1
|
Verma P, Kaur H, Petla BP, Rao V, Saxena SC, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. PLANT PHYSIOLOGY 2013; 161:1141-57. [PMID: 23284083 PMCID: PMC3585586 DOI: 10.1104/pp.112.206243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/01/2013] [Indexed: 05/02/2023]
Abstract
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.
Collapse
Affiliation(s)
- Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh C. Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
2
|
Napper S, Prasad L, Delbaere LTJ. Structural investigation of a phosphorylation-catalyzed, isoaspartate-free, protein succinimide: crystallographic structure of post-succinimide His15Asp histidine-containing protein. Biochemistry 2008; 47:9486-96. [PMID: 18702519 PMCID: PMC2732578 DOI: 10.1021/bi800847a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspartates and asparagines can spontaneously cyclize with neighboring main-chain amides to form succinimides. These succinimides hydrolyze to a mixture of isoaspartate and aspartate products. Phosphorylation of aspartates is a common mechanism of protein regulation and increases the propensity for succinimide formation. Although typically regarded as a form of protein damage, we hypothesize succinimides could represent an effective mechanism of phosphoaspartate autophosphatase activity, provided hydrolysis is limited to aspartate products. We previously reported the serendipitous creation of a protein, His15Asp histidine-containing protein (HPr), which undergoes phosphorylation-catalyzed formation of a succinimide whose hydrolysis is seemingly exclusive for aspartate formation. Here, through the high-resolution structure of postsuccinimide His15Asp HPr, we confirm the absence of isoaspartate residues and propose mechanisms for phosphorylation-catalyzed succinimide formation and its directed hydrolysis to aspartate. His15Asp HPr represents the first characterized protein example of an isoaspartate-free succinimide and lends credence to the hypothesis that intramolecular cyclization could represent a physiological mechanism of autophosphatase activity. Furthermore, this indicates that current strategies for succinimide evaluation, based on isoaspartate detection, underestimate the frequencies of these reactions. This is considerably significant for evaluation of protein stability and integrity.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | | | | |
Collapse
|
3
|
Dinkins RD, Majee SM, Nayak NR, Martin D, Xu Q, Belcastro MP, Houtz RL, Beach CM, Downie AB. Changing transcriptional initiation sites and alternative 5'- and 3'-splice site selection of the first intron deploys Arabidopsis protein isoaspartyl methyltransferase2 variants to different subcellular compartments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1-13. [PMID: 18318686 DOI: 10.1111/j.1365-313x.2008.03471.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabidopsis thaliana (L.) Heynh. possesses two PROTEIN-L-ISOASPARTATE METHYLTRANSFERASE (PIMT) genes encoding enzymes (EC 2.1.1.77) capable of converting uncoded l-isoaspartyl residues, arising spontaneously at l-asparaginyl and l-aspartyl sites in proteins, to l-aspartate. PIMT2 produces at least eight transcripts by using four transcriptional initiation sites (TIS; resulting in three different initiating methionines) and both 5'- and 3'-alternative splice site selection of the first intron. The transcripts produce mature proteins capable of converting l-isoaspartate to l-aspartate in small peptide substrates. PIMT:GFP fusion proteins generated a detectable signal in the nucleus. However, whether the protein was also detectable in the cytoplasm, endo-membrane system, chloroplasts, and/or mitochondria, depended on the transcript from which it was produced. On-blot-methylation of proteins, prior to the completion of germination, indicated that cruciferin subunits contain isoaspartate. The implications of using transcriptional mechanisms to expand a single gene's repertoire to protein variants capable of entry into the cell's various compartments are discussed in light of PIMT's presumed role in repairing the proteome.
