1
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
2
|
Abstract
Although normal cells depend on exogenous lipids to function and survive, excessive amount of body fat has been associated with increased risk for certain human cancers. Cancer cells can redirect metabolic pathways to meet energy demands through the regulation of fatty acid metabolism. The importance of de novo fatty acid synthesis and fatty acid oxidation in cancer cells suggests fatty acid metabolism may be targeted for anticancer treatment through the use of pharmacological blockade to limit cell proliferation, growth, and transformation. However, our current knowledge about fatty acid metabolism in cancer cells remains limited, and the investigations of such processes and related pathways are certainly warranted to reveal the clinical relevance of fatty acid metabolism in cancer diagnosis and therapy.
Collapse
|
3
|
Zhou CB, Fang JY. The regulation of host cellular and gut microbial metabolism in the development and prevention of colorectal cancer. Crit Rev Microbiol 2018; 44:436-454. [PMID: 29359994 DOI: 10.1080/1040841x.2018.1425671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolism regulation is crucial in colorectal cancer (CRC) and has emerged as a remarkable field currently. The cellular metabolism of glucose, amino acids and lipids in CRC are all reprogrammed. Each of them changes tumour microenvironment, modulates bacterial composition and activity, and eventually promotes CRC development. Metabolites such as short chain fatty acids, secondary bile acids, N-nitroso compounds, hydrogen sulphide, polyphenols and toxins like fragilysin, FadA, cytolethal distending toxin and colibactin play a dual role in CRC. The relationship of gut microbe-metabolite is essential in remodelling intestinal microbial ecology composition and metabolic activity. It regulates the metabolism of colonic epithelial cells and changes the tumour microenvironment in CRC. Microbial metabolism manipulation has been considered to be potentially preventive in CRC, but more large-scale clinical trials are required before their application in clinical practice in the near future.
Collapse
Affiliation(s)
- Cheng-Bei Zhou
- a Division of Gastroenterology and Hepatology , Shanghai Jiao-Tong University School of Medicine Renji Hospital, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Gene. Shanghai Institute of Digestive Disease , Shanghai , China
| | - Jing-Yuan Fang
- a Division of Gastroenterology and Hepatology , Shanghai Jiao-Tong University School of Medicine Renji Hospital, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Gene. Shanghai Institute of Digestive Disease , Shanghai , China
| |
Collapse
|
4
|
Gang X, Yang Y, Zhong J, Jiang K, Pan Y, Karnes RJ, Zhang J, Xu W, Wang G, Huang H. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 2017; 7:15135-49. [PMID: 26934656 PMCID: PMC4924775 DOI: 10.18632/oncotarget.7715] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jian Zhong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kui Jiang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Oncology, The Second affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Kinlaw WB, Baures PW, Lupien LE, Davis WL, Kuemmerle NB. Fatty Acids and Breast Cancer: Make Them on Site or Have Them Delivered. J Cell Physiol 2016; 231:2128-41. [PMID: 26844415 DOI: 10.1002/jcp.25332] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/11/2022]
Abstract
Brisk fatty acid (FA) production by cancer cells is accommodated by the Warburg effect. Most breast and other cancer cell types are addicted to fatty acids (FA), which they require for membrane phospholipid synthesis, signaling purposes, and energy production. Expression of the enzymes required for FA synthesis is closely linked to each of the major classes of signaling molecules that stimulate BC cell proliferation. This review focuses on the regulation of FA synthesis in BC cells, and the impact of FA, or the lack thereof, on the tumor cell phenotype. Given growing awareness of the impact of dietary fat and obesity on BC biology, we will also examine the less-frequently considered notion that, in addition to de novo FA synthesis, the lipolytic uptake of preformed FA may also be an important mechanism of lipid acquisition. Indeed, it appears that cancer cells may exist at different points along a "lipogenic-lipolytic axis," and FA uptake could thwart attempts to exploit the strict requirement for FA focused solely on inhibition of de novo FA synthesis. Strategies for clinically targeting FA metabolism will be discussed, and the current status of the medicinal chemistry in this area will be assessed. J. Cell. Physiol. 231: 2128-2141, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William B Kinlaw
- Division of Endocrinology and Metabolism, Department of Medicine, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Paul W Baures
- Department of Chemistry, Keene State University, Keene, New Hampshire
| | - Leslie E Lupien
- The Geisel School of Medicine at Dartmouth, Program in Experimental and Molecular Medicine, Lebanon, New Hampshire.,Division of Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Wilson L Davis
- Division of Endocrinology and Metabolism, Department of Medicine, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Nancy B Kuemmerle
- The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire.,Division of Hematology/Oncology, Department of Medicine, White River Junction VAMC, White River Junction, Vermont
| |
Collapse
|
6
|
Bessadóttir M, Skúladóttir EÁ, Gowan S, Eccles S, Ögmundsdóttir S, Ogmundsdóttir HM. Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1717-1724. [PMID: 25442282 DOI: 10.1016/j.phymed.2014.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75. AIMS To test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated. MATERIALS AND METHODS Pure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)(®) assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software. RESULTS Treatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells. CONCLUSION Results suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Margrét Bessadóttir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Suzanne Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | | | | |
Collapse
|
7
|
Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Discov Oncol 2014; 5:374-89. [PMID: 25213330 DOI: 10.1007/s12672-014-0188-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022] Open
Abstract
The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells, and triple-negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin as compared to luminal breast cancer. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin has not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 h of treatment, and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis and is important for the survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b directly targets the FASN 3'UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into metformin-induced killing of TNBC.
Collapse
|
8
|
Abstract
Oncogenesis and tumor progression are associated with significant alterations in cellular metabolism. One metabolic pathway that is commonly deregulated in malignant cells is de novo lipogenesis. Lipogenesis is indeed highly upregulated in several types of cancer, a phenomenon that is linked to tumor progression and poor prognosis. Steroid hormones play an essential role in the growth of a variety of cancers and have been shown to increase the expression and activity of several lipogenic factors, including fatty acid synthase and sterol regulatory element-binding proteins. Such an altered gene expression profile promotes lipid biogenesis and may result in the accumulation of neutral lipids, which become visible as cytoplasmic lipid droplets. By using breast and prostate cancer cells exposed to steroid hormones as a model, here we describe methods for the direct qualitative and quantitative assessment of neutral lipid accumulation in malignant cells.
