1
|
Holmes RS, Cox LA. Comparative structures and evolution of vertebrate lipase H (LIPH) genes and proteins: a relative of the phospholipase A1 gene families. 3 Biotech 2012. [PMCID: PMC3482443 DOI: 10.1007/s13205-012-0087-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipase H (LIPH) is a membrane-bound phospholipase generating 2-acyl lysophosphatidic acid (LPA) in the body. LPA is a lipid mediator required for maintaining homeostasis of diverse biological functions and in activating cell surface receptors such as P2Y5, which plays an essential role in hair growth. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for LIPH genes and encoded proteins using data from several vertebrate genome projects. Vertebrate LIPH genes contained ten coding exons transcribed on either the positive or negative DNA strands. Evidence is presented for duplicated LIPH genes for the chicken and zebra fish genomes. Vertebrate LIPH protein subunits shared 56–97 % sequence identities and exhibited sequence alignments and identities for key LIPH amino acid residues as well as extensive conservation of predicted secondary and tertiary structures with those previously reported for horse pancreatic lipase (LIPP), with ‘N-signal peptide’, ‘lipase,’ and ‘plat’ structural domains. Comparative studies of vertebrate LIPH sequences with other phospholipase A1-like lipases (LIPI and PS-PLA1), as well as vascular and pancreatic lipases, confirmed predictions for LIPH N-terminal signal peptides (residues 1–18); a conserved vertebrate LIPH N-glycosylation site (66NVT for human LIPH); active site ‘triad’ residues (Ser 154; Asp 178; His 248); disulfide bond residues (233–246; 270–281; 284–292; 427–446), and a ‘short’ 12 residue ‘active site lid’, which is comparable to other phospholipases examined. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate LIPH family of genes related to, but distinct from other phospholipase A1-like genes (LIPI and PS-PLA1), and from vascular lipase and pancreatic lipase gene families.
Collapse
Affiliation(s)
- Roger S. Holmes
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 Australia
| | - Laura A. Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
2
|
Rodríguez-Sureda V, López-Tejero MD, Llobera M, Peinado-Onsurbe J. Social stress profoundly affects lipid metabolism: Over-expression of SR-BI in liver and changes in lipids and lipases in plasma and tissues of stressed mice. Atherosclerosis 2007; 195:57-65. [PMID: 17222414 DOI: 10.1016/j.atherosclerosis.2006.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 12/21/2022]
Abstract
We examined the effect of chronic social stress, similar to that endured by humans, on lipid metabolism of mice. The activity of the lipoprotein lipase (LPL) enzyme increased in adrenals, while in plasma it diminished significantly. Hepatic lipase (HL) was strongly affected in liver and adrenal glands, increasing four-fold and three-fold, respectively. At the same time, scavenger receptor class-B type-I (SR-BI), which are considered the high-density lipoprotein (HDL) receptor in the liver, increased significantly. Although the adrenals do not synthesise HL, the increase in HL may facilitate the uptake of HDL cholesterol for the synthesis of corticoids, which increase significantly following chronic stress. The volume of adrenal glands in control animals was significantly higher than in stressed animals (1.23+/-0.12 mm3 versus 0.29+/-0.06 mm3, p<0.001), corresponding with the weight difference of these organs. Medulla volume was also different in the two groups (0.27+/-0.10 mm3 versus 0.04+/-0.02 mm3, p<0.05). Despite this, corticosterone in plasma was significantly higher in stressed animals. Our results shows, for the first time, the effect of chronic social stress on lipid metabolism in general, and in particular on the SR-BI receptor and HL, which is directly involved in cholesterol reverse transport.
Collapse
Affiliation(s)
- Víctor Rodríguez-Sureda
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
3
|
Tagashira H, Nakahigashi S, Kerakawati R, Motoyashiki T, Morita T. Involvement of Ca2+/calmodulin-dependent protein kinase II in heparin-stimulated release of hepatic lipase activity from rat hepatocytes. Biol Pharm Bull 2005; 28:409-12. [PMID: 15744060 DOI: 10.1248/bpb.28.409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The release of hepatic lipase (HTGL), which is responsible for the hydrolysis of lipoprotein triacylglyceride, produced by heparin from the isolated rat hepatocytes in primary culture has been examined. Tyrosine kinase (TK) inhibitors (ST-638 and biochanin A) inhibited the heparin-stimulated release of HTGL activity. The activity of partially purified TK preparation from the hepatocytes was found to be increased following incubation with heparin in a manner which was both time- and dose-dependent. An intracellular Ca(2+)-chelator (Quin2/AM), a calmodulin inhibitor (W-7) and a Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) inhibitor (KN-93) suppressed the release of HTGL activity by heparin. In addition, CaMK-II activity in the hepatocytes incubated with heparin was recognized to elevate in a time- and dose-dependent manner. The increase in CaMK-II activity by heparin was markedly reduced in the presence of the inhibitors of TK. These results suggest that the release of HTGL activity from the hepatocytes by heparin is, in part, caused through a pathway involving an activation of CaMK-II associated with an increase in membrane TK activity.
Collapse
Affiliation(s)
- Hisashi Tagashira
- Department of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
4
|
Galan X, Peinado-Onsurbe J, Julve J, Ricart-Jané D, Robert MQ, Llobera M, Ramírez I. Inactive hepatic lipase in rat plasma. J Lipid Res 2003; 44:2250-6. [PMID: 12951367 DOI: 10.1194/jlr.m300131-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatic lipase activity is detectable in liver but also in adrenal glands, ovaries, and plasma. The subunit size of hepatic lipase in liver, adrenal glands, and nonheparin plasma was compared. Hepatic lipase in liver and adrenal glands appeared as a 55 kDa band. In liver, a faint band of lower size was also detected. In nonheparin plasma, hepatic lipase appeared as a doublet of 57 kDa and 59 kDa. When activity/mass ratio was calculated, similar values were obtained for liver and adrenal glands. In plasma this value was much lower. After heparin administration in vivo, hepatic lipase activity in plasma increased nearly 100-fold with appearance of an additional 55 kDa band in postheparin plasma. This band coeluted with activity after preparative polyacrylamide gel electrophoresis. Differences in size persisted after digestion with peptide-N-glycosidase F. A progressive increase in 57 kDa and 59 kDa in postheparin plasma followed disappearance of the 55 kDa band, suggesting that these larger bands originate from the smaller form. In plasma, both smaller and larger forms were associated with HDL, but not with LDL or VLDL. We conclude that rat plasma contains a larger form of hepatic lipase that is inactive in in vitro assay.