Collapse
Affiliation(s)
- Randy D Dinkins
- USDA-ARS Forage-Animal Production Research Unit, N220C Agriculture Science Center, North, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Chapter 16 Analysis of Deamidation in Proteins. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
O'Connor CM. 13 Protein L-isoaspartyl, D-aspartyl O-methyltransferases: Catalysts for protein repair. Enzymes 2006; 24:385-433. [PMID: 26718047 DOI: 10.1016/s1874-6047(06)80015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Protein L-isoaspartyl, D-aspartyl O-methyltransferases (PIMTs) are ancient enzymes distributed through all phylogenetic domains. PIMTs catalyze the methylation of L-isoaspartyl, and to a lesser extent D-aspartyl, residues arising from the spontaneous deamidation and isomerization of protein asparaginyl and aspartyl residues. PIMTs catalyze the methylation of isoaspartyl residues in a large number of primary sequence configurations, which accounts for the broad specificity of the enzyme for protein substrates both in vitro and in vivo. PIMT-catalyzed methylation of isoaspartyl substrates initiates the repair of the polypeptide backbone in its damaged substrates by a spontaneous mechanism that involves a succinimidyl intermediate. The repair process catalyzed by PEVITs is not completely efficient, however, leaving open the possibility that unidentified enzymatic activities cooperate with PIMT in the repair process. Structurally, PIMTs are members of the class I family of AdoMet-dependent methyltransferases. PIMTs have a unique topological arrangement of strands in the central β sheet that provides a signature for this class of enzymes. The regulation and physiological significance of PIMT has been studied in several model organisms. PIMTs are constitutively synthesized by cells, but they can be upregulated in response to conditions that are potentially damaging to protein structures, or when proteins are stored for prolonged periods of time. Disruption of PIMT genes in bacteria and simple eukaryotes produces subtle phenotypes that are apparent only under stress. Loss of PIMT function in transgenic mice leads to fatalepilepsy, suggesting that PIMT function is particularly important to neurons in mammals.
Collapse
Affiliation(s)
- Clare M O'Connor
- Biology Department Boston College 140 Commonwealth Avenue Chestnut Hill, MA 02467, USA
| |
Collapse
|
6
|
Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB. A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. PLANT PHYSIOLOGY 2004; 136:2652-64. [PMID: 15347786 PMCID: PMC523330 DOI: 10.1104/pp.104.046094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 05/31/2004] [Accepted: 06/07/2004] [Indexed: 05/18/2023]
Abstract
The spontaneous and deleterious conversion of l-asparaginyl and l-aspartyl protein residues to l-iso-Asp or d-Asp occurs as proteins age and is accelerated under stressful conditions. Arabidopsis (Arabidopsis L. Heynh.) contains two genes (At3g48330 and At5g50240) encoding protein-l-isoaspartate methyltransferase (EC 2.1.1.77; PIMT), an enzyme capable of correcting this damage. The gene located on chromosome 5 (PIMT2) produces two proteins differing by three amino acids through alternative 3' splice site selection in the first intron. Recombinant protein from both splicing variants has PIMT activity. Subcellular localization using cell fractionation followed by immunoblot detection, as well as confocal visualization of PIMT:GFP fusions, demonstrated that PIMT1 is cytosolic while a canonical nuclear localization signal, present in PIMT2psi and the shorter PIMT2omega, is functional. Multiplex reverse transcription-PCR was used to establish PIMT1 and PIMT2 transcript presence and abundance, relative to beta-TUBULIN, in various tissues and under a variety of stresses imposed on seeds and seedlings. PIMT1 transcript is constitutively present but can increase, along with PIMT2, in developing seeds presumably in response to increasing endogenous abscisic acid (ABA). Transcript from PIMT2 also increases in establishing seedlings due to exogenous ABA and applied stress presumably through an ABA-dependent pathway. Furthermore, cleaved amplified polymorphic sequences from PIMT2 amplicons determined that ABA preferentially enhances the production of PIMT2omega transcript in leaves and possibly in tissues other than germinating seeds.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Horticulture, University of Kentucky Agriculture Experiment Station, S129, Agriculture Science Center North, University of Kentucky, 800 Rose Street, Lexington, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U S A 2001; 98:14814-8. [PMID: 11742076 PMCID: PMC64941 DOI: 10.1073/pnas.251446498] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atypical protein isoaspartyl residues arise spontaneously during the aging process from the deamidation of protein asparaginyl residues and the isomerization of protein aspartyl residues. These abnormal residues are modified in cells by a strongly conserved protein carboxyl methyltransferase (PCMT) as a first step in a repair pathway. Because a decline in cellular repair mechanisms is hypothesized to contribute to senescence, we determined whether increased PCMT activity was correlated with enhanced longevity. Two ubiquitous promoters were used with the binary GAL4-UAS system to drive PCMT overexpression in Drosophila melanogaster. Flies expressing PCMT activity under the regulation of either the hsp70 or actin5C promoter had enzyme activities that were 3- or 7-fold higher, respectively, than control flies at 29 degrees C. Correlated with the observed increases in PCMT activities, such flies lived on average 32-39% longer than control flies. Lifespan extension was not observed at 25 degrees C with either hsp70- or actin5C-driven expression, indicating a temperature-dependent effect on longevity. We conclude that protein repair is an important factor in the determination of lifespan under certain environmental conditions. PCMT activity may become limiting under mild stress conditions that accelerate rates of protein damage.