Collapse
Affiliation(s)
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
9
|
Natural compounds as regulators of the cancer cell metabolism. Int J Cell Biol 2013; 2013:639401. [PMID: 23762063 PMCID: PMC3670510 DOI: 10.1155/2013/639401] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/22/2013] [Indexed: 01/08/2023] Open
Abstract
Even though altered metabolism is an "old" physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration) and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.
Collapse
|
10
|
Baumann J, Sevinsky C, Conklin DS. Lipid biology of breast cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1509-17. [PMID: 23562840 DOI: 10.1016/j.bbalip.2013.03.011] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 11/24/2022]
Abstract
Alterations in lipid metabolism have been reported in many types of cancer. Lipids have been implicated in the regulation of proliferation, differentiation, apoptosis, inflammation, autophagy, motility and membrane homeostasis. It is required that their biosynthesis is tightly regulated to ensure homeostasis and to prevent unnecessary energy expenditure. This review focuses on the emerging understanding of the role of lipids and lipogenic pathway regulation in breast cancer, including parallels drawn from the study of metabolic disease models, and suggestions on how these findings can potentially be exploited to promote gains in HER2/neu-positive breast cancer research. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.
Collapse
Affiliation(s)
- Jan Baumann
- Cancer Research Center, Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | | | | |
Collapse
|
11
|
Schlaepfer IR, Hitz CA, Gijón MA, Bergman BC, Eckel RH, Jacobsen BM. Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel. Mol Cell Endocrinol 2012; 363:111-21. [PMID: 22922095 PMCID: PMC4671297 DOI: 10.1016/j.mce.2012.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022]
Abstract
Progestins induce lipid accumulation in progesterone receptor (PR)-positive breast cancer cells. We speculated that progestin-induced alterations in lipid biology confer resistance to chemotherapy. To examine the biology of lipid loaded breast cancer cells, we used a model of progestin-induced lipid synthesis. T47D (PR-positive) and MDA-MB-231 (PR-negative) cell lines were used to study progestin response. Oil red O staining of T47D cells treated with progestin showed lipid droplet formation was PR dependent, glucose dependent and reduced sensitivity to docetaxel. This protection was not observed in PR-negative MDA-MB-231 cells. Progestin treatment induced stearoyl CoA desaturase-1 (SCD-1) enzyme expression and chemical inhibition of SCD-1 diminished lipid droplets and cell viability, suggesting the importance of lipid stores in cancer cell survival. Gas chromatography/mass spectroscopy analysis of phospholipids from progestin-treated T47D cells revealed an increase in unsaturated fatty acids, with oleic acid as most abundant. Cells surviving docetaxel treatment also contained more oleic acid in phospholipids, suggesting altered membrane fluidity as a potential mechanism of chemoresistance mediated in part by SCD-1. Lastly, intact docetaxel molecules were present within progestin induced lipid droplets, suggesting a protective quenching effect of intracellular lipid droplets. Our studies suggest the metabolic adaptations produced by progestin provide novel metabolic targets for future combinatorial therapies for progestin-responsive breast cancers.
Collapse
Affiliation(s)
- Isabel R. Schlaepfer
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Carolyn A. Hitz
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Miguel A. Gijón
- Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Bryan C. Bergman
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Robert H. Eckel
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| | - Britta M. Jacobsen
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus
| |
Collapse
|
12
|
The metabolic switch and its regulation in cancer cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:942-58. [PMID: 20821293 DOI: 10.1007/s11427-010-4041-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/07/2010] [Indexed: 02/05/2023]
Abstract
The primary features of cancer are maintained via intrinsically modified metabolic activity, which is characterized by enhanced nutrient supply, energy production, and biosynthetic activity to synthesize a variety of macromolecular components during each passage through the cell cycle. This metabolic shift in transformed cells, as compared with non-proliferating cells, involves aberrant activation of aerobic glycolysis, de novo lipid biosynthesis and glutamine-dependent anaplerosis to fuel robust cell growth and proliferation. Here, we discuss the unique metabolic characteristics of cancer, the constitutive regulation of metabolism through a variety of signal transduction pathways and/or enzymes involved in metabolic reprogramming in cancer cells, and their implications in cancer diagnosis and therapy.
Collapse
|
13
|
Rochefort H, Chalbos D. The Role of Sex Steroid Receptors on Lipogenesis in Breast and Prostate Carcinogenesis: A Viewpoint. Discov Oncol 2010; 1:63-70. [DOI: 10.1007/s12672-010-0009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Abstract
Progesterone is an ovarian steroid hormone that is essential for normal breast development during puberty and in preparation for lactation and breastfeeding. The actions of progesterone are primarily mediated by its high-affinity receptors, which include the classical progesterone receptor (PR)-A and -B isoforms, located in diverse tissues, including the brain, where progesterone controls reproductive behavior, and the breast and reproductive organs. Progestins are frequently prescribed for contraception or during postmenopausal hormone replacement therapy, in which progestins are combined with estrogen as a means to block estrogen-induced endometrial growth. The role of estrogen as a potent breast mitogen is undisputed, and inhibitors of the estrogen receptor and estrogen-producing enzymes (aromatases) are effective first-line cancer therapies. However, PR action in breast cancer is grossly understudied and remains controversial. Herein, we review existing evidence and discuss the challenges to defining a role for progesterone in breast cancer.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota, Cancer Center, Department of Medicine (Hematology, Oncology & Transplantation), 420 Delaware Street SE, MMC 806, MN 55455, USA.
| | | |
Collapse
|
15
|
Puig T, Porta R, Colomer R. [Fatty acid synthase: a new anti-tumor target]. Med Clin (Barc) 2009; 132:359-63. [PMID: 19268984 DOI: 10.1016/j.medcli.2008.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/09/2008] [Indexed: 12/30/2022]
Abstract
Fatty acid synthase (FASN), an enzyme capable of de novo fatty acid synthesis, is highly expressed and activated in most human carcinomas. FASN is associated with poor prognosis in prostate and breast cancer and its inhibition is selectively cytotoxic to human cancer cells. Thus, FASN and fatty acid metabolism have become an important focus for the diagnostic and treatment of cancer. In this sense, there is an increasing interest in identifying and developing new antitumor compounds that inhibit FASN.
