordeaux 2; Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac, France
| | - Olivier Vallon
- UMR7141, CNRS/Université Pierre et Marie Curie, Paris, France
| | - Inna Khozin-Goldberg
- Ben-Gurion University of the Negev, Microalgal Biotechnology Laboratory, Beer-Sheva, Israel
| | - Gerhard H. Braus
- University of Goettingen, Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goettingen, Germany
- University of Goettingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Goettingen, Germany
| |
Collapse
|
8
|
Müller AO, Blersch KF, Gippert AL, Ischebeck T. Tobacco pollen tubes - a fast and easy tool for studying lipid droplet association of plant proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1055-1064. [PMID: 27943529 DOI: 10.1111/tpj.13441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 05/11/2023]
Abstract
In recent years, lipid droplets have emerged as dynamic organelles rather than inactive storage sites for triacylglycerol. The number of proteins known to be associated with lipid droplets has increased, but remains small in comparison with those found with other organelles. Also the mechanisms of how lipid droplets are recognized and bound by proteins need deeper investigation. Here, we present a fast, simple and inexpensive approach to assay proteins for their association with lipid droplets in vivo that can help to screen protein candidates or mutated variants of proteins for their association in an efficient manner. For this, a system to transiently transform Nicotiana tabacum pollen grains was used because these naturally contain lipid droplets. We designed vectors for fast cloning of genes as fusions with either mVenus or mCherry. This allowed us to assay colocalization with lipid droplets stained with Nile Red and Bodipy 505/515, respectively. We successfully tested our system not only for proteins from Arabidopsis thaliana, but also for proteins from the moss Physcomitrella patens and the alga Chlamydomonas reinhardtii. The small size of the vector used allows easy exchange of codons by site-directed mutagenesis. We used this to show that two proline residues in the proline knot of a caleosin are not essential for the binding of lipid droplets. We also demonstrated that peroxisomes are not associated with the lipid droplets in tobacco pollen tubes, which reduces the risk of false interpretation of microscopic data in our system.
Collapse
Affiliation(s)
- Anna Ophelia Müller
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Katharina Franziska Blersch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Anna Lena Gippert
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| |
Collapse
|
9
|
Gu J, Chao H, Wang H, Li Y, Li D, Xiang J, Gan J, Lu G, Zhang X, Long Y, Li M. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 7:1989. [PMID: 28111582 PMCID: PMC5216053 DOI: 10.3389/fpls.2016.01989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023]
Abstract
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Dianrong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
10
|
Hanano A, Almousally I, Shaban M, Rahman F, Blee E, Murphy DJ. Biochemical, Transcriptional, and Bioinformatic Analysis of Lipid Droplets from Seeds of Date Palm (Phoenix dactylifera L.) and Their Use as Potent Sequestration Agents against the Toxic Pollutant, 2,3,7,8-Tetrachlorinated Dibenzo-p-Dioxin. FRONTIERS IN PLANT SCIENCE 2016; 7:836. [PMID: 27375673 PMCID: PMC4896926 DOI: 10.3389/fpls.2016.00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/27/2016] [Indexed: 05/25/2023]
Abstract
Contamination of aquatic environments with dioxins, the most toxic group of persistent organic pollutants (POPs), is a major ecological issue. Dioxins are highly lipophilic and bioaccumulate in fatty tissues of marine organisms used for seafood where they constitute a potential risk for human health. Lipid droplets (LDs) purified from date palm, Phoenix dactylifera, seeds were characterized and their capacity to extract dioxins from aquatic systems was assessed. The bioaffinity of date palm LDs toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins was determined. Fractioned LDs were spheroidal with mean diameters of 2.5 µm, enclosing an oil-rich core of 392.5 mg mL(-1). Isolated LDs did not aggregate and/or coalesce unless placed in acidic media and were strongly associated with three major groups of polypeptides of relative mass 32-37, 20-24, and 16-18 kDa. These masses correspond to the LD-associated proteins, oleosins, caleosins, and steroleosins, respectively. Efficient partitioning of TCDD into LDs occurred with a coefficient of log K LB/w,TCDD = 7.528 ± 0.024; it was optimal at neutral pH and was dependent on the presence of the oil-rich core, but was independent of the presence of LD-associated proteins. Bioinformatic analysis of the date palm genome revealed nine oleosin-like, five caleosin-like, and five steroleosin-like sequences, with predicted structures having putative lipid-binding domains that match their LD stabilizing roles and use as bio-based encapsulation systems. Transcriptomic analysis of date palm seedlings exposed to TCDD showed strong up-regulation of several caleosin and steroleosin genes, consistent with increased LD formation. The results suggest that the plant LDs could be used in ecological remediation strategies to remove POPs from aquatic environments. Recent reports suggest that several fungal and algal species also use LDs to sequester both external and internally derived hydrophobic toxins, which indicates that our approach could be used as a broader biomimetic strategy for toxin removal.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of SyriaDamascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of SyriaDamascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of SyriaDamascus, Syria
| | - Farzana Rahman
- Genomics and Computational Biology Group, University of South WalesPontypridd, UK
| | - Elizabeth Blee
- Institut de Biologie Moléculaire des PlantesStrasbourg, France
| | - Denis J. Murphy
- Genomics and Computational Biology Group, University of South WalesPontypridd, UK
| |
Collapse
|
11
|
Cao H. Genome-Wide Analysis of Oleosin Gene Family in 22 Tree Species: An Accelerator for Metabolic Engineering of BioFuel Crops and Agrigenomics Industrial Applications? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:521-41. [PMID: 26258573 DOI: 10.1089/omi.2015.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Trees contribute to enormous plant oil reserves because many trees contain 50%-80% of oil (triacylglycerols, TAGs) in the fruits and kernels. TAGs accumulate in subcellular structures called oil bodies/droplets, in which TAGs are covered by low-molecular-mass hydrophobic proteins called oleosins (OLEs). The OLEs/TAGs ratio determines the size and shape of intracellular oil bodies. There is a lack of comprehensive sequence analysis and structural information of OLEs among diverse trees. The objectives of this study were to identify OLEs from 22 tree species (e.g., tung tree, tea-oil tree, castor bean), perform genome-wide analysis of OLEs, classify OLEs, identify conserved sequence motifs and amino acid residues, and predict secondary and three-dimensional structures in tree OLEs and OLE subfamilies. Data mining identified 65 OLEs with perfect conservation of the "proline knot" motif (PX5SPX3P) from 19 trees. These OLEs contained >40% hydrophobic amino acid residues. They displayed similar properties and amino acid composition. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that these proteins could be classified into five OLE subfamilies. There were distinct patterns of sequence conservation among the OLE subfamilies and within individual tree species. Computational modeling indicated that OLEs were composed of at least three α-helixes connected with short coils without any β-strand and that they exhibited distinct 3D structures and ligand binding sites. These analyses provide fundamental information in the similarity and specificity of diverse OLE isoforms within the same subfamily and among the different species, which should facilitate studying the structure-function relationship and identify critical amino acid residues in OLEs for metabolic engineering of tree TAGs.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center , New Orleans, Louisiana