Collapse
Affiliation(s)
- D A Chavous
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
8
|
Abstract
Mature human erythrocytes are highly differentiated cells which have lost the ability to biosynthesize proteins de novo. During cell aging in circulation, erythrocyte proteins undergo spontaneous postbiosynthetic modifications, regarded as "protein fatigue" damage, which include formation of isomerized and/or racemized aspartyl residues. These damaged proteins cannot be replaced by new molecules; nevertheless, data support the notion that they can be repaired to a significant extent, through an enzymatic transmethylation reaction. This repair reaction has therefore been used as a means to monitor the increase of altered aspartyl residues in erythrocyte membrane proteins during cell aging. The relationship between protein repair and aspartyl racemization in red blood cell stress and disease is discussed.
Collapse
Affiliation(s)
- D Ingrosso
- Institute of Biochemistry of Macromolecules, S.U.N. School of Medicine and Surgery, Naples, Italy
| | | |
Collapse
|
9
|
Szymanska G, Leszyk JD, O'Connor CM. Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm. Implications for protein repair. J Biol Chem 1998; 273:28516-23. [PMID: 9774482 DOI: 10.1074/jbc.273.43.28516] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely distributed protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT; EC 2.1.1.77) is postulated to play a role in the repair or metabolism of damaged cellular proteins containing L-isoaspartyl residues derived primarily from the spontaneous deamidation of protein asparaginyl residues. To evaluate the functional consequence of PIMT-catalyzed methylation on the stability of isoaspartyl-containing proteins in cells, Xenopus laevis oocytes were microinjected with both deamidated and nondeamidated forms of recombinant chicken calmodulin (CaM) containing a hemagglutinin (HA) epitope at its N terminus. Processing of HA-CaM was monitored by electrophoretic analysis and Western blotting of oocyte extracts. The experiments indicate that deamidated HA-CaM is degraded after microinjection, while nondeamidated HA-CaM is stable. Kinetic analysis is consistent with the entry of microinjected HA-CaM into two intracellular pools with distinct hydrolytic stabilities. The larger, more stable pool may consist of HA-CaM bound to the heterogeneous pool of oocyte CaM binding proteins detected by an overlay procedure. Enzymatic methylation of deamidated HA-CaM with purified PIMT prior to injection results in its stabilization. Conversely, inhibition of endogenous oocyte PIMT with sinefungin, a nonhydrolyzable analog of S-adenosylhomocysteine, increases the rate of deamidated HA-CaM degradation. These results are consistent with a role for PIMT-catalyzed methylation in the repair of damaged cellular proteins.