Collapse
Affiliation(s)
- Teresa Puig
- Oncología Médica, Instituto Catalán de Oncología (ICO-Girona) Instituto de Investigación Biomédica de Girona (IdIBGi), Hospital Universitari Dr. Josep Trueta, Girona, España.
| | | | | |
Collapse
|
16
|
Abstract
While normal tissues are tightly regulated by nutrition and a carefully balanced system of glycolysis and fatty acid synthesis, tumor cells are under significant evolutionary pressure to bypass many of the checks and balances afforded normally. Cancer cells have high energy expenditure from heightened proliferation and metabolism and often show increased lipogenesis. Fatty acid synthase (FASN), the enzyme responsible for catalyzing the ultimate steps of fatty acid synthesis in cells, is expressed at high levels in tumor cells and is mostly absent in corresponding normal cells. Because of the unique expression profile of FASN, there is considerable interest not only in understanding its contribution to tumor cell growth and proliferation, but also in developing inhibitors that target FASN specifically as an anti-tumor modality. Pharmacological blockade of FASN activity has identified a pleiotropic role for FASN in mediating aspects of proliferation, growth and survival. As a result, a clearer understanding of the role of FASN in tumor cells has been developed.
Collapse
|
17
|
Zeng L, Wu GZ, Goh KJ, Lee YM, Ng CC, You AB, Wang J, Jia D, Hao A, Yu Q, Li B. Saturated fatty acids modulate cell response to DNA damage: implication for their role in tumorigenesis. PLoS One 2008; 3:e2329. [PMID: 18523653 PMCID: PMC2402972 DOI: 10.1371/journal.pone.0002329] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 04/24/2008] [Indexed: 12/02/2022] Open
Abstract
DNA damage triggers a network of signaling events that leads to cell cycle arrest or apoptosis. This DNA damage response acts as a mechanism to prevent cancer development. It has been reported that fatty acids (FAs) synthesis is increased in many human tumors while inhibition of fatty acid synthase (FASN) could suppress tumor growth. Here we report that saturated fatty acids (SFAs) play a negative role in DNA damage response. Palmitic acid, as well as stearic acid and myristic acid, compromised the induction of p21 and Bax expression in response to double stranded breaks and ssDNA, while inhibition or knockdown of FASN enhanced these cellular events. SFAs appeared to regulate p21 and Bax expression via Atr-p53 dependent and independent pathways. These effects were only observed in primary mouse embryonic fibroblasts and osteoblasts, but not in immortalized murine NIH3T3, or transformed HCT116 and MCF-7 cell lines. Accordingly, SFAs showed some positive effects on proliferation of MEFs in response to DNA damage. These results suggest that SFAs, by negatively regulating the DNA damage response pathway, might promote cell transformation, and that increased synthesis of SFAs in precancer/cancer cells might contribute to tumor progression and drug resistance.
Collapse
Affiliation(s)
- Li Zeng
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Guang-Zhi Wu
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, People's Republic of China
| | - Kim Jee Goh
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Yew Mun Lee
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Chuo Chung Ng
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Ang Ben You
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Jianhe Wang
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Deyong Jia
- The Key Laboratory of Experimental Teratology, Ministry of Education, Faculty of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Aijun Hao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Faculty of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qiang Yu
- Laboratory of Molecular Pharmacology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Baojie Li
- Cancer and Developmental Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
18
|
Abstract
Recent discoveries suggest that several protein kinases are rapidly activated in response to ligand binding to cytoplasmic steroid hormone receptors (SRs), including progesterone receptors (PRs). Thus, PRs act as ligand-activated transcription factor "sensors" for growth factor-initiated signaling pathways in hormonally regulated tissues, such as the breast. Induction of rapid signaling upon progestin binding to PR-B provides a means to ensure that receptors and co-regulators are appropriately phosphorylated as part of optimal transcription complexes. Alternatively, PR-B activated kinase cascades provide additional avenues for progestin-regulated gene expression independent of PR nuclear action. Herein, an overview of progesterone/PR and signaling cross-talk in breast cancer models is provided. Kinases are emerging as key mediators of PR action. Cross-talk between SR and membrane-initiated signaling events suggests a mechanism for coordinate regulation of gene subsets by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to contribute to cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, Division of Hematology, Oncology, and Transplant, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Abstract
Epidemiologic studies have suggested for decades an association between dietary fat and cancer risk. A large body of work performed in tissue culture and xenograft models of cancer supports an important role of various types of fat in modulating the cancer phenotype. Yet, the molecular mechanisms underlining the effects of fat on cancer initiation and progression are largely unknown. The relationships between saturated fat, polyunsaturated fat, cholesterol or phytanic acid with cancer have been reviewed respectively. However, few have considered the relationship between all of these fats and cancer. The purpose of this review is to present a more cohesive view of dietary fat-gene interactions, and outline a working hypothesis of the intricate connection between fat, genes and cancer.
Collapse
Affiliation(s)
- Yong Q Chen
- Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
20
|
Lange CA, Sartorius CA, Abdel-Hafiz H, Spillman MA, Horwitz KB, Jacobsen BM. Progesterone receptor action: translating studies in breast cancer models to clinical insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18637487 DOI: 10.1007/978-0-387-78818-0_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progesterone receptors (PR) are useful prognostic indicators of breast cancers likely to respond to anti-estrogen receptor (ER) therapies. However, the role of progesterone, therapeutic progestins, or unliganded or liganded PRin breast cancer development or progression remains controversial. PR are ligand-activated transcription factors that act in concert with intracellular signaling pathways as "sensors" of multiple growth factor inputs to hormonally regulated tissues, such as the breast. The recently defined induction of rapid signaling events upon progestin-binding to PR-B provides a means to ensure that receptors and coregulators are appropriately phosphorylated as part of optimal transcription complexes. PR-activated kinase cascades may provide additional avenues for progestin-regulated gene expression independent of PR nuclear action. Herein, we present an overview ofprogesterone/PR and signaling cross-talk in breast cancer models and discuss the potential significance ofprogestin/PR action in breast cancer biology using examples from both in vitro and in vivo models, as well as limited clinical data. Kinases are emerging as key mediators of PR action. Cross-talk between PR and membrane-initiated signaling events suggests a mechanism for coordinated regulation ofgene subsets by mitogenic stimuli in hormonally responsive normal tissues. Dysregulation of this cross-talk mechanism may contribute to breast cancer biology; further studies are needed to address the potential for targeting PR in addition to ER and selected protein kinases as part of more effective breast cancer therapies.