| |
Collapse
|
12
|
Zuidmeer-Jongejan L, Fernández-Rivas M, Winter MGT, Akkerdaas JH, Summers C, Lebens A, Knulst AC, Schilte P, Briza P, Gadermaier G, van Ree R. Oil body-associated hazelnut allergens including oleosins are underrepresented in diagnostic extracts but associated with severe symptoms. Clin Transl Allergy 2014; 4:4. [PMID: 24484687 PMCID: PMC4015814 DOI: 10.1186/2045-7022-4-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oil body-associated allergens such as oleosins have been reported for important allergenic foods such as peanut, sesame and hazelnut. Here we investigate whether oil body associated proteins (OAPs) are linked with specific clinical phenotypes and whether they are represented in skin prick test (SPT) reagents. METHODS A hazelnut OAP fraction was characterized by mass-spectrometry (MS) to identify its major constituents. Polyclonal rabbit antibodies were generated against hazelnut OAPs. The presence of OAPs in commercially available hazelnut SPTs was studied by immunoblot and spiking experiments. OAP-specific IgE antibodies were measured in sera from patients with a convincing history of hazelnut allergy by RAST (n = 91), immunoblot (n = 22) and basophil histamine release (BHR; n = 14). RESULTS Hazelnut OAPs were analysed by MS and found to be dominated by oleosins at ~14 and ~17 kDa, and a 27 kDa band containing oleosin dimers and unidentified protein. In 36/91 sera specific IgE against hazelnut OAPs was detected, and confirmed to be biologically active by BHR (n = 14). The majority (21/22) recognized the oleosin bands at 17 kDa on immunoblot, of which 11 exclusively. These OAP-specific IgE responses dominated by oleosin were associated with systemic reactions to hazelnut (OR 4.24; p = 0.015) and negative SPT (χ2 6.3, p = 0.012). Immunoblot analysis using OAP-specific rabbit antiserum demonstrated that commercial SPT reagents are virtually devoid of OAPs, sometimes (3/9) resulting in false-negative SPT. Spiking of SPT reagents with OAP restored serum IgE binding of these false-negative patients on immunoblot at mainly 17 kDa. CONCLUSION Hazelnut allergens found in oil bodies dominated by oleosin are associated with more severe systemic reactions and negative SPT. Defatted diagnostic extracts are virtually devoid of these allergens, resulting in poor sensitivity for detection of IgE antibodies against these clinically relevant molecules.
Collapse
Affiliation(s)
- Laurian Zuidmeer-Jongejan
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | | | - Marcel GT Winter
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Jaap H Akkerdaas
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | | | - Ans Lebens
- Department Dermatology and Allergology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - André C Knulst
- Department Dermatology and Allergology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Piet Schilte
- Department of Pediatrics, Medical Center Alkmaar, Alkmaar, TheNetherlands
| | - Peter Briza
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Gabriele Gadermaier
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Abstract
Hydrophobic storage neutral lipids are stably preserved in specialized organelles termed oil bodies in the aqueous cytosolic compartment of plant cells via encapsulation with surfactant molecules including phospholipids and integral proteins. To date, three classes of integral proteins, termed oleosin, caleosin, and steroleosin, have been identified in oil bodies of angiosperm seeds. Proposed structures, targeting traffic routes, and biological functions of these three integral oil-body proteins were summarized and discussed. In the viewpoint of evolution, isoforms of oleosin and caleosin are found in oil bodies of pollens as well as those of more primitive species; moreover, caleosin- and steroleosin-like proteins are also present in other subcellular locations besides oil bodies. Technically, artificial oil bodies of structural stability similar to native ones were successfully constituted and seemed to serve as a useful tool for both basic research studies and biotechnological applications.
Collapse
Affiliation(s)
- Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
14
|
van der Schoot C, Paul LK, Paul SB, Rinne PLH. Plant lipid bodies and cell-cell signaling: a new role for an old organelle? PLANT SIGNALING & BEHAVIOR 2011; 6:1732-8. [PMID: 22057325 PMCID: PMC3329345 DOI: 10.4161/psb.6.11.17639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular.
Collapse
|
15
|
Miao Y, Ding Y, Sun QY, Xu ZF, Jiang L. Plant bioreactors for pharmaceuticals. Biotechnol Genet Eng Rev 2011; 25:363-80. [PMID: 21412362 DOI: 10.5661/bger-25-363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plant bioreactors are attractive expression systems for economic production of pharmaceuticals. Various plant expression systems or platforms have been tested with certain degrees of success over the past years. However, further development and improvement are needed for more effective plant bioreactors. In this review we first summarize recent progress in various plant bioreactor expression systems and then focus on discussing protein compartmentation to unique organelles and various strategies for developing better plant bioreactors.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
16
|
Scott RW, Winichayakul S, Roldan M, Cookson R, Willingham M, Castle M, Pueschel R, Peng CC, Tzen JTC, Roberts NJ. Elevation of oil body integrity and emulsion stability by polyoleosins, multiple oleosin units joined in tandem head-to-tail fusions. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:912-927. [PMID: 20444209 DOI: 10.1111/j.1467-7652.2010.00522.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have successfully created polyoleosins by joining multiple oleosin units in tandem head-to-tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies-containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.
Collapse
Affiliation(s)
- Richard W Scott
- AgResearch Limited, Forage Biotechnology, Tennent Drive, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The mechanisms that regulate plant lipid metabolism determine the dietary and industrial value of storage oils found in economically important species and may control the ability of many plants to survive exposure to temperature extremes. Many of the problems researchers have in defining the pathways, enzymes, and genes involved in plant lipid metabolism appear to be amenable to analysis by genetic approaches. Mutants with alterations in membrane lipid composition have also been used to study the structural and adaptive roles of lipids. The application of genetic engineering methods affords opportunities for researchers to apply knowledge gained about plant lipid metabolism toward enhanced use of plant oils as abundant and renewable sources of reduced carbon.