Collapse
Affiliation(s)
- Xavier Galan
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08071 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Fuki IV, Blanchard N, Jin W, Marchadier DHL, Millar JS, Glick JM, Rader DJ. Endogenously produced endothelial lipase enhances binding and cellular processing of plasma lipoproteins via heparan sulfate proteoglycan-mediated pathway. J Biol Chem 2003; 278:34331-8. [PMID: 12810721 DOI: 10.1074/jbc.m302181200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family, which includes lipoprotein lipase (LpL) and hepatic lipase (HL). Enzymatic activity of EL has been studied before. Here we characterized the ability of EL to bridge lipoproteins to the cell surface. Expression of EL in wild-type Chinese hamster ovary (CHO)-K1 but not in heparan sulfate proteoglycan (HSPG)-deficient CHO-677 cells resulted in 3-4.4-fold increases of 125I-low density lipoprotein (LDL) and 125I-high density lipoprotein 3 binding (HDL3). Inhibition of proteoglycan sulfation by sodium chlorate or incubation of cells with labeled lipoproteins in the presence of heparin (100 microg/ml) abolished bridging effects of EL. An enzymatically inactive EL, EL-S149A, was equally effective in facilitating lipoprotein bridging as native EL. Processing of LDL and HDL differed notably after initial binding via EL to the cell surface. More than 90% of the surface-bound 125I-LDL was destined for internalization and degradation, whereas about 70% of the surface-bound 125I-HDL3 was released back into the medium. These differences were significantly attenuated after HDL clustering was promoted using antibody against apolipoprotein A-I. At equal protein concentration of added lipoproteins the ratio of HDL3 to VLDL bridging via EL was 0.092 compared with 0.174 via HL and 0.002 via LpL. In summary, EL mediates binding and uptake of plasma lipoproteins via a process that is independent of its enzymatic activity, requires cellular heparan sulfate proteoglycans, and is regulated by ligand clustering.
Collapse
Affiliation(s)
- Ilia V Fuki
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Brown RJ, Schultz JR, Ko KWS, Hill JS, Ramsamy TA, White AL, Sparks DL, Yao Z. The amino acid sequences of the carboxyl termini of human and mouse hepatic lipase influence cell surface association. J Lipid Res 2003; 44:1306-14. [PMID: 12700335 DOI: 10.1194/jlr.m200374-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human hepatic lipase (hHL) mainly exists cell surface bound, whereas mouse HL (mHL) circulates in the blood stream. Studies have suggested that the carboxyl terminus of HL mediates cell surface binding. We prepared recombinant hHL, mHL, and chimeric proteins (hHLmt and mHLht) in which the carboxyl terminal 70 amino acids of hHL were exchanged with the corresponding sequence from mHL. The hHL, mHL, and hHLmt proteins were catalytically active using triolein and tributyrin as substrates. In transfected cells, the majority of hHLs bound to the cell surface, with only 4% of total extracellular hHL released into heparin-free media, whereas under the same conditions, 61% of total extracellular mHLs were released. Like mHL, hHLmt showed decreased cell surface binding, with 68% of total extracellular hHLmt released. To determine the precise amino acid residues involved in cell surface binding, we prepared a truncated hHL mutant (hHL471) by deleting the carboxyl terminal five residues (KRKIR). The hHL471 also retained hydrolytic activity with triolein and tributyrin, and showed decreased cell surface binding, with 40% of total extracellular protein released into the heparin-free media. These data suggest that the determinants of cell surface binding exist within the carboxyl terminal 70 amino acids of hHL, of which the last five residues play an important role.
Collapse
Affiliation(s)
- Robert J Brown
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ramsamy TA, Boucher J, Brown RJ, Yao Z, Sparks DL. HDL regulates the displacement of hepatic lipase from cell surface proteoglycans and the hydrolysis of VLDL triacylglycerol. J Lipid Res 2003; 44:733-41. [PMID: 12562872 DOI: 10.1194/jlr.m200339-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that hepatic lipase (HL) is inactive when bound to purified heparan sulfate proteoglycans and can be liberated by HDL and apolipoprotein A-I (apoA-I), but not by LDL or VLDL. In this study, we show that HDL is also able to displace HL directly from the surface of the hepatoma cell line, HepG2, and Chinese hamster ovary cells stably overexpressing human HL. ApoA-I is more efficient at displacing cell surface HL than is HDL, and different HDL classes vary in their ability to displace HL from the cell surface. HDL2s have a greater capacity to remove HL from the cell surface and intracellular compartments, as compared with the smaller HDL particles. The different HDL subclasses also uniquely affect the activity of the enzyme. HDL2 stimulates HL-mediated hydrolysis of VLDL-triacylglycerol, while HDL3 is inhibitory. Inhibition of VLDL hydrolysis appears to result from a decreased interlipoprotein shuttling of HL between VLDL and the smaller, more dense HDL particles. This study suggests that high HDL2 levels are positively related to efficient triacylglycerol hydrolysis by their ability to enhance the liberation of HL into the plasma compartment and by a direct stimulation of VLDL-triacylglycerol hydrolysis.
Collapse
Affiliation(s)
- Tanya A Ramsamy
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, ON, Canada
| | | | | | | | | |
Collapse
|
8
|
Galan X, Peinado-Onsurbe J, Robert MQ, Soley M, Llobera M, Ramírez I. Acute regulation of hepatic lipase secretion by rat hepatocytes. Biochem Cell Biol 2003; 80:467-74. [PMID: 12234100 DOI: 10.1139/o02-136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatic lipase is involved in cholesterol uptake by the liver. Although it is known that catecholamines are responsible for the daily variation of enzyme activity, the mechanisms involved are poorly understood. Rat hepatocytes incubated with adrenaline or other Ca(2+)-mobilizing hormones were used as an experimental model. Adrenaline reduced in a similar proportion the secretion of both hepatic lipase and albumin. The effect of adrenaline disappeared completely in cells exposed to cycloheximide. Adrenaline decreased incorporation of [35S]Met into cellular and secreted proteins, but it affected neither degradation of [35S]Met-prelabeled proteins nor the abundance of total and specific (albumin, hepatic lipase, beta-actin) mRNA. Other Ca(2+)-mobilizing agents had the opposite effect on hepatic lipase secretion: it was decreased by vasopressin but was increased by epidermal growth factor. Vasopressin and epidermal growth factor had the opposite effect on [35S]Met incorporation into cellular and secreted proteins, but neither affected hepatic lipase mRNA. The acute effect of adrenaline, vasopressin, and epidermal growth factor on hepatic lipase secretion is the consequence of the effect of these hormones on protein synthesis and is therefore nonspecific.