Collapse
Affiliation(s)
- Carol A Lange
- Department of Medicine, Division of Hematology, Oncology and Transplant, University of Minnesota Cancer Center, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
There is a renewed interest in the ultimate role of fatty acid synthase (FASN)--a key lipogenic enzyme catalysing the terminal steps in the de novo biogenesis of fatty acids--in cancer pathogenesis. Tumour-associated FASN, by conferring growth and survival advantages rather than functioning as an anabolic energy-storage pathway, appears to necessarily accompany the natural history of most human cancers. A recent identification of cross-talk between FASN and well-established cancer-controlling networks begins to delineate the oncogenic nature of FASN-driven lipogenesis. FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Translational Research Unit, Catalan Institute of Oncology (ICO), Health Services Division of Catalonia, Girona Biomedical Research Institute (IdIBGi), Medical Oncology, Josep Trueta University Hospital of Girona, 17,007 Girona, Catalonia, Spain
| | | |
Collapse
|
22
|
Schumacher M, Baulieu EE. Neurosteroids: synthesis and functions in the central and peripheral nervous systems. CIBA FOUNDATION SYMPOSIUM 2007; 191:90-106; discussion 106-12. [PMID: 8582208 DOI: 10.1002/9780470514757.ch6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Some steroids are synthesized within the central and peripheral nervous systems, mostly by glial cells. These are known as neurosteroids. In the brain, neurosteroids have been shown to act directly on membrane receptors for neurotransmitters. For example, progesterone inhibits the neuronal nicotinic acetylcholine receptor, whereas its 3 alpha,5 alpha-reduced metabolite 3 alpha,5 alpha-tetrahydroprogesterone (allopregnanolone) activates the type A gamma-aminobutyric acid receptor complex. Besides these effects, neurosteroids also regulate important glial functions, such as the synthesis of myelin proteins. Thus, in cultures of glial cells prepared from neonatal rat brain, progesterone increases the number of oligodendrocytes expressing the myelin basic protein (MBP) and the 2',3'-cyclic nucleotide-3'-phophodiesterase (CNPase). An important role for neurosteroids in myelin repair has been demonstrated in the rodent sciatic nerve, where progesterone and its direct precursor pregnenolone are synthesized by Schwann cells. After cryolesion of the male mouse sciatic nerve, blocking the local synthesis or action of progesterone impairs remyelination of the regenerating axons, whereas administration of progesterone to the lesion site promotes the formation of new myelin sheaths.
Collapse
|
23
|
Notarnicola M, Altomare DF, Calvani M, Orlando A, Bifulco M, D'Attoma B, Caruso MG. Fatty acid synthase hyperactivation in human colorectal cancer: relationship with tumor side and sex. Oncology 2007; 71:327-32. [PMID: 17687193 DOI: 10.1159/000107106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Fatty acid synthase (FAS) is a multienzyme protein required for the conversion of acetyl coenzyme A and malonyl coenzyme A to palpitate. High levels of FAS expression have been found in many human cancers, including breast, prostate and colon. In this study, we evaluated FAS activity levels and the expression of its mRNA in normal colorectal mucosa and cancer tissue from patients operated for colorectal carcinoma. In addition, the hypothesis of a relation between FAS activity and p53 mutation status of patients was tested. METHODS Forty-two patients were enrolled in the study. FAS activity was measured by using a radiometric assay. FAS gene expression was determined using quantitative reverse-transcription polymerase chain reaction and p53 mutations by polymerase chain reaction single-strand conformation polymorphism. RESULTS FAS activity levels were significantly higher in cancer than in the corresponding normal mucosa. Tumors located on the left side of the colon showed higher levels of FAS activity and tumors from male patients showed higher FAS activity than tumors from females. No difference was detected in mRNA FAS levels according to tumor side and gender. Moreover, lower levels of FAS activity were detected in patients carrying the p53 mutation. CONCLUSIONS This study suggests that biological factors including sex and gene mutation status, as well as stratification of patients with colorectal cancer into right- and left-sided subsets, may be important in patient selection for targeted therapies and for the subsequent assessment of objective therapeutic responses.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Biochemistry, National Institute for Digestive Diseases S. de Bellis, Castellana Grotte, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Moretti L, Yang ES, Kim KW, Lu B. Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updat 2007; 10:135-43. [PMID: 17627865 DOI: 10.1016/j.drup.2007.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 12/01/2022]
Abstract
Non-apoptotic forms of programmed cell death are targets for novel approaches in anticancer therapy. Indeed, cancer cells often present with mutations in the apoptotic machinery that result in resistance to most anticancer therapies and contribute to a relatively low response rate to therapies based on the use of pro-apoptotic strategies. (Macro-)autophagy can be a highly efficient mode of cell death induction by excessive self-digestion as demonstrated by our experiments that studied the effect of radiation to induce autophagy cell death in apoptosis-deficient cells. Despite current controversies on the possible role of autophagy in the process of carcinogenesis and cancer progression by promoting cell survival, autophagy can be seen as a backup cell death mechanism, when other cell death mechanisms fail. This review will focus on the pathways linking autophagy and cancer that are relevant for target identification and on pharmaceuticals that can be utilized to improve cancer therapy by targeting the autophagic pathway.
Collapse
Affiliation(s)
- Luigi Moretti
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, 1301 22nd Avenue South, B-902 The Vanderbilt Clinic, Nashville, TN 37232-5671, United States
| | | | | | | |
Collapse
|
25
|
Lange CA, Gioeli D, Hammes SR, Marker PC. Integration of Rapid Signaling Events with Steroid Hormone Receptor Action in Breast and Prostate Cancer. Annu Rev Physiol 2007; 69:171-99. [PMID: 17037979 DOI: 10.1146/annurev.physiol.69.031905.160319] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steroid hormone receptors (SRs) are ligand-activated transcription factors and sensors for growth factor-initiated signaling pathways in hormonally regulated tissues, such as the breast or prostate. Recent discoveries suggest that several protein kinases are rapidly activated in response to steroid hormone binding to cytoplasmic SRs. Induction of rapid signaling upon SR ligand binding ensures that receptors and coregulators are appropriately phosphorylated as part of optimal transcription complexes. Alternatively, SR-activated kinase cascades provide additional avenues for SR-regulated gene expression independent of SR nuclear action. We provide an overview of SR and signaling cross talk in breast and prostate cancers, using the human progesterone receptor (PR) and androgen receptor (AR) as models. Kinases are emerging as key mediators of SR action. Cross talk between SR and membrane-initiated signaling events suggests a mechanism for coordinate regulation of gene subsets by mitogenic stimuli in hormonally responsive normal tissues; such cross talk is suspected to contribute to cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplant), USA.
