1
|
Miyamoto T, Saitoh Y, Katane M, Sekine M, Homma H. YgeA is involved in L- and D-homoserine metabolism in Escherichia coli. FEMS Microbiol Lett 2022; 369:6754731. [PMID: 36214408 DOI: 10.1093/femsle/fnac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022] Open
Abstract
Noncanonical D-amino acids are involved in peptidoglycan and biofilm metabolism in bacteria. Previously, we identified amino acid racemases with broad substrate specificity, including YgeA from Escherichia coli, which strongly prefers homoserine as a substrate. In this study, we investigated the functions of this enzyme in vivo. When wild-type and ygeA-deficient E. coli strains were cultured in minimal medium containing D-homoserine, the D-homoserine level was significantly higher in the ygeA-deficient strain than in the wild-type strain, in which it was almost undetectable. Additionally, D-homoserine was detected in YgeA-expressed E. coli cells cultured in minimal medium containing L-homoserine. The growth of the ygeA-deficient strain was significantly impaired in minimal medium with or without supplemental D-homoserine, while L-methionine, L-threonine or L-isoleucine, which are produced via L-homoserine, restored the growth impairment. Furthermore, the wild-type strain formed biofilms significantly more efficiently than the ygeA-deficient strain. Addition of L- or D-homoserine significantly suppressed biofilm formation in the wild-type strain, whereas this addition had no significant effect in the ygeA-deficient strain. Together, these data suggest that YgeA acts as an amino acid racemase and plays a role in L- and D-homoserine metabolism in E. coli.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
2
|
Liu Y, Chen H, Van Treuren W, Hou BH, Higginbottom SK, Dodd D. Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites. Nat Microbiol 2022; 7:695-706. [PMID: 35505245 PMCID: PMC9089323 DOI: 10.1038/s41564-022-01109-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
Gut bacteria face a key problem in how they capture enough energy to sustain their growth and physiology. The gut bacterium Clostridium sporogenes obtains its energy by utilizing amino acids in pairs, coupling the oxidation of one to the reduction of another-the Stickland reaction. Oxidative pathways produce ATP via substrate-level phosphorylation, whereas reductive pathways are thought to balance redox. In the present study, we investigated whether these reductive pathways are also linked to energy generation and the production of microbial metabolites that may circulate and impact host physiology. Using metabolomics, we find that, during growth in vitro, C. sporogenes produces 15 metabolites, 13 of which are present in the gut of C. sporogenes-colonized mice. Four of these compounds are reductive Stickland metabolites that circulate in the blood of gnotobiotic mice and are also detected in plasma from healthy humans. Gene clusters for reductive Stickland pathways suggest involvement of electron transfer proteins, and experiments in vitro demonstrate that reductive metabolism is coupled to ATP formation and not just redox balance. Genetic analysis points to the broadly conserved Rnf complex as a key coupling site for energy transduction. Rnf complex mutants show aberrant amino acid metabolism in a defined medium and are attenuated for growth in the mouse gut, demonstrating a role of the Rnf complex in Stickland metabolism and gut colonization. Our findings reveal that the production of circulating metabolites by a commensal bacterium within the host gut is linked to an ATP-yielding redox process.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - William Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bi-Huei Hou
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Miyamoto T, Saitoh Y, Katane M, Sekine M, Sakai-Kato K, Homma H. Acetylornithine aminotransferase TM1785 performs multiple functions in the hyperthermophile Thermotoga maritima. FEBS Lett 2021; 595:2931-2941. [PMID: 34747014 DOI: 10.1002/1873-3468.14222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/02/2023]
Abstract
The hyperthermophilic bacterium Thermotoga maritima peptidoglycan contains unusual d-lysine alongside typical d-alanine and d-glutamate. We previously identified lysine racemase and threonine dehydratase, but knowledge of d-amino acid metabolism remains limited. Herein, we identified and characterized T. maritima acetylornithine aminotransferase TM1785. The enzyme was most active towards acetyl-l-ornithine, but also utilized l-glutamate, l-ornithine and acetyl-l-lysine as amino donors, and 2-oxoglutarate was the preferred amino acceptor. TM1785 also displayed racemase activity towards four amino acids and lyase activity towards l-cysteine, but no dehydratase activity towards l-serine, l-threonine or corresponding d-amino acids. Catalytic efficiency (kcat /Km ) was highest for aminotransferase activity and lowest for racemase activity. TM1785 is a novel acetylornithine aminotransferase associated with l-arginine biosynthesis that possesses two additional distinct activities.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
4
|
Identification and biochemical characterization of threonine dehydratase from the hyperthermophile Thermotoga maritima. Amino Acids 2021; 53:903-915. [PMID: 33938999 DOI: 10.1007/s00726-021-02993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/21/2021] [Indexed: 01/14/2023]
Abstract
The peptidoglycan of the hyperthermophile Thermotoga maritima contains an unusual component, D-lysine (D-Lys), in addition to the typical D-alanine (D-Ala) and D-glutamate (D-Glu). In a previous study, we identified a Lys racemase that is presumably associated with D-Lys biosynthesis. However, our understanding of D-amino acid metabolism in T. maritima and other bacteria remains limited, although D-amino acids in the peptidoglycan are crucial for preserving bacterial cell structure and resistance to environmental threats. Herein, we characterized enzymatic and structural properties of TM0356 that shares a high amino acid sequence identity with serine (Ser) racemase. The results revealed that TM0356 forms a tetramer with each subunit containing a pyridoxal 5'-phosphate as a cofactor. The enzyme did not exhibit racemase activity toward various amino acids including Ser, and dehydratase activity was highest toward L-threonine (L-Thr). It also acted on L-Ser and L-allo-Thr, but not on the corresponding D-amino acids. The catalytic mechanism did not follow typical Michaelis-Menten kinetics; it displayed a sigmoidal dependence on substrate concentration, with highest catalytic efficiency (kcat/K0.5) toward L-Thr. Interestingly, dehydratase activity was insensitive to allosteric regulators L-valine and L-isoleucine (L-Ile) at low concentrations, while these L-amino acids are inhibitors at high concentrations. Thus, TM0356 is a biosynthetic Thr dehydratase responsible for the conversion of L-Thr to α-ketobutyrate and ammonia, which is presumably involved in the first step of the biosynthesis of L-Ile.
