1
|
Dörr T. Bacterial physiology: A novel periplasmic glucan promotes cell envelope stress management. Curr Biol 2023; 33:R65-R67. [PMID: 36693310 DOI: 10.1016/j.cub.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A newly discovered pathway relying on the production and modification of periplasmic oligosaccharides is required for proper cell-envelope homeostasis and antibiotic resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Li F, Wang J, Jiang Y, Guo Y, Liu N, Xiao S, Yao L, Li J, Zhuo C, He N, Liu B, Zhuo C. Adaptive Evolution Compensated for the Plasmid Fitness Costs Brought by Specific Genetic Conflicts. Pathogens 2023; 12:pathogens12010137. [PMID: 36678485 PMCID: PMC9861728 DOI: 10.3390/pathogens12010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-carrying IncX3 plasmids is important in the transmission of carbapenem resistance in Escherichia coli. Fitness costs related to plasmid carriage are expected to limit gene exchange; however, the causes of these fitness costs are poorly understood. Compensatory mutations are believed to ameliorate plasmid fitness costs and enable the plasmid's wide spread, suggesting that such costs are caused by specific plasmid-host genetic conflicts. By combining conjugation tests and experimental evolution with comparative genetic analysis, we showed here that the fitness costs related to ndm/IncX3 plasmids in E. coli C600 are caused by co-mutations of multiple host chromosomal genes related to sugar metabolism and cell membrane function. Adaptive evolution revealed that mutations in genes associated with oxidative stress, nucleotide and short-chain fatty acid metabolism, and cell membranes ameliorated the costs associated with plasmid carriage. Specific genetic conflicts associated with the ndm/IncX3 plasmid in E. coli C600 involve metabolism and cell-membrane-related genes, which could be ameliorated by compensatory mutations. Collectively, our findings could explain the wide spread of IncX3 plasmids in bacterial genomes, despite their potential cost.
Collapse
Affiliation(s)
- Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ying Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Chuyue Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen Univesity, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| |
Collapse
|
3
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
4
|
Nilewski S, Varatnitskaya M, Masuch T, Kusnezowa A, Gellert M, Baumann AF, Lupilov N, Kusnezow W, Koch MH, Eisenacher M, Berkmen M, Lillig CH, Leichert LI. Functional metagenomics of the thioredoxin superfamily. J Biol Chem 2021; 296:100247. [PMID: 33361108 PMCID: PMC7949104 DOI: 10.1074/jbc.ra120.016350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/06/2022] Open
Abstract
Environmental sequence data of microbial communities now makes up the majority of public genomic information. The assignment of a function to sequences from these metagenomic sources is challenging because organisms associated with the data are often uncharacterized and not cultivable. To overcome these challenges, we created a rationally designed expression library of metagenomic proteins covering the sequence space of the thioredoxin superfamily. This library of 100 individual proteins represents more than 22,000 thioredoxins found in the Global Ocean Sampling data set. We screened this library for the functional rescue of Escherichia coli mutants lacking the thioredoxin-type reductase (ΔtrxA), isomerase (ΔdsbC), or oxidase (ΔdsbA). We were able to assign functions to more than a quarter of our representative proteins. The in vivo function of a given representative could not be predicted by phylogenetic relation but did correlate with the predicted isoelectric surface potential of the protein. Selected proteins were then purified, and we determined their activity using a standard insulin reduction assay and measured their redox potential. An unexpected gel shift of protein E5 during the redox potential determination revealed a redox cycle distinct from that of typical thioredoxin-superfamily oxidoreductases. Instead of the intramolecular disulfide bond formation typical for thioredoxins, this protein forms an intermolecular disulfide between the attacking cysteines of two separate subunits during its catalytic cycle. Our functional metagenomic approach proved not only useful to assign in vivo functions to representatives of thousands of proteins but also uncovered a novel reaction mechanism in a seemingly well-known protein superfamily.
Collapse
Affiliation(s)
- Sebastian Nilewski
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Marharyta Varatnitskaya
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Thorsten Masuch
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany; Protein Expression and Modification Division, New England Biolabs, Ipswich, Massachusetts, USA
| | - Anna Kusnezowa
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, Universität Greifswald, Greifswald, Germany
| | - Anne F Baumann
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Natalie Lupilov
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Witali Kusnezow
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Mehmet Berkmen
- Protein Expression and Modification Division, New England Biolabs, Ipswich, Massachusetts, USA
| | - Christopher H Lillig
- Institute for Medical Biochemistry and Molecular Biology, Universität Greifswald, Greifswald, Germany
| | - Lars I Leichert
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Meng J, Huang C, Huang X, Liu D, Han B, Chen J. Osmoregulated Periplasmic Glucans Transmit External Signals Through Rcs Phosphorelay Pathway in Yersinia enterocolitica. Front Microbiol 2020; 11:122. [PMID: 32117145 PMCID: PMC7013093 DOI: 10.3389/fmicb.2020.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023] Open
Abstract
Fast response to environmental changes plays a key role in the transmission and pathogenesis of Yersinia enterocolitica. Osmoregulated periplasmic glucans (OPGs) are known to be involved in environmental perception of several Enterobacteriaceae pathogens; however, the biological function of OPGs in Y. enterocolitica is still unclear. In this study, we investigated the role of OPGs in Y. enterocolitica by deleting the opgGH operon encoding enzymes responsible for OPGs biosynthesis. Complete loss of OPGs in the ΔopgGH mutant resulted in decreased motility, c-di-GMP production, biofilm formation and smaller cell size, whereas the overproduction of OPGs through restoration of opgGH expression promoted c-di-GMP/biofilm production and increased antibiotic resistance of Y. enterocolitica. Gene expression analysis revealed that opgGH deletion reduced transcription of flhDC, ftsAZ, hmsT and hmsHFRS genes regulated by the Rcs phosphorelay system, whereas additional deletion of rcs family genes (rcsF, rcsC, or rcsB) reversed this effect and restored motility and c-di-GMP/biofilm production but further reduced cell size. Furthermore, disruption of the Rcs phosphorelay increased the motility and promoted the induction of biofilm and c-di-GMP production regulated by OPGs through upregulating the expression of flhDC, hmsHFRS, and hmsT. However, deletion of genes encoding the EnvZ/OmpR phosphorelay downregulated the flhDC, hmsHFRS and hmsT expression, leading to the decreased motility and prevented the induction of biofilm and c-di-GMP production regulated by OPGs. These results indicated that Rcs phosphorelay had the effect on OPGs-mediated functional responses in Y. enterocolitica. Our findings disclose part of the biological role of OPGs and the underlying molecular mechanisms associated with Rcs system in the regulation of the pathogenic phenotype in Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Can Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dingyu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Caby M, Bontemps-Gallo S, Gruau P, Delrue B, Madec E, Lacroix JM. The EnvZ-OmpR Two-Component Signaling System Is Inactivated in a Mutant Devoid of Osmoregulated Periplasmic Glucans in Dickeya dadantii. Front Microbiol 2018; 9:2459. [PMID: 30425688 PMCID: PMC6218677 DOI: 10.3389/fmicb.2018.02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta-, and gamma-Proteobacteria. This polymer of glucose is required for full virulence of many pathogens including Dickeya dadantii (D. dadantii). The phytopathogenic enterobacterium D. dadantii causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in environment sensing. We previously demonstrated that (i) fluctuation of OPG concentration controlled the activation level of the RcsCDB system, and (ii) RcsCDB along with EnvZ/OmpR controlled the mechanism of OPG succinylation. These previous data lead us to explore whether OPGs are required for other two-component systems. In this study, we demonstrate that inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system is not controlled by OPG concentration but requires OPGs for proper activation.