Collapse
|
9
|
|
10
|
Wade RL, Van Andel RA, Rice SG, Banka CL, Dyer CA. Hepatic lipase deficiency attenuates mouse ovarian progesterone production leading to decreased ovulation and reduced litter size. Biol Reprod 2002; 66:1076-82. [PMID: 11906928 DOI: 10.1095/biolreprod66.4.1076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The lipolytic enzyme hepatic lipase (HL) may facilitate mobilization of cholesterol substrate for ovarian steroidogenesis. We investigated whether HL was necessary for optimum reproduction in the female mouse by analyzing breeding performance and ovarian responses to gonadotropins in HL-/- mice. HL-/- female mice bred with HL-/- males had the same pregnancy success rate and pup survival rate as did wild-type (WT) mice but had significantly smaller litters, producing 1.7 fewer pups per litter. Mice were primed with eCG/hCG, and at 6 h post-hCG the HL-/- mice had smaller ovaries than did the WT mice. HL deficiency specifically affected ovarian weight; adrenal gland weights did not differ between WT and HL-/- mice. HL-/- mice weighed more than age-matched WT mice. Between the two mouse genotypes, uterine weights were the same, indicating that estrogen production was equivalent. However, the HL-/- ovaries produced significantly less progesterone than did the WT ovaries within 6 h of hCG stimulation. HL-/- ovaries had the same number of large antral follicles as did the WT ovaries but had fewer hemorrhagic sites, which represent ovulations, fewer corpora lutea, and more oocytes trapped in corpora lutea. We suggest that reduced progesterone synthesis following hCG stimulation attenuated the final maturation of preovulatory follicles, resulting in smaller ovaries. Furthermore, reduced progesterone production limited the expression of proteolytic enzymes needed for tissue remodeling, resulting in fewer ovulations with a corresponding increase in trapped or unovulated oocytes and providing a possible explanation for the smaller litter size observed in spontaneously ovulating HL-/- mice.
Collapse
Affiliation(s)
- Randy L Wade
- Department of Biological Sciences, Northern Arizona University, South Beaver Street, Flagstaff, AZ 86011, USA
| | | | | | | | | |
Collapse
|
11
|
Galan X, Robert MQ, Llobera M, Ramírez I. Secretion of hepatic lipase by perfused liver and isolated hepatocytes. Lipids 2000; 35:1017-26. [PMID: 11026623 DOI: 10.1007/s11745-000-0613-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hepatic lipase is found in liver and in adrenal glands and ovaries. Because in adult rats, neither adrenals nor ovaries synthesize this enzyme, it is assumed that the liver is the origin of their hepatic lipase. Our aim was to study the secretion of hepatic lipase by the liver. We observed that plasma of both fed and fasted rats contained hepatic lipase activity. This activity was significantly correlated with that in the liver. Isolated livers, perfused with heparin-free medium, secreted fully active hepatic lipase to the perfusate. The addition of heparin resulted in a rapid and larger release of hepatic lipase to the perfusate. In isolated hepatocytes, heparin did not affect the secretion of hepatic lipase mass, although it increased the stability of the enzyme activity. To study the degradation of hepatic lipase by hepatocytes, protein synthesis was blocked with cycloheximide, and both secreted and intracellular hepatic lipases were analyzed by Western blotting. We observed that the amount of hepatic lipase secreted equaled the decrease of intracellular mass. The total mass of the enzyme (inside and outside the cells) remained constant, at least for 90 min. In the next experiment, 0.7 nM 125I-hepatic lipase was added to hepatocyte suspensions, and the appearance of trichloracetic acid-soluble products was analyzed. Only 12% of the radioactivity added was associated with the cells after 90 min of incubation, and less than 2% of the hepatic lipase added was degraded. Although the association was decreased in the presence of heparin, the amount of 125I-hepatic lipase degraded was not affected. Taking all these results into account, we propose a model for the continuous secretion of hepatic lipase by the liver.
Collapse
Affiliation(s)
- X Galan
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
12
|
Verhoeven AJ, Neve BP, Jansen H. Intracellular activation of rat hepatic lipase requires transport to the Golgi compartment and is associated with a decrease in sedimentation velocity. J Biol Chem 2000; 275:9332-9. [PMID: 10734075 DOI: 10.1074/jbc.275.13.9332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic lipase (HL) is an N-glycoprotein that acquires triglyceridase activity somewhere during maturation and secretion. To determine where and how HL becomes activated, the effect of drugs that interfere with maturation and intracellular transport of HL protein was studied using freshly isolated rat hepatocytes. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), castanospermine, monensin, and colchicin all inhibited secretion of HL without affecting its specific enzyme activity. The specific enzyme activity of intracellular HL was decreased by 25-50% upon incubation with CCCP or castanospermine, and increased 2-fold with monensin and colchicin. Glucose trimming of HL protein was not affected by CCCP, as indicated by digestion of immunoprecipitates with jack bean alpha-mannosidase. Pulse labeling experiments with [(35)S]methionine indicated that conversion of the 53-kDa precursor to the 58-kDa form, nor the development of endoglycosidase H-resistance, were essential for acquisition of enzyme activity. In sucrose gradients, HL protein from secretion media sedimented as a homogeneous band of about 5.8 S, whereas HL protein from the cell lysates migrated as a broad band extending from 5.8 S to more than 8 S. With both sources, HL activity was exclusively associated with the 5.8 S HL protein form. We conclude that glucose trimming of HL protein in the endoplasmic reticulum is not sufficient for activation; full activation occurs during or after transport from the endoplasmic reticulum to the Golgi and is associated with a decrease in sedimentation velocity.