Collapse
|
18
|
Wu YY, Chou YR, Wang CS, Tseng TH, Chen LJ, Tzen JTC. Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:81-9. [PMID: 20074972 DOI: 10.1016/j.plaphy.2009.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/24/2009] [Accepted: 12/16/2009] [Indexed: 05/20/2023]
Abstract
Expression of OLE16 and OLE18, two oleosin isoforms in oil bodies of rice seeds, was suppressed by RNA interference. Electron microscopy revealed a few large, irregular oil clusters in 35S::ole16i transgenic seed cells, whereas accumulated oil bodies in 35S::ole18i transgenic seed cells were comparable to or slightly larger than those in wild-type seed cells. Large and irregular oil clusters were observed in cells of double mutant seeds. These unexpected differences observed in oil bodies of 35S::ole16i and 35S::ole18i transgenic seeds were further analyzed. In comparison to wild-type plants, OLE18 levels were reduced to approximately 40% when OLE16 was completely eliminated in 35S::ole16i transgenic plants. In contrast, OLE16 was reduced to only 80% of wild-type levels when OLE18 was completely eliminated in 35S::ole18i transgenic plants. While the triacylglycerol content of crude seed extracts of 35S::ole16i and 35S::ole18i transgenic seeds was reduced to approximately 60% and 80%, respectively, triacylglycerol in isolated oil bodies was respectively reduced to 45% and 80% in accordance with the reduction of their oleosin contents. Oil bodies isolated from both 35S::ole16i and 35S::ole18i transgenic seeds were found to be of comparable size and stability to those isolated from wild-type rice seeds, although they were merely sheltered by a single oleosin isoform. The drastic difference between the triacylglycerol contents of crude seed extracts and isolated oil bodies from 35S::ole16i transgenic plants could be attributed to the presence of large, unstable oil clusters that were sheltered by insufficient amounts of oleosin and therefore could not be isolated together with stable oil bodies.
Collapse
Affiliation(s)
- Yu-Yi Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Peng CC, Lee VSY, Lin MY, Huang HY, Tzen JTC. Minimizing the central hydrophobic domain in oleosin for the constitution of artificial oil bodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5604-10. [PMID: 17567149 DOI: 10.1021/jf070977o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Oleosin, a unique structural protein anchoring onto the surface of seed oil bodies by its central hydrophobic domain, stabilizes these lipid-storage organelles as discrete entities. Stable artificial oil bodies have been successfully constituted with native or recombinant oleosins. In this study, recombinant sesame oleosin with 12 residues stepwise truncated from its central hydrophobic domain of 72 residues was overexpressed in Escherichia coli, was purified to homogeneity, and was used for the constitution. Artificial oil bodies constituted by truncated oleosins with the central hydrophobic domain longer than 36 residues were as stable as native sesame oil bodies, and those constituted by truncated oleosins lacking more than half of the original central hydrophobic domain inclined to coalesce upon collision or aggregation.
Collapse
Affiliation(s)
- Chi-Chung Peng
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ. Protein and lipid composition analysis of oil bodies from twoBrassica napus cultivars. Proteomics 2006; 6:4586-98. [PMID: 16847873 DOI: 10.1002/pmic.200600020] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oil bodies were purified from mature seed of two Brassica napus crop cultivars, Reston and Westar. Purified oil body proteins were subjected to both 2-DE followed by LC-MS/MS and multidimensional protein identification technology. Besides previously known oil body proteins oleosin, putative embryo specific protein ATS1, (similar to caleosin), and 11-beta-hydroxysteroid dehydrogenase-like protein (steroleosin), several new proteins were identified in this study. One of the identified proteins, a short chain dehydrogenase/reductase, is similar to a triacylglycerol-associated factor from narrow-leafed lupin while the other, a protein annotated as a myrosinase associated protein, shows high similarity to the lipase/hydrolase family of enzymes with GDSL-motifs. These similarities suggest these two proteins could be involved in oil body degradation. Detailed analysis of the two other oil body components, polar lipids (lipid monolayer) and neutral lipids (triacylglycerol matrix) was also performed. Major differences were observed in the fatty acid composition of polar lipid fractions between the two B. napus cultivars. Neutral lipid composition confirmed erucic acid and oleic acid accumulation in Reston and Westar seed oil, respectively.
Collapse
Affiliation(s)
- Vesna Katavic
- University of Missouri-Columbia, Department of Biochemistry, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Akkerdaas JH, Schocker F, Vieths S, Versteeg S, Zuidmeer L, Hefle SL, Aalberse RC, Richter K, Ferreira F, van Ree R. Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library. Mol Nutr Food Res 2006; 50:18-23. [PMID: 16288502 DOI: 10.1002/mnfr.200500147] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical presentation of non-pollen related allergy to hazelnut can be severe and systemic. So far, only a limited number of non-pollen related hazelnut allergens have been identified and characterized. The aim of this study was to identify and clone new hazelnut allergens. A lambda ZAP cDNA library of hazelnut was constructed. The library was screened with serum of six hazelnut allergic patients displaying different IgE-binding patterns on hazelnut immunoblot. Rapid amplification of cDNA ends (RACE) protocols were applied to obtain full-length clones. Expression experiments were carried out in Eschericchia coli. Expression was monitored by SDS-PAGE, protein staining and immunoblotting. A hazelnut cDNA library was constructed. IgE screening resulted in the cloning of two isoforms of a novel putative hazelnut allergen. The clones were identified as oleosins, with theoretical molecular masses of 16.7 and 14.7 kDa and pI of 10.5 and 10.0, respectively. The isoforms demonstrated only 37% amino acid sequence identity but contained the typical hydrophobic stretch in the middle of the protein (53% identity) with the characteristic oleosin proline knot region (11/12 amino acids identical). Expression in E. coli of the longer isoform resulted in a clear band on SDS-PAGE. The expressed protein was recognized on an immunodot blot by IgE from serum that was used for screening the cDNA library. Hazelnut contains multiple isoforms of oleosin. IgE binding of a hazelnut-allergic patient to a recombinant version suggest that hazelnut oleosin is an allergen, as has been described for peanut and sesame.