Collapse
Affiliation(s)
- Marine Caby
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Peggy Gruau
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | | | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| |
Collapse
|
7
|
Amar A, Pezzoni M, Pizarro RA, Costa CS. New envelope stress factors involved in σ E activation and conditional lethality of rpoE mutations in Salmonella enterica. MICROBIOLOGY-SGM 2018; 164:1293-1307. [PMID: 30084765 DOI: 10.1099/mic.0.000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) can cause food- and water-borne illness with diverse clinical manifestations. One key factor for S. typhimurium pathogenesis is the alternative sigma factor σE, which is encoded by the rpoE gene and controls the transcription of genes required for outer-membrane integrity in response to alterations in the bacterial envelope. The canonical pathway for σE activation involves proteolysis of the antisigma factor RseA, which is triggered by unfolded outer-membrane porins (OMPs) and lipopolysaccharides (LPS) that have accumulated in the periplasm. This study reports new stress factors that are able to activate σE expression. We demonstrate that UVA radiation induces σE activity in a pathway that is dependent on the stringent response regulator ppGpp. Survival assays revealed that rpoE has a role in the defence against lethal UVA doses that is mediated by functions that are dependent on and independent of the alternative sigma factor RpoS. We also report that the envelope stress generated by phage infection requires a functional rpoE gene for optimal bacterial tolerance and that it is able to induce σE activity in an RseA-dependent fashion. σE activity is also induced by hypo-osmotic shock in the absence of osmoregulated periplasmic glucans (OPGs). It is known that the rpoE gene is not essential in S. typhimurium. However, we report here two cases of the conditional lethality of rpoE mutations in this micro-organism. We demonstrate that rpoE mutations are not tolerated in the absence of OPGs (at low to moderate osmolarity) or LPS O-antigen. The latter case resembles that of the prototypic Escherichia coli strain K12, which neither synthesizes a complete LPS nor tolerates null rpoE mutations.
Collapse
Affiliation(s)
- Agustina Amar
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Magdalena Pezzoni
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
8
|
Oetiker N, Norambuena R, Martínez-Bussenius C, Navarro CA, Amaya F, Álvarez SA, Paradela A, Jerez CA. Possible Role of Envelope Components in the Extreme Copper Resistance of the Biomining Acidithiobacillus ferrooxidans. Genes (Basel) 2018; 9:genes9070347. [PMID: 29996532 PMCID: PMC6070983 DOI: 10.3390/genes9070347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023] Open
Abstract
Acidithiobacillus ferrooxidans resists extremely high concentrations of copper. Strain ATCC 53993 is much more resistant to the metal compared with strain ATCC 23270, possibly due to the presence of a genomic island in the former one. The global response of strain ATCC 53993 to copper was analyzed using iTRAQ (isobaric tag for relative and absolute quantitation) quantitative proteomics. Sixty-seven proteins changed their levels of synthesis in the presence of the metal. On addition of CusCBA efflux system proteins, increased levels of other envelope proteins, such as a putative periplasmic glucan biosynthesis protein (MdoG) involved in the osmoregulated synthesis of glucans and a putative antigen O polymerase (Wzy), were seen in the presence of copper. The expression of A. ferrooxidansmdoG or wzy genes in a copper sensitive Escherichia coli conferred it a higher metal resistance, suggesting the possible role of these components in copper resistance of A. ferrooxidans. Transcriptional levels of genes wzy, rfaE and wzz also increased in strain ATCC 23270 grown in the presence of copper, but not in strain ATCC 53993. Additionally, in the absence of this metal, lipopolysaccharide (LPS) amounts were 3-fold higher in A. ferrooxidans ATCC 53993 compared with strain 23270. Nevertheless, both strains grown in the presence of copper contained similar LPS quantities, suggesting that strain 23270 synthesizes higher amounts of LPS to resist the metal. On the other hand, several porins diminished their levels in the presence of copper. The data presented here point to an essential role for several envelope components in the extreme copper resistance by this industrially important acidophilic bacterium.
Collapse
Affiliation(s)
- Nia Oetiker
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Rodrigo Norambuena
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Cristóbal Martínez-Bussenius
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Claudio A Navarro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| | - Fernando Amaya
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 7800003, Chile.
| | - Sergio A Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 7800003, Chile.
| | - Alberto Paradela
- Proteomics Laboratory, National Biotechnology Center, CSIC, 28049 Madrid, Spain.
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.
| |
Collapse
|
9
|
Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli. J Bacteriol 2017; 200:JB.00487-17. [PMID: 29109183 DOI: 10.1128/jb.00487-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction of lptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting that lptA41 affects LPS transport. Indeed, lptA41 is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors of lptA41 One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion in mlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation in opgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCE Lipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective in lptA that exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.
Collapse
|
10
|
Abstract
Among all the systems developed by enterobacteria to face osmotic stress, only osmoregulated periplasmic glucans (OPGs) were found to be modulated during osmotic fluxes. First detected in 1973 by E.P. Kennedy's group in a study of phospholipid turnover in Escherichia coli, OPGs have been shown across alpha, beta, and gamma subdivisions of the proteobacteria. Discovery of OPG-like compounds in the epsilon subdivision strongly suggested that the presence of periplasmic glucans is essential for almost all proteobacteria. This article offers an overview of the different classes of OPGs. Then, the biosynthesis of OPGs and their regulation in E. coli and other species are discussed. Finally, the biological role of OPGs is developed. Beyond structural function, OPGs are involved in pathogenicity, in particular, by playing a role in signal transduction pathways. Recently, OPG synthesis proteins have been suggested to control cell division and growth rate.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Pierre Bohin
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
11
|
Abstract
More than 5 decades of work support the idea that cell envelope synthesis, including the inward growth of cell division, is tightly coordinated with DNA replication and protein synthesis through central metabolism. Remarkably, no unifying model exists to account for how these fundamentally disparate processes are functionally coupled. Recent studies demonstrate that proteins involved in carbohydrate and nitrogen metabolism can moonlight as direct regulators of cell division, coordinate cell division and DNA replication, and even suppress defects in DNA replication. In this minireview, we focus on studies illustrating the intimate link between metabolism and regulation of peptidoglycan (PG) synthesis during growth and division, and we identify the following three recurring themes. (i) Nutrient availability, not growth rate, is the primary determinant of cell size. (ii) The degree of gluconeogenic flux is likely to have a profound impact on the metabolites available for cell envelope synthesis, so growth medium selection is a critical consideration when designing and interpreting experiments related to morphogenesis. (iii) Perturbations in pathways relying on commonly shared and limiting metabolites, like undecaprenyl phosphate (Und-P), can lead to pleotropic phenotypes in unrelated pathways.