Collapse
Affiliation(s)
- A J Verhoeven
- Department of Biochemistry, Cardiovascular Research Institute (COEUR), Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Schultz CJ, Blanchette-Mackie EJ, Scow RO. Adrenal and liver in normal and cld/cld mice synthesize and secrete hepatic lipase, but the lipase is inactive in cld/cld mice. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32055-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
|
15
|
Medh JD, Bowen SL, Fry GL, Ruben S, Hill J, Wong H, Chappell DA. Hepatic triglyceride lipase promotes low density lipoprotein receptor-mediated catabolism of very low density lipoproteins in vitro. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Abstract
Hepatic lipase (HL) is an enzyme that is made primarily by hepatocytes (and also found in adrenal gland and ovary) and hydrolyzes phospholipids and triglycerides of plasma lipoproteins. It is secreted and bound to the hepatocyte surface and readily released by heparin. It is a member of the lipase superfamily and is homologous to lipoprotein lipase and pancreatic lipase. The enzyme can be divided into an NH2-terminal domain containing the catalytic site joined by a short spanning region to a smaller COOH-terminal domain. The NH2-terminal portion contains an active site serine in a pentapeptide consensus sequence, Gly-Xaa-Ser-Xaa-Gly, as part of a classic Ser-Asp-His catalytic triad, and a putative hinged loop structure covering the active site. The COOH-terminal domain contains a putative lipoprotein-binding site. The heparin-binding sites may be distributed throughout the molecule, with the characteristic elution pattern from heparin-sepharose determined by the COOH-terminal domain. Of the three N-linked glycosylation sites, Asn-56 is required for efficient secretion and enzymatic activity. HL is hypothesized to directly couple HDL lipid metabolism to tissue/cellular lipid metabolism. The potential significance of the HL pathway is that it provides the hepatocyte with a mechanism for the uptake of a subset of phospholipids enriched in unsaturated fatty acids and may allow the uptake of cholesteryl ester, free cholesterol, and phospholipid without catabolism of HDL apolipoproteins. HL can hydrolyze triglyceride and phospholipid in all lipoproteins, but is predominant in the conversion of intermediate density lipoproteins to LDL and the conversion of post-prandial triglyceride-rich HDL into the postabsorptive triglyceride-poor HDL. HL plays a secondary role in the clearance of chylomicron remnants by the liver. Human post-heparin HL activity is inversely correlated with intermediate density lipoprotein cholesterol concentration only in subjects with a hyperlipidemia involving VLDL. This is consistent with intermediate-density lipoproteins being a substrate for HL. HDL cholesterol has been reported to be inversely correlated to HL activity, and on this basis it has been suggested that lowering HL would increase HDL cholesterol. However, the correlation could also be due to a common hormonal factor such as estrogen, which has been shown to up-regulate apoAI and HDL cholesterol and lower HL. A striking feature of severe deficiency of HL is the increase in HDL cholesterol and apolipoprotein AI and an approximately 10-fold increase in HDL triglyceride. Hyper-alpha-triglyceridemia is not a feature of antiatherogenic HDL. HL binds not only to heparan, but also to the LDL receptor-related protein. It has been suggested that enzymatically inactive HL can play a role in hepatic lipoprotein uptake, forming a "bridge" by binding to the lipoprotein and to the cell surface. This raises the interesting possibility that production and secretion of mutant inactive HL could promote clearance of VLDL remnants. We have described a rare family with HL deficiency. Affected patients are compound heterozygotes for a mutation of Ser267 to Phe that results in an inactive enzyme and a mutation of Thr383 to Met that results in impaired secretion and reduced specific activity. Human HL deficiency in the context of a second factor causing hyperlipidemia is strongly associated with premature coronary artery disease. Recently, it has been reported that mutations affecting the structure of HL (e.g., T383M) are relatively frequent in the Finnish population. A C-to-T polymorphism in the promotor region of the HL gene is associated with lowered HL activity and less strongly with increased HDL cholesterol. In summary, there is a good understanding of what HL does in lipoprotein metabolism; however, there is little understanding of its physiological importance, that is, why HL does what it does. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- P W Connelly
- Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | | |
Collapse
|
17
|
Scow RO, Schultz CJ, Park JW, Blanchette-Mackie EJ. Combined lipase deficiency (cld/cld) in mice affects differently post-translational processing of lipoprotein lipase, hepatic lipase and pancreatic lipase. Chem Phys Lipids 1998; 93:149-55. [PMID: 9720257 DOI: 10.1016/s0009-3084(98)00039-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoprotein lipase (LPL) and hepatic lipase (HL), which act on plasma lipoproteins, belong to the same gene family as pancreatic lipase. LPL is synthesized in heart, muscle and adipose tissue, while HL is synthesized primarily in liver. LPL is also synthesized in liver of newborn rodents. The active form of LPL is a dimer, whereas that of HL has not been established. Combined lipase deficiency (CLD) is an autosomal recessive mutation (cld) in mice which impairs post-translational processing of LPL and HL. Cld/cld mice have very low LPL and HL activities (< 5% of normal), yet normal pancreatic lipase activity. They develop massive hypertriglyceridemia and die within 3 days after birth. The CLD mutation allows synthesis, glycosylation and dimerization of LPL, but blocks activation and secretion of the lipase. Thus, dimerization per se does not result in production of active LPL. Immunofluorescence studies showed that LPL is retained in endoplasmic reticulum (ER) in cld/cld cells. Translocation of Golgi components to ER by treatment with brefeldin A (BFA) enabled synthesis of active LPL in cultured cld/cld brown adipocytes. Thus, production of inactive LPL in cld/cld cells results from inability of the cells to transport LPL from ER. The CLD mutation allows synthesis and glycosylation of HL, but blocks activation of the lipase. Immunofluorescence studies located HL mostly outside of cells in liver, liver cell cultures and incubated adrenal tissue of normal and cld/cld mice and mostly inside of cells in liver cell cultures and adrenal tissues treated with monensin (to block secretion of protein). These findings demonstrate synthesis and secretion of HL by both liver and adrenal cells of normal and cld/cld mice. Thus, the CLD mutation allows secretion of inactive HL by liver and adrenals. However, it does not block synthesis or secretion of active pancreatic lipase. Our findings indicate that LPL, HL and pancreatic lipase, although closely related, are processed differently.