Collapse
Affiliation(s)
- Jaap H Akkerdaas
- Academical Medical Center, Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin LJ, Liao PC, Yang HH, Tzen JTC. Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:770-6. [PMID: 16198588 DOI: 10.1016/j.plaphy.2005.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/07/2005] [Accepted: 07/26/2005] [Indexed: 05/04/2023]
Abstract
Seed oil bodies comprise a triacylglycerol matrix shielded by a monolayer of phospholipids and proteins. These surface proteins include an abundant structural protein, oleosin, and at least two minor protein classes termed caleosin and steroleosin. Two steroleosin isoforms (41 and 39 kDa), one caleosin (27 kDa), and two oleosin isoforms (17 and 15 kDa) have been identified in oil bodies isolated from sesame seeds. The signal peptides responsible for targeting of these proteins to oil bodies have not been experimentally determined. Hydropathy analyses indicate that the hydrophobic domain putatively responsible for oil-body anchoring is located in the N-terminal region of steroleosin, but in the central region of caleosin or oleosin. Direct amino acid sequencing showed that both steroleosin isoforms possessed a free methionine residue at their N-termini while caleosin and oleosin isoforms were N-terminally blocked. Mass spectrometry analyses revealed that N-termini of both caleosin and 17 kDa oleosin were acetylated after the removal of the first methionine. In addition, deamidation was observed at a glutamine residue in the N-terminal region of 17 kDa oleosin.
Collapse
Affiliation(s)
- Li-Jen Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, 40227 Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
24
|
Pons L, Chéry C, Mrabet N, Schohn H, Lapicque F, Guéant JL. Purification and cloning of two high molecular mass isoforms of peanut seed oleosin encoded by cDNAs of equal sizes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:659-68. [PMID: 16095908 DOI: 10.1016/j.plaphy.2005.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oleosins are small plant proteins characterized by a long hydrophobic core flanked by amphipathic N- and C-terminal domains, which act as emulsifiers for the storage of lipids in seeds. They have been sequenced in a number of oilseeds important for the food industry but not in peanuts. We purified the major isoform of peanut oleosin by preparative electrophoresis with continuous elution, in sufficient amounts to raise specific antibodies, perform circular dichroism and N-sequence tryptic fragments. The structure of the purified oleosin was dominated by alpha-helix that may be assigned to the SDS-resistant central hydrophobic stretch. A two-step RT-PCR strategy was developed to determine the cDNA sequence of this oleosin. Two cDNA variants of equal sizes encoding for isoforms of 176 amino acids each were identified. The isoforms differed by seven amino acids mainly located in the N- and C-terminal domains. The corresponding mRNAs were estimated at 0.9 kb by Northern blot and were transcribed from genes without introns. Immunoprecipitation of the in vitro-translated peanut oleosin labeled with [14C]leucine or [35S]methionine produced the full-length protein (17 kDa) and a 6-kDa peptide corresponding to the N/C-terminal domains. This peptide was able to form SDS-PAGE stable oligomers by interacting with the full-length protein. A similar peptide was released after [125I]iodination of the purified oleosin that generated intermediate-sized oligomers also visible by Western blot on a crude oleosin extract. Oligomers reflect the natural ability of oleosins to strongly interact with each other via not only their central domains but also their N- and C-terminal domains.
Collapse
Affiliation(s)
- Laurent Pons
- Laboratoire de Pathologie Cellulaire et Moléculaire en Nutrition, Inserm EMI 0014, Faculté de Médecine, Université Henri Poincaré Nancy 1, BP 184, 54505 Vandaeuvre-lès-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Wältermann M, Steinbüchel A. Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 2005; 187:3607-19. [PMID: 15901682 PMCID: PMC1112053 DOI: 10.1128/jb.187.11.3607-3619.2005] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marc Wältermann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
26
|
Roux E, Baumberger S, Axelos MAV, Chardot T. Oleosins of Arabidopsis thaliana: expression in Escherichia coli, purification, and functional properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:5245-5249. [PMID: 15291503 DOI: 10.1021/jf0355046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interfacial behavior of oleosins, the most abundant proteins from seeds oil bodies, was investigated using the pendant drop method at water/oil interfaces and compared to the behavior of beta-casein and lysozyme, proteins with contrasted emulsifying properties. Recombined high (rS3) and low (rS4) molecular weight oleosins comprising N-terminal histidine tags were purified to electrophoretic homogeneity. rS3 decreased the interfacial tension at the oil/water interface better than rS4, oleosins being more efficient than beta-casein. Oleosins formed aggregates when spread on noncompressed phospholipid (PL) films at the air/water interface as observed using a Langmuir-Blodgett balance equipped with a Brewster angle microscope. Oleosin spread at the surface of a compressed PL monolayer (5-20 mN/m) did not aggregate. Pressure increased immediately and proportionally to the amount of protein spread on the monolayer. The results stress the capacity of oleosins to be inserted in oil and in PL monolayers, which is of particular relevancy to their potential uses as water/oil emulsifiers.
Collapse
Affiliation(s)
- Emeline Roux
- UMR Chimie Biologique, INRA/INA PG, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
27
|
Mallory AC, Mlotshwa S, Bowman LH, Vance VB. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:82-92. [PMID: 12834404 DOI: 10.1046/j.1365-313x.2003.01785.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA silencing is a conserved eukaryotic pathway in which double-stranded RNA (dsRNA) triggers destruction of homologous target RNA via production of short-interfering RNA (siRNA). In plants, at least some cases of RNA silencing can spread systemically. The signal responsible for systemic spread is expected to include an RNA component to account for the sequence specificity of the process, and transient silencing assays have shown that the capacity for systemic silencing correlates with the accumulation of a particular class of small RNA. Here, we report the results of grafting experiments to study transmission of silencing from stably transformed tobacco lines in the presence or absence of helper component-proteinase (HC-Pro), a viral suppressor of silencing. The studied lines carry either a tail-to-tail inverted repeat, the T4-IR transgene locus, or one of two different amplicon transgene loci encoding replication-competent viral RNA. We find that the T4-IR locus, like many sense-transgene-silenced loci, can send a systemic silencing signal, and this ability is not detectably altered by HC-Pro. Paradoxically, neither amplicon locus effectively triggers systemic silencing except when suppressed for silencing by HC-Pro. In contrast to results from transient assays, these grafting experiments reveal no consistent correlation between capacity for systemic silencing and accumulation of any particular class of small RNA. In addition, although all transgenic lines used to transmit systemic silencing signals were methylated at specific sites within the transgene locus, silencing in grafted scions occurred without detectable methylation at those sites in the target locus of the scion.