Collapse
Affiliation(s)
- G Szymanska
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02167-3811, USA
| | | | | |
Collapse
|
10
|
O'Connor MB, Galus A, Hartenstine M, Magee M, Jackson FR, O'Connor CM. Structural organization and developmental expression of the protein isoaspartyl methyltransferase gene from Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:49-54. [PMID: 9061928 DOI: 10.1016/s0965-1748(96)00071-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A protein carboxyl methyltransferase activity (PCMT) with a specificity for age-damaged protein D-aspartyl and L-isoaspartyl residues (E.C. 2.1.1.77) has been identified and cloned in Drosophila. The Drosophila gene was localized by chromosome in-situ hybridization to region 83AB of the third chromosome. The methyltransferase coding sequence is distributed among four exons within a 1.4-kb segment of the genome; it predicts a polypeptide of 226 amino acids that is 55% identical to the mouse enzyme. When expressed in bacteria, the Drosophila protein exhibits PCMT activity. A single 1.4-kb Pcmt transcript is detected in RNA preparations from embryos, larvae, pupae and adults. The abundance of the transcript, which is lowest in larvae and highest in adults, parallels the specific activity of the enzyme measured in extracts from the same developmental stages. It has been proposed that the PCMT initiates the repair of structurally damaged cellular proteins. The constitutive expression of PCMT and the relatively high level of expression in postmitotic adult cells suggest that PCMT activity is required through development, but acquires additional significance in aging tissues.
Collapse
Affiliation(s)
- M B O'Connor
- Department of Biology, Boston College, Chestnut Hill, MA 02167, USA
| | | | | | | | | | | |
Collapse
|
11
|
Mudgett MB, Clarke S. A distinctly regulated protein repair L-isoaspartylmethyltransferase from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1996; 30:723-737. [PMID: 8624405 DOI: 10.1007/bf00019007] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-L-isoaspartate (D-aspartate) O-methyltransferases (EC 2.1.1.77) that catalyze the transfer of methyl groups from S-adenosylmethionine to abnormal L-isoaspartyl and D-aspartyl residues in a variety of peptides and proteins are widely distributed in procaryotes and eucaryotes. These enzymes participate in the repair of spontaneous protein damage by facilitating the conversion of L-isoaspartyl and D-aspartyl residues to normal L-aspartyl residues. In this work, we have identified an L-isoaspartyl methyltransferase activity in Arabidopsis thaliana, a dicotyledonous plant of the mustard family. The highest levels of activity were detected in seeds. Using degenerate oligonucleotides corresponding to two highly conserved amino acid regions shared among the Escherichia coli, wheat, and human enzymes, we isolated and sequenced a full-length genomic clone encoding the A. thaliana methyltransferase. Several methyltransferase cDNAs were also characterized, including ones that would encode full-length polypeptides of 230 amino acid residues. Messenger RNAs for the A. thaliana enzyme were found in a variety of tissues that did not contain significant amounts of active enzyme suggesting the possibility of translational or posttranslational controls on methyltransferase levels. We have identified a putative abscisic acid-response element (ABRE) in the 5'-untranslated region of the A. thaliana L-isoaspartyl methyltransferase gene and have shown that the expression of the mRNA is responsive to exogenous abscisic acid (ABA), but not to the environmental stresses of salt or drought. The expression of the A. thaliana enzyme appears to be regulated in a distinct fashion from that seen in wheat or in animal tissues.
Collapse
Affiliation(s)
- M B Mudgett
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | |
Collapse
|
12
|
O'Connor CM. Analysis of aspartic acid and asparagine metabolism in Xenopus laevis oocytes using a simple and sensitive HPLC method. Mol Reprod Dev 1994; 39:392-6. [PMID: 7893488 DOI: 10.1002/mrd.1080390407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amino acids in methanol-soluble extracts of Xenopus oocytes were measured using a method involving precolumn derivatization with phenylisothiocyanate and reverse phase HPLC of the derivatized amino acids. This technique allows the estimation of asparagine and glutamine pools in oocytes, estimated as 70 and 283 pmoles per oocyte, respectively. The pool sizes of the other amino acids were similar to previously reported results obtained using conventional ion exchange chromatography and postcolumn derivatization with ninhydrin. The advantages of the method developed here include picomolar sensitivity and the enhanced resolution of asparagine and glutamine from other amino acids. The kinetics of aspartic acid and asparagine utilization were monitored following microinjection of oocytes with [3H]aspartic acid and [14C]asparagine. The aspartic acid pool turned over rapidly with a half-time of < 30 min. The asparagine pool was metabolized much more slowly and appeared to be utilized almost completely for protein synthesis. The absolute rate of protein synthesis in oocytes was calculated from the incorporation data and chemical pool measurements as approximately 25 ng/hr-oocyte. The methodology developed here may be useful in experimental situations involving limited amounts of biological material.