| | | | | | | |
Collapse
|
26
|
Kinlaw WB, Quinn JL, Wells WA, Roser-Jones C, Moncur JT. Spot 14: A marker of aggressive breast cancer and a potential therapeutic target. Endocrinology 2006; 147:4048-55. [PMID: 16809441 DOI: 10.1210/en.2006-0463] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spot 14 (S14) is a nuclear protein that communicates the status of dietary fuels and fuel-related hormones to genes required for long-chain fatty acid synthesis. In mammary gland, S14 is important for both epithelial proliferation and milk fat production. The S14 gene is amplified in some breast cancers and is strongly expressed in most. High expression of S14 in primary invasive breast cancer is conspicuously predictive of recurrence. S14 mediates the induction of lipogenesis by progestin in breast cancer cells and accelerates their growth. Conversely, S14 knockdown impairs de novo lipid synthesis and causes apoptosis. We found that breast cancer cells do not express lipoprotein lipase (LPL) and hypothesize that they do not have access to circulating lipids unless the local environment supplies it. This may explain why primary breast cancers with low S14 do not survive transit from the LPL-rich mammary fat pad to areas devoid of LPL, such as lymph nodes, and thus do not appear as distant metastases. Thus, S14 is a marker for aggressive breast cancer and a potential target as well. Future effort will center on validation of S14 as a therapeutic target and producing antagonists of its action.
Collapse
Affiliation(s)
- William B Kinlaw
- Department of Medicine, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | |
Collapse
|
27
|
Lupu R, Menendez JA. Targeting fatty acid synthase in breast and endometrial cancer: An alternative to selective estrogen receptor modulators? Endocrinology 2006; 147:4056-66. [PMID: 16809439 DOI: 10.1210/en.2006-0486] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is an urgent need to identify and develop a new generation of therapeutic agents and systemic therapies targeting the estradiol (E2)/estrogen receptor (ER) signaling in breast cancer. In this regard, new information on the mechanisms of E2/ER function and/or cross talk with other prosurvival cascades should provide the basis for the development of other ideal anti-E2 therapies with the intent to enhance clinical efficacy, reduce side effects or both. Our very recent assessment of the mechanisms by which cancer-associated increased lipogenesis and its inhibition alters the E2/ER signaling discovered that fatty acid synthase (FASN), the enzyme catalyzing the terminal steps in the de novo biosynthesis of long-chain fatty acids, differentially modulates the state of sensitivity of breast and endometrial cancer cells to E2-stimulated ER transcriptional activation and E2-dependent cell growth and survival: 1) pharmacological inhibition of FASN activity induced a dramatic augmentation of E2-stimulated ER-driven gene transcription, whereas interference (RNAi)-mediated silencing of FAS gene expression drastically lowered E2 requirements for optimal activation of ER transcriptional activation in breast cancer cells; conversely, pharmacological and RNAi-induced inhibition of FASN worked as an antagonist of E2- and tamoxifen-dependent ER transcriptional activity in endometrial adenocarcinoma cells; 2) pharmacological and RNAi-induced inhibition of FASN synergistically enhanced E2-mediated down-regulation of ER protein and mRNA expression in breast cancer cells, whereas specific FASN blockade resulted in a marked down-regulation of E2-stimulated ER expression in endometrial cancer cells; and 3) FASN inhibition decreased cell proliferation and cell viability by promoting apoptosis in hormone-dependent breast and endometrial cancer cells. In this review we propose that, through a complex mechanism involving the regulation of MAPK/ER cross talk as well as critical E2-related proteins including the Her-2/neu (erbB-2) oncogene and the cyclin-dependent kinase inhibitors p21(WAF1/CIP1) and p27(Kip1), a previously unrevealed connection exists between FASN and the genomic and nongenomic ER activities in breast and endometrial cancer cells. From a clinical perspective, we suggest that if chemically stable FASN inhibitors or cell-selective systems able to deliver RNAi targeting FASN gene demonstrate systemic anticancer effects of FASN inhibition in vivo, additional preclinical studies to characterize their anti-breast cancer actions should be of great interest as the specific blockade of FASN activity may also provide a protective means against endometrial carcinoma associated with tamoxifen-based breast cancer therapy.
Collapse
Affiliation(s)
- Ruth Lupu
- Department of Medicine, Evanston Northwestern Healthcare Research Institute, 1001 University Place, Evanston, Illinois 60201, USA.
| | | |
Collapse
|
28
|
Abstract
Fatty acid synthase (FAS), the sole mammalian enzyme capable of de novo fatty acid synthesis, is highly expressed in most human carcinomas. FAS is associated with poor prognosis in breast and prostate cancer, is elaborated into the blood of cancer patients, and its inhibition is selectively cytotoxic to human cancer cells. Thus, FAS and fatty acid metabolism in cancer has become a focus for the potential diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Francis P Kuhajda
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| |
Collapse
|
29
|
Esslimani-Sahla M, Thezenas S, Simony-Lafontaine J, Kramar A, Lavaill R, Chalbos D, Rochefort H. Increased expression of fatty acid synthase and progesterone receptor in early steps of human mammary carcinogenesis. Int J Cancer 2006; 120:224-9. [PMID: 17044016 DOI: 10.1002/ijc.22202] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progestins increase the risk of breast cancer in the hormone therapy of menopause, and progesterone receptor-induced fatty acid synthase (FAS) is a potential therapeutical target of breast cancer. In a first attempt to specify in which lesions at risk of breast cancer progestins might be acting, we have compared the progesterone receptor (PR) and FAS expression in preinvasive breast lesions and in adjacent "normal" mammary glands. We used archive paraffin-embedded tissues from 116 patients, with 164 lesions of increasing histological risk from nonproliferative "benign" breast disease (BBD) to in situ breast carcinomas. Immunostaining using our FAS antibody and a PR antibody from Dako was quantified as continuous variables by computer-assisted image analysis. FAS level increased (p < 10(-3) by the Kruskall-Wallis test) in all lesions, starting from nonproliferative BBD, and was maximal in in situ carcinoma. The % of PR-positive cells increased from nonproliferative BBD and was higher in proliferative atypia (p < 10(-3)). It was very low in high-grade DCIS corresponding to a likely different carcinogenesis pathway. There was a trend for a positive correlation between FAS and PR in normal glands. However, the 2 markers increased independently in BBD and were negatively correlated in in situ carcinomas. FAS and PR were positively correlated with Ki67 in BBD. The increased PR level in premalignant steps of mammary carcinogenesis suggests an early increased responsiveness to progestins. The increased FAS expression, in lesions parallel to their increased breast cancer risk, suggests further studies to develop new markers of high-risk lesions and to prevent breast cancer.