Collapse
|
5
|
The selenophosphate synthetase, selD, is important for Clostridioides difficile physiology. J Bacteriol 2021; 203:e0000821. [PMID: 33820795 DOI: 10.1128/jb.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The endospore-forming pathogen, Clostridioides difficile, is the leading cause of antibiotic-associated diarrhea and is a significant burden on the community and healthcare. C. difficile, like all forms of life, incorporates selenium into proteins through a selenocysteine synthesis pathway. The known selenoproteins in C. difficile are involved in a metabolic process that uses amino acids as the sole carbon and nitrogen source (Stickland metabolism). The Stickland metabolic pathway requires the use of two selenium-containing reductases. In this study, we built upon our initial characterization of the CRISPR-Cas9-generated selD mutant by creating a CRISPR-Cas9-mediated restoration of the selD gene at the native locus. Here, we use these CRISPR-generated strains to analyze the importance of selenium-containing proteins on C. difficile physiology. SelD is the first enzyme in the pathway for selenoprotein synthesis and we found that multiple aspects of C. difficile physiology were affected (e.g., growth, sporulation, and outgrowth of a vegetative cell post-spore germination). Using RNAseq, we identified multiple candidate genes which likely aid the cell in overcoming the global loss of selenoproteins to grow in medium which is favorable for using Stickland metabolism. Our results suggest that the absence of selenophosphate (i.e., selenoprotein synthesis) leads to alterations to C. difficile physiology so that NAD+ can be regenerated by other pathways.Importance C. difficile is a Gram-positive, anaerobic gut pathogen which infects thousands of individuals each year. In order to stop the C. difficile lifecycle, other non-antibiotic treatment options are in urgent need of development. Towards this goal, we find that a metabolic process used by only a small fraction of the microbiota is important for C. difficile physiology - Stickland metabolism. Here, we use our CRISPR-Cas9 system to 'knock in' a copy of the selD gene into the deletion strain to restore selD at its native locus. Our findings support the hypothesis that selenium-containing proteins are important for several aspects of C. difficile physiology - from vegetative growth to spore formation and outgrowth post-germination.
Collapse
|
6
|
Miyamoto T, Homma H, Miyamoto T. D-Amino acid metabolism in bacteria. J Biochem 2021; 170:5-13. [PMID: 33788945 DOI: 10.1093/jb/mvab043] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
7
|
Miyamoto T, Moriya T, Homma H, Oshima T. Enzymatic properties and physiological function of glutamate racemase from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140461. [PMID: 32474108 DOI: 10.1016/j.bbapap.2020.140461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
Abstract
d-Amino acids are physiologically important components of peptidoglycan in the bacterial cell wall, maintaining cell structure and aiding adaptation to environmental changes through peptidoglycan remodelling. Therefore, the biosynthesis of d-amino acids is essential for bacteria to adapt to different environmental conditions. The peptidoglycan of the extremely thermophilic bacterium Thermus thermophilus contains d-alanine (d-Ala) and d-glutamate (d-Glu), but its d-amino acid metabolism remains poorly understood. Here, we investigated the enzyme activity and function of the product of the TTHA1643 gene, which is annotated to be a Glu racemase in the T. thermophilus HB8 genome. Among 21 amino acids tested, TTHA1643 showed highly specific activity toward Glu as the substrate. The catalytic efficiency (kcat/Km) of TTHA1643 toward d- and l-Glu was comparable; however, the kcat value was 18-fold higher for l-Glu than for d-Glu. Temperature and pH profiles showed that the racemase activity of TTHA1643 is high under physiological conditions for T. thermophilus growth. To assess physiological relevance, we constructed a TTHA1643-deficient strain (∆TTHA1643) by replacing the TTHA1643 gene with the thermostable hygromycin resistance gene. Growth of the ∆TTHA1643 strain in synthetic medium without d-Glu was clearly diminished relative to wild type, although the TTHA1643 deletion was not lethal, suggesting that alternative d-Glu biosynthetic pathways may exist. The deterioration in growth was restored by adding d-Glu to the culture medium, showing that d-Glu is required for normal growth of T. thermophilus. Collectively, our findings show that TTHA1643 is a Glu racemase and has the physiological function of d-Glu production in T. thermophilus.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiyuki Moriya
- Institute of Environmental Microbiology, Kyowa Kako Co., 2-15-5 Tadao, Machida, Tokyo 194-0035, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tairo Oshima
- Institute of Environmental Microbiology, Kyowa Kako Co., 2-15-5 Tadao, Machida, Tokyo 194-0035, Japan.