Collapse
Affiliation(s)
- C M O'Connor
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| |
Collapse
|
13
|
Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47293-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Celis JE, Olsen E. A qualitative and quantitative protein database approach identifies individual and groups of functionally related proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes: an overview of the functional changes associated with the transformed phenotype. Electrophoresis 1994; 15:309-44. [PMID: 8055864 DOI: 10.1002/elps.1150150153] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A qualitative and quantitative two-dimensional (2-D) gel database approach has been used to identify individual and groups of proteins that are differentially regulated in simian virus 40 (SV40) transformed human keratinocytes (K14). Five hundred and sixty [35S]methionine-labeled proteins (462 isoelectric focusing, IEF; 98 nonequilibrium pH gradient electrophoresis, NEPHGE), out of the 3038 recorded in the master keratinocyte database, were excised from dry, silver-stained gels of normal proliferating primary keratinocytes and K14 cells and the radioactivity was determined by liquid scintillation counting. Two hundred and thirty five proteins were found to be either up- (177) or down-regulated (58) in the transformed cells by 50% or more, and of these, 115 corresponded to known proteins in the keratinocyte database (J.E. Celis et al., Electrophoresis 1993, 14, 1091-1198). The lowest abundance acidic protein quantitated was present in about 60,000 molecules per cell, assuming a value of 10(8) molecules per cell for total actin. The results identified individual, and groups of functionally related proteins that are differentially regulated in K14 keratinocytes and that play a role in a variety of cellular activities that include general metabolism, the cytoskeleton, DNA replication and cell proliferation, transcription and translation, protein folding, assembly, repair and turnover, membrane traffic, signal transduction, and differentiation. In addition, the results revealed several transformation sensitive proteins of unknown identity in the database as well as known proteins of yet undefined functions. Within the latter group, members of the S100 protein family--whose genes are clustered on human chromosome 1q21--were among the highest down-regulated proteins in K14 keratinocytes. Visual inspection of films exposed for different periods of time revealed only one new protein in the transformed K14 keratinocytes and this corresponded to keratin 18, a cytokeratin expressed mainly by simple epithelia. Besides providing with the first global overview of the functional changes associated with the transformed phenotype of human keratinocytes, the data strengthened previous evidence indicating that transformation results in the abnormal expression of normal genes rather than in the expression of new ones.
Collapse
Affiliation(s)
- J E Celis
- Institute of Medical Biochemistry, Aarhus University, Denmark
| | | |
Collapse
|
15
|
Johnson B, Najbauer J, Aswad D. Accumulation of substrates for protein L-isoaspartyl methyltransferase in adenosine dialdehyde-treated PC12 cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53235-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Phelouzat MA, Lawrence F, Robert-Gero M. Characterization of sinefungin-resistant Leishmania donovani promastigotes. Parasitol Res 1993; 79:683-9. [PMID: 8295906 DOI: 10.1007/bf00932511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Promastigotes resistant to sinefungin (SF), a nucleoside antibiotic that is structurally related to S-adenosylmethionine (AdoMet), were obtained starting from two cloned strains of Leishmania donovani. The resistance was induced by increasing the drug pressure gradually until promastigotes capable of growing in the presence of concentrations 10,000 times higher than the 50% growth-inhibitory (IC50) values for the control cells were obtained. The resistance to SF of both clones was specific and stable in the absence of drug pressure. High-performance liquid chromatographic (HPLC) analyses indicated highly reduced levels of SF in the two resistant clones. However, the intracellular SF concentration in these resistant cells was much higher than the IC50 values for wild-type cells. In one clone, the decreased drug uptake was coupled to a decrease in the affinity of two protein methylases for SF, whereas in the other clone the biosynthesis of polyamine precursors was modified. This study demonstrates that resistance to a drug molecule with pleiotropic targets can be developed through various mechanisms by different strains.