Collapse
Affiliation(s)
- Allison C Mallory
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
28
|
Fulda M, Shockey J, Werber M, Wolter FP, Heinz E. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:93-103. [PMID: 12366803 DOI: 10.1046/j.1365-313x.2002.01405.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Post-germinative growth of oilseeds is dependent on the breakdown of the stored lipid reserves. Long-chain acyl-CoA synthetase activities (LACS) are critically involved in this process by activating the released free fatty acids and thus feeding the beta-oxidation cycle in glyoxysomes. Here we report on the identification of two LACS genes, AtLACS6 and AtLACS7 from Arabidopsis thaliana coding for peroxisomal LACS proteins. The subcellular localization was verified by co-expression studies of spectral variants of the green fluorescent protein (GFP). While AtLACS6 is targeted by a type 2 (PTS2) peroxisomal targeting sequence, for AtLACS7 a functional PTS1 as well as a PTS2 could be demonstrated. Possible explanations for this potentially redundant targeting information will be discussed. Expression studies of both genes revealed a strong induction 1 day after germination resembling the expression pattern of other genes involved in beta-oxidation. Analysis of the substrate specificities of the two LACS proteins demonstrated enzymatic activity for both enzymes with the whole spectrum of fatty acids found in stored lipid reserves. These results suggest that both LACS proteins might have overlapping functions and are able to initiate beta-oxidation in plant peroxisomes.
Collapse
Affiliation(s)
- Martin Fulda
- Universität Hamburg, Institut für Allgemeine Botanik, Ohnhorststr. 18, 22609 Hamburg, Germany. fulda.wsu.edu
| | | | | | | | | |
Collapse
|
29
|
Kim HU, Hsieh K, Ratnayake C, Huang AHC. A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem 2002; 277:22677-84. [PMID: 11929861 DOI: 10.1074/jbc.m109298200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, subcellular triacylglycerol granules in seeds (oil bodies) and floral tapetum (tapetosomes) are stabilized by amphipathic structural protein called oleosin. We hereby report a novel group of oleosins that is present inside the pollen of Arabidopsis thaliana. We have used the conserved sequence of oleosins to locate, via the DNA database, all 16 oleosin genes in the Arabidopsis genome. The oleosin genes can be divided into three groups according to their sequences and tissue-specific expressions, as probed by RNA blot hybridization and reverse transcriptase-PCR. The first group includes eight genes specifically expressed in the floret tapetum. The second group includes five genes specifically expressed in maturing seeds. The third, novel group includes three genes expressed in both maturing seeds and floral microspores, which will become pollen. Transgenic study using the promoter of one of these genes attached to a reporter gene has provided corroborative evidence for the specific expression of the gene in the microspores in the florets. One of the pollen oleosins can be identified by microsequencing and specific immunoblotting. Pollen oleosins synthesized by recombinant bacteria can collaborate with phospholipids in stabilizing reconstituted oil bodies. Thus, pollen has oleosins to stabilize the abundant subcellular oil bodies. Seed oil bodies and floret tapetosomes have been isolated from the miniature Arabidopsis plants, and the success indicates that the organelles can be subjected to future biochemical and genetic studies.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
30
|
Lin LJ, Tai SSK, Peng CC, Tzen JTC. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. PLANT PHYSIOLOGY 2002; 128:1200-1211. [PMID: 11950969 PMCID: PMC154248 DOI: 10.1104/pp.010982] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 11/27/2001] [Accepted: 12/18/2001] [Indexed: 05/20/2023]
Abstract
Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel beta-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols.
Collapse
Affiliation(s)
- Li-Jen Lin
- Graduate Institute of Agricultural Biotechnology, National Chung-Hsing University, Taichung, Taiwan 40227, Republic of China
| | | | | | | |
Collapse
|
31
|
Zamora R, Alaiz M, Hidalgo FJ. Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition, and antioxidant activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:4267-70. [PMID: 11559121 DOI: 10.1021/jf0104634] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteins of olive fruit mesocarp are not very well-known at present. However, they have been shown to pass, at least partially, to the olive oil during its elaboration and therefore might be contributing to some of the special characteristics of this vegetable oil. In this study, protein content and composition were determined in olive fruits, cv. Arbequina and Picual, at three stages of ripening: green, spotted, and purple. Mesocarp proteins constituted 1.3-1.8% of the dry weight of the olive fruit, and cultivar and fruit ripening did not produce important changes in mesocarp protein content or composition. In addition, this composition was also similar to the amino acid composition of a 4.6-kDa polypeptide, which is the major protein component of olive oils and of oil bodies of olive fruit mesocarp, suggesting that this polypeptide is likely to be a major component of mesocarp proteins. There was, also, a relationship between the oil content of the olive fruit and the protein content determined, suggesting a stabilizing function of these proteins in the oil bodies of the olive fruit, analogously to the role suggested for oleosins. This stabilizing function does not seem to be extended to olive oils because when the polypeptides isolated were added at 20 ppm to soybean oil, the stability of the oil increased only slightly, suggesting that if these compounds play some role in the stability of the oils, this should be mostly a consequence of the possible interactions among these protein components and other olive oil antioxidant constituents.
Collapse
Affiliation(s)
- R Zamora
- Instituto de la Grasa, CSIC, Avenida Padre García Tejero 4, 41012 Sevilla, Spain
| | | | | |
Collapse
|
32
|
Beisson F, Ferté N, Bruley S, Voultoury R, Verger R, Arondel V. Oil-bodies as substrates for lipolytic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:47-58. [PMID: 11278171 DOI: 10.1016/s1388-1981(01)00086-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plant seeds store triacylglycerols (TAGs) in intracellular organelles called oil-bodies or oleosomes, which consist of oil droplets covered by a coat of phospholipids and proteins. During seed germination, the TAGs of oil-bodies hydrolysed by lipases sustain the growth of the seedlings. The mechanism whereby lipases gain access to their substrate in these organelles is largely unknown. One of the questions that arises is whether the protein/phospholipid coat of oil-bodies prevents the access of lipase to the oil core. We have investigated the susceptibility of almond oil-bodies to in vitro lipolysis by various purified lipases with a broad range of biochemical properties. We have found that all the enzymes assayed were capable of releasing on their own free fatty acids from the TAG of oil-bodies. Depending on the lipase, the specific activity measured on oil-bodies using the pH-stat technique was found to range from 18 to 38% of the specific activity measured on almond oil emulsified by gum arabic. Some of these lipases are known to have a dual lipase/phospholipase activity. However, no correlation was found to exist between the ability of a lipase to readily and efficiently hydrolyse the TAG content of oil-bodies and the presence of a phospholipase activity. Kinetic studies indicate that oil-bodies behave as a substrate as other proteolipid organelles such as milk fat globules. Finally we have shown that a purified water-soluble plant lipase on its own can easily hydrolyse oil-bodies in vitro. Our results suggest that the lipolysis of oil-bodies in seedlings might occur without any pre-hydrolysis of the protein coat.