Collapse
|
12
|
Bontemps-Gallo S, Lacroix JM. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:690-7. [PMID: 26265506 PMCID: PMC4618058 DOI: 10.1111/1758-2229.12325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 05/06/2023]
Abstract
This review emphasizes the biological roles of the osmoregulated periplasmic glucans (OPGs). Osmoregulated periplasmic glucans occur in almost all α-, β- and γ-Proteobacteria. This polymer of glucose is required for full virulence. The roles of the OPGs are complex and vary depending on the species. Here, we outline the four major roles of the OPGs through four different pathogenic and one symbiotic bacterial models (Dickeya dadantii, Salmonella enterica, Pseudomonas aeruginosa, Brucella abortus and Sinorhizobium meliloti). When periplasmic, the OPGs are a part of the signal transduction pathway and indirectly regulate genes involved in virulence. The OPGs can also be secreted. When outside of the cell, they interact directly with antibiotics to protect the bacterial cell or interact with the host cell to facilitate the invasion process. When OPGs are not found, as in the ε-Proteobacteria, OPG-like oligosaccharides are present. Their presence strengthens the evidence that OPGs play an important role in virulence.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA. Phone: +1 (406) 363-9259.
| | - Jean-Marie Lacroix
- Structural and Functional Glycobiology Unit, UMR CNRS-Lille1 8576, University of Lille, 59655 Villeneuve d’Ascq cedex, France. Phone: +33 3 20 43 65 92.
| |
Collapse
|
13
|
Hill NS, Buske PJ, Shi Y, Levin PA. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 2013; 9:e1003663. [PMID: 23935518 PMCID: PMC3723540 DOI: 10.1371/journal.pgen.1003663] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/08/2013] [Indexed: 11/18/2022] Open
Abstract
Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism. The observation that growth rate and nutrient availability strongly influence bacterial cell size was made over forty years ago. Yet, the molecular mechanisms responsible for this phenomenon have remained elusive. Using a genetic approach, we identified proteins responsible for increasing Escherichia coli cell size under nutrient-rich conditions. Our data indicate that OpgH, a glucosyltransferase involved in cell envelope biogenesis, interacts with FtsZ, a key component of the bacterial cell division machinery. In the presence of a modified sugar, UDP-glucose, OpgH interacts with FtsZ to delay the timing of division machinery assembly. Comparison of the E. coli pathway with the parallel Bacillus subtilis pathway illuminates a striking example of convergent evolution in which two highly divergent bacteria employ unrelated glucosyltransferases for an essential part of cell cycle regulation and reveals aspects of metabolic and physiological control that are potentially applicable to all forms of life.
Collapse
Affiliation(s)
- Norbert S. Hill
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Paul J. Buske
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Yue Shi
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.
Collapse
|
15
|
Kitagawa N, Shiota S, Shibata Y, Takeshita T, Yamashita Y. Characterization of MbrC involved in bacitracin resistance in Streptococcus mutans. FEMS Microbiol Lett 2011; 318:61-7. [PMID: 21306428 DOI: 10.1111/j.1574-6968.2011.02238.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Streptococcus mutans, a major etiological agent of dental caries, is resistant to bacitracin. Microarray analysis revealed that mbrA and mbrB, encoding a putative ATP-binding cassette transporter, are prominently induced in the presence of bacitracin. On the basis of the latest report that MbrC, a putative response regulator in a two-component signaling system, binds the promoter region of mbrA and thus regulates its transcription, we cut into the mechanism by generating a mutant MbrC (D(54) N-MbrC) that substituted asparagine for aspartate at position 54, the predicted phosphorylation site. MbrC, but not the mutant D(54) N-MbrC, showed affinity for a DNA probe that contained the hypothetical mbrA promoter sequence. Furthermore, we introduced a point mutation (D(54) N-MbrC) into UA159; this mutant strain exhibited neither mbrA induction nor resistance in the presence of bacitracin. These data suggest that the aspartate residue at position 54 of MbrC is a promising candidate for phosphorylation in a bacitracin-sensing system and indispensable for S. mutans bacitracin resistance.
Collapse
Affiliation(s)
- Norio Kitagawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
16
|
The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens. J Bacteriol 2010; 193:63-74. [PMID: 20971912 DOI: 10.1128/jb.00839-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade. In addition, a detailed analysis of wec cluster mutant strains, which provoke the disruption of the ECA biosynthesis at different levels of the pathway, suggests that the absence of the periplasmic ECA cyclic structure could constitute a potential signal detected by the RcsF-RcsCDB phosphorelay. We also identify SMA1167 as a member of the S. marcescens Rcs regulon and show that high osmolarity induces Rcs activity in this bacterium. These results provide a new perspective from which to understand the phylogenetic conservation of ECA among enterobacteria and the basis for the virulence attenuation detected in wec mutant strains in other pathogenic bacteria.
Collapse
|
17
|
Bouchart F, Boussemart G, Prouvost AF, Cogez V, Madec E, Vidal O, Delrue B, Bohin JP, Lacroix JM. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol 2010; 192:3484-90. [PMID: 20418397 PMCID: PMC2897653 DOI: 10.1128/jb.00143-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/14/2010] [Indexed: 11/20/2022] Open
Abstract
Dickeya dadantii is a pectinolytic phytopathogen enterobacterium that causes soft rot disease on a wide range of plant species. The virulence of D. dadantii involves several factors, including the osmoregulated periplasmic glucans (OPGs) that are general constituents of the envelope of proteobacteria. In addition to the loss of virulence, opg-negative mutants display a pleiotropic phenotype, including decreased motility and increased exopolysaccharide synthesis. A nitrosoguanidine-induced mutagenesis was performed on the opgG strain, and restoration of motility was used as a screen. The phenotype of the opg mutant echoes that of the Rcs system: high level activation of the RcsCD-RcsB phosphorelay is needed to activate exopolysaccharide synthesis and to repress motility, while low level activation is required for virulence in enterobacteria. Here, we show that mutations in the RcsCDB phosphorelay system restored virulence and motility in a D. dadantii opg-negative strain, indicating a relationship between the Rcs phosphorelay and OPGs.
Collapse
Affiliation(s)
- Franck Bouchart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Gilles Boussemart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Anne-France Prouvost
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Virginie Cogez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Olivier Vidal
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Brigitte Delrue
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Pierre Bohin
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
18
|
Costa CS, Pizarro RA, Antón DN. Influence of RpoS, cAMP-receptor protein, and ppGpp on expression of the opgGH operon and osmoregulated periplasmic glucan content of Salmonella enterica serovar Typhimurium. Can J Microbiol 2010; 55:1284-93. [PMID: 19940937 DOI: 10.1139/w09-086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A transcriptional fusion (opgG1::MudJ) to the opgGH operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) LT2, isolated by resistance to mecillinam, was used to study the influence of global regulators RpoS, ppGpp, and cAMP/cAMP-receptor protein (CRP) on expression of the opgGH operon and osmoregulated periplasmic glucan (OPG) content. Neither high growth medium osmolarity nor absence of ppGpp or CRP had important effects on opgG1::MudJ expression in exponential cultures. However, under the same conditions, OPG content was strongly decreased by high osmolarity or cAMP/CRP defectiveness, and reduced to a half by lack of ppGpp. In stationary cultures, high osmolarity as well as CRP loss caused significant descents in opgG1::MudJ expression that were compensated by inactivation of RpoS sigma factor. No effect of RpoS inactivation on OPG content was observed. It is concluded that opgGH expression in S. Typhimurium is only slightly affected by high osmolarity, but is inversely modulated by RpoS level. On the other hand, osmolarity and the cAMP/CRP global regulatory system appear to control OPG content, either directly or indirectly, mainly at the post-transcriptional level.