Collapse
Affiliation(s)
- M A Phelouzat
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France
| | | | | |
Collapse
|
17
|
Abstract
A protein carboxyl methyltransferase (EC 2.1.1.77) that recognizes age-damaged proteins for potential repair or degradation reactions has been found in all vertebrate tissues and cells examined to date. This enzyme catalyzes the transfer of methyl groups from S-adenosylmethionine to the carboxyl groups of D-aspartyl or L-isoaspartyl residues that are formed spontaneously from normal L-aspartyl and L-asparaginyl residues. A similar methyltransferase has been found in two bacterial species, Escherichia coli and Salmonella typhimurium, suggesting that this enzyme performs an essential function in all cells. In this study, we show that this enzyme is present in cytosolic extracts of six additional members of the alpha and gamma subdivisions of the purple bacteria: Pseudomonas aeruginosa (gamma), Rhodobacter sphaeroides (alpha), and the gamma enteric species Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris, and Serratia marcescens. DNA probes from the E. coli methyltransferase gene hybridized only to the chromosomal DNA of the enteric species. Interestingly, no activity was found in the plant pathogen Erwinia chrysanthemi, a member of the enteric family, nor in Rhizobium meliloti or Rhodopseudomonas palustris, two members of the alpha subdivision. Additionally, we could not detect activity in the four gram-positive species Bacillus subtilis, B. stearothermophilus, Lactobacillus casei, and Streptomyces griseus. The absence of enzyme activity was not due to the presence of inhibitors in the extracts. These results suggest that many cells may not have the enzymatic machinery to recognize abnormal aspartyl residues by methylation reactions. Since the nonenzymatic degradation reactions that generate these residues occur in all cells, other pathways may be present in nature to ensure that these types of altered proteins do not accumulate and interfere with normal cellular physiology.
Collapse
Affiliation(s)
- C Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
18
|
Desrosiers RR, Romanik EA, O'Connor CM. Selective carboxyl methylation of structurally altered calmodulins in Xenopus oocytes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Ladino CA, O'Connor CM. Protein carboxyl methylation and methyl ester turnover in density-fractionated human erythrocytes. Mech Ageing Dev 1990; 55:123-37. [PMID: 2232907 DOI: 10.1016/0047-6374(90)90020-g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A widely distributed methyltransferase modifies protein D-aspartyl and L-isoaspartyl residues which arise spontaneously as proteins age. Protein carboxyl methylation reactions were analyzed in human erythrocytes which had been separated on density gradients, a procedure which provides fractions enriched in older cells in the denser areas of the gradient. The total flux of methyl groups through the carboxyl methylation pathway was monitored by incubating cells from each fraction with L-[methyl-3H]methionine and measuring the formation of both protein [3H]methyl esters and [3H]methanol, derived from the hydrolysis of protein [3H]methyl esters in vivo. Cells isolated from denser areas of the gradient showed progressively higher rates of both protein carboxyl methylation and methanol production. In all cases, only 10-20% of the total methyl groups transferred were still present as intact protein [3H]methyl esters, consistent with the rapid hydrolysis of protein methyl esters in erythrocytes of all ages. The total flux of methyl groups through the carboxyl methylation pathway was approximately 3-fold higher in cells isolated from densest areas of the gradient compared to cells isolated from least dense areas of the gradient. Increases of a similar magnitude were observed in the numbers of both membrane protein carboxyl methyl esters and cytosolic protein carboxyl methyl esters. The only protein whose methylation was unchanged in denser cells was a 35,000 Da cytosolic protein. It has been proposed that protein carboxyl methyl esters are intermediates in either the repair or metabolism of structurally damaged proteins.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C A Ladino
- Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | |
Collapse
|
20
|
Identification of isoaspartyl-containing sequences in peptides and proteins that are usually poor substrates for the class II protein carboxyl methyltransferase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39740-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Abstract
Protein carboxylmethyltransferase (PCM) is an enzyme whose function in eucaryotic cells remains controversial. Early studies suggested that protein carboxylmethylation subserved a regulatory, post-translational role in such diverse processes as secretion, neuronal receptor function, chemotaxis, and cellular differentiation. Later work strongly supported a totally unrelated role for this enzyme, i.e., the repair of spontaneously altered aspartate residues in cellular proteins. More recent evidence, however, suggests that a distinct, membrane-associated PCM catalyzes the methylation of alpha-carboxyl groups of C-terminal cysteines on discrete proteins. In view of these recent investigations, the data supporting a regulatory role for PCM are critically discussed and re-evaluated. There now appears to be compelling evidence that PCM(s) subserves both repair and regulatory functions in eucaryotic cells, catalyzing post-translational modifications of proteins involved in cell division, hormonal secretion, calmodulin-associated events and the interaction of guanyl nucleotide-linked proteins with the cell membrane.