Collapse
Affiliation(s)
- R O Scow
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
18
|
Uusi-Oukari M, Ehnholm C, Jauhiainen M. Inhibition of hepatic lipase by m-aminophenylboronate. Application of phenylboronate affinity chromatography for purification of human postheparin plasma lipases. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 682:233-42. [PMID: 8844415 DOI: 10.1016/0378-4347(96)00082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phenylboronates are competitive inhibitors of serine. hydrolases including lipases. We studied the effect of m-aminophenylboronate on triglyceride-hydrolyzing activity of hepatic lipase (EC 3.1,1.3). m-Aminophenylboronate inhibited hepatic lipase activity with a Ki value of 55 microM. Furthermore, m-aminophenylboronate protected hepatic lipase activity from inhibition by di-isopropyl fluorophosphate, an irreversible active site inhibitor of serine hydrolases. Inhibition of hepatic lipase activity by m-aminophenylboronate was pH-dependent. The inhibition was maximal at pH 7.5, while at pH 10 it was almost non-existent. These data were used to develop a purification procedure for postheparin plasma hepatic lipase and lipoprotein lipase. The method is a combination of m-aminophenylboronate and heparin-Sepharose affinity chromatographies. Hepatic lipase was purified to homogeneity as analyzed on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The specific activity of purified hepatic lipase was 5.46 mmol free fatty acids h-1 mg-1 protein with a total purification factor of 14,400 and a final recovery of approximately 20%. The recovery of hepatic lipase activity in m-aminophenylboronate affinity chromatography step was 95%. The purified lipoprotein lipase was a homogeneous protein with a specific activity of 8.27 mmol free fatty acids h-1 mg-1. The purification factor was 23,400 and the final recovery approximately 20%. The recovery of lipoprotein lipase activity in the m-aminophenylboronate affinity chromatography step was 87%. The phenylboronate affinity chromatography step can be used for purification of serine hydrolases which interact with boronates.
Collapse
Affiliation(s)
- M Uusi-Oukari
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|
19
|
Galan X, Llobera M, Ramírez I. Lipoprotein lipase and hepatic lipase in Wistar and Sprague-Dawley rat tissues. Differences in the effects of gender and fasting. Lipids 1994; 29:333-6. [PMID: 8015363 DOI: 10.1007/bf02537186] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To evaluate the effects of strain, gender and fasting in the regulation of lipoprotein lipase (LPL) and hepatic lipase (HL) activities were measured in tissues of male and female Wistar and Sprague-Dawley rats after feeding or a 24-h starvation period. It is noteworthy that an effect of gender on LPL activity was observed in Wistar, but not in Sprague-Dawley rats, not only in the basal (fed) activity in several tissues, such as white and brown adipose tissues, heart, and brain, but also in response to fasting which affected LPL activity in brown adipose tissue, heat and lung of female but not of male Wistar rats. By contrast, HL activity in liver, plasma and adrenals of Sprague-Dawley rats was higher in females than in males. No effect of gender on HL activity was observed in Wistar rats. Our results indicate that differences exist between Wistar and Sprague-Dawley rats in the regulation of both LPL and HL. Some of the contradictory results found in the literature may be explained by the differences between rat strains and gender, as well as differences in the nutritional status of the animals.
Collapse
Affiliation(s)
- X Galan
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
20
|
|
21
|
Hixenbaugh EA, Strauss JF, Paavola LG. Establishment of heterogeneity among blood vessels: hormone-influenced appearance of hepatic lipase in specific subsets of the ovarian microvasculature. Anat Rec (Hoboken) 1993; 235:487-500. [PMID: 8465984 DOI: 10.1002/ar.1092350402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used biochemical and structural approaches to analyze the influence of gonadotropic hormones on the association of hepatic lipase with specific subsets of ovarian blood vessels. Western blotting was used to detect this enzyme in effluent collected from heparin-perfused ovaries of nonhormone-treated immature rats and those primed with pregnant mare's serum gonadotropin (PMSG) alone or in combination with human chorionic gonadotropin (hCG). The effects of these hormones on hepatic lipase distribution among ovarian blood vessels was assessed before and after hCG and/or PMSG treatment by immunofluorescence and immunogold cytochemistry. For the latter, immunoreagents and fixative were delivered directly to chilled, unfixed ovaries by in situ vascular perfusion. Data from biochemical and structural analyses indicated that hepatic lipase was absent from nonhormone-treated ovaries. As shown by Western blotting of ovarian effluent, the enzyme appeared following treatment with PMSG and PMSG-hCG; it increased in amount in a time-dependent manner, with a transient decline in the early hours after hCG injection. Enzyme levels paralleled growth and vascularization of follicles and corpora lutea; the fall tended to coincide with early events in luteal angiogenesis. Immunogold microscopy showed that hepatic lipase was abundant in thin-walled blood vessels of theca interna of follicles, corpora lutea, and interstitial cells but sparse in those of the stroma. Moreover, during neovascularization of differentiating corpora lutea, vascular sprouts arising from hepatic lipase-laden thecal vessels appeared to lose, then regain, the enzyme as development progressed. Our findings thus suggest 1) that hormones influence the establishment of endothelial cell heterogeneity within the microvasculature of a single organ and 2) that development of novel endothelial cell properties in specific subsets of blood vessels underlies compartmentalization of function within a tissue.
Collapse
Affiliation(s)
- E A Hixenbaugh
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
22
|
Soler C, Galan X, Peinado-Onsurbe J, Quintana I, Llobera M, Soley M, Ramírez I. Epidermal growth factor interferes with the effect of adrenaline on glucose production and on hepatic lipase secretion in rat hepatocytes. REGULATORY PEPTIDES 1993; 44:11-6. [PMID: 8484015 DOI: 10.1016/0167-0115(93)90125-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We studied the interaction of epidermal growth factor (EGF) and adrenaline in the control of several metabolic functions in isolated hepatocytes from fed rats. EGF did not modulate glucose release, urea production or hepatic lipase secretion, but interfered with the stimulatory effect of adrenaline on both glucose and urea production and also with the inhibitory effect of this hormone on hepatic lipase secretion. EGF also interfered with the effect of both angiotensin II and vasopressin on glucose release and on hepatic lipase secretion. While the effect of EGF interfering with the action of adrenaline on glucose release was potentiated in the absence of extracellular calcium, the effect on the inhibition of hepatic lipase secretion was abolished. These results suggest that EGF interfered with catecholamine actions in the liver at a site distal from the generation of the calcium signal.