Collapse
Affiliation(s)
- Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Avda. General Paz 1499, 1650 San Martín, Argentina
| | | | | |
Collapse
|
19
|
Motility Revertants of opgGH Mutants of Salmonella enterica Serovar Typhimurium Remain Defective in Mice Virulence. Curr Microbiol 2009; 59:641-5. [DOI: 10.1007/s00284-009-9486-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|
20
|
Bhagwat AA, Jun W, Liu L, Kannan P, Dharne M, Pheh B, Tall BD, Kothary MH, Gross KC, Angle S, Meng J, Smith A. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology (Reading) 2009; 155:229-237. [DOI: 10.1099/mic.0.023747-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We purified osmoregulated periplasmic glucans (OPGs) fromSalmonella entericaserovar Typhimurium and found them to be composed of 100 % glucose with 2-linked glucose as the most abundant residue, with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structural genes for OPG biosynthesis,opgGandopgH, form a bicistronic operon, and insertion of a kanamycin resistance gene cassette into this operon resulted in a strain devoid of OPGs. TheopgGHmutant strain was impaired in motility and growth under low osmolarity conditions. TheopgGHmutation also resulted in a 2 log increase in the LD50in mice compared to the wild-type strain SL1344. Inability to synthesize OPGs had no significant impact on the organism's lipopolysaccharide pattern or its ability to survive antimicrobial peptides-, detergent-, pH- and nutrient-stress conditions. We observed that theopgGH-defective strain respired at a reduced rate under acidic growth conditions (pH 5.0) and had lower ATP levels compared to the wild-type strain. These data indicate that OPGs ofS.Typhimurium contribute towards mouse virulence as well as growth and motility under low osmolarity growth conditions.
Collapse
Affiliation(s)
- Arvind A. Bhagwat
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Won Jun
- Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD 20742-7521, USA
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Liu Liu
- Department of Food Science and Nutrition, University of Maryland, College Park, MD 20742-7521, USA
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Porteen Kannan
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Mahesh Dharne
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Benedict Pheh
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Ben D. Tall
- Food and Drug Administration, Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Mahendra H. Kothary
- Food and Drug Administration, Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Kenneth C. Gross
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-235, USA
| | - Scott Angle
- College of Agriculture, University of Maryland, College Park, MD 20742-7521, USA
| | - Jianghong Meng
- Department of Food Science and Nutrition, University of Maryland, College Park, MD 20742-7521, USA
| | - Allen Smith
- Diet Genomics and Immunology Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 002, BARC-W, Beltsville, MD 20705-2350, USA
| |
Collapse
|
21
|
Abstract
Undecaprenyl phosphate (C55-P) is an essential 55-carbon long-chain isoprene lipidinvolved in the biogenesis of bacterial cell wall carbohydrate polymers: peptidoglycan, O antigen, teichoic acids, and other cell surface polymers. It functions as a lipid carrier that allows the traffic of sugar intermediates across the plasma membrane, towards the periplasm,where the polymerization of the different cellwall components occurs. At the end of these processes, the lipid is released in a pyrophosphate form (C55-PP). C55-P arises from the dephosphorylation of C55-PP, which itself originates from either a recycling event or a de novo synthesis. In Escherichia coli, the formation of C55-PP is catalyzed by the essential UppS synthase, a soluble cis-prenyltransferase, whichadds eight isoprene units ontofarnesyl pyrophosphate. Severalapo- and halo-UppSthree-dimensional structures have provided a high level of understanding of this enzymatic step. The following dephosphorylationstep is required before the lipid carrier can accept a sugar unit at the cytoplasmic face of the membrane. Four integralmembrane proteins have been shown to catalyzethis reaction in E. coli:BacA and three members of the PAP2 super-family:YbjG, LpxT, and PgpB. None of these enzymes is essential,but the simultaneous inactivation of bacA, ybjG, and pgpB genes gave rise to a lethal phenotype, raising the question of the relevance of such a redundancy of activity. It was alsorecently shown that LpxTcatalyzes the specific transfer of the phosphate group arising from C55-PP to the lipidA moiety of lipopolysaccharides, leading to a lipid-A 1-diphosphate form whichaccounts for one-third of the total lipidA in wild-type E. coli cells. The active sites of LpxT, PgpB,andYbjG were shown to face the periplasm, suggesting that PAP2 enzymes arerather involved in C55-PP recycling. These recent discoveries have opened the way to the elucidation of the functional and structural characterization of these different phosphatases.
Collapse
|
22
|
Lindsey TL, Hagins JM, Sokol PA, Silo-Suh LA. Virulence determinants from a cystic fibrosis isolate of Pseudomonas aeruginosa include isocitrate lyase. MICROBIOLOGY-SGM 2008; 154:1616-1627. [PMID: 18524916 DOI: 10.1099/mic.0.2007/014506-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic lung infections caused by Pseudomonas aeruginosa are the leading cause of morbidity and mortality for cystic fibrosis (CF) patients. Adaptation of P. aeruginosa to the CF lung results in the loss of acute virulence determinants and appears to activate chronic virulence strategies in this pathogen. In order to identify such strategies, a random transposon mutagenesis was performed and 18 genes that were required for optimal infection of alfalfa seedlings by FRD1, a CF isolate of P. aeruginosa, were recognized. The largest subset of genes (seven of the 18), were associated with central carbon metabolism, including the gene that encodes isocitrate lyase (ICL), aceA. Because FRD1 is avirulent in animal infection models, we constructed an ICL mutant in P. aeruginosa strain PAO1 in order to assess the requirement of ICL in mammalian infection. The PAO1 ICL mutant was less virulent in the rat lung infection model, indicating that ICL is required for the pathogenesis of P. aeruginosa in mammals. Furthermore, FRD1 showed increased ICL activity and expression of an aceA : : lacZ fusion compared to PAO1. We suggest that upregulation of ICL occurred during adaptation of FRD1 to the CF lung and that some of the novel virulence mechanisms employed by FRD1 to infect alfalfa seedlings may be the same mechanisms P. aeruginosa relies upon to persist within human niches.