Collapse
Affiliation(s)
- Majida Esslimani-Sahla
- Endocrinologie Moléculaire et Cellulaire des Cancers (U540), Institut National de la Santé et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Lange CA. Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word? Mol Endocrinol 2003; 18:269-78. [PMID: 14563938 DOI: 10.1210/me.2003-0331] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In classical models of nuclear steroid hormone receptor function, ligand binds receptor, heat shock proteins dissociate, and receptor dimers enter or are withheld in the nucleus and interact with coregulatory molecules to mediate changes in gene expression. The footnotes, "receptors become phosphorylated" and "dynamic nucleo-cytoplasmic shuttling occurs" describe well-accepted, but less well-understood aspects of receptor action. Recently, the idea that several protein kinases are activated in response to steroid hormone binding to cognate cytoplasmic or membrane-associated receptors has become fashionable. However, the precise role of steroid hormone receptor phosphorylation and our understanding of which cytoplasmic kinases are activated and their functional significance remain elusive. This review provides an overview of the primary ways in which steroid hormone receptor and growth factor cross-talk occurs, using the human progesterone receptor (PR) as a model. The functional consequences of PR phosphorylation by protein kinases classically activated in response to peptide growth factors and novel extranuclear or nongenomic functions of PR as potential independent initiators of signal transduction pathways are discussed. Intracellular protein kinases are emerging as key mediators of steroid hormone receptor action. Cross-talk between steroid receptor- and growth factor-initiated signaling events may explain how gene subsets are coordinately regulated by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to play a role in their cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, Division of Hematology, Oncology, and Transplant, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
31
|
Heemers H, Vanderhoydonc F, Heyns W, Verhoeven G, Swinnen JV. Progestins and androgens increase expression of Spot 14 in T47-D breast tumor cells. Biochem Biophys Res Commun 2000; 269:209-12. [PMID: 10694501 DOI: 10.1006/bbrc.2000.2262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enhanced expression of fatty acid synthase and other lipogenic enzymes has been observed in a subset of breast cancers with poor prognosis. This phenomenon has been related to amplification of a gene on chromosome region 11q13 encoding Spot 14, a putative regulator of lipogenic enzyme expression. In this paper we demonstrate that the induction of lipogenesis by progestins and androgens in the breast cancer cell line T47-D is accompanied by a marked increase in the expression of Spot 14. These data corroborate the correlation between Spot 14 expression and increased lipogenesis. Moreover they show that apart from gene amplification there is another steroid-regulated pathway that may enhance Spot 14 expression and lipogenesis in tumor cells.
Collapse
Affiliation(s)
- H Heemers
- Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Onderwijs en Navorsing, Gasthuisberg, Catholic University of Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
32
|
Wagle S, Bui A, Ballard PL, Shuman H, Gonzales J, Gonzales LW. Hormonal regulation and cellular localization of fatty acid synthase in human fetal lung. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L381-90. [PMID: 10444533 DOI: 10.1152/ajplung.1999.277.2.l381] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid synthase (FAS; EC 2.3.1.85) supplies de novo fatty acids for pulmonary surfactant synthesis, and FAS gene expression is both developmentally and hormonally regulated in the fetal lung. To further examine hormonal regulation of FAS mRNA and to determine the cellular localization of FAS gene expression, we cultured human fetal lungs (18-22 wk gestation) as explants for 1-4 days in the absence (control) or presence of glucocorticoid [dexamethasone (Dex), 10 nM] and/or cAMP agents (8-bromo-cAMP, 0.1 mM and IBMX, 0.1 mM). FAS protein content and activity increased similarly in the presence of Dex (109 and 83%, respectively) or cAMP (87 and 111%, respectively), and responses were additive in the presence of both hormones (230 and 203%, respectively). With a rabbit anti-rat FAS antibody, FAS immunoreactivity was not detected in preculture lung specimens but appeared in epithelial cells lining the tubules with time in culture. Dex and/or cAMP markedly increased staining of epithelial cells, identified as type II cells, whereas staining of mesenchymal fibroblasts was very low under all conditions. With in situ hybridization, FAS mRNA was found to be enriched in epithelial cells lining the alveolar spaces, and the reaction product increased in these cells when the explants were cultured with the hormones. The increased FAS mRNA content in the presence of Dex and/or cAMP is primarily due to increased stabilization of mRNA, although Dex alone increased the transcription rate by approximately 30%. We conclude that hormonal treatment of cultured human fetal lungs increases FAS gene expression primarily by increasing stability of the message. The induction of FAS during explant culture and by hormones occurs selectively in type II epithelial cells, consistent with the regulatory role of this enzyme in de novo synthesis of fatty acid substrate for surfactant synthesis in perinatal lungs.