Collapse
Affiliation(s)
- C Soler
- Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Fu D, Hornick CA. Alterations in lipolytic activity at hepatic subcellular sites of fed and fasted rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C1102-8. [PMID: 1590352 DOI: 10.1152/ajpcell.1992.262.5.c1102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigates the relationship between the nutritional state of rats and lipid metabolism in distinct hepatic intracellular sites. Hepatic uptake of both protein and triacylglycerol (TG) moieties of injected very low-density lipoprotein (VLDL) is increased in fasted rats compared with fed controls. The VLDL-TG hydrolysis rate is increased in the plasma of fasted rats. This is shown by a higher ratio of labeled free fatty acid (FFA) to TG (FFA/TG). In both fed and fasted rats, a much greater increase of the labeled FFA/TG ratio in endosomes, compared with that in plasma, shows that further TG hydrolysis occurs in prelysosomal compartments. However, in fasted rats, this increase (18-fold) is much less than that in fed rats (69-fold). This observation is supported by the finding of significantly lower TG-lipase activity at pH 5, 7, and 8.6 in the endosomes of fasted rats. In contrast, during fasting, TG-lipase activity in whole liver homogenate and in isolated lysosomes is increased at pH 5. These observations suggest that after feeding there is a shift in intracellular lipolytic activity from lysosomes to prelysosomal organelles.
Collapse
Affiliation(s)
- D Fu
- Department of Physiology, Louisiana State University Medical Center, New Orleans 70112
| | | |
Collapse
|
24
|
Peinado-Onsurbe J, Soler C, Soley M, Llobera M, Ramírez I. Lipoprotein lipase and hepatic lipase activities are differentially regulated in isolated hepatocytes from neonatal rats. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1125:82-9. [PMID: 1567912 DOI: 10.1016/0005-2760(92)90159-s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipoprotein lipase and hepatic lipase are members of the lipase gene family sharing a high degree of homology in their amino acid sequences and genomic organization. We have recently shown that isolated hepatocytes from neonatal rats express both enzyme activities. We show here that both enzymes are, however, differentially regulated. Our main findings are: (i) fasting induced an increase of the lipoprotein lipase activity but a decrease of the hepatic lipase activity in whole liver, being in both cases the vascular (heparin-releasable) compartment responsible for these variations. (ii) In isolated hepatocytes, secretion of lipoprotein lipase activity was increased by adrenaline, dexamethasone and glucagon but was not affected by epidermal growth factor, insulin or triiodothyronine. On the contrary, secretion of hepatic lipase activity was decreased by adrenaline but was not affected by other hormones. (iii) The effect of adrenaline on lipoprotein lipase activity appeared to involve beta-adrenergic receptors, but stimulation of both beta- and alpha 1-receptors seemed to be required for the effect of this hormone on hepatic lipase activity. And (iv), increased secretion of lipoprotein lipase activity was only observed after 3 h of incubation with adrenaline and was blocked by cycloheximide. On the contrary, decreased secretion of hepatic lipase activity was already significant after 90 min of incubation and was not blocked by cycloheximide. We suggest that not only synthesis of both enzymes, but also the posttranslational processing, are under separate control in the neonatal rat liver.
Collapse
Affiliation(s)
- J Peinado-Onsurbe
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Bohn E, Gerke V, Kresse H, Löffler BM, Kunze H. Annexin II inhibits calcium-dependent phospholipase A1 and lysophospholipase but not triacyl glycerol lipase activities of rat liver hepatic lipase. FEBS Lett 1992; 296:237-40. [PMID: 1531641 DOI: 10.1016/0014-5793(92)80294-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A member of the annexin family (the heterotetrameric annexin II2p11(2) complex purified from porcine intestinal epithelium) was tested for its ability to affect different calcium-dependent intrinsic lipolytic activities of rat liver hepatic lipase (HL). Whereas annexin II in the presence of calcium failed to interfere with HL triacyl glycerol lipase (EC 3.1.1.3) activity, it inhibited HL phospholipase A1 (EC 3.1.1.32) and lysophospholipase (EC 3.1.1.5) activities. Inhibition could be overcome by increasing the substrate concentration. Under phospholipase A1 assay conditions, annexin II did not bind to the purified HL enzyme. These results therefore suggest that only inhibitor/substrate interactions lead to inhibition of HL phospholipase A1 and lysophospholipase activities, an obviously general mechanism of phospholipase inhibition by annexins. Possible implications of HL inhibition in vivo by annexins are discussed.
Collapse
Affiliation(s)
- E Bohn
- Max-Planck-Institute für experimentelle Medizin, Göttingen, Germany
| | | | | | | | | |
Collapse
|
26
|
Warren RJ, Ebert DL, Barter PJ, Mitchell A. The regulation of hepatic lipase and cholesteryl ester transfer protein activity in the cholesterol fed rabbit. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1086:354-8. [PMID: 1742328 DOI: 10.1016/0005-2760(91)90181-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic lipase (HL) and cholesteryl ester transfer protein (CETP) activities are both increased in the rabbit by cholesterol feeding. The in vivo regulation of HL and CETP were explored by examining changes in specific steady-state mRNA levels upon cholesterol feeding. On feeding rabbits cholesterol, HL activity increased 3-fold after 2 days and remained at 2.6-times the control value at 28 days. Specific rabbit HL mRNA levels were assessed by dot blot analysis of liver poly (A)+ RNA hybridized with the human HL cDNA. No significant changes in liver HL mRNA accompanied the increase in activity seen at days 2 and 7. At day 28 a modest rise of 46% was observed. A significant rise in CETP activity, evident 7 days after the commencement of cholesterol feeding, was maintained until day 28 when it was 2.4-times the control value. Using the human CETP cDNA as probe, rabbit liver CETP mRNA was also found to increase by day 7, rising to 3.7-times control by day 28. The strong temporal relationship between the rise in CETP activity and mRNA (r = 0.55, P = 0.02) suggests that the regulation of CETP may be primarily effected by the levels of specific mRNA. In contrast, the discordance between levels of lipase activity and mRNA suggests that post-transcriptional events may be more important in the regulation of HL in the cholesterol fed rabbit.