Collapse
Affiliation(s)
| | - Jessica M Hagins
- Department of Biological Sciences, Auburn University, AL 36849, USA
| | - Pamela A Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, AB T2N 4N1, Canada
| | - Laura A Silo-Suh
- Department of Biological Sciences, Auburn University, AL 36849, USA
| |
Collapse
|
23
|
A comprehensive genetic characterization of bacterial motility. PLoS Genet 2007; 3:1644-60. [PMID: 17941710 PMCID: PMC1976333 DOI: 10.1371/journal.pgen.0030154] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/25/2007] [Indexed: 01/05/2023] Open
Abstract
We have developed a powerful experimental framework that combines competitive selection and microarray-based genetic footprinting to comprehensively reveal the genetic basis of bacterial behaviors. Application of this method to Escherichia coli motility identifies 95% of the known flagellar and chemotaxis genes, and reveals three dozen novel loci that, to varying degrees and through diverse mechanisms, affect motility. To probe the network context in which these genes function, we developed a method that uncovers genome-wide epistatic interactions through comprehensive analyses of double-mutant phenotypes. This allows us to place the novel genes within the context of signaling and regulatory networks, including the Rcs phosphorelay pathway and the cyclic di-GMP second-messenger system. This unifying framework enables sensitive and comprehensive genetic characterization of complex behaviors across the microbial biosphere. Bacteria thrive in a limitless range of extreme environments, accompanied by exotic metabolisms and sophisticated behaviors. However, our modern molecular understanding of bacteria comes from studies of a limited range of phenotypes in a handful of model organisms such as E. coli and Bacillus subtilis. With the availability of thousands of sequenced bacterial genomes, there is now an urgent need for methods that rapidly and comprehensively reveal the genetic basis of phenotypes across the microbial biosphere. To this end, we have developed a genome-wide experimental framework that quantifies the degree to which every gene in the genome contributes to a phenotype of interest, and reveals the organization of genes within regulatory networks and signaling pathways. We show here that the application of this methodology to E. coli swimming and surface motility reveals essentially all the previously known components of flagellar-mediated chemotaxis on the time scale of weeks. Remarkably, we also identify three dozen additional novel loci that operate through diverse mechanisms to affect a behavior that was assumed to be completely characterized. The speed, ease, and broad applicability of this framework should greatly accelerate the global analysis of a wide range of uncharacterized bacterial behaviors.
Collapse
|
24
|
Fredericks CE, Shibata S, Aizawa SI, Reimann SA, Wolfe AJ. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 2006; 61:734-47. [PMID: 16776655 DOI: 10.1111/j.1365-2958.2006.05260.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As part of our attempt to map the impact of acetyl phosphate (acetyl approximately P) on the entire network of two-component signal transduction pathways in Escherichia coli, we asked whether the influence of acetyl approximately P on capsular biosynthesis and flagellar biogenesis depends on the Rcs phosphorelay. To do so, we performed a series of epistasis experiments: mutations in the components of the pathway that controls acetyl approximately P levels were combined with mutations in components of the Rcs phosphorelay. Cells that did not synthesize acetyl approximately P produced no capsule under normally permissive conditions, while those that accumulated acetyl approximately P synthesized capsule under conditions previously considered to be non-permissive. Acetyl approximately P-dependent capsular biosynthesis required both RcsB and RcsA, while the lack of RcsC restored capsular biosynthesis to acetyl approximately P-deficient cells. Similarly, acetyl approximately P-sensitive repression of flagellar biogenesis was suppressed by the loss of RcsB (but not of RcsA), while it was enhanced by the lack of RcsC. Taken together, these results show that both acetyl approximately P-sensitive activation of capsular biosynthesis and acetyl approximately P-sensitive repression of flagellar biogenesis require the Rcs phosphorelay. Moreover, they provide strong genetic support for the hypothesis that RcsC can function as either a kinase or a phosphatase dependent on environmental conditions. Finally, we learned that RcsB and RcsC inversely regulated the timing of flagellar biogenesis: rcsB mutants elaborated flagella prematurely, while rcsC mutants delayed their display of flagella. Temporal control of flagella biogenesis implicates the Rcs phosphorelay (and, by extension, acetyl approximately P) in the transition of motile, planktonic individuals into sessile biofilm communities.
Collapse
Affiliation(s)
- Christine E Fredericks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
RcsC, RcsB, and RcsA were first identified as a sensor kinase, a response regulator, and an auxiliary regulatory protein, respectively, regulating the genes of capsular polysaccharide synthesis. Recent advances have demonstrated that these proteins are part of a complex phosphorelay, in which phosphate travels from the histidine kinase domain in RcsC to a response regulator domain in the same protein; from there to a phosphotransfer protein, RcsD; and from there to RcsB. In addition to capsule synthesis, which requires the unstable regulatory protein RcsA, RcsB also stimulates transcription of a small RNA, RprA; the cell division gene ftsZ; and genes encoding membrane and periplasmic proteins, including the osmotically inducible genes osmB and osmC. The Rcs system appears to play an important role in the later stages of biofilm development; induction of Rcs signaling by surfaces is consistent with this role.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
26
|
El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J Biol Chem 2005; 280:18689-95. [PMID: 15778224 DOI: 10.1074/jbc.m412277200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacA gene product of Escherichia coli was recently purified to near homogeneity and identified as an undecaprenyl pyrophosphate phosphatase activity (El Ghachi, M., Bouhss, A., Blanot, D., and Mengin-Lecreulx, D. (2004) J. Biol. Chem. 279, 30106-30113). The enzyme function is to synthesize the carrier lipid undecaprenyl phosphate that is essential for the biosynthesis of peptidoglycan and other cell wall components. The inactivation of the chromosomal bacA gene was not lethal but led to a significant, but not total, depletion of undecaprenyl pyrophosphate phosphatase activity in E. coli membranes, suggesting that other(s) protein(s) should exist and account for the residual activity and viability of the mutant strain. Here we report that inactivation of two additional genes, ybjG and pgpB, is required to abolish growth of the bacA mutant strain. Overexpression of either of these genes, or of a fourth identified one, yeiU, is shown to result in bacitracin resistance and increased levels of undecaprenyl pyrophosphate phosphatase activity, as previously observed for bacA. A thermosensitive conditional triple mutant delta bacA,delta ybjG,delta pgpB in which the expression of bacA is impaired at 42 degrees C was constructed. This strain was shown to accumulate soluble peptidoglycan nucleotide precursors and to lyse when grown at the restrictive temperature, due to the depletion of the pool of undecaprenyl phosphate and consequent arrest of cell wall synthesis. This work provides evidence that two different classes of proteins exhibit undecaprenyl pyrophosphate phosphatase activity in E. coli and probably other bacterial species; they are the BacA enzyme and several members from a superfamily of phosphatases that, different from BacA, share in common a characteristic phosphatase sequence motif.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Unite Mixte de Recherche 8619 CNRS, Université Paris-Sud, 91405 Orsay, France
| | | | | | | |
Collapse
|
27
|
Hanoulle X, Rollet E, Clantin B, Landrieu I, Odberg-Ferragut C, Lippens G, Bohin JP, Villeret V. Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol 2004; 342:195-205. [PMID: 15313617 DOI: 10.1016/j.jmb.2004.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/06/2004] [Accepted: 07/06/2004] [Indexed: 11/17/2022]
Abstract
Osmoregulated periplasmic glucans (OPGs) G protein (OpgG) is required for OPGs biosynthesis. OPGs from Escherichia coli are branched glucans, with a backbone of beta-1,2 glucose units and with branches attached by beta-1,6 linkages. In Proteobacteria, OPGs are involved in osmoprotection, biofilm formation, virulence and resistance to antibiotics. Despite their important biological implications, enzymes synthesizing OPGs are poorly characterized. Here, we report the 2.5 A crystal structure of OpgG from E.coli. The structure was solved using a selenemethionine derivative of OpgG and the multiple anomalous diffraction method (MAD). The protein is composed of two beta-sandwich domains connected by one turn of 3(10) helix. The N-terminal domain (residues 22-388) displays a 25-stranded beta-sandwich fold found in several carbohydrate-related proteins. It exhibits a large cleft comprising many aromatic and acidic residues. This putative binding site shares some similarities with enzymes such as galactose mutarotase and glucodextranase, suggesting a potential catalytic role for this domain in OPG synthesis. On the other hand, the C-terminal domain (residues 401-512) has a seven-stranded immunoglobulin-like beta-sandwich fold, found in many proteins where it is mainly implicated in interactions with other molecules. The structural data suggest that OpgG is an OPG branching enzyme in which the catalytic activity is located in the large N-terminal domain and controlled via the smaller C-terminal domain.