Collapse
Affiliation(s)
- F Beisson
- Laboratoire de Lipolyse Enzymatique, Institut de Biologie Structurale et Microbiologie, Marseille, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
A method for the determination of proteins in fats and oils is described. Proteins were sequentially precipitated with acetone and hydrolyzed, and the produced amino acids were fractionated and quantificated. This analysis protocol afforded a method of high sensitivity and specificity which was fully evaluated and validated. The data obtained showed good accuracy and linearity with excellent reproducibility and recovery. When the method was applied to 40 olive oils, all of them contained proteins in the range 10-50 microg/100 g of oil, suggesting that proteins are nonpreviously described minor components of these oils. In addition, the proteins precipitated were almost exclusively composed by one polypeptide of apparent 4600 molecular weight, which was isolated from olive drupes and partially characterized by amino acid analysis. Similar polypeptides were also detected in other seeds, suggesting that they may constitute a new class of polypeptides in plants with oleosin-like characteristics. Furthermore, the method was also applied to different fats and oils, and all the samples analyzed contained proteins, suggesting that natural fats and oils always contain polypeptides and/or proteins as minor components. These results also suggest that some peptides are soluble in lipid matrixes, where they might be playing unknown functions. The developed procedure provides a methodology for the determination of these components.
Collapse
Affiliation(s)
- F J Hidalgo
- Consejo Superior de Investigaciones Científicas, Instituto de la Grasa, Sevilla, Spain
| | | | | |
Collapse
|
34
|
Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:101-20. [PMID: 10998572 DOI: 10.1016/s0005-2736(00)00294-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this review article we describe characterization of intracellular lipid particles of three different eukaryotic species, namely mammalian cells, plants and yeast. Lipid particles of all types of cells share a general structure. A hydrophobic core of neutral lipids is surrounded by a membrane monolayer of phospholipids which contains a minor amount of proteins. Whereas lipid particles from mammalian cells and plants harbor specific classes of polypeptides, mainly perilipins and oleosins, respectively, yeast lipid particles contain a more complex set of enzymes which are involved in lipid biosynthesis. Function of lipid particles as storage compartment and metabolic organelle, and their interaction with other subcellular fractions are discussed. Furthermore, models for the biogenesis of lipid particles are presented and compared among the different species.
Collapse
Affiliation(s)
- D Zweytick
- Institut für Biochemie und Lebensmittelchemie, Technische Universität, Petersgasse 12/II, A-8010, Graz, Austria
| | | | | |
Collapse
|
35
|
Pons L, Olszewski A, Guéant JL. Characterization of the oligomeric behavior of a 16.5 kDa peanut oleosin by chromatography and electrophoresis of the iodinated form. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 706:131-40. [PMID: 9544815 DOI: 10.1016/s0378-4347(97)00530-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oleosins are amphipathic proteins associated with oil bodies in seeds. We purified the major 16,500 peanut oleosin by preparative SDS-PAGE. Autoradiography after SDS-PAGE separation of the iodinated oleosin revealed covalently bound oligomers with Mr of 21,000, 33,000, 44,000 and 51,000. The strong capacity of these oligomers to form aggregates and to be incorporated into large-sized detergent micelles was demonstrated by gel permeation and isoelectric focusing. A 50% ethanol concentration was necessary to elute the 16,500 oleosin from octyl groups in hydrophobic interaction chromatography showing its natural tendency to interact with lipid acyl chains. This oligomerization behavior in aqueous solution is an indirect reflection of the interactions that occur in the oil body.
Collapse
Affiliation(s)
- L Pons
- Laboratoire de Pathologie Cellulaire et Moléculaire en Nutrition, EP CNRS 0616, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | | | | |
Collapse
|
36
|
Boothe JG, Saponja JA, Parmenter DL. Molecular farming in plants: Oilseeds as vehicles for the production of pharmaceutical proteins. Drug Dev Res 1997. [DOI: 10.1002/(sici)1098-2299(199711/12)42:3/4<172::aid-ddr9>3.0.co;2-n] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Ting JT, Balsamo RA, Ratnayake C, Huang AH. Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast. J Biol Chem 1997; 272:3699-706. [PMID: 9013626 DOI: 10.1074/jbc.272.6.3699] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Yeast (Saccharomyces cerevisiae) has been used extensively as a heterologous eukaryotic system to study the intracellular targeting of proteins to different organelles. The lipid bodies in yeast have not been previously subjected to such studies. These organelles are functionally equivalent to the subcellular storage oil bodies in plant seeds. A plant oil body has a matrix of oils (triacylglycerols) surrounded by a layer of phospholipids embedded with abundant structural proteins called oleosins. We tested whether plant oleosin could be correctly targeted to the lipid bodies in transformed yeast. The coding region of a maize (Zea mays L.) oleosin gene was incorporated into yeast high copy and low copy number plasmids in which its expression was under the control of GAL1 promoter. Yeast strains transformed with these plasmids produced oleosin when grown in a medium containing galactose but not glucose. The oleosin produced in yeast had a molecular mass slightly higher than that of the native protein in maize. Oleosin accumulated concomitantly with the storage lipids during growth of the transformed yeast, and it was not secreted. Subcellular fractionation of the cell extracts obtained by two different cell breakage procedures revealed that the oleosin was largely restricted to the lipid bodies. Oleosin apparently did not affect the lipid contents and composition of the transformed yeast lipid bodies but replaced some of the native proteins associated with the organelles. Immunocytochemistry of the transformed yeast cells showed that the oleosin was present mostly on the periphery of the lipid bodies. Oleosin isolated from maize or transformed yeast strain, alone or in the presence of phospholipids or SDS, did not bind to the yeast lipid bodies in vitro. We conclude that plant oleosin is correctly targeted to the lipid bodies in transformed yeast and that yeast may be used as a heterologous system to dissect the intracellular targeting signals in the oleosin.