| |
Collapse
|
8
|
Reed AD, Nethery MA, Stewart A, Barrangou R, Theriot CM. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible ( bai) Operon. J Bacteriol 2020; 202:e00039-20. [PMID: 32179626 PMCID: PMC7221253 DOI: 10.1128/jb.00039-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that carry the bile acid-inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study, we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the abilities of four commensal Clostridia carrying the bai operon (Clostridium scindens VPI 12708, C. scindens ATCC 35704, Clostridium hiranonis, and Clostridium hylemonae) to convert cholate (CA) to deoxycholate (DCA) in vitro, and we determined whether the amount of DCA produced was sufficient to inhibit the growth of a clinically relevant C. difficile strain. We also investigated the competitive relationships between these commensals and C. difficile using an in vitro coculture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain dependent, correlated with the production of ∼2 mM DCA, and increased the expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important.IMPORTANCE Commensal Clostridia carrying the bai operon, such as C. scindens, have been associated with protection against CDI; however, the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that carry the bai operon and affect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.
Collapse
Affiliation(s)
- A D Reed
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M A Nethery
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - A Stewart
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina, USA
| | - R Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - C M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Fischer C, Ahn YC, Vederas JC. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity. Nat Prod Rep 2020; 36:1687-1705. [PMID: 30994146 DOI: 10.1039/c9np00017h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to March 2019 Amino acid racemases and epimerases are key enzymes that invert the configuration of common amino acids and supply many corresponding d-isomers in living organisms. Some d-amino acids are inherently bioactive, whereas others are building blocks for important biomolecules, for example lipid II, the bacterial cell wall precursor. Peptides containing them have enhanced proteolytic stability and can act as important recognition elements in mammalian systems. Selective inhibition of certain amino acid racemases (e.g. glutamate racemase) is believed to offer a promising target for new antibacterial drugs effective against pathogens resistant to current antibiotics. Many amino acid racemases employ imine formation with pyridoxal phosphate (PLP) as a cofactor to accelerate the abstraction of the alpha proton. However, the group reviewed herein achieves racemization of free amino acids without the use of cofactors or metals, and uses a thiol/thiolate pair for deprotonation and reprotonation. All bacteria and higher plants contain such enzymes, for example diaminopimelate epimerase, which is required for lysine biosynthesis in these organisms. This process cannot be accomplished without an enzyme catalyst as the acidities of a thiol and the substrate α-hydrogen are inherently mismatched by at least 10 orders of magnitude. This review describes the structural and mechanistic studies on PLP-independent racemases and the evolving view of key enzymatic machinery that accomplishes these remarkable transformations.
Collapse
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
| | | | | |
Collapse
|
10
|
Nie X, Dong W, Yang C. Genomic reconstruction of σ 54 regulons in Clostridiales. BMC Genomics 2019; 20:565. [PMID: 31288763 PMCID: PMC6615313 DOI: 10.1186/s12864-019-5918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The σ54 factor controls unique promoters and interacts with a specialized activator (enhancer binding proteins [EBP]) for transcription initiation. Although σ54 is present in many Clostridiales species that have great importance in human health and biotechnological applications, the cellular processes controlled by σ54 remain unknown. Results For systematic analysis of the regulatory functions of σ54, we performed comparative genomic reconstruction of transcriptional regulons of σ54 in 57 species from the Clostridiales order. The EBP-binding DNA motifs and regulated genes were identified for 263 EBPs that constitute 39 distinct groups. The reconstructed σ54 regulons contain the genes involved in fermentation and amino acid catabolism. The predicted σ54 binding sites in the genomes of Clostridiales spp. were verified by in vitro binding assays. To our knowledge, this is the first report about direct regulation of the Stickland reactions and butyrate and alcohols synthesis by σ54 and the respective EBPs. Considerable variations were demonstrated in the sizes and gene contents of reconstructed σ54 regulons between different Clostridiales species. It is proposed that σ54 controls butyrate and alcohols synthesis in solvent-producing species, regulates autotrophic metabolism in acetogenic species, and affects the toxin production in pathogenic species. Conclusions This study reveals previously unrecognized functions of σ54 and provides novel insights into the regulation of fermentation and amino acid metabolism in Clostridiales species, which could have potential applications in guiding the treatment and efficient utilization of these species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5918-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenyue Dong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
11
|
Cystathionine β-lyase is involved in d-amino acid metabolism. Biochem J 2018; 475:1397-1410. [PMID: 29592871 DOI: 10.1042/bcj20180039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine β-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine β-lyase is a multifunctional enzyme with three different activities.