Collapse
Affiliation(s)
- R J Warren
- Baker Medical Research Institute, Prahran, Victoria, Australia
| | | | | | | |
Collapse
|
27
|
Verhoeven AJ, Jansen H. Secretion-coupled increase in the catalytic activity of rat hepatic lipase. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1086:49-56. [PMID: 1954244 DOI: 10.1016/0005-2760(91)90153-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Freshly isolated rat hepatocytes synthesize and secrete hepatic lipase (HL). Comparison of secreted HL with intracellular HL indicates a secretion-linked increase in the specific enzyme activity. (a) Immunotitration with polyclonal anti-HL showed a 3-5-fold lower specific enzyme activity of intracellular HL than of secreted HL. This was confirmed by ELISA using a mixture of monoclonal anti-HL's. (b) After isolation on Sepharose-heparin, a similar difference in specific enzyme activity was observed, whereas the apparent Km for glyceroltrioleate was not different. (c) HL activity secreted in the absence of protein de novo synthesis was 5-fold higher than was accounted for by the fall in intracellular activity, whereas HL protein lost from the cells was near-completely recovered in the extracellular medium. (d) The presence of inactive HL protein was demonstrated in cells treated with castanospermine, which inhibits secretion of newly synthesized HL by interfering with maturation at an early stage of N-linked oligosaccharide processing. Upon removal of castanospermine, secretion of HL activity recovered, even when protein de nove synthesis was inhibited, strongly suggesting that part of the inactive HL was mobilized and became activated. This secretion-coupled increase in HL activity in the absence of protein synthesis suggests the existence of inactive precursor within rat hepatocytes. The catalytic activity of HL becomes apparent upon maturation of the protein after oligosaccharide processing by the rough endoplasmic reticulum glucosidases.
Collapse
Affiliation(s)
- A J Verhoeven
- Department of Biochemistry I, Erasmus University Rotterdam, The Netherlands
| | | |
Collapse
|
28
|
Plasma 1-palmitoyl-2-linoleoyl phosphatidylcholine. Evidence for extensive phospholipase A1 hydrolysis and hepatic metabolism of the products. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55229-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Hixenbaugh EA, Paavola LG. Heterogeneity among ovarian blood vessels: endogenous hepatic lipase is concentrated in blood vessels of rat corpora lutea. Anat Rec (Hoboken) 1991; 230:291-306. [PMID: 1867406 DOI: 10.1002/ar.1092300302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We used indirect immunofluorescence and immunogold light microscopy to examine the distribution of hepatic lipase, an enzyme involved in lipoprotein metabolism, in ovaries of gonadotropin-treated immature rats. Antibodies utilized were rabbit anti-rat hepatic lipase IgG, anti-rat von Willebrand factor (VWF, an endothelial cell marker), and goat anti-rabbit IgG conjugated to gold particles or rhodamine. Immunoreagents were applied to fresh frozen sections of unfixed ovary or liver (positive control) or were delivered to ovaries by vascular perfusion before fixation in situ and silver-enhancement of sections. Appropriate controls verified that the immunolocalizations were specific. Immunofluorescence implied that luteal but not stromal blood vessels of ovaries were positive for hepatic lipase, whereas luteal and stromal blood vessels bore VWF. The improved morphology gained by perfusing ovaries with antibodies allowed precise localization of the enzyme. Hepatic lipase was concentrated within thin-walled vessels of corpora lutea but not those of stroma in ovaries at the time of peak steroidogenic activity. Quantification of hepatic lipase-labeled vessels in stromal and luteal compartments confirmed our visual impression. Many images suggested that stromal vessels lacking hepatic lipase gained this enzyme upon contact with luteal tissue. Perfusion of ovaries with cationized ferritin labeled all ovarian vessels equally well, ruling out the possibility that the observed distribution of hepatic lipase was artifactual. These findings demonstrate that ovarian blood vessels are heterogeneous for hepatic lipase. Moreover, they imply that luteal tissue, perhaps luteal cells, may influence expression of hepatic lipase binding sites by endothelial cells.
Collapse
Affiliation(s)
- E A Hixenbaugh
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | |
Collapse
|
30
|
Emmison N, Zammit VA, Agius L. Estradiol increases the secretion of hepatic lipase by rat hepatocyte cultures. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1083:147-52. [PMID: 1709814 DOI: 10.1016/0005-2760(91)90035-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic lipase (EC 3.1.1.3) is synthesized and secreted by parenchymal hepatocytes and binds to endothelial cells of liver sinusoids. The present study shows that the activity of hepatic lipase secreted by hepatocyte cultures from male rats in increased approx. 6-fold after 10 h culture with 10 microM 17 beta-estradiol. The stimulatory effect of 17 beta-estradiol is biphasic and declines at higher concentrations. In hepatocytes from male rats: progesterone, unlike 17 beta-estradiol, had only a small stimulatory effect when present as the sole hormone and a small inhibitory effect in the presence of 17 beta-estradiol, while testosterone and dexamethasone had no effect. Hepatocyte cultures from female rats had a higher basal rate of hepatic lipase secretion than cells from male rats and showed a smaller stimulation by 17 beta-estradiol. These results suggest that 17 beta-estradiol might regulate the secretion of hepatic lipase by hepatocytes, and presumably the activity of the enzyme at either the endothelial surface of the liver sinusoids or at extrahepatic sites.
Collapse
Affiliation(s)
- N Emmison
- Department of Medicine, University of Newcastle-upon-Tyne, U.K
| | | | | |
Collapse
|
31
|
Oka K, Nakano T, Tkalcevic GT, Scow RO, Brown WV. Molecular cloning of mouse hepatic triacylglycerol lipase: gene expression in combined lipase-deficient (cld/cld) mice. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1089:13-20. [PMID: 2025643 DOI: 10.1016/0167-4781(91)90078-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
cDNA clones coding for mouse hepatic triacylglycerol lipase (HL) were isolated from a mouse liver cDNA library with a human HL cDNA as a probe. The cloned HL cDNA of 1652 nucleotides predicts a mature protein of 488 amino acids preceded by a signal peptide of 22 amino acids. Two potential sites for N-glycosylation are identified, which are both conserved in rat and human HL. Combined lipase deficiency (cld) is a recessive mutation in mice, which causes the functional deficiency of HL and lipoprotein lipase, the isolated cDNA was used to study the expression of HL gene in cld/cld mice. Northern blot analysis of total cellular RNA from livers of cld/cld and normal mice showed that there are two mRNA species for HL with the sizes of 1.8 and 1.9 kilobases in both groups. However, the mRNA for HL was more abundant in cld/cld than in normal mice. RNase A protection assay of HL mRNA suggested that the multiple mRNA species for HL in cld/cld and normal mice are generated by differential utilization of polyadenylation signals and that there is no mutation in the structural gene for HL in cld/cld mice. The present study supports our hypothesis that the defect of HL activity in cld/cld mice is caused by abnormal post translational modification or processing of the lipase.