Collapse
Affiliation(s)
- J T Ting
- Department of Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
38
|
Höhne M, Nellen A, Schwennesen K, Kindl H. Lipid body lipoxygenase characterized by protein fragmentation, cDNA sequence and very early expression of the enzyme during germination of cucumber seeds. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:6-11. [PMID: 8898881 DOI: 10.1111/j.1432-1033.1996.0006t.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipid bodies are cellular compartments containing triacylglycerols. They are encompassed by a phospholipid monolayer and decorated with characteristic proteins. In plants, lipid bodies are synthesized during seed formation but acquire new proteins during seed germination. In germinating cucumber (Cucumis sativus) seeds, the set of newly synthesized proteins appearing in the lipid bodies at the early stage of triacylglycerol mobilization comprises a special form of lipoxygenase. We isolated the lipid body lipoxygenase and characterized fragments prepared by limited proteolysis and cleavage with cyanogen bromide. A very early expression of lipid body lipoxygenase was found by studying the rate of de novo synthesis of lipoxygenase forms during germination. This allowed a clear distinction of this enzyme from other lipoxygenase isoforms. Hence, for determining the molecular structure of lipid body lipoxygenase we analyzed a cDNA prepared from mRNA of cotyledons at day 1 of germination. From the cDNA sequence, oligonucleotides were derived that specifically detected lipid body lipoxygenase mRNA on northern blots. The very early expression of lipid body lipoxygenase was corroborated by this approach. Good agreement was observed between the amino acid sequence deduced from the cDNA sequence and the peptide structures analyzed biochemically. In particular, the cleavage products of cyanogen bromide treatment indicated that we had isolated the lipid body lipoxygenase cDNA. The sequence data show a lipoxygenase form characterized by a molecular mass of 99655 Da, which is significantly higher than the molecular masses of the cytosolic forms. Compared to the cytosolic forms that exhibit a molecular mass of 95 kDa, the lipid body form has an N-terminal extension of 34 amino acid residues. No evidence for a cotranslational or post-translational proteolytic processing was obtained by the size comparison of the in vitro-translated lipoxygenase and the lipid body form.
Collapse
Affiliation(s)
- M Höhne
- Fachbereich Chemie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Napier JA, Stobart AK, Shewry PR. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. PLANT MOLECULAR BIOLOGY 1996; 31:945-56. [PMID: 8843938 DOI: 10.1007/bf00040714] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- J A Napier
- Cell Biology Department, University of Bristol, Long Ashton, UK
| | | | | |
Collapse
|
40
|
Kirik V, Kölle K, Balzer HJ, Bäumlein H. Two new oleosin isoforms with altered expression patterns in seeds of the Arabidopsis mutant fus3. PLANT MOLECULAR BIOLOGY 1996; 31:413-7. [PMID: 8756606 DOI: 10.1007/bf00021803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Oleosins are proteins associated with lipid bodies mainly synthesised during seed development. Using a subtractive hybridisation approach two new members of the oleosin gene family of Arabidopsis thaliana have been isolated. The quantitative and temporal expression patterns of both genes are found to be affected in the fus3 mutant defective in late embryogenesis. This pattern is interpreted as a molecular marker for a mutant specific developmental change from a seed maturation to a germination pathway.
Collapse
Affiliation(s)
- V Kirik
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | | |
Collapse
|
41
|
Naot D, Holland D, Avsian-Kretchmer O, Eshdat Y, Ben-Hayyim G. Induction of a gene encoding an oleosin homologue in cultured citrus cells exposed to salt stress. Gene 1995; 161:171-3. [PMID: 7665073 DOI: 10.1016/0378-1119(95)00224-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cDNA clone (C3) with high homology to plant oleosins was isolated from citrus cultured cells. The 827-bp cDNA insert has an open reading frame of 144 amino-acid residues. The central hydrophobic domain of the protein is nearly identical to oleosins from Brassica napus and maize, and the C-terminal hydrophilic region following the hydrophobic domain is also highly conserved. The steady-state level of mRNA hybridizing to C3 was significantly increased upon exposure of citrus cells to 0.2 M NaCl. A lower level of transcript was found in seeds, but none could be detected in any other vegetative tissue (leaves, roots or fruit) even in the presence of salt under the conditions used. The induction of the oleosin homologue in citrus cells by salt does not depend on the developmental stage of the cells.
Collapse
Affiliation(s)
- D Naot
- Department of Fruit Tree Breeding and Genetics, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
42
|
Aalen RB. The transcripts encoding two oleosin isoforms are both present in the aleurone and in the embryo of barley (Hordeum vulgare L.) seeds. PLANT MOLECULAR BIOLOGY 1995; 28:583-8. [PMID: 7632926 DOI: 10.1007/bf00020404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two transcripts (Ole-1 and Ole-2) encoding two oleosin isoforms homologous to the 18 and 16 kDa oleosins of maize, respectively, have been isolated from developing barley embryos and aleurone layers where lipid bodies are highly abundant organelles. For each of the isoforms the aleurone and embryo transcripts are identical, indicating that the same genes are expressed in both tissues. The temporal accumulation of the two transcripts during seed development is similar. At a low frequency, lipid bodies are found also in starchy endosperm cells of barley. Accordingly, a low transcript level is observed for both oleosins during starchy endosperm development.
Collapse
Affiliation(s)
- R B Aalen
- Division of General Genetics, University of Oslo, Norway
| |
Collapse
|
43
|
Garcia-Mas J, Messeguer R, Arús P, Puigdomènech P. Molecular characterization of cDNAs corresponding to genes expressed during almond (Prunus amygdalus Batsch) seed development. PLANT MOLECULAR BIOLOGY 1995; 27:205-10. [PMID: 7865791 DOI: 10.1007/bf00019192] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A number of different cDNA clones corresponding to the most abundant mRNAs present in immature seeds have been isolated from an almond (Prunus amygdalus cv. Texas) immature seed cDNA library. Those corresponding to proteins involved in storage processes have been further characterized. Two of these cDNAs (PA3BF1 and PA3BE12) code for the almond globulins (prunins), the main family of storage proteins synthesized in seeds during embryogenesis, and another cDNA (PA3BA1) codes for the 15.7 kDa almond oleosin, a protein located on the surface of oil bodies in plant seeds. These cDNAs have been sequenced and their expression during almond fruit development has been studied. Their expression is seed-specific and localized in cotyledons around 100 days after flowering. Both prunin and oleosin genes are present in one or two copies in the almond genome.