Collapse
|
12
|
König S, Marco H, Gäde G. D-Proline: Comment to "An overview on D-amino acids". Amino Acids 2017; 50:359-361. [PMID: 29128958 DOI: 10.1007/s00726-017-2511-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/08/2017] [Indexed: 11/29/2022]
Abstract
An excellent 2017 review in this journal about D-amino acids by Genchi aims for a comprehensive representation of the current state of knowledge. Unfortunately, information about both D-proline and proline racemase is almost entirely missing. In our investigations into D/L-Pro-containing neuropeptides in cicadas, we have performed literature surveys in this context. Proline racemases in bacteria are known since 1957; their function has been studied mostly in prokaryotes and, more recently, proline racemase was identified in the unicellular eukaryotic parasite Trypanosoma cruzi. Published data on D-proline and/or proline racemase in other species are rare or non-existent.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149, Münster, Germany.
| | - Heather Marco
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Sangavai C, Chellapandi P. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering. ACTA ACUST UNITED AC 2017; 16:32-43. [PMID: 29167757 PMCID: PMC5686429 DOI: 10.1016/j.btre.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023]
Abstract
Model-driven systems engineering has been more fascinating process for microbial biofuel production. Clostridium sticklandii is a potential strain for the solventogenesis and acidogenesis. The present review provides an insight for the protein catabolism-directed biofuel production.
Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways.
Collapse
Affiliation(s)
- C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
14
|
Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017; 52:674-695. [PMID: 28901199 DOI: 10.1080/10409238.2017.1373741] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.
Collapse
Affiliation(s)
- Lindsey R F Backman
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Michael A Funk
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christopher D Dawson
- c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Catherine L Drennan
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
15
|
Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis. Amino Acids 2017; 49:1885-1894. [DOI: 10.1007/s00726-017-2486-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|
16
|
Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol 2015; 18:1673-85. [DOI: 10.1111/1462-2920.13072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Sara B. Hernández
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
17
|
Zhao S, Sakai A, Zhang X, Vetting MW, Kumar R, Hillerich B, San Francisco B, Solbiati J, Steves A, Brown S, Akiva E, Barber A, Seidel RD, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. eLife 2014; 3. [PMID: 24980702 PMCID: PMC4113996 DOI: 10.7554/elife.03275] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023] Open
Abstract
Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes. DOI:http://dx.doi.org/10.7554/eLife.03275.001 DNA molecules are polymers in which four nucleotides—guanine, adenine, thymine, and cytosine—are arranged along a sugar backbone. The sequence of these four nucleotides along the DNA strand determines the genetic code of the organism, and can be deciphered using various genome sequencing techniques. Microbial genomes are particularly easy to sequence as they contain fewer than several million nucleotides, compared with the 3 billion or so nucleotides that are present in the human genome. Reading a genome sequence is straight forward, but predicting the physiological functions of the proteins encoded by the genes in the sequence can be challenging. In a process called genome annotation, the function of protein is predicted by comparing the relevant gene to the genes of proteins with known functions. However, microbial genomes and proteins are hugely diverse and over 50% of the microbial genomes that have been sequenced have not yet been related to any physiological function. With thousands of microbial genomes waiting to be deciphered, large scale approaches are needed. Zhao et al. take advantage of a particular characteristic of microbial genomes. DNA sequences that code for two proteins required for the same task tend to be closer to each other in the genome than two sequences that code for unrelated functions. Operons are an extreme example; an operon is a unit of DNA that contains several genes that are expressed as proteins at the same time. Zhao et al. have developed a bioinformatic method called the genome neighbourhood network approach to work out the function of proteins based on their position relative to other proteins in the genome. When applied to the proline racemase superfamily (PRS), which contains enzymes with similar sequences that can catalyze three distinct chemical reactions, the new approach was able to assign a function to the majority of proteins in a public database of PRS enzymes, and also revealed new members of the PRS family. Experiments confirmed that the proteins behaved as predicted. The next challenge is to develop the genome neighbourhood network approach so that it can be applied to more complex systems. DOI:http://dx.doi.org/10.7554/eLife.03275.002
Collapse
Affiliation(s)
- Suwen Zhao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Ayano Sakai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xinshuai Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Ritesh Kumar
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Brandan Hillerich
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jose Solbiati
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Adam Steves
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Shoshana Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Alan Barber
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Ronald D Seidel
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
18
|
Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol 2014; 98:5363-74. [PMID: 24752840 DOI: 10.1007/s00253-014-5726-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022]
Abstract
Recent work has shed light on the abundance and diversity of D-amino acids in bacterial extracellular/periplasmic molecules, bacterial cell culture, and bacteria-rich environments. Within the extracellular/periplasmic space, D-amino acids are necessary components of peptidoglycan, and disruption of their synthesis leads to cell death. As such, enzymes responsible for D-amino acid synthesis are promising targets for antibacterial compounds. Further, bacteria are shown to incorporate a diverse collection of D-amino acids into their peptidoglycan, and differences in D-amino acid incorporation may occur in response to differences in growth conditions. Certain D-amino acids can accumulate to millimolar levels in cell culture, and their synthesis is proposed to foretell movement from exponential growth phase into stationary phase. While enzymes responsible for synthesis of D-amino acids necessary for peptidoglycan (D-alanine and D-glutamate) have been characterized from a number of different bacteria, the D-amino acid synthesis enzymes characterized to date cannot account for the diversity of D-amino acids identified in bacteria or bacteria-rich environments. Free D-amino acids are synthesized by racemization or epimerization at the α-carbon of the corresponding L-amino acid by amino acid racemase or amino acid epimerase enzymes. Additionally, D-amino acids can be synthesized by stereospecific amination of α-ketoacids. Below, we review the roles of D-amino acids in bacterial physiology and biotechnology, and we describe the known mechanisms by which they are synthesized by bacteria.