Collapse
Affiliation(s)
- K Oka
- Laboratory of Molecular Genetics, Medlantic Research Foundation, Washington DC
| | | | | | | | | |
Collapse
|
32
|
Verhoeven AJ, Jansen H. Secretion of rat hepatic lipase is blocked by inhibition of oligosaccharide processing at the stage of glucosidase I. J Lipid Res 1990. [DOI: 10.1016/s0022-2275(20)42332-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Pepin D, Bossy D, Thomas G, Bereziat G, Chambaz J. Fate of fatty acids taken up as cholesteryl ester by rat hepatocytes in primary culture from high-density lipoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1006:52-8. [PMID: 2804071 DOI: 10.1016/0005-2760(89)90322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Primary cultures of rat hepatocytes were incubated in the presence of high-density lipoproteins (HDL) labelled with [1-14C]oleyl or [1-14C]linoleyl cholesteryl ester. Labelled HDL were prepared by selective delipidation with heptane, relipidation and sequential ultracentrifugations. Hepatocytes took up cholesteryl esters and cholesteryl ether their non-hydrolizable analog, at the same rate. The uptake increased with time, the cholesteryl ester/protein ratio and the amount of added HDL. It was not dependent on the nature of acyl chain or on the nature of the bond. The uptake did not depend on a specific interaction between HDL and cell membranes, since cholesteryl ester was taken up from HDL to the same extent as from albumin complexes. Linoleic and oleic acids released from cholesteryl esters taken up by hepatocytes were mainly reesterified into phosphatidylcholine and triacylglycerols. Linoleic acid was preferentially channelled into PC. A portion of these lipids were secreted by hepatocytes during a 24-h reincubation in a medium devoid of lipoprotein. Nearly the same amount of radioactivity was recovered in secreted phospholipids as in secreted triacylglycerols, in contrast with hepatocytes labelled with free fatty acids which secreted very little radioactivity as phospholipids. From these results and the high content in polyunsaturated fatty acids of cholesteryl esters, one can hypothesize that hepatic cholesteryl ester uptake may contribute to biliary phosphatidylcholine production, and therefore to polyunsaturated fatty acid sparing.
Collapse
Affiliation(s)
- D Pepin
- URA CNRS 1283, Laboratoire de Biochimie, CHU Saint-Antoine, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Burgaya F, Peinado J, Llobera M, Ramirez I. Hepatic endothelial lipase activity in neonatal rat liver. Biosci Rep 1989; 9:559-64. [PMID: 2804258 DOI: 10.1007/bf01119798] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatic endothelial lipase (HEL) activity is as high in the neonatal (1-day old) rat liver as in adults. Most of the HEL activity is located at the capillaries since 75% of the total activity is released by heparin or collagenase perfusion. The residual activity (non-releasable) is located in hepatocytes and not in hemopoietic cells, which are the major cell type in neonatal liver. Per mg of protein, the HEL activity is 50% higher in neonatal than in adult hepatocytes. We suggest that neonatal hepatocytes have an increased capacity to synthesize and secrete HEL activity, so maintaining a high activity in the whole organ. It might contribute to the hepatic uptake of cholesterol from circulating lipoproteins, in a period in which endogenous cholesterol synthesis is known to be inhibited in the liver.
Collapse
Affiliation(s)
- F Burgaya
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
|
36
|
Hixenbaugh EA, Sullivan TR, Strauss JF, Laposata EA, Komaromy M, Paavola LG. Hepatic Lipase in the Rat Ovary. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84986-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Persson B, Bengtsson-Olivecrona G, Enerbäck S, Olivecrona T, Jörnvall H. Structural features of lipoprotein lipase. Lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:39-45. [PMID: 2917565 DOI: 10.1111/j.1432-1033.1989.tb14518.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A structural homology between lipoprotein lipase, pancreatic lipase and hepatic lipase is known and indicates that all three lipases are members of a common protein family. Lipoprotein lipase and pancreatic lipase utilize small protein co-factors, apolipoprotein C-II and co-lipase, respectively, but comparisons reveal no homology between the co-factor molecules. Hence, they do not show the same relationship as their target enzymes. Neither do screenings detect any extensive similarities between lipoprotein lipase, serine hydrolases, or apolipoproteins. Scannings against data bank proteins show that a 105-residue segment of lipoprotein lipases exhibits a 35-40% residue identity with a sub-region of Drosophila vitellogenins. One fifth of the conserved amino acid residues (8 of 40) are glycine, a pattern which is typical of distantly related forms of protein families. This supports a true relationship between large segments of Drosophila vitellogenins and lipases. Physiological and functional aspects of the vitellogenin/lipoprotein lipase similarities are given. The region concerned is entirely within the N-terminal domain of lipoprotein lipase and constitutes the segment where the similarity to hepatic and pancreatic lipases is most pronounced. Within this lipase region a 10-residue putative lipid-binding site exists for which further similarities have been found to the otherwise not closely related lingual/gastric lipases, prokaryotic lipases and lecithin-cholesterol acyltransferase. Another segment in lipoprotein lipase, where the heparin-binding site has been mapped, exhibits a correlation between strength of heparin binding and extent of basic residues among members of the lipase family. It further exhibits weak similarities with the 'Zn-finger' DNA-binding segment of steroid hormone receptors and may indicate convergence in a binding interaction. Thus, a functional subdivision of lipoprotein lipase into different segments can be distinguished.
Collapse
Affiliation(s)
- B Persson
- Department of Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
38
|
Human hepatic lipase. Cloned cDNA sequence, restriction fragment length polymorphisms, chromosomal localization, and evolutionary relationships with lipoprotein lipase and pancreatic lipase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57271-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|