Collapse
Affiliation(s)
- J Garcia-Mas
- Unitat Mixta IRTA-CSIC: Departament de Genètica Molecular, CID-CSIC, Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Lee K, Huang AH. Genes encoding oleosins in maize kernel of inbreds Mo17 and B73. PLANT MOLECULAR BIOLOGY 1994; 26:1981-1987. [PMID: 7858232 DOI: 10.1007/bf00019508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have investigated all three oleosin genes which are expressed in the kernel of maize (Zea mays L., Mo17). Oleosin genes, ole16, ole17, and ole18, encode OLE16, OLE17, and OLE18, respectively, in proportional amounts of approximately 2:1:1 in isolated oil bodies. None of the three genes has an intron or a sequence encoding an N-terminal signal peptide. The three genes are expressed coordinately during seed maturation, and their encoded oleosins are present in similar proportional amounts in oil bodies isolated from the embryonic axis, scutellum, and aleurone layer. OLE16 represents one oleosin isoform, whereas OLE17 and OLE18 are close members of another oleosin isoform. ole16 and ole18 have been mapped to single loci on chromosomes 2 (near b1 gene) and 5S (near phya2), respectively. We predict that ole17 is located on chromosome 1 (near phya1), in a chromosomal segment duplicated on chromosome 5.
Collapse
Affiliation(s)
- K Lee
- Department of Botany and Plant Sciences, University of California, Riverside 92521-0124
| | | |
Collapse
|
45
|
Plant AL, van Rooijen GJ, Anderson CP, Moloney MM. Regulation of an Arabidopsis oleosin gene promoter in transgenic Brassica napus. PLANT MOLECULAR BIOLOGY 1994; 25:193-205. [PMID: 8018869 DOI: 10.1007/bf00023237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Progressive deletions of the 5'-flanking sequences of an Arabidopsis oleosin gene were fused to beta-glucuronidase (GUS) and introduced into Brassica napus plants using Agrobacterium-mediated transformation. The effect of these deletions on the quantitative level of gene expression, organ specificity and developmental regulation was assessed. In addition, the influence of abscisic acid (ABA), jasmonic acid (JA), sorbitol and a combined ABA/sorbitol treatment on gene expression was investigated. Sequences that positively regulate quantitative levels of gene expression are present between -1100 to -600 and -400 to -200 of the promoter. In addition, sequences present between -600 and -400 down-regulate quantitative levels of expression. In transgenic B. napus plants, the oleosin promoter directs seed-specific expression of GUS which is present at early stages of seed development and increases throughout seed maturation. Sequences present between -2500 and -1100 of the promoter are involved in modulating the levels of expression at early stages of embryo development. Histochemical staining of embryos demonstrated that expression is uniform throughout the tissues of the embryo. Sequences involved in the response to ABA and sorbitol are present between -400 and -200. The induction of GUS activity by a combined ABA/sorbitol treatment is additive suggesting that ABA is not the sole mediator of osmotically induced oleosin gene expression. A response to JA was only observed when the oleosin promoter was truncated to -600 suggesting that the reported effect of JA on oleosin gene expression may be at a post-transcriptional level.
Collapse
Affiliation(s)
- A L Plant
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
46
|
Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ. A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. PLANT MOLECULAR BIOLOGY 1994; 24:327-40. [PMID: 8111035 DOI: 10.1007/bf00020171] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Brassica napus, oleosins are expressed at high levels in the seed during the latter stages of embryo development. The cis-acting regulatory properties of an 872 bp promoter fragment of a B. napus oleosin gene were examined by analysis of beta-glucuronidase (GUS) expression in transgenic tobacco plants containing an oleosin promoter-GUS transcriptional fusion. The reporter gene was expressed at high levels only in seeds, specifically in embryo and endosperm tissue and regulated throughout seed development. These data demonstrate that oleosin gene transcription is regulated in a tissue-specific and temporally regulated manner and clearly indicate that oleosin protein expression is co-ordinated primarily at the transcriptional level. Oleosin mRNA was shown to be abscisic acid (ABA) inducible and an ABA-response element in the oleosin promoter was shown to be bound by a protein factor in a sequence-specific manner. Sequence analysis of the oleosin promoter has identified several other putative cis-acting sequences which may direct oleosin gene expression. The presence of a large open reading frame in the bottom strand of the oleosin promoter (ORF2) which encodes a polypeptide similar to the ethylene-induced E4 gene of tomato is reported. A PCR-generated DNA probe containing the ORF2 sequence hybridised with a 1.4 kb transcript in total RNA extracts of a variety of tissues, including leaves and germinated seed cotyledons. This finding suggests that the oleosin gene promoter directs transcription in both directions. It is the first report of a bi-directional nuclear gene promoter in plants.
Collapse
Affiliation(s)
- J S Keddie
- Department of Brassica and Oilseeds Research, John Innes Centre, Norwich, UK
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Affiliation(s)
- D J Murphy
- Department of Brassica and Oilseeds Research, John Innes Centre, Norwich, U.K
| |
Collapse
|
49
|
Kindl H. Fatty acid degradation in plant peroxisomes: function and biosynthesis of the enzymes involved. Biochimie 1993; 75:225-30. [PMID: 8507684 DOI: 10.1016/0300-9084(93)90080-c] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In plants, the fatty acid oxidation enzyme apparatus is exclusively located within glyoxysomes or peroxisomes. Following the formation of the CoA-ester, the machinery for the degradation of endogenous fatty acids consists of acyl-CoA oxidase, D-3-hydroxyacyl-CoA hydrolyase, 2,3-enoyl-CoA isomerase, isoenzymes of the multifunctional protein and thiolase. The multiple location of particular enzyme activities on different species of protein is discussed in detail. In cucumber cotyledons, the multifunctional protein exhibits a C-terminal targeting signal, -PRM like other glyoxysomal or leaf peroxisomal proteins. In contrast, proteolytic modification takes place at the N-terminus of thiolase and malate dehydrogenase. Thus, distinct mechanisms are envisaged to take place during the transfer of the cytosolic precursor into glyoxysomes prior to the intra-organellar assembly of the mature enzyme.
Collapse
Affiliation(s)
- H Kindl
- University of Marburg, Department of Chemistry, Germany
| |
Collapse
|
50
|
Tzen J, Lie G, Huang A. Characterization of the charged components and their topology on the surface of plant seed oil bodies. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49582-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|