Collapse
|
19
|
Inhibition of serine and proline racemases by substrate-product analogues. Bioorg Med Chem Lett 2014; 24:390-3. [DOI: 10.1016/j.bmcl.2013.10.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022]
|
20
|
Horng H, Benet LZ. The nonenzymatic reactivity of the acyl-linked metabolites of mefenamic acid toward amino and thiol functional group bionucleophiles. Drug Metab Dispos 2013; 41:1923-33. [PMID: 23975029 DOI: 10.1124/dmd.113.053223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mefenamic acid (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug, is metabolized into the chemically-reactive MFA-1-O-acyl-glucuronide (MFA-1-O-G), MFA-acyl-adenylate (MFA-AMP), and the MFA-S-acyl-coenzyme A (MFA-CoA), all of which are electrophilic and capable of acylating nucleophilic sites on biomolecules. In this study, we investigate the nonenzymatic ability of each MFA acyl-linked metabolite to transacylate amino and thiol functional groups on the acceptor biomolecules Gly, Tau, l-glutathione (GSH), and N-acetylcysteine (NAC). In vitro incubations with each of the MFA acyl-linked metabolites (1 μM) in buffer under physiologic conditions with Gly, Tau, GSH, or NAC (10 mM) revealed that MFA-CoA was 11.5- and 19.5-fold more reactive than MFA-AMP toward the acylation of cysteine-sulfhydryl groups of GSH and NAC, respectively. However, MFA-AMP was more reactive toward both Gly and Tau, 17.5-fold more reactive toward the N-acyl-amidation of taurine than its corresponding CoA thioester, while MFA-CoA displayed little reactivity toward glycine. Additionally, mefenamic acid-S-acyl-glutathione (MFA-GSH) was 5.6- and 108-fold more reactive toward NAC than MFA-CoA and MFA-AMP, respectively. In comparison with MFA-AMP and MFA-CoA, MFA-1-O-G was not significantly reactive toward all four bionucleophiles. MFA-AMP, MFA-CoA, MFA-1-O-G, MFA-GSH, and mefenamic acid-taurine were also detected in rat in vitro hepatocyte MFA (100 μM) incubations, while mefenamic acid-glycine was not. These results demonstrate that MFA-AMP selectively reacts with the amino functional groups of glycine and lysine nonenzymatically, MFA-CoA selectively reacts nonenzymatically with the thiol functional groups of GSH and NAC, and MFA-GSH reacts with the thiol functional group of GSH nonenzymatically, all of which may potentially elicit an idiosyncratic toxicity in vivo.
Collapse
Affiliation(s)
- Howard Horng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
21
|
Horng H, Benet LZ. Characterization of the acyl-adenylate linked metabolite of mefenamic Acid. Chem Res Toxicol 2013; 26:465-76. [PMID: 23402341 DOI: 10.1021/tx300520j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mefenamic acid, (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug (NSAID), is metabolized into the chemically reactive conjugates MFA-1-O-acyl-glucuronide (MFA-1-O-G) and MFA-S-acyl-CoA (MFA-CoA), which are both implicated in the formation of MFA-S-acyl-glutathione (MFA-GSH) conjugates, protein-adduct formation, and thus the potential toxicity of the drug. However, current studies suggest that an additional acyl-linked metabolite may be implicated in the formation of MFA-GSH. In the present study, we investigated the ability of MFA to become bioactivated into the acyl-linked metabolite, mefenamyl-adenylate (MFA-AMP). In vitro incubations in rat hepatocytes with MFA (100 μM), followed by LC-MS/MS analyses of extracts, led to the detection of MFA-AMP. In these incubations, the initial rate of MFA-AMP formation was rapid, leveling off at a maximum concentration of 90.1 nM (20 s), while MFA-GSH formation increased linearly, reaching a concentration of 1.7 μM after 60 min of incubation. In comparison, MFA-CoA was undetectable in incubation extracts until the 4 min time point, achieving a concentration of 45.6 nM at the 60 min time point, and MFA-1-O-G formation was linear, attaining a concentration of 42.2 μM after 60 min of incubation. In vitro incubation in buffer with the model nucleophile glutathione (GSH) under physiological conditions showed MFA-AMP to be reactive toward GSH, but 11-fold less reactive than MFA-CoA, while MFA-1-O-G exhibited little reactivity. However, in the presence of glutathione-S-transferase (GST), MFA-AMP mediated formation of MFA-GSH increased 6-fold, while MFA-CoA mediated formation of MFA-GSH only increased 1.4-fold. Collectively, in addition to the MFA-1-O-G, these results demonstrate that mefenamic acid does become bioactivated by acyl-CoA synthetase enzyme(s) in vitro in rat hepatocytes into the reactive transacylating derivatives MFA-AMP and MFA-CoA, both of which contribute to the transacylation of GSH and may be involved in the formation of protein adducts and potentially elicit an idiosyncratic toxicity.