Collapse
Affiliation(s)
- D M Barten
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | | |
Collapse
|
22
|
Romanik EA, O'Connor CM. Methylation of Microinjected Isoaspartyl Peptides in Xenopus oocytes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71640-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
23
|
O'Connor CM, Germain BJ, Guthrie KM, Aswad DW, Millette CF. Protein carboxyl methyltransferase activity specific for age-modified aspartyl residues in mouse testes and ovaries: evidence for translation during spermiogenesis. GAMETE RESEARCH 1989; 22:307-19. [PMID: 2707731 DOI: 10.1002/mrd.1120220308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An antiserum prepared against the purified protein carboxyl methyltransferase (PCMT) from bovine brain has been used to compare testicular and ovarian levels of the enzyme and to study the regulation of PCMT concentrations during spermatogenesis. The PCMT, which specifically modifies age-damaged aspartyl residues, is present at a significantly higher concentration in mature mouse testis than in ovary. However, the PCMT is present at nearly equal concentrations in extracts of germ cell-deficient ovaries and testes obtained from mutant atrichosis/atrichosis mice. In normal testis, the concentration of the PCMT increases severalfold during the first 4-5 weeks after birth, paralleling the appearance and maturation of testicular germ cells. Both immunochemical and enzymatic measurements of PCMT specific activities in purified spermatogenic cell preparations indicate that PCMT levels are twofold and 3.5-fold higher in round spermatids and residual bodies, respectively, than in pachytene spermatocytes. The results are consistent with the enhanced synthesis and/or stability of the PCMT in spermatogenic cells and with the continued translation of the PCMT during the haploid portion of spermatogenesis. The relatively high levels of PCMT in spermatogenic cells may be important for the extensive metabolism of proteins accompanying spermatid condensation or for the repair of damaged proteins in translationally inactive spermatozoa.
Collapse
Affiliation(s)
- C M O'Connor
- Endocrine and Reproductive Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | | | | | | | |
Collapse
|
24
|
Ota IM, Gilbert JM, Clarke S. Two major isozymes of the protein D-aspartyl/L-isoaspartyl methyltransferase from human erythrocytes. Biochem Biophys Res Commun 1988; 151:1136-43. [PMID: 3355545 DOI: 10.1016/s0006-291x(88)80484-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have been able to separate protein carboxyl methyltransferase activity from human erythrocyte cytosol into two major fractions by DEAE-cellulose chromatography. These isozymes, designated I and II, are characterized by their isoelectric points of approximately 6.6 and 5.5 as determined by isoelectric focusing in polyacrylamide gels. The ratio of the isozymes (II/I) was found to range from 0.52 to 1.2 in blood samples from 14 individuals. We did not detect differences in this ratio between males and females. We also found no differences between freshly drawn and outdated blood samples. Both isozymes catalyzed the methylation of proteins such as ovalbumin as well as synthetic L-isoaspartyl-containing peptides.
Collapse
Affiliation(s)
- I M Ota
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | | | |
Collapse
|
25
|
Clarke S. Perspectives on the biological function and enzymology of protein carboxyl methylation reactions in eucaryotic and procaryotic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 231:213-28. [PMID: 3046247 DOI: 10.1007/978-1-4684-9042-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- S Clarke
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA 90024-1569
| |
Collapse
|
26
|
Kinetic and electrophoretic analysis of transmethylation reactions in intact Xenopus laevis oocytes. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61127-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|