Collapse
Affiliation(s)
- Xavier Hanoulle
- UMR 8525 CNRS, Institut de Biologie de Lille, Université de Lille II, 1 rue du Professeur Calmette, BP447, 59021, France.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D. The bacA Gene of Escherichia coli Encodes an Undecaprenyl Pyrophosphate Phosphatase Activity. J Biol Chem 2004; 279:30106-13. [PMID: 15138271 DOI: 10.1074/jbc.m401701200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacA gene, the overexpression of which results in bacitracin resistance, was inactivated and shown to be non-essential for growth of Escherichia coli. It was proposed earlier that the bacA gene product may confer resistance to the antibiotic by phosphorylation of undecaprenol (Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., and Allen, C. M. (1983) J. Bacteriol. 175, 3784-3789). In the present work, this extremely hydrophobic membrane protein was overproduced and purified to near homogeneity. The analysis of its catalytic properties clearly demonstrated that the purified BacA protein exhibited undecaprenyl pyrophosphate phosphatase activity but not undecaprenol phosphokinase activity. This finding was perfectly consistent with the mechanism of action of bacitracin that consists in the sequestration of undecaprenyl pyrophosphate, the BacA enzyme substrate. The level of undecaprenyl pyrophosphate phosphatase was increased by 280-fold in cells carrying bacA on a multicopy expression plasmid. It was decreased by approximately 75% but was not completely abolished in a bacA disruption mutant, suggesting that BacA is the main E. coli undecaprenyl pyrophosphate phosphatase but that other protein(s) exhibiting such an activity should exist to account for the residual activity and viability of the mutant strain. This is the first gene encoding undecaprenyl pyrophosphate phosphatase identified to date. Considering its newly identified function, we propose to rename the bacA gene uppP.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Bâtiment 430, 91405 Orsay, France
| | | | | | | |
Collapse
|
29
|
Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, Gutierrez C, Cam K. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 2003; 49:823-32. [PMID: 12864862 DOI: 10.1046/j.1365-2958.2003.03601.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes involved in flagellum synthesis, motility and chemotaxis in Escherichia coli are expressed in a hierarchical fashion. At the top of the hierarchy lies the master regulator FlhDC, required for the expression of the whole set of genes. The operon flhDC is controlled by numerous regulators including H-NS, CRP, EnvZ/OmpR, QseBC and LrhA. In the present work, we report that the flhDC operon is also negatively regulated by the His-Asp phosphorelay system RcsCDB. The regulation is potentiated by the RcsB cofactor RcsA. Genetic analysis indicates that an RcsAB box, located downstream of the promoter, is required for the regulation. The binding of RcsB and RcsA to this site was demonstrated by gel retardation and DNase I protection assays. In addition, mutation analysis suggests that RcsA-specific determinants lie in the right part of the 'RcsAB box'.
Collapse
Affiliation(s)
- Anne Francez-Charlot
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rajagopal S, Eis N, Bhattacharya M, Nickerson KW. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli. FEMS Microbiol Lett 2003; 223:25-31. [PMID: 12798996 DOI: 10.1016/s0378-1097(03)00323-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied the role of membrane-derived oligosaccharides (MDOs) in sodium dodecyl sulfate (SDS) resistance by Escherichia coli. MDOs are also known as osmoregulated periplasmic glucans. Wild-type E. coli MC4100 grew in the presence of 10% SDS whereas isogenic mdoA and mdoB mutants could not grow above 0.5% SDS. Similarly, E. coli DF214, a mutant (pgi, zwf) unable to grow on glucose, exhibited conditional sensitivity to SDS in that it grew in gluconate and glucose or galactose but not in gluconate and mannose or sorbose. DF214 requires both gluconate and glucose/galactose because the gluconate is used for energy production, while glucose/galactose is used for MDO synthesis. Finally, the fate of E. coli cells subjected to SDS shock either during growth or when used as an inoculum is dependent on the presence or absence of sufficient MDOs. In both cases, cells grown under high-osmolarity (low-MDO) conditions were rapidly lysed by 5% SDS. Based on findings from a wild-type E. coli (MC4100), two mdo mutants and strain DF214 we conclude that MDOs are required for SDS resistance.
Collapse
Affiliation(s)
- Soumitra Rajagopal
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0666, USA.
| | | | | | | |
Collapse
|
31
|
Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T. Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 2002; 46:3756-64. [PMID: 12435673 PMCID: PMC132740 DOI: 10.1128/aac.46.12.3756-3764.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is resistant to bacitracin, which is a peptide antibiotic produced by certain species of Bacillus. The purpose of this study was to clarify the bacitracin resistance mechanism of S. mutans. We cloned and sequenced two S. mutans loci that are involved in bacitracin resistance. The rgp locus, which is located downstream from rmlD, contains six rgp genes (rgpA to rgpF) that are involved in rhamnose-glucose polysaccharide (RGP) synthesis in S. mutans. The inactivation of RGP synthesis in S. mutans resulted in an approximately fivefold-higher sensitivity to bacitracin relative to that observed for the wild-type strain Xc. The second bacitracin resistance locus comprised four mbr genes (mbrA, mbrB, mbrC, and mbrD) and was located immediately downstream from gtfC, which encodes the water-insoluble glucan-synthesizing enzyme. Although the bacitracin sensitivities of mutants that had defects in flanking genes were similar to that of the parental strain Xc, mutants that were defective in mbrA, mbrB, mbrC, or mbrD were about 100 to 120 times more sensitive to bacitracin than strain Xc. In addition, a mutant that was defective in all of the mbrABCD genes and rgpA was more sensitive to bacitracin than either the RGP or Mbr mutants. We conclude that RGP synthesis is related to bacitracin resistance in S. mutans and that the mbr genes modulate resistance to bacitracin via an unknown mechanism that is independent of RGP synthesis.
Collapse
Affiliation(s)
- Hiromasa Tsuda
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
32
|
Page F, Altabe S, Hugouvieux-Cotte-Pattat N, Lacroix JM, Robert-Baudouy J, Bohin JP. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 2001; 183:3134-41. [PMID: 11325942 PMCID: PMC95214 DOI: 10.1128/jb.183.10.3134-3141.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.
Collapse
Affiliation(s)
- F Page
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Large amounts of osmoregulated periplasmic glucans (OPGs) are found in the periplasmic space of Proteobacteria. Four families of OPGs are described on the basis of structural features of the polyglucose backbone. Depending on the species considered, OPGs can be modified to various extent by a variety of substituents. Genes governing the backbone synthesis are identified in a limited number of species. They belong to three unrelated families. OPG synthesis is subject to osmoregulation and feedback control. Osmoregulation can occur at the level of gene expression and/or at the level of enzyme activity. Mutants defective in OPG synthesis have a highly pleiotropic phenotype, indicative of an overall alteration of their envelope properties. Mutants of this kind were obtained as attenuated or avirulent derivatives of plant or animals pathogen. Thus, OPGs appear to be important intrinsic components of the Gram-negative bacterial envelope, which can be essential in extreme conditions found in nature, and especially when bacteria must interact with an eukaryotic host.