Collapse
Affiliation(s)
- Howard Horng
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, CA, USA
| | | |
Collapse
|
22
|
Abstract
Clostridium difficile, a proteolytic Gram-positive anaerobe, has emerged as a significant nosocomial pathogen. Stickland fermentation reactions are thought to be important for growth of C. difficile and appear to influence toxin production. In Stickland reactions, pairs of amino acids donate and accept electrons, generating ATP and reducing power in the process. Reduction of the electron acceptors proline and glycine requires the d-proline reductase (PR) and the glycine reductase (GR) enzyme complexes, respectively. Addition of proline in the medium increases the level of PR protein but decreases the level of GR. We report the identification of PrdR, a protein that activates transcription of the PR-encoding genes in the presence of proline and negatively regulates the GR-encoding genes. The results suggest that PrdR is a central metabolism regulator that controls preferential utilization of proline and glycine to produce energy via the Stickland reactions.
Collapse
|
23
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
24
|
Weinitschke S, Hollemeyer K, Kusian B, Bowien B, Smits THM, Cook AM. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J Biol Chem 2010; 285:35249-54. [PMID: 20693281 PMCID: PMC2975148 DOI: 10.1074/jbc.m110.127043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/05/2010] [Indexed: 11/06/2022] Open
Abstract
Bacterial degradation of sulfoacetate, a widespread natural product, proceeds via sulfoacetaldehyde and requires a considerable initial energy input. Whereas the fate of sulfoacetaldehyde in Cupriavidus necator (Ralstonia eutropha) H16 is known, the pathway from sulfoacetate to sulfoacetaldehyde is not. The genome sequence of the organism enabled us to hypothesize that the inducible pathway, which initiates sau (sulfoacetate utilization), involved a four-gene cluster (sauRSTU; H16_A2746 to H16_A2749). The sauR gene, divergently orientated to the other three genes, probably encodes the transcriptional regulator of the presumed sauSTU operon, which is subject to inducible transcription. SauU was tentatively identified as a transporter of the major facilitator superfamily, and SauT was deduced to be a sulfoacetate-CoA ligase. SauT was a labile protein, but it could be separated and shown to generate AMP and an unknown, labile CoA-derivative from sulfoacetate, CoA, and ATP. This unknown compound, analyzed by MALDI-TOF-MS, had a relative molecular mass of 889.7, which identified it as protonated sulfoacetyl-CoA (calculated 889.6). SauS was deduced to be sulfoacetaldehyde dehydrogenase (acylating). The enzyme was purified 175-fold to homogeneity and characterized. Peptide mass fingerprinting confirmed the sauS locus (H16_A2747). SauS converted sulfoacetyl-CoA and NADPH to sulfoacetaldehyde, CoA, and NADP(+), thus confirming the hypothesis.
Collapse
Affiliation(s)
- Sonja Weinitschke
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- the Institute of Biochemical Engineering, Saarland University, D-66041 Saarbrücken, Germany
| | - Bernhard Kusian
- the Institute of Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany, and
| | - Botho Bowien
- the Institute of Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany, and
| | - Theo H. M. Smits
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
- Agroscope Changins-Wädenswil, Swiss Federal Research Station, CH-8820 Wädenswil, Switzerland
| | - Alasdair M. Cook
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
25
|
Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol 2009; 75:5161-6. [PMID: 19502445 DOI: 10.1128/aem.00074-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A lysine racemase (lyr) gene was isolated from a soil metagenome by functional complementation for the first time by using Escherichia coli BCRC 51734 cells as the host and d-lysine as the selection agent. The lyr gene consisted of a 1,182-bp nucleotide sequence encoding a protein of 393 amino acids with a molecular mass of about 42.7 kDa. The enzyme exhibited higher specific activity toward lysine in the l-lysine-to-d-lysine direction than in the reverse reaction.