Collapse
Affiliation(s)
- S Wagle
- Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Hennigar RA, Pochet M, Hunt DA, Lukacher AE, Venema VJ, Seal E, Marrero MB. Characterization of fatty acid synthase in cell lines derived from experimental mammary tumors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:85-100. [PMID: 9593836 DOI: 10.1016/s0005-2760(98)00023-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lipogenic enzyme fatty acid synthase (FAS) is elevated in various human primary cancers and certain human cancer cell lines. FAS overexpression in human neoplasia has clinical relevance because of its association with tumor aggression and potential chemotherapeutic intervention. Here, we surveyed FAS in cell lines established from normal murine mammary epithelium (NMuMG) and from mammary tumors induced by either rodent polyoma (Py) virus or murine mammary tumor virus (MMTV). Western blotting revealed greater content of FAS in Py-transformed A1-1 and T1 than NMuMG or MMTV-transformed Mm5MT, RIIIMT and MMT060562. These data suggest that signaling events mediated by Py transformation may increase cellular amounts of FAS. Although FAS content was elevated to similar levels in A1-1 and T1, specific activities were significantly different as enzyme activity in T1 was 3-fold higher than A1-1. Likewise, FAS activity in NMuMG was about 0.5-fold higher than the MMTV-transformed lines, even though enzyme content was similar. Immunoprecipitation studies employing anti-phosphoamino acid antibodies followed by immunoblot analysis with anti-FAS antisera (and vice versa) were used to characterize the constitutive phosphorylation state of the enzyme. Phosphoserine and phosphothreonine residues were detected in the more active FAS from T1 and NMuMG, but not in the less active FAS from Mm5MT or A1-1. Discovery of phosphorylated FAS suggests that the enzyme may have more immediate control over lipogenesis than previously thought. High-dose (10-4 M) dexamethasone induced FAS content and activity in NMuMG and MMTV-transformed lines but not Py-transformed cells. Lower concentrations (10-8, 10-6 M) of dexamethasone also activated FAS but without concomitant elevation of its protein content, which was consistent with a phosphorylated form of FAS. Finally, cell lines were treated with the FAS inhibitor cerulenin: almost all breast cancer lines were growth inhibited at significantly lower amounts of drug than normal cell lineages, suggesting that FAS plays a greater role in viability of tumor cells than normal cells. Pretreatment with palmitate (a primary end-product of FAS) prior to cerulenin rescued A1-1 cells only slightly from growth inhibition, whereas pretreatment with oleate (a monounsaturated fatty acid synthesized from palmitate) synergized cerulenin's cytotoxic effects.
Collapse
Affiliation(s)
- R A Hennigar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- J D Graham
- Westmead Institute for Cancer Research, University of Sydney, Westmead Hospital, NSW, Australia
| | | |
Collapse
|
35
|
Gonzales LW, Ballard PL, Gonzales J. Glucocorticoid and cAMP increase fatty acid synthetase mRNA in human fetal lung explants. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1215:49-58. [PMID: 7948007 DOI: 10.1016/0005-2760(94)90090-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During late fetal development, synthesis of surfactant phospholipid requires a large supply of fatty acid precursor. Fatty acid synthetase is a regulatory enzyme for de novo fatty acid synthesis in lung as well as other lipogenic tissues. In this study, we report hormonal induction of FAS mRNA in human fetal lung explants (16-23 week gestation) cultured up to 7 days in Waymouth's medium (no serum) supplemented with dexamethasone (Dex, 10 nM) or agents that increase cAMP (8-Br-cAMP, 0.1 mM; isobutylmethylxanthine, 0.1 mM; forskolin, 0.01 mM; PGE1, 0.01 mM). Exposure of explants to Dex or cAMP agents increased FAS mRNA content by 6 h and maximal stimulation occurred at 72 h for Dex (approx. 3-fold increase) and 24 h for cAMP (approx. 2-fold increase). In the presence of both Dex and cAMP there was a synergistic increase in FAS mRNA content at all times (approx. 11-fold increase at 72 h). Induction of FAS mRNA was specific for steroids with glucocorticoid activity, reversible on removal of hormone, and was half-maximal at 2-3 nM Dex consistent with receptor mediation. Actinomycin D blocked induction by Dex but not by cAMP suggesting a transcriptional effect by glucocorticoid but not by cAMP. T3, which increases phosphatidylcholine synthesis, did not induce FAS mRNA. The findings indicate that both glucocorticoid and cAMP increase FAS gene expression consistent with an important role for FAS in regulating the supply of fatty acid for surfactant phospholipid synthesis.
Collapse
Affiliation(s)
- L W Gonzales
- Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia 19104
| | | | | |
Collapse
|
36
|
Travers MT, Barber MC. Isolation of a goat acetyl-CoA carboxylase complementary DNA and effect of milking frequency on the expression of the acetyl-CoA carboxylase and fatty acid synthase genes in goat mammary gland. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 105:123-8. [PMID: 8099321 DOI: 10.1016/0305-0491(93)90178-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Using the polymerase chain reaction we have isolated a partial complementary DNA for goat acetyl-CoA carboxylase which is 90 and 82% homologous to the published rat and chicken complementary DNA sequences, respectively. 2. Frequent milking causes an upregulation of the acetyl-CoA carboxylase and fatty acid synthase genes in goat mammary gland that parallels the increase in the respective enzyme activities. 3. The sequence for goat acetyl-CoA carboxylase is in the EMBL data base, Accession Number Z17803.
Collapse
|
37
|
Physiologic concentrations of glucose regulate fatty acid synthase activity in HepG2 cells by mediating fatty acid synthase mRNA stability. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53133-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Chalbos D, Joyeux C, Galtier F, Rochefort H. Progestin-induced fatty acid synthetase in human mammary tumors: from molecular to clinical studies. J Steroid Biochem Mol Biol 1992; 43:223-8. [PMID: 1525062 DOI: 10.1016/0960-0760(92)90211-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fatty acid synthetase (FAS) is one of the first well-characterized progestin-induced proteins with available antibodies and cDNA. This paper reviews basic studies on FAS regulation in human breast cancer cell lines and recent data on the possible clinical significance of this new marker of hormone responsiveness in mammary cancer and benign breast diseases.