Collapse
Affiliation(s)
- J P Bohin
- Laboratoire de Chimie Biologique, CNRS UMR 8576, Université des Sciences et Technologies de Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
34
|
Sato M, Machida K, Arikado E, Saito H, Kakegawa T, Kobayashi H. Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl Environ Microbiol 2000; 66:943-7. [PMID: 10698756 PMCID: PMC91927 DOI: 10.1128/aem.66.3.943-947.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.
Collapse
Affiliation(s)
- M Sato
- Faculty of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
36
|
Ebel W, Vaughn GJ, Peters HK, Trempy JE. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 1997; 179:6858-61. [PMID: 9352941 PMCID: PMC179620 DOI: 10.1128/jb.179.21.6858-6861.1997] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Capsule gene (cps) expression, which normally occurs at low levels in Escherichia coli lon+ cells, increased 38-fold in lon+ cells carrying a Tn10::delta kan insertion mapping to 24 min on the E. coli chromosome. Null mutations in rcsA, rcsB, or rcsC abolished the effect of the Tn10::delta kan insertion. Sequencing of both sides of the Tn10::delta kan insertion localized the insertion to the previously reported mdoH gene, which encodes a protein involved in biosynthesis of membrane-derived oligosaccharides (MDOs). A model suggesting that the periplasmic levels of MDOs act to signal RcsC to activate cps expression is proposed.
Collapse
Affiliation(s)
- W Ebel
- Department of Microbiology, Oregon State University, Corvallis 97331-3804, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The osmolality of rhizosphere soil water is expected to be elevated in relation to bulk-soil water osmolality as a result of the exclusion of solutes by plant roots during water uptake, the release of plant root exudates, and the production of exopolymers by plant roots and rhizobacteria. In contrast, the osmolality of water within highly hydrated bulk soil is low (less than 50 Osm/kg); thus the ability to adapt to elevated osmolality is likely to be important for successful rhizosphere colonization by rhizobacteria. The present review focuses on the osmoadaptive responses of three gram-negative rhizobacterial genera: Rhizobium, Azospirillum, and Pseudomonas. Specifically, we examine the compatible solutes and osmoprotectants utilized by various species within these genera. The adaptation of rhizobacteria to hypoosmotic environments is also examined in the present review. In particular, we focus on the biosynthesis and accumulation of periplasmic glucans by rhizobacteria. Finally, the relationship between rhizobacterial osmoadaptation and selected plant-microbe interactions is considered.
Collapse
Affiliation(s)
- K J Miller
- Department of Food Science, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
38
|
Coronado C, S�nchez-And�jar B, Palomares AJ. Rhizobium extracellular structures in the symbiosis. World J Microbiol Biotechnol 1996; 12:127-36. [DOI: 10.1007/bf00364677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Shin S, Park C. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 1995; 177:4696-702. [PMID: 7642497 PMCID: PMC177235 DOI: 10.1128/jb.177.16.4696-4702.1995] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella.
Collapse
Affiliation(s)
- S Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yusong-Ku, Taejon
| | | |
Collapse
|
40
|
|
41
|
Pollock TJ, Thorne L, Yamazaki M, Mikolajczak MJ, Armentrout RW. Mechanism of bacitracin resistance in gram-negative bacteria that synthesize exopolysaccharides. J Bacteriol 1994; 176:6229-37. [PMID: 7928993 PMCID: PMC196963 DOI: 10.1128/jb.176.20.6229-6237.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Four representative species from three genera of gram-negative bacteria that secrete exopolysaccharides acquired resistance to the antibiotic bacitracin by stopping synthesis of the exopolysaccharide. Xanthomonas campestris, Sphingomonas strains S-88 and NW11, and Escherichia coli K-12 secrete xanthan gum, sphingans S-88 and NW11, and colanic acid, respectively. The gumD gene in X. campestris is required to attach glucose-P to C55-isoprenyl phosphate, the first step in the assembly of xanthan. A recombinant plasmid carrying the gumD gene of X. campestris restored polysaccharide synthesis to bacitracin-resistant exopolysaccharide-negative mutants of X. campestris and Sphingomonas strains. Similarly, a newly cloned gene (spsB) from strain S-88 restored xanthan synthesis to the same X. campestris mutants. However, the intergeneric complementation did not extend to mutants of E. coli that were both resistant to bacitracin and nonproducers of colanic acid. The genetic results also suggest mechanisms for assembling the sphingans which have commercial potential as gelling and viscosifying agents.
Collapse
|
42
|
Shi W, Bogdanov M, Dowhan W, Zusman DR. The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 1993; 175:7711-4. [PMID: 8244943 PMCID: PMC206932 DOI: 10.1128/jb.175.23.7711-7714.1993] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutants of Escherichia coli defective in phosphatidylserine synthase (encoded by pss) and phosphatidylserine decarboxylase (encoded by psd) make cell membranes deficient in phosphatidylethanolamine. In this report we show that wild-type pss and psd genes are required for motility and chemotaxis. Null mutants or strains with temperature-sensitive pss or psd mutations grown at high temperature (35 degrees C) were nonmotile. They lacked flagella and showed reduced rates of transcription of the flhD master operon (encoding FlhD and FlhC), the fliA operon (encoding sigma F), and the fliC operon (encoding flagellin). At low temperature (25 degrees C), the temperature-sensitive mutant cells showed motility and chemotaxis but at reduced levels. The extent of the motility and chemotaxis defects in the mutants was correlated with the amount of phosphatidylethanolamine in the membranes, suggesting a link between membrane phospholipid composition and expression of the flagellum chemotaxis regulon.
Collapse
Affiliation(s)
- W Shi
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
43
|
Loubens I, Debarbieux L, Bohin A, Lacroix JM, Bohin JP. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol 1993; 10:329-40. [PMID: 7934824 DOI: 10.1111/j.1365-2958.1993.tb01959.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Membrane-derived oligosaccharides (MDO) of Escherichia coli are representative members of a family of glucans found in the periplasmic space of Gram-negative bacteria. The two genes forming the mdoGH operon are necessary for the synthesis of MDO. The nucleotide sequence (4759 bp) and the transcriptional start of this operon were determined. Both gene products were further characterized by gene fusion analysis. MdoG is a 56 kDa periplasmic protein whose function remains to be determined. MdoH, whose presence was shown to be necessary for normal glucosyl transferase activity, is a 97 kDa protein spanning the cytoplasmic membrane. To our surprise, these proteins are not homologous to the periplasmic glucan biosynthetic enzymes previously characterized in the Rhizobiaceae family. However, a considerable homology (69% identical nucleotides out of 2816) was discovered between mdoGH and the two genes present at the hrpM locus of the phytopathogenic bacterium Pseudomonas syringae pv. syringae. Functions of these genes remain mysterious but they are known to be required for both the expression of disease symptoms on host plants and the development of the hypersensitive reaction on non-host plants (Mills and Mukhopadhyay, 1990). These results confirm the importance of periplasmic glucans for the physiological ecology of Gram-negative bacteria.