Collapse
|
26
|
Rubinstein A, Major DT. Catalyzing Racemizations in the Absence of a Cofactor: The Reaction Mechanism in Proline Racemase. J Am Chem Soc 2009; 131:8513-21. [DOI: 10.1021/ja900716y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Rubinstein
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
27
|
Karlsson S, Burman LG, Åkerlund T. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. MICROBIOLOGY-SGM 2008; 154:3430-3436. [PMID: 18957596 DOI: 10.1099/mic.0.2008/019778-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Certain amino acids, and cysteine in particular, promptly blocked toxin expression in Clostridium difficile strain VPI 10463 when added to late-exponential-phase peptone-yeast cultures, i.e. prior to normal induction of toxins A and B. Glucose reduced toxin yields by 80-fold, but only when supplemented at inoculation. Forty upregulated C. difficile proteins were identified during maximum toxin expression, and most of these were enzymes involved in energy exchange, e.g. succinate, CO/folate and butyrate metabolism. Transcription of tcdA (toxin operon) and folD (CO/folate operon) was induced by 20- and 10-fold, respectively, and with strikingly similar kinetics between OD 0.8 and 1.2. The sigma factors tcdR and sigH were upregulated simultaneously with tcdA and folD (3.5-fold increase of mRNA level), whereas transcription of tcdC, codY, sigB and sigL showed little or no correlation with that of tcdA and folD. The results suggest a connection between toxin expression, alternative energy metabolism and initial sporulation events in C. difficile.
Collapse
Affiliation(s)
- Sture Karlsson
- Karolinska Institute, Microbiology and Tumor Biology Center, S-171 77 Stockholm, Sweden.,Swedish Institute for Infectious Disease Control, Department of Bacteriology, S-171 82 Solna, Sweden
| | - Lars G Burman
- Swedish Institute for Infectious Disease Control, Department of Bacteriology, S-171 82 Solna, Sweden
| | - Thomas Åkerlund
- Swedish Institute for Infectious Disease Control, Department of Bacteriology, S-171 82 Solna, Sweden
| |
Collapse
|
28
|
Stenta M, Calvaresi M, Altoè P, Spinelli D, Garavelli M, Bottoni A. The Catalytic Activity of Proline Racemase: A Quantum Mechanical/Molecular Mechanical Study. J Phys Chem B 2007; 112:1057-9. [DOI: 10.1021/jp7104105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Stenta
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Piero Altoè
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Domenico Spinelli
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy, and Dipartimento di Chimica Organica “A. Mangini”, Università di Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
29
|
Adams E. Catalytic aspects of enzymatic racemization. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 44:69-138. [PMID: 5862 DOI: 10.1002/9780470122891.ch3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Jackson S, Calos M, Myers A, Self WT. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. J Bacteriol 2006; 188:8487-95. [PMID: 17041035 PMCID: PMC1698225 DOI: 10.1128/jb.01370-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile, a proteolytic strict anaerobe, has emerged as a clinically significant nosocomial pathogen in recent years. Pathogenesis is due to the production of lethal toxins, A and B, members of the large clostridial cytotoxin family. Although it has been established that alterations in the amino acid content of the growth medium affect toxin production, the molecular mechanism for this observed effect is not yet known. Since there is a paucity of information on the amino acid fermentation pathways used by this pathogen, we investigated whether Stickland reactions might be at the heart of its bioenergetic pathways. Growth of C. difficile on Stickland pairs yielded large increases in cell density in a limiting basal medium, demonstrating that these reactions are tied to ATP production. Selenium supplementation was required for this increase in cell yield. Analysis of genome sequence data reveals genes encoding the protein components of two key selenoenzyme reductases, glycine reductase and d-proline reductase (PR). These selenoenzymes were expressed upon the addition of the corresponding Stickland acceptor (glycine, proline, or hydroxyproline). Purification of the selenoenzyme d-proline reductase revealed a mixed complex of PrdA and PrdB (SeCys-containing) proteins. PR utilized only d-proline but not l-hydroxyproline, even in the presence of an expressed and purified proline racemase. PR was found to be independent of divalent cations, and zinc was a potent inhibitor of PR. These results show that Stickland reactions are key to the growth of C. difficile and that the mechanism of PR may differ significantly from that of previously studied PR from nonpathogenic species.
Collapse
Affiliation(s)
- Sarah Jackson
- Department of Molecular Biology and Microbiology, Burnett College of Biomedical Science, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
|
33
|
|
34
|
Lovitt RW, Kell DB, Morris JG. The physiology of Clostridium sporogenes NCIB 8053 growing in defined media. THE JOURNAL OF APPLIED BACTERIOLOGY 1987; 62:81-92. [PMID: 3571035 DOI: 10.1111/j.1365-2672.1987.tb02383.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The physiology of Clostridium sporogenes was investigated in defined, minimal media. In batch culture, the major end products of glucose dissimilation were acetate, ethanol and formate. When L-proline was present as an electron acceptor, acetate production was strongly enhanced at the expense of ethanol. As judged by assay of the relevant enzymes, glucose was metabolized via the Embden-Meyerhof-Parnas pathway. The growth energetics of Cl. sporogenes were investigated in glucose- or L-valine-limited chemostat cultures. In the former case, the addition of L-proline to the medium caused a significant increase in the molar growth yield (as calculated by extrapolation to infinite dilution rate). This finding adds weight to the view that the reduction of L-proline by Cl. sporogenes is coupled to the conservation of free energy.