Collapse
Affiliation(s)
- D Chalbos
- Unité INSERM 148 Hormones and Cancer, Montpellier, France
| | | | | | | |
Collapse
|
39
|
Chalbos D, Galtier F, Emiliani S, Rochefort H. The anti-progestin RU486 stabilizes the progestin-induced fatty acid synthetase mRNA but does not stimulate its transcription. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92964-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Chalbos D, Joyeux C, Escot C, Galtier F, Rochefort H. Progestin-induced fatty acid synthetase in breast cancer. From molecular biology to clinical applications. Ann N Y Acad Sci 1990; 595:67-73. [PMID: 2197971 DOI: 10.1111/j.1749-6632.1990.tb34283.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D Chalbos
- Unité Hormones et Cancer, INSERM U 148, Montpellier, France
| | | | | | | | | |
Collapse
|
41
|
Chambon M, Rochefort H, Vial HJ, Chalbos D. Progestins and androgens stimulate lipid accumulation in T47D breast cancer cells via their own receptors. JOURNAL OF STEROID BIOCHEMISTRY 1989; 33:915-22. [PMID: 2601336 DOI: 10.1016/0022-4731(89)90240-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using electron microscopy, in the human breast cancer cell line T47D, the synthetic progestin R5020, and 5 alpha-dihydrotestosterone were shown to increase significantly the number of lipid droplets per cell section compared to control cells or estradiol- and dexamethasone-treated cells. Lipid accumulation, as measured by Oil Red O dying and by [2-14C]acetate incorporation, was observed at concentrations as low as 10 pM R5020 and 1 nM 5 alpha-dihydrotestosterone, and was always more abundant after progestin treatment. The progestin antagonist RU486 inhibited, in a dose-dependent manner, lipid accumulation initiated by the two hormones, whereas the androgen antagonist flutamide inhibited only the effect initiated by 5 alpha-dihydrotestosterone. Cytoplasmic lipid droplets accumulation was not observed in the BT20 breast cancer cell line, which contains neither progesterone nor androgen receptors. These results indicate that progestins and androgens increase lipid accumulation by interacting with their own receptor. Chromatographic analysis of [2-14C]acetate labeled lipids showed that R5020 and 5 alpha-dihydrotestosterone enhanced the accumulation of cellular triglycerides at least in part by increasing their synthesis and decreased the quantity of lipids released into the medium. To conclude, we have shown that progestins and androgens, via their own receptor, can induce the same triglyceride accumulation in T47D cells. This effect follows fatty acid synthetase induction and precedes cell growth inhibition, two responses also triggered by progestin and androgen in these cells.
Collapse
Affiliation(s)
- M Chambon
- Institut National de la Santé et de la Recherche Médicale, Unité Hormones et Cancer (U 148), Montpellier, France
| | | | | | | |
Collapse
|
42
|
Zhou F, Bouillard B, Pharaboz-Joly MO, André J. Non-classical antiestrogenic actions of dexamethasone in variant MCF-7 human breast cancer cells in culture. Mol Cell Endocrinol 1989; 66:189-97. [PMID: 2612731 DOI: 10.1016/0303-7207(89)90031-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this work was to determine whether dexamethasone (Dex), a synthetic glucocorticoid, counteracts the stimulatory effects of estradiol (E2) on MCF-7 cells. We have shown that Dex inhibits in a dose-dependent fashion the estradiol-stimulated cell proliferation. This inhibition (ID50 congruent to 5-10 nM), which is complete at 100 nM Dex, is prevented by the antiglucocorticoid RU 486 and is clearly different from that found with trans-4-OH-tamoxifen because the inhibition due to a fixed concentration of Dex is not abolished by a high concentration of estradiol. This inhibitory effect displays some degree of specificity. Progesterone and the progestins R 5020 and ORG 2058 are without effect and Dex does not alter the triiodo-L-thyronine-stimulated cell growth. To characterize further the antiestrogenic action of Dex, the effects of this drug on specific responses to estradiol were studied. (1) Among the positive responses to estradiol two are prevented by Dex (the increase of concentration of progestin receptors and that of immunoreactive insulin-like growth factor I, IR-IGF-I, in conditioned medium) and two are insensitive to Dex (the enhancement of the secretion of 52,000 and 160,000 Mr proteins). (2) A negative response to estradiol (the down-regulation of estrogen receptor) is not prevented but rather accentuated by Dex. Thus, Dex counteracts the stimulatory effects of estradiol on the proliferation of MCF-7 cell variants characterized by progestin insensitivity. This non-classical antiestrogenic effect could be due in part to the attenuation of the E2-induced IR-IGF-I secretion and, less probably, to the accentuation of the down-regulation of E2 receptors. It could account for certain therapeutic and/or side effects of glucocorticoids on estrogen target cells.
Collapse
Affiliation(s)
- F Zhou
- INSERM-U.34, Hôpital Debrousse, Lyon, France
| | | | | | | |
Collapse
|
43
|
Abstract
Excess dietary fat has been identified as a risk factor in the development of human breast carcinoma. However, the quality of fat may be more important than the overall quantity. We have studied the growth of human MCF7 breast carcinoma xenografts in athymic mice treated with dietary supplements of N-6 and N-3 series essential fatty acids given as natural preparations of evening primrose oil and fish oil. Olive oil and normal laboratory diet lacking the essential fatty acids served as controls. Animals treated with essential fatty acids developed tumours which were significantly smaller than both control groups (Mann-Whitney U test, P less than 0.001). Median tumour weights according to diet were: evening primrose oil, 133 mg; fish oil, 70 mg; olive oil, 212 mg; and control, 270 mg. Nutritional intervention to increase the proportion of essential fatty acids in the diet may have a role in the management of breast carcinoma.
Collapse
Affiliation(s)
- G A Pritchard
- Department of Surgery, University of Wales College of Medicine, Cardiff, South Glamorgan, UK
| | | | | |
Collapse
|
44
|
Glover JF, Darbre PD. Multihormone regulation of MMTV-LTR in transfected T-47-D human breast cancer cells. JOURNAL OF STEROID BIOCHEMISTRY 1989; 32:357-63. [PMID: 2539537 DOI: 10.1016/0022-4731(89)90207-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multihormonal regulation on the long terminal repeat (LTR) region of mouse mammary tumour virus (MMTV) has been studied using T-47-D human breast cancer cells stably transfected with the steroid sensitive LTR-C3 chimaeric gene. The specificity of steroid action on transfected LTR sequences has been compared with regulation of endogenous cellular markers. We conclude that the hormone response element of the LTR can be induced by physiological concentrations of androgen, progestin and glucocorticoid. 17 beta-Oestradiol did not regulate the LTR at physiological levels but an effect was found at 10(-6) M. This effect was not inhibited by antioestrogen nor was it reproduced by the synthetic oestrogen diethylstilboestrol suggesting such effects do not occur via the oestrogen receptor. The antioestrogens tamoxifen and transhydroxytamoxifen do not induce the LTR. No significant steroid competition was found in LTR regulation: whilst oestradiol did not act at physiological concentration it did not interfere with induction by androgen, progestin or glucocorticoid. Such gene regulation did not simply follow receptor status of the cells nor was it reflected in patterns of growth regulation by steroids. The implications of these findings on the mechanism of steroid hormone action are discussed.
Collapse
Affiliation(s)
- J F Glover
- Laboratory of Cellular Endocrinology, Imperial Cancer Research Fund, London, England
| | | |
Collapse
|