Collapse
Affiliation(s)
- I Loubens
- Laboratoire de Chimie Biologique, UMR 111 du CNRS, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
44
|
Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM. Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol 1993; 175:3784-9. [PMID: 8389741 PMCID: PMC204795 DOI: 10.1128/jb.175.12.3784-3789.1993] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An Escherichia coli genomic library was constructed in order to facilitate selection for genes which confer bacitracin resistance through amplification. One of the plasmids from the library, plasmid pXV62, provided a high level of bacitracin resistance for E. coli. Deletion and nucleotide sequence analyses of bacitracin resistance plasmid pXV62 revealed that a single open reading frame, designated the bacA gene, was sufficient for antibiotic resistance. The bacA gene mapped to approximately 67 min on the E. coli chromosome by proximity to a previously mapped locus. The deduced amino acid sequence of the bacA-encoded protein suggests an extremely hydrophobic protein of 151 amino acids, approximately 65% of which were nonpolar amino acids. E. coli cells containing plasmid pXV62 have increased isoprenol kinase activity. The physical characteristics of the deduced protein and enhanced lipid kinase activity suggest that the bacA gene may confer resistance to bacitracin by phosphorylation of undecaprenol.
Collapse
Affiliation(s)
- B D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610
| | | | | | | | | |
Collapse
|
45
|
Shi W, Li C, Louise CJ, Adler J. Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol 1993; 175:2236-40. [PMID: 8468283 PMCID: PMC204509 DOI: 10.1128/jb.175.8.2236-2240.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli lacks flagella when grown in tryptone broth in the presence of various adverse conditions (C. Li, C. J. Louise, W. Shi, and J. Adler, J. Bacteriol. 175:2229-2235, 1993). Now, the synthesis, rather than the degradation, of flagellin was shown to be inhibited. Studies of transcriptional fusions of flagellar operons to the lacZ gene revealed that transcription of the flagellar genes was reduced in cells grown under these adverse conditions. Increasing gene dosage of the flhD operon by a plasmid partially suppressed the nonflagellation caused by some adverse conditions. The signal which shuts off the synthesis of flagella under adverse conditions remains to be discovered. This shutting-off process does not result from catabolite repression or from signals from the chemotaxis system.
Collapse
Affiliation(s)
- W Shi
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
46
|
Weissborn AC, Rumley MK, Kennedy EP. Isolation and characterization of Escherichia coli mutants blocked in production of membrane-derived oligosaccharides. J Bacteriol 1992; 174:4856-9. [PMID: 1320618 PMCID: PMC206289 DOI: 10.1128/jb.174.14.4856-4859.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report a new procedure for the facile selection of mutants of Escherichia coli that are blocked in the production of membrane-derived oligosaccharides. Four phenotypic classes were identified, including two with a novel array of characteristics. The mutations mapped to two genetic loci. Mutations in the mdoA region near 23 min are in two distinct genes, only one of which is needed for the membrane-localized glucosyltransferase that catalyzes the synthesis of the beta-1,2-glucan backbone of membrane-derived oligosaccharides. Another set of mutations mapped near 27 min closely linked to osmZ; these appear to be in the galU gene.
Collapse
Affiliation(s)
- A C Weissborn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
47
|
Mechanisms of regulation of the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49770-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Geiger O, Russo FD, Silhavy TJ, Kennedy EP. Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength. J Bacteriol 1992; 174:1410-3. [PMID: 1370954 PMCID: PMC206439 DOI: 10.1128/jb.174.4.1410-1413.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria grown under conditions of low osmolarity accumulate significant amounts of periplasmic glucans, membrane-derived oligosaccharides (MDO) in Escherichia coli and cyclic glucans in members of the family Rhizobiaceae. It was reported previously (W. Fiedlder and H. Rotering, J. Biol. Chem. 263:14684-14689, 1988) that mdoA mutants unable to synthesize MDO show a number of altered phenotypes, among them a decreased expression of OmpF and an increased expression of OmpC, when grown in a Bacto Peptone medium of low osmolarity and low ionic strength. Although we confirm the findings of Fiedler and Rotering, we find that the regulation of OmpF and OmpC expression in mdoA mutants is normal in cells grown on other low-osmolarity media, eliminating the possibility that MDO itself might control porin expression. Our data suggest that a certain minimal ionic strength in the periplasm is needed for normal porin regulation. In media containing very low levels of salt, this may be contributed by anionic MDO.
Collapse
Affiliation(s)
- O Geiger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
49
|
Abstract
Extensive genetic and biochemical studies in the last two decades have elucidated almost completely the framework of synthesis and turnover of quantitatively major phospholipids in E. coli. The knowledge thus accumulated has allowed to formulate a novel working model that assumes sophisticated regulatory mechanisms in E. coli to achieve the optimal phospholipid composition and content in the membranes. E. coli also appears to possess the ability to adapt phospholipid synthesis to various cellular conditions. Understanding of the functional aspects of E. coli phospholipids is now advancing significantly and it will soon be able to explain many of the hitherto unclear cell's activities on the molecular basis. Phosphatidylglycerol is believed to play the central role both in metabolism and functions of phospholipids in E. coli. The results obtained with E. coli should undoubtedly be helpful in the study of more complicated phospholipid metabolism and functions in higher organisms.
Collapse
Affiliation(s)
- I Shibuya
- Department of Biochemistry, Saitama University, Urawa, Japan
| |
Collapse
|
50
|
Lacroix JM, Loubens I, Tempête M, Menichi B, Bohin JP. The mdoA locus of Escherichia coli consists of an operon under osmotic control. Mol Microbiol 1991; 5:1745-53. [PMID: 1834913 DOI: 10.1111/j.1365-2958.1991.tb01924.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Escherichia coli, the 5 kb mdoA locus is involved in the osmotically controlled biosynthesis of periplasmic membrane-derived oligosaccharides (MDOs). The structure of this locus was analysed by in vitro cassette insertion, transposon mutagenesis, and gene-fusion analysis. A 'neo' cassette, derived from the neomycin phosphotransferase II region of transposon Tn5, was inserted into mdoA, borne by a multicopy plasmid. This plasmid was shown to complement two previously described mdoA mutations, depending on the orientation of the exogenous gene. Thus, the gene altered by these mutations could be expressed under the control of the exogenous promoter. Moreover, the 'neo' cassette inactivated another, uncharacterized, mdo gene, because when this insertion was transferred into the chromosome MDO synthesis was abolished. The existence of a second gene was confirmed by complementation analysis with a collection of Tn1000 insertions into mdoA. Two groups were defined, and the two genes are organized into an operon (mdoGH). This conclusion was reached because Tn1000 insertions in the first gene displayed a polar effect on the expression of the second gene. An active gene fusion was obtained on a multicopy plasmid between the beginning of mdoH and lacZ. The hybrid beta-galactosidase activity followed the same osmotically controlled response as that described for of MDO synthesis. This regulation was unaffected by the presence, or absence, of MDOs in the periplasm. Finally, the amount of mdoA-specific mRNAs, determined by dot blot hybridization, decreased when the osmolarity of the growth medium increased.
Collapse
Affiliation(s)
- J M Lacroix
- Institute de Microbiologie, URA 1354 CNRS, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|