Collapse
|
35
|
Lovitt RW, Kell DB, Morris J. Proline reduction byClostridium sporogenesis coupled to vectorial proton ejection. FEMS Microbiol Lett 1986. [DOI: 10.1111/j.1574-6968.1986.tb01708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Siekevitz P. The continuing life of the Enzyme Club of New York City: the growth of American biochemistry from 1942 to 1982. TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES 1983; 41:213-32. [PMID: 6399800 DOI: 10.1111/j.2164-0947.1983.tb02803.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
SCHWARTZ ARNOLDC, REINSBERG JOCHEN. D-PROLINE REDUCTASE FROM CLOSTRIDIUM STICKLANDII: ACTIVATION BY MONOVALENT AND DIVALENT CATIONS, AND INHIBITION BY ANIONS. FEMS Microbiol Lett 1980. [DOI: 10.1111/j.1574-6941.1980.tb01596.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Schwartz AC, Müller W. NADH-dependent reduction of D-proline in Clostridium sticklandii. Reconstitution from three fractions containing NADH dehydrogenase, D-proline reductase, and a third protein factor. Arch Microbiol 1979; 123:203-8. [PMID: 231943 DOI: 10.1007/bf00446821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enzyme system from Clostridium sticklandii catalyzing the NADH-dependent reduction of D-proline was co-purified by chromatography on DEAE-cellulose at pH 8.2 and ammonium sulfate fractionation, and resolved into fractions containing three different protein components, NADH dehydrogenase, D-proline reductase and a third protein factor, by chromatography on DEAE-cellulose at pH 7.0. Upon recombination of the fractions containing the three different protein components, the NADH-dependent reduction of D-proline was successfully reconstituted. The NADH dehydrogenase fractions oxidized NADH in the presence of artificial electron acceptors, and were inhibited by p-hydroxymercuriphenylsulfonate (50% at 80 nM). They contained 3--4 different enzyme bands as revealed by polyacrylamide-gel electropherograms stained with the NADH-dependent reduction of 2,3,5-triphenyltetrazolium chloride. D-Proline reduction was also coupled to a leuco-methylene blue-generating system containing D-glucose and glucose-oxidase (EC 1.1.3.4). Circumstantial evidence indicated that, among the clostridial proteins, only D-proline reductase and the third protein factor were needed for this reaction.
Collapse
|
39
|
Bonte W, Theusner J. [Identification and significance of delta-aminovaleric acid in putrefaction materials (author's transl)]. ZEITSCHRIFT FUR RECHTSMEDIZIN. JOURNAL OF LEGAL MEDICINE 1979; 83:139-46. [PMID: 494814 DOI: 10.1007/bf02092270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During former putrefaction experiments regularly a proteogenic substance has been found which by means of modern analytical methods now was identified as delta-aminovaleric acid (DAVA). DAVA seems to appear in guinea pig as well as human organs and some body fluids under experimental conditions never before the 3rd (20 degrees C) to 5th day (10 degrees C). It is characterized by statistically significant increases until the end of the 2nd (20 degrees C) to 5th week (10 degrees C) and relatively stable values thereafter. Considering storage temperature measurement of DAVA concentration can be of relevance for the estimation of the time of death in cases of putrescent corpses.
Collapse
|
40
|
Seto B, Stadtman TC. Purification and properties of proline reductase from Clostridium sticklandii. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Keenan MV, Alworth WL. The inhibition of proline racemase by a transition state analogue: delta-1-pyrroline-2-carboxylate. Biochem Biophys Res Commun 1974; 57:500-4. [PMID: 4829407 DOI: 10.1016/0006-291x(74)90960-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
|
43
|
|
44
|
Adams E. Metabolism of proline and of hydroxyproline. INTERNATIONAL REVIEW OF CONNECTIVE TISSUE RESEARCH 1970; 5:1-91. [PMID: 5500436 DOI: 10.1016/b978-0-12-363705-5.50007-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Diven WF. Studies on amino acid racemases. II. Purification and properties of the glutamate racemase from Lactobacillus fermenti. BIOCHIMICA ET BIOPHYSICA ACTA 1969; 191:702-6. [PMID: 5363991 DOI: 10.1016/0005-2744(69)90364-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Hodgins DS, Abeles RH. Studies of the mechanism of action of D-proline reductase: the presence on covalently bound pyruvate and its role in the catalytic process. Arch Biochem Biophys 1969; 130:274-85. [PMID: 5778643 DOI: 10.1016/0003-9861(69)90034-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Hodgins D, Abeles RH. The Presence of Covalently Bound Pyruvate in d-Proline Reductase and Its Participation in the Catalytic Process. J Biol Chem 1967. [DOI: 10.1016/s0021-9258(18)99489-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Decker K, Bleeg H. Induction and purification of stereospecific nicotine oxidizing enzymes from Arthrobacter oxidans. BIOCHIMICA ET BIOPHYSICA ACTA 1965; 105:313-24. [PMID: 5849820 DOI: 10.1016/s0926-6593(65)80155-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Adams E, Norton IL. Purification and Properties of Inducible Hydroxyproline 2-Epimerase from Pseudomonas. J Biol Chem 1964. [DOI: 10.1016/s0021-9258(18)91347-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Kirchmeier O, Kiermeier F. ?-Amino-n-valerians�ure (Homopiperidins�ure), ein spezifischer Inhaltsstoff verdorbener Silagen. Naturwissenschaften 1964. [DOI: 10.1007/bf